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Preface

This second volume of a comprehensive edition of the works of Kurt
Godel contains the remainder of his published work, covering the period
1938-1974. (Volume I included all of his publications from 1929 to 1936;
no work of his appeared during 1937.) Succeeding volumes are to contain
selections from Godel’s unpublished manuscripts, lectures, lecture notes
and correspondence, as well as extracts from his scientific notebooks.

For a detailed explanation of the plan for this edition, the reader should
consult the Preface to Volume I of these Works. To summarize briefly,
each article or closely related group of articles is preceded by an introduc-
tory note that elucidates it and places it in historical context. These notes
(varying greatly in length) have been written by the members of the edi-
torial board as well as a number of outside experts. Furthermore, the only
article originally written in German, 1958, is accompanied by an English
translation on facing pages. As in Volume I, the original articles have been
typeset anew in a uniform and more readable format. Finally, the exten-
sive list of references in this volume contains all items referred to either by
Godel or in the introductory notes, and also includes all the items listed in
Volume 1.

Here again, our aim has been to make the full body of Godel’'s work
as accessible and useful to as wide an audience as possible, without in
any way sacrificing the requirements of historical and scientific accuracy.
We expect these volumes to be of interest and value to professionals and
students in the areas of logic, mathematics, computer science and even
physics, as well as to many non-specialist readers with a broad scientific
background. Naturally, even with the assistance of the introductory notes,
not all of Gédel’s work can be made equally accessible to such a variety
of readers; but the general reader should nonetheless be able to gain some
appreciation of what Gédel accomplished in each case.

We continue to be indebted to the National Science Foundation and
the Sloan Foundation, whose grants have made possible the production of
Volumes I and IT as well as preparations for succeeding volumes, and to
the Association for Symbolic Logic, which has sponsored our project and
administered these grants. Our publisher, Oxford University Press, has
once more been very accommodating to both our overall plans and our
specific wishes. Much of our work was done with the assistance of former
Oxford Science Editor Donald Degenhardt; following his return to England,
we have received the assistance first of Jeffrey W. House, Vice-President
and Executive Editor for Science and Medicine, and more recently of the
new Science Editor, Dr. Jacqueline E. Hartt.
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For the names of the many other individuals who have helped make these
first two volumes of Gaédel’s Collected works possible, the reader should
refer to the Preface to Volume I. Our gratitude to all for their assistance
is undiminished.

Solomon Feferman

Jean van Heijenoort, our dear friend and co-editor, died on 29
March 1986. His contributions to our work on Kurt Godel were
invaluable at every stage and in every respect. At the outset,
his enthusiastic support was instrumental in our decision to em-
bark upon this project. Then, drawing upon his own extensive
editorial experience, he helped us to develop our overall plans
as well as to make the many detailed choices, and throughout
the course of the work he devoted himself unstintingly and with
the utmost care to whatever task was at hand. ,

The present volume was largely completed by the time of
van Heijenoort’s death; indeed, he had already begun a detailed
examination of some of Godel’s unpublished articles for the suc-
ceeding volume. His spirit will continue to animate all our work,
and we have taken his standards as our own.




Information for the reader

Introductory notes. The purpose of the notes described in the Pref-
ace above is (i) to provide a historical context for the items introduced,
(i) to explain their contents to a greater or lesser extent, (iii) to discuss
further developments which resulted from them and (iv) in some cases to
give a critical analysis. Each note was read in draft form by the editorial
board, and then modified by the respective authors in response to criti-
cisms and suggestions, the procedure being repeated as often as necessary
in the case of very substantial notes. No attempt, however, has been made
to impose uniformity of style, point of view, or even length. While the
editorial board actively engaged in a critical and advisory capacity in the
preparation of each note and made the final decision as to its acceptabil-
ity, primary credit and responsibility for the notes rest with the individual
authors.

Introductory notes are distinguished typographically by a running ver-
tical line along the left- or right-hand margin and are boxed off at their
end.? The authorship of each note is given in the Contents and at the end
of the note itself.

References. Each volume contains a comprehensive References section
which comprises the following three categories of items: (i) a complete
bibliography of Godel’s own published work, (ii) all items referred to by
Godel in his publications and (iii) all items referred to in the chapter in
Volume I on Gédel’s life and work or in the individual introductory notes.

In the list of references, each item is assigned a date with or without
a letter suffix, e.g., “1930”, “1930a”, “1930b”, etc.” The date is that of
publication, where there is a published copy, or of presentation, for unpub-
lished items such as a speech. A suffix is used when there is more than
one publication in that year. (The ordering of suffixes does not necessarily
correspond to order of publication within any given year.) Date of compo-
sition has not been used for references, since that is frequently unavailable
or only loosely determined.

Within the text of our volumes, all references are supplied by citing
author(s) and date in italics, e.g., Gédel 1930 or Hilbert and Bernays 193/.
Where no name is specified or determined by the context, the reference is
to Gddel’s bibliography, as e.g., in “Introductory note to 1929, 1930 and

8A special situation occurs when the note ends in mid-page before facing German
and English text. Then the note extends across the top half of the facing pages and is
boxed off accordingly.

b«1987” is used for articles whose date of publication is to be in 1988 or later, or is
not yet known.
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1930a”. Examples of the use of a name to set the context for a reference
are: “Frege’s formal system presented in 18797, “Skolem proved in 1920
that ...”, and “Skolem (7920) proved that ...".

There are two works by Godel, 1929 and 1972, whose dating required
special consideration; they appear in Volumes I and 11, respectively. The
first of these is Godel’s dissertation at the University of Vienna; its date is
that of the year in which the dissertation was submitted (as distinguished
from the date of its acceptance, which was 1930). The second, a transla-
tion and revision of Godel’s paper 1958, was intended for publication in
the journal Dialectica but hitherto never actually appeared. It reached the
stage of page proofs and was found in that form in Godel’s Nachlass. Corre-
spondence surrounding this projected publication shows that Godel worked
on the revision sporadically over a number of years, beginning in 1965; the
last date for which we have evidence of his making specific changes is 1972,
and that date has therefore been assigned to it in our References. (For
more information concerning this work, see the introductory note to 1958
and 1972 in this volume.) Appended to the page proofs of 1972 were three
short notes on the incompleteness results; they have been assigned the date
1972a in the References.

To make the References as useful as possible for historical purposes, au-
thors’ names are there supplied with first and/or middle names as well as
initials, except when the information could not be determined. Russian
names are given both in transliterated form and in their original Cyril-
lic spelling. In some cases, common variant transliterations of the same
author’s name, attached to different publications, are also noted.

Editorial annotations and textual notes. Editorial annotations within
any of the original texts or their translations or within items quoted from
other authors are signaled by double square brackets: [ ]. Single square
brackets [ ] are used to incorporate corrections supplied by Gédel. In
some articles, editorial footnotes are inserted in double square brackets
for a further level of annotation. Each volume has, in addition, a sepa-
rate list of textual notes in which other corrections are supplied. Finally,
the following kinds of changes are made uniformly in the original texts:
(i) footnote numbers are raised above the line as simple numerals, e.g., 2
instead of 2); (ii) spacing used for emphasis in the original German is here
replaced by italics, e.g., er fii 11 b ar is replaced by erfillbar; (iii) refer-
ences are replaced by author(s) and date, as explained above; (iv) initial
sub-quotes in German are raised, e.g., ,engeren” becomes “engeren”.

Translations. The overall aim for the translations, as well as the variety
of work required and general responsibility for them has been described in
the Preface to Volume I. The only translation in this volume (namely that
of 1958) is the work of Stefan Bauer-Mengelberg and Jean van Heijenoort.

Logical symbols. The logical symbols used in Godel’s original articles
are here presented intact, even though these symbols may vary from one ar-
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ticle to another. Authors of introductory notes have in some cases followed
the notation of the article(s) discussed and in other cases have preferred
to make use of other, more current, notation. Finally, logical symbols are
sometimes used to abbreviate informal expressions as well as formal opera-
tions. No attempt has been made to impose uniformity in this respect. As
an aid to the reader, we provide the following glossary of the symbols that
are used in one way or another in these volumes, where ‘A’, ‘B’ are letters
for propositions or formulas and ‘A(z)’ is a propositional function of z or
a formula with free variable ‘z’.
Conjunction (“Aand B”): A.B, ANB, A& B
Disjunction (“A or B”): AV B
Negation (“not A”): A, ~A, ~A
Conditional, or Implication (“if A then B”): ADB, A— B
Biconditional (“A if and ounly if B”): ADC B,A=B,A~B, A~ B
Universal quantification (“for all z, A(z)”): (z)A(z), llzA(x), z1I( A(z)),
(Vz)A(x)

Ezistential quantification (“there exists an z such that A(z)"): (Ex)A(z),
Yz A(z), (Iz)A(z)

Unicity quantification (“there exists a unique z such that A(z)”):
(E'z)A(z), Tz A(z), (3lz)A(x)

Necessity operator (“A is necessary”): A, NA

Minimum operator (“the least z such that A(z)”): ex(A(z)), px(A(zx))

Provability relation (“A is provable in the system §”): S+ A

Note: (i) The “horseshoe” symbol is also used for set-inclusion, i.e., for
sets X, Y one writes X C Y (or Y D X) to express that X is a subset
of Y. (ii) Dots are sometimes used in lieu of parentheses, e.g., A D.BD A
is written for A D (B D A).

Typesetting. These volumes have been prepared by the TgX comput-
erized mathematical typesetting system (devised by Donald E. Knuth of
Stanford University), as described in the Preface to Volume 1. The result-
ing camera-ready copy was delivered to the publisher for printing. The
computerized system was employed because: (i) much material, including
the introductory notes and translations, needed to undergo several revi-
sions; (ii) proof-reading was carried on as the project proceeded; (iii) the
papers could be prepared in a uniform, very readable form, instead of
being photographed from the original articles. Choices of the various type-
setting parameters were made by the editors in consultation with the pub-
lisher. Primary responsibility for preparing copy for the typesetting system
lay with Gregory H. Moore, and the typesetting itself was carried out by
Yasuko Kitajima.

For all previously published articles, original pagination is indicated
herein by numbers in the margins, with vertical bars in the body of the
text used to show the exact page breaks. No page bar or number is used
to indicate the initial page of an article.
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Footnotes. We use a combination of numbering and lettering, as fol-
lows. All footnotes for Godel’s texts and their translations are numbered,
with only rare exceptions, as in the original. There is, however, one special
case, that of 1972, in which Gédel provided a second series of footnotes,
essentially to preserve the original series from 1958 without change of num-
bering. The new series is here distinguished by boldface lower-case Roman
letters. For all the other material in this volume, footnotes are indicated
by lightface lower-case Roman letters.

Godel’s Nachlass. The scientific Nachlass of Kurt Godel was donated to
the Institute for Advanced Study in Princeton, N.J., by his widow Adele
shortly after his death. The Nachlass consists of unpublished manuscripts,
lecture notes, course notes, notebooks, memoranda, correspondence and
books from Gédel’s library. It was catalogued at the Institute for Ad-
vanced Study during the years 1982-1984 by John Dawson. Early in
1985 the Nachlass with its catalogue was placed on indefinite loan to the
Manuscripts Division (located in the Rare Book Room) of the Firestone Li-
brary at Princeton University, where the material is available for scholarly
examination. All rights for use still reside, however, with the Institute for
Advanced Study. Though the Nachlass is referred to only here and there
in Volumes I and II, it will be the source of almost all the material in sub-
sequent volumes. For further information concerning its general character,
see Volume I, pages 26-28.

Photographs. Primary responsibility for securing these lay with John
Dawson. Their various individual sources are credited in the Permissions
section, which follows directly.
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Introductory note to 1938, 1939,
1989a and 1940

1. Introduction

The papers discussed in this introductory note deal with Godel’s proof
of the relative consistency of the axiom of choice and of the generalized
continuum hypothesis with the usual axioms for set theory.® The note
1938 announces the results and gives a brief discussion of the ideas un-
derlying their proofs; 1989 is an abstract in which the results are again
announced. The paper 1939a gives considerable technical detail con-
cerning the proofs; essentially complete proofs, along somewhat different
lines, are presented in 1940.

In the next section, I shall describe briefly the historical context of
Godel’s work.P The third section is devoted to the results themselves,
the problems that they solved, and the methods used to obtain them.
In the final section, the new problems raised by Godel’s work and the
results concerning them obtained by later workers will be discussed.

2. Historical antecedents

Godel’s work bore on two previously considered questions, the axiom
of choice and the continuum hypothesis.

2.1 The axiom of choice

Cantor had conjectured the proposition, now called the well-ordering
theorem, that every set can be well-ordered.® In 1904 Zermelo gave a
proof of this conjecture, using in an essential way the following mathe-
matical principle: for every set X there is a choice function, f, which
is defined on the collection of non-empty subsets of X, such that for
every set A in its domain we have f(A) ¢ A. Subsequently, in 1908,
Zermelo presented an axiomatic version of set theory in which his proof
of the well-ordering theorem could be carried out. One of the axioms

2This is here taken to be the Zermelo-Fraenkel (ZF) system of axioms for set
theory excluding the axiom of choice, explained in Section 2 below.

b have been greatly helped in preparing Section 2 by conversations and corre-
spondence with Gregory H. Moore.

¢A well-ordering of a set X is a linear ordering of X such that every non-empty
subset of X has a least element.
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was the principle just stated,® which Zermelo referred to as the “Axiom
der Auswahl” (the aziom of choice, abbreviated AC).

Zermelo’s proof was the subject of considerable controversy.® The
well-ordering theorem is quite remarkable, since, for example, there is
no obvious way to define a well-ordering of the set of real numbers.f
Nor is such an explicit well-ordering provided by Zermelo’s proof. Thus
many people who thought Zermelo’s result implausible cast doubt upon
the validity of AC. The other set-existence axioms all have the form
that some collection of sets, explicitly definable from certain given pa-
rameters, is itself a set. The axiom of choice, on the other hand, asserts
the existence of a choice function but does not provide an explicit defi-
nition of such a choice function. Zermelo was well aware that his axiom
had this purely existential character, but many other mathematicians
were uncomfortable with existence proofs that did not provide the con-
struction of specific examples of what was asserted to exist.

The work of Gédel dealt with here showed that AC is “safe” in the
following sense: If the usual axioms of set theory (including the axiom
of foundation but excluding AC) do not lead to a contradiction, then
they remain consistent when AC is adjoined as an additional axiom.

2.2 The continuum hypothesis

In his theory of infinite cardinals Cantor proved (making essential but
implicit use of AC) that the totality of all infinite cardinal numbers is
well-ordered (and in fact is order-isomorphic to the totality of all ordinal
numbers). However, an important question was left open by Cantor’s
work. Let ¢ be the cardinal number of the set of real numbers (or, as this
set is sometimes referred to, the continuum). Cantor showed that ¢ is
not the first infinite cardinal, but he was unable to determine its precise
place in the hierarchy of infinite cardinals. He conjectured, however, that
c is precisely equal to ®;, the second infinite cardinal (Cantor 1883).
This conjecture became known as the continuum hypothesis (CH). It
is easily shown that ¢ = 2%, and so CH is equivalent to the statement
2% = R;. A natural generalization, considered later by Hausdorff (1908)
and called the generalized continuum hypothesis (GCH ), asserts that for
every ordinal o, 2% = Noyq.

4Zermelo’s precise formulation in his Axiom VI was slightly different from the
one we have given here, but they are easily proved equivalent in the presence of the
other axioms.

€ Moore 1982 has an exhaustive discussion of the history of this controversy.

fWe now know, thanks to the work of Cohen (1968, 1964) and Feferman (1965),
that it is consistent with all the usual axioms of set theory (including the axioms
of choice and foundation) that there is no definable well-ordering of the set of real
numbers.
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Godel did not succeed in settling whether or not CH is true. But he
was able to show that the usual axioms of set theory do not disprove
CH, so that if they settle its truth value at all, it must be a theorem.
As it turned out, Cohen was able to show in 1963 that the latter also
does not hold. Gdédel’s method of proof for the consistency of CH with
the axioms of set theory (including the axiom of choice), to be described
below, worked just as well to establish the consistency of GCH with
those axioms.

2.3 Axiomatizations of set theory

Modern axiomatizations of set theory are all derived from Zermelo
1908. However, the systems of Skolem and Fraenkel that have come to
replace Zermelo’s differ from it in several respects:&

(a) Zermelo’s original axioms allowed for individuals (or urelements)
that are members of sets but are not sets themselves. Thus, Zermelo’s
version of the axiom of extensionality said that two sets with precisely
the same members are equal. The modern axiomatization considers only
pure sets; thus the variables of the theory range only over sets, and the
axiom of extensionality takes the form that whenever x and y have the
same members, they are equal.

(b) A key axiom schema of set theory, separation, expresses the fol-
lowing: if x is a set and P is a property, then there is a set y whose
members are precisely those members of z that have the property P.
Clearly some care is needed in the precise formulation of this axiom
schema. Zermelo introduced a new undefined notion of “definite prop-
erty”. (He says “A question or assertion ... is said to be definite if the
fundamental relations of the domain, by means of the axioms and the
universally valid laws of logic, determine without arbitrariness whether
it holds or not”.1) He then required that the property P be definite in
this sense.

While perhaps adequate for mathematical practice, Zermelo’s treat-
ment of this axiom schema was not precise enough for metamathemati-
cal investigations. For these purposes, one needs a precise set of axioms
in an unambiguously defined formal language. The solution (found by
Skolem in his 1923) is to allow only those properties P that are ex-
pressible in the appropriate formal language for set theory.! Present-day

&Section 4.9 of Moore 1982 has an excellent discussion of the historical process
by which ZF evolved from the axiomatic theory of Zermelo 1908.

b1 am quoting from the translation in van Heijenoort 1967, p. 201.

10f course, the idea of a formal first-order language was not as familiar in 1923
as it is today.
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versions of axiomatic set theory handle the separation schema in the
manuner of Skolem.

(c) Even after Zermelo 1908 is amended as suggested in (a), it still
permits the existence of anomalous sets. For example, it is possible to
have a model of Zermelo’s theory in which there is a set £ whose sole
member is z itself. This and other related anomalies are ruled out by
the axiom of foundation, which asserts that every non-empty set = has
a member y which has no members in common with x.

Another formulation of the axiom of foundation with a clearer con-
ceptual meaning will be given after we discuss the replacement axiom.

(d) Both Fraenkel and Skolem pointed out that Zermelo’s system of
axioms could not carry out certain constructions permitted in Cantor’s
“naive set theory”. For example, let Zy be the set of non-negative in-
tegers and let Z;,; be the power set of Z; for i € w. Then Zermelo’s
system is unable to prove the existence of the set whose members are
the Z;’s.

This defect is handled by adjoining a new axiom schema, that of re-
placement, which asserts roughly the following: let P(z) be a “definite
property” in the precise sense above. Suppose that, for every set x, there
is precisely one y such that P({z,y)) We can think of P as determining
a function F whose domain is the collection of all sets. Then, for every
set a, there is a set b whose members are precisely the values of F'(y) for
Y€ a.

The modern axiomatization of set theory, ZFC, is obtained by mak-
ing these four changes in Zermelo’s 1908 paper. (The version without
the axiom of choice is denoted ZF.) The system obtained from ZFC
(respectively, ZF') by dropping the axiom schema for replacement is de-
noted ZC (respectively, Z).

We‘can now describe the more conceptual proposition which (in the
presence of all the axioms of ZF except the axiom of foundation) is
equivalent to the axiom of foundation. (The proof makes essential use
of the replacement schema and cannot be carried out in Z or even ZC.)

The levels in the cumulative hierarchy are the sets R{«), defined for
all ordinals « by transfinite induction on « as follows:

(i) R(0) = 0;

(ii) if @« = 8+1, then R(a) = P(R(3)) (where P(z), the power set of
x, is the collection of all subsets of x);

(iii) if o is a limit ordinal, then R(a) = L<J R(%).

(a3

The promised equivalent to the axiom of goundation is the proposition
that every set is a member of one of the levels R(a) of the cumulative
hierarchy.

JHere (z,y) is the ordered pair of x and y, defined in the usual way due to
Kuratowski (1921).
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Present day research in set theory concentrates on the theory ZFC.
However, in 1940 Godel worked with a different version of axiomatic set
theory, due to Bernays and Gédel, which he denoted by ¥ but which is
now customarily denoted BG.X In the system BG there are two differ-
ent sorts of variables. First of all there are variables which range over
sets. Intuitively, these sefs may be identified with the sets which are
the range of the variables of ZFC. In addition, there are class variables.
The intuitive picture is that classes are collections of sets. The axioms
of BG ensure that every set is a class, that every member of a class
is a set and conversely, and that two classes which have precisely the
same members are equal; but in addition to sets, BG provides for the
existence of classes, called proper classes, which are “too large” to be
sets. For example, there is a universal class, V, which has every set as
a member.

While every theorem of ZF is a theorem of BG, a striking difference
is that BG is finitely axiomatizable while ZF is not. The reason why ZF
requires infinitely many axioms is that each of the two axiom schemas
(of separation and replacement) has infinitely many instances. Each of
these schemas corresponds to a single axiom of BG. (For example, the
axiom schema of separation corresponds to the assertion that, if A is a
class and z is a set, there is a set y whose members are precisely the
sets which are members of both A and z.) BG has only finitely many
axioms of class existence, but they suffice to prove that, for any prop-
erty P of sets which is expressible in the language of ZF (with particular
sets allowed as pararmeters in the definition), BG can prove that there
is a class whose members are precisely the sets with property P.! (The
finitely many axioms of BG that are needed correspond roughly to the
finitely many basic predicates and logical connectives of the language of
ZF.)

To state the next significant fact about the Bernays—-Gdédel system,
we agree that henceforth BG will refer to the version without the axiom
of choice, while BGC will refer to the version with the “global axiom of
choice”. This principle asserts that there is a single function F' (neces-
sarily a proper class) which selects a member from every non-empty set.
Mostowski proved that if ¢ is a sentence in the language of ZF, then ¢
is a theorem of ZF if and only if it is a theorem of BG; in other words,
BG is a conservative extension of ZF.™ It turns out that BGC is also

k¥The system BG grew out of earlier work by von Neumann. Cf von Neumann
1925, 1928, Bernays 1937, 1941, 1942, and Gddel 1940.

IThis and more is proved in the metatheorem M1 of Chapter II of 1940.
™Mostowski’s proof is sketched in footnote 6 on page 112 of Mostowski 1950.
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a conservative extension of ZFC. This latter result was proved at about
the same time by Kripke, Cohen and the present writer.”

Finally, we remark that natural models of the different theories we
have discussed can be found at suitable stages of the cumulative hi-
erarchy. (For all the models so considered, we take the e-relation of
the model to be the restriction of the usual membership relation to its
sets.) In particular, if « is a limit ordinal greater than w (for example,
a = w + w), then R(a) is a model of ZC.

Before stating the corresponding result for natural models of ZFC, we
need to recall some notions about infinite cardinals. An infinite cardinal
k is regular if k is not the sum of fewer than x many cardinals less than
k. An infinite cardinal  is a strong limit cardinal if, whenever X is a
cardinal less than &, then also 2* < k. Finally, an infinite cardinal & is
strongly inaccessible if it is regular, is greater than Ng, and is a strong
limit cardinal. If © is a strongly inaccessible cardinal, then R(Q) is a
model of ZFC. We can obtain a model of BGC by taking the sets of the
model to be the members of R(2) and the classes of the model to be the
subsets of R({2).°

There is another construction of “natural models of set theory” we
shall need to refer to later, for which some preliminary definitions are
required. A set z is said to be transitive if (Vy € z)(y C z). One can
prove in ZFC that for every set z there is a smallest transitive set y such
that z C y. This y is called the transitive closure of x. For A an infinite
cardinal, H(A) is the collection of all sets  whose transitive closure has
cardinality less than A. {One can prove in ZFC that H()) is a set.) If
A is a regular cardinal greater than Ry, then H(A) is'a model of all the
axioms of ZFC except possibly the power set axiom. If A is a strong
limit cardinal greater than Ny, then H(A) is a model of ZC. Finally, if A
is strongly inaccessible, then H()) is a model of ZFC. (In this last case,
one can show that H(\) = R(}).)

This completes our review of the different versions of axiomatic set
theory and their simplest models; we now return to our discussion of the
historical antecedents of Godel’s work on constructibility.

Godel’s method, which has subsequently become known as the “inner
model” method, proceeded as follows: he described a certain collection
of sets, called the constructible sets, and was able to prove (in axiomatic
set theory without the axiom of choice) that each of the axioms of set
theory holds in the domain of constructible sets. He also showed that

"Subsequently, the proof was rediscovered and published in Felgner 1971.

°Since the results just stated can be proved in ZFC, it follows by Godel’s sec-
ond incompleteness theorem that the existence of an inaccessible cardinal cannot be
proved in ZFC if ZFC is consistent.
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AC and GCH hold in this domain. From this it follows easily that if
the axioms of set theory became inconsistent after adjoining AC and
GCH, then they must already have been inconsistent without these new
axioms. For a proof of 0 = 1 from the new axioms could be recast as a
proof that 0 = 1 holds in the domain of all constructible sets, an obvious
contradiction.

A certain amount of model-theoretic work had been done in set theory
prior to Godel’s work. When Zermelo presented his axiomatization of set
theory in 1908, he already raised the question of the system’s consistency
(“T have not yet even been able to prove rigorously that my axioms are
consistent, though this is certainly very essential ...”P); he also remarked
that his axioms appeared to be independent of each other, but made no
attempt at a proof. The first real endeavors to work with models of set
theory were by Fraenkel (1922, 1922a) and Skolem (1923). Fraenkel
attempted? to show the independence of a number of Zermelo’s axioms,
particularly the axioms of choice and separation. However, Fraenkel
was definitely not thinking in terms of first-order logic, whereas Skolem
was. Naturally, this had profound effects on the sort of models that they
considered. Skolem was very interested in countable models of set theory
and noted that such a model, even if its natural numbers are standard,
will omit some set of natural numbers. He raised the question whether
one can add such a set of natural numbers and still have a model of
Zermelo set theory. Also, he argued that the continuum hypothesis is
probably neither proved nor disproved by Zermelo’s axioms.

There matters sat for a while. Then von Neumann in his 1929 gave
the first relative consistency proof, that for the axiom of foundation;
that is, he showed that if set theory without the axiom of foundation is
consistent, then it remains consistent when the axiom is added. Later,
Ackermann (1937) gave a proof that if number theory is consistent, so is
ZFC minus the axiom of infinity. Gédel’s discovery of constructible sets
and their use in proving the relative consistency of the axiom of choice
dates from 1935; the proof of the relative consistency of CH (and, in
fact, of GCH) came later, apparently in 1937."

PThis passage is quoted from the translation in van Heijenoort 1967, pp. 200-201
Of course, in light of Gédel’s second incompleteness theorem, it is unreasonable to
hope for a proof of the consistency of the Zermelo axioms using means formalizable
within Zermelo’s system.

4Fraenkel’s work did not meet modern standards of rigor. Completely adequate
versions of Fraenkel’s proofs were given in Lindenbaum and Mostowski 1938; see
Mostowski 1939.

"For further details on the evolution of Godel’s proof and other references, see p.
158 below as well as these Works, Volume I, pp. 9, 21-22; the dating 1937 for the
relative consistency of GCH comes from an item in Gdédel’s Nachlass (op. cit., p. 36,
fn. s). Cf. also Moore 1982, pp. 280-283.
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As we shall see more clearly in the next section, Gédel’s constructible
hierarchy (which is used to define the class of constructible sets) can be
viewed as a variant of the cumulative rank hierarchy. The rank hierar-
chy had first been clearly stated by Zermelo in his 1930, in the context
of second-order models of set theory.® In a sense, Godel combined the
rank hierarchy of Zermelo with the first-order perspective of Skolem in
order to obtain the hierarchy of constructible sets.

Another antecedent of Godel’s constructible hierarchy is the rami-
fied theory of types of Russell and Whitehead. Indeed, Godel explic-
itly states that his constructible hierarchy can be viewed as the natural
prolongation to transfinite levels of the ramified theory of types (1944,
page 147). The most striking expression of this connection appears in a
letter of Godel to Hao Wang, dated 7 March 1968 and quoted on page 10
of Wang 1974. There Godel attests to the fruitfulness of his platonistic
attitudes for his research in the foundations of mathematics. Referring
to his work on the consistency of CH, he says, “However, as far as, in
particular, the continuum hypothesis is concerned, there was a special
obstacle which really made it practically impossible for constructivists to
discover my consistency proof. It is the fact that the ramified hierarchy,
which had been invented expressly for constructive purposes, has to be
used in an entirely nonconstructive way.” The essentially nonconstruc-
tive element lies in the use of arbitrary ordinals as the levels in Godel’s
extension of the ramified theory.

3. Description of the proof

The outline we shall give is substantially that of Gédel 1939a. In that
brief note, the details of the proofs that the axioms of ZFC hold in L
and of the absoluteness arguments needed to establish that V = L holds
in L are not given, but all the key notions and ideas are explained.

The notion of constructible set is best defined in terms of an auxil-
iary hierarchy of sets, the L,’s, which are defined, for all ordinals a, by
transfinite induction on «, as follows:

(i) Lo =6;

(ii) if @« = B+ 1, then L, consists of all the subsets of Lg that are
definable by a first-order formula of set theory, possibly containing pa-
rameters from Lg, when the variables of that formula are interpreted as
ranging over Lg;

(iii) if « is a limit ordinal, then L, = 7L<JaL,,.

$Mirimanoff (1917) had introduced the cumulative hierarchy, but was not influ-
ential; von Neumann {1929) used it, but in a very confusing way.
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Finally, a set is constructible if and only if it appears in some L,;
while the class L of constructible sets is not in the range of the variables
of ZF, the property L(z) of being constructible is definable in ZF, in the
form 3a(x € L,).

A number of comments on this definition are in order. First, it should
be contrasted with the description of the universe of sets in terms of the
cumulative hierarchy. There the form of the definition is exactly the
same as the one just given if « is 0 or a limit ordinal, but at the crucial
successor case, R(a + 1) is the collection of all subsets of R(a).

Thus the constructible hierarchy is obtained by modifying the usual
definition of the cumulative hierarchy to be far more parsimonious in
adding subsets of the collection of sets already defined. Intuitively, at
stage a + 1 one throws in only those subsets of L, that must appear in
any possible model of set theory that contains the set L,. (However, in
contrast to the cumulative hierarchy, some new subsets of L, may first
appear at stages later than « + 1; indeed, this happens for all infinite
stages «.)

We now explain the essentials of Godel’s proof (outlined in 71939a)
that L, the totality of all constructible sets, is a model for all the axioms
of ZF together with AC and GCH.!

Even though the variables of ZF range only over sets and not over
proper classes, it is standard in expositions of ZF set theory to allow lim-
ited reference to proper classes when this is done in such a way that the
discussion could in principle be expressed solely in terms of sets. Thus,
for example, the (true) assertion that every ordinal is constructible might
be expressed by On C L. (Here On is the class of all ordinals.) A more
detailed discussion of this point can be found in Chapter 1, Section 9, of
Kunen 1980. Our discussion of absoluteness in the following paragraph
should be taken in this spirit.

We first introduce the very important notion of ¢(z1,...,z,) be-
ing absolute from a transitive class M to a transitive subclass N.* The
formula ¢ is absolute from M to N if and only if, whenever xy,...,z,

t*The word “model” has to be taken with a grain of salt. For each particular
axiom of ZF, the statement that that axiom holds in the domain of the constructible
sets can be formulated in the language of ZF and is in fact a theorem of ZF. Since
we cannot, in any obvious way, formulate in a single sentence of the language of ZF
the assertion that all the axioms of ZF hold in L, we are not in danger of running
afoul of Godel’s second incompleteness theorem on the unprovability of consistency.
At the same time, this understanding of the model-theoretic approach allows one to
establish the consistency of ZFC + GCH relative to ZF.

YA class X of sets is called transitive if, whenever x is a member of X, then z is
a subset of X. For example, L and the class V of all sets are transitive classes.
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are members of N, ¢(x1,...,x,) holds in the structure NV if and only
if it holds in the structure M.

It is straightforward to verify that the axioms of ZF hold in L. The
axiom of separation is the hardest to check. Here the key idea is that, by
the same argument used to prove the reflection principle of set theory,”
there will be many stages L, at which some preassigned formula will
be absolute from L to L,. So if # € Ly, a subset of x defined by a
formula whose variables are interpreted as ranging over all of L will be
defined equally well by the same formula with its variables interpreted
as ranging over L,; but then this subset will appear in Lyy.

The remainder of Godel’s argument consists in showing that AC and
G CH hold in the constructible universe. This is done in two steps. First,
it is shown that these propositions follow from the proposition that ev-
ery set is constructible, a proposition now customarily referred to as the
axiom of constructibility and symbolized by the equality V = L. Sec-
ond, it is shown that the proposition V = L holds in the constructible
universe.

We take up the second point first. It is natural to think that this
is a trivial matter, since from the standpoint of L, the universe of
sets consists precisely of those sets lying in" L. But there is a subtle
difficulty to recognize and deal with. A set xz in L might have some
property, such as being a cardinal number or being a constructible set,
in- V, but the same property, interpreted in L, might not hold of z.
(This possibility definitely can happen for the property “is not a car-
dinal number”.) In fact, one can show that the L,’s, when computed
in L, are exactly the same as the L,’'s when computed in V. In order
to show this, it is necessary to make a detailed study of those oper-
ations and notions that are absolute from V to L. It turns out that
the operation of forming the set of all first-order definable subsets of a
given set is absolute; the operation of forming the full power set is not.

VThat is, with the e-relation interpreted as usual in N, and with the quantifiers
interpreted as ranging over the elements of N.

¥The reflection principle asserts that for any finite set of formulas ® (of the
language of set theory) there are arbitrarily large ordinals « such that each formula
¢ in ® is absolute from V to R(a). The proof of this principle runs roughly as follows:
We may assume the collection. ® is closed under the taking of subformulas. Assume
further that in formalizing first-order logic, we have taken the existential quantifier
as basic (and defined the universal quantifier in terms of it). For each formula ¢ of
$ that begins with an existential quantifier, we introduce a corresponding Skolem
function, fg. It is easy to verify the following two facts: (1) If an R(a) is closed
under all the functions fg, then all the formulas in & are absolute from V' to R(c).
(2) There are unboundedly many ordinals « such that R{«) is closed under all the
functions f,. ((2) is an easy consequence of the replacement axiom schema of ZF.)

Gédel 1989a does not discuss the verification of the axioms of ZF in L. However,
a very similar use of Skolem functions occurs in the proof of Theorem 2 of 1959a.
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One byproduct of this investigation of absoluteness is the following
intrinsic characterization of L: It is the minimal transitive class-model
of the axioms of ZF that contains all the ordinals. This characterization
shows the fundamental nature of the concept oi constructible set.

We now turn to the proof that the axiom of choice and the generalized
continuum hypothesis follow from the proposition V = L. For AC, this
is fairly easy. One can define, by induction on «, a well-ordering W, of
Lg. A little care is needed to make sure that, at a limit stage A, the
union of the W,,’s for & < A is a well-ordering for Ly. But the heart of
the argument is to see how to go from a well-ordering of L, to one for
Lgy1. A definition of a set in L1 may be viewed as a finite sequence of
symbols, each of which is either an integer or a member of L. Tt is easy
to well-order the totality of such sequences using the given well-ordering
of L,; one then well-orders L1 by putting the elements already in L,
first, arranged in the order W, and then ordering the new elements in
the same order as their minimal definitions.*

The proof that V = L implies GCH is more subtle. The key lemma
is the following, which appears as Theorem 2 of 1939a:

Let A be an infinite cardinal, and let x be an arbitrary subset of
A; then if V = L, z is a member of Ly+.

Here AT is the least cardinal greater than A. It is quite easy to show
that Ly+ has cardinality equal to A™. Thus the lemma will imply that
GCH holds in L.

The proof of the lemma is analogous to the proof of the downward
Skolem-Léwenheim theorem. Since V = L, z will appear in some L.,
and, by increasing -y if necessary, we may arrange that « is greater than
A and that L. is a model of V' = I and of some fixed finite subset T'
of the axioms of ZF which is sufficiently large to prove the fundamental
properties of the L,’s. If M and N are transitive set-models of T' with
M a subset of N, then the computation of the L,’s will be absolute from
N to M. By the downward Skolem-Lowenheim theorem, we can then
find an elementary submodel M of L., of cardinality A, containing z,
A and all the ordinals less than A. M will in general not be transitive,
but it is e-isomorphic to a transitive model, say N (nowadays called the
Mostowski collapse of M).

Now N is a transitive model of the proposition V = L and of the
finite fragment T of ZF. Absoluteness arguments show that, for ordinals

*If one just wants to prove the relative consistency of ZFC to ZF, a simpler proof
can be given using the notion of ordinal-definable set, first introduced by Godel in
1946; see the introductory note to 1946 in this volume.
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§eN, Lg\’ = Lg. Since V = L holds in N, N is just the union of the
Lg’s for 6 an ordinal of N; i.e., N = Lg, where 8 is the least ordinal not
in N.

It remains to notice two points. First, the isomorphism between M
and N is the identity on the ordinals < A and hence carries the set x
to itself. (This is fairly easy to verify from the detailed proof that M is
isomorphic to a transitive set.) So z lies in N = Lg. Second, the cardi-
nality of 8 is less than or equal to the cardinality of N (or equivalently,
the cardinality of M), which is less than or equal to A. So 8 is less than
At. This completes the sketch of the proof of the crucial lemma.

Gddel also notes that for A = N, the model Ly gives a natural model
of ZC+ GCH. Similarly, if A is a strongly inaccessible cardinal, then Ly
is a model of ZFC + GCH. These results are closely related to the re-
sults about the natural models H()) discussed at the end of Section 2 of
this note. Indeed, it follows by arguments similar to those used to prove
GCH in L that if V = L, then, for A an infinite cardinal, Ly = H(}).
The result of Godel just cited follows directly.”

The treatment in Gadel 1940 is significantly different in its details
from that outlined above. In the first place, instead of working with the
theory ZF as we have done, Godel works with the Bernays-Godel set
theory BG, discussed on page 5 above.

Second, the definition of L that is used in 1940 is a good deal more
ad hoc. A set of “eight fundamental operations” is introduced, and an
enumeration of sets, F: On — V, is given which is designed so that
(a) the range of F is closed under the eight fundamental operations,
and (b) at many limit stages A, F()) is the set {F{a):a < A}. Then
L is defined to be the range of this auxiliary function F. (Roughly, the
eight fundamental operations are mathematical operations on classes
that correspond to basic syntactic operations on formulas. For example,
the operation of intersection corresponds to the syntactic operation of
taking the conjunction of two formulas.)

Finally, the proof of the fundamental lemma needed to establish
GCH in L is presented in a very non-conceptual way that obscures
the connection with the Skolem-Lowenheim theorem. While the proofs
in 1940 are presented in full detail, very little motivation is given. It
is natural to wonder why Godel presented his results in this way in

YWe recommend that the reader interested in learning more of the details of
Godel’s work on L begin with 71938 and 1939a. For more detailed proofs, there
are good treatments in several modern texts, notably Kunen 1980, Jech 1978, and
Devlin 1973. (The reader of Kunen should note that a knowledge of his Chapter 2
on combinatorics is not needed for an understanding of his treatment of the basic
facts about L in a later chapter.)
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1940, when it is clear from 1939a that he was well aware of the more
conceptual proof outlined above. My guess is that he wished to avoid
a discussion of the technicalities involved in developing the rudiments
of model theory within axiomatic set theory. In 1939a the portions of
the argument that would require such a treatment are passed over in
silence, while in 1940 an alternative treatment is developed that avoids
the necessity for such a formalization.

Besides the results on AC and GCH, Godel (1938) mentions two
propositions of descriptive set theory (i.e., the study of definable sets of
real numbers) which hold in the model L. In order to state them, we
must review some of the standard terminology of descriptive set theory.
Let X be one of the spaces R", where R is the set of real numbers.? A
subset Y of X is Borel if it belongs to the smallest family of subsets
of X containing the open sets of X and closed under complementation
and countable unions. A subset Y of R™ is X! (or analytic) if it is the
projection of a Borel subset of R**! (under the map that deletes the
last component of an (n + 1)-tuple). A subset Y of X is II} if it is the
complement with respect to X of some X} subset of X. This hierarchy
of subsets is continued as follows: A subset of R"™ is 3} 41 if it is the
projection of a II} subset of R"*'. A subset of R is I}, if it is the
complement, relative to R™, of some £}, set. A subset ¥ of X is A}
if it is both ¥} and II}. Finally, Y is projective if it is X} for some
integer k.

We can now state the two propositions of descriptive set theory that
Godel showed are valid in L:

(1) There is a Al subset of R that is not Lebesgue measurable.

(2) There is a ITI} subset of R that has cardinality ¢ but contains no
perfect subset.

These results should be contrasted with the following theorems of
ZFC (cf. Moschovakis 1980):

(1) Every X1 or I} subset of R is Lebesgue measurable; a fortiori,
every Borel subset of R is Lebesgue measurable.

(2') Every X1 subset of R is either countable or contains a perfect
subset of cardinality c.

The two results of Gédel just cited are consequences of the fact that,
assuming V' = L, the restriction of the canonical well-ordering of L to
the reals gives a good A} well-ordering.?® Gédel gave no proof of (1)
and (2) in 1939a and a cryptic proof of a few lines, comprehensible only

*R™ is viewed as a topological space in the usual way; with slight modifications,
the definitions given here apply to any complete separable metric space X without
isolated points. See Moschovakis 1980, the standard reference work on modern
descriptive set theory.

#2The word “good” has a technical meaning here that I shall not stop to explain.
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to cognoscenti, in 1940. (There is a fuller proof in Godel’s handwrit-
ten notes for his 1940 lectures.) A detailed proof of (1) and (2) was
first published in Novikov 1951, and a proof of the result about a good
A} well-ordering of R was first given in Addison 1959. For a readable
account, see Jech 1978, pages 527-530, or Moschovakis 1980, pages 274~
281.

4. Further work

In this fourth and final section, I shall describe subsequent work done
on L and on the questions raised by the work of Gddel. For historical
reasons; specific references are given wherever possible; a good pair of
general references that cover almost all of the following are Jech 1978
and Devlin 1973.P°

After Godel, the first work on I, was done by Kuratowski and
Mostowski.© Mostowski reconstructed Godel’s proof that, in L, the reals
have a Al well-ordering. Kuratowski showed that, using the projective
well-ordering of the reals which Gdédel deduced from V = L, one could
prove that various pathological sets previously constructed using the ax-
iom of choice and the continuum hypothesis would be projective.

In the late 1950s Godel’s “inner model method” was generalized
slightly in the work of Hajnal, Levy and Shoenfield.9 They introduced
a relative version of the notion of constructible set. For example, if z is
a set of ordinals then L{xz], the class of sets constructible from z, can be
characterized as the minimal transitive class containing all the ordinals
which is a model of ZF and which has z as a member. [t may be shown
that AC holds in L[z] by the same argument as above, and even that
GCH holds in L[z] when z C w.*® A typical further result is the follow-
ing theorem of Levy and Shoenfield: If V = L follows from GCH, then
V = L is already a theorem of ZF.

It had already become clear in the early 1950s, thanks to the work
of Shepherdson (1951-195%), that the inner model method is quite

bb Devlin 1984 is a revised version of Dewlin 1978 that contains a great deal of
interesting additional material. For example, it discusses Silver machines and the
simplified morasses of Velleman.

ccCf. Addison 1959, p. 338. Mostowski’'s manuscript was destroyed during the
Second World War. Kuratowski’s work suflered a similar fate, but was later recon-
structed and published as Kuratowski 1948.

ddCf. Hajnal 1956, 1961, Levy 1957, 1960b, and Shoenfield 1959.

¢¢By a slightly more difficult argument one can show that GCH continues to hold
if V = L{a} and a C ¥3.

#Gimilar results were obtained subsequently but independently by Cohen (1968a).
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incapable of showing that V' = L is not a theorem of ZFC. The reason
is that one cannot rule out, on the basis of ZFC, the possibility that the
universe of sets is meinumal, i.e., has no non-trivial inner models. The
existence of minimal models can be argued as follows. Evidently, a min-
imal model must satisfy V = L. If there are no transitive set-models of
V = L, then L itself can be shown to be minimal. If there are transitive
set-models of ZFC, then by applying the Goédel construction of L within
such a model, one can easily conclude that there are transitive models
of ZFC of the form Ls. By taking § as small as possible, one obtains,
once again, a minimal model of ZFC.

Of course, Shepherdson’s analysis shows, a fortiori, that the inner
model method is incapable of answering the following two natural ques-
tions:88

(a) Ts the continuum hypothesis a theorem of ZFC?

(b) Can the proposition “The reals have a well-ordering” be proved
without the aid of the axiom of choice?h?

Thus Godel’s work raised the fundamental new question: Is V =L a
theorem of ZFC? But, through the work on relative constructibility, it
also provided an important clue to the solution. One could prove that
if V.= L is not a theorem of ZFC, then there is a model of ZFC of
the form L[z] for some set z of ordinals, with z not constructible.!! In
addition, it seemed highly plausible that x could be taken to be a set
of integers. This reformulation was useful because the structure of the
model L[z} is quite transparent. In particular, the sets of the model
L[z] are naturally parametrized by the ordinals. Thus it was natural to
phrase the problem (of showing that V = L is not a theorem of ZFC) as
follows: Let M be a countable transitive model of ZFC which has the
form Lg; can we then find a subset z of w such that Ls[z] is again a
model of ZFC? Unfortunately, though it is easy to pick z so that Ls[z]
is not a model of the Replacement Axiom of ZFC (simply choose z to
encode the ordinal §), there was no obvious way to ensure that Ls[z] is
a model of ZF (and hence of ZFC).

The questions raised above were all settled by Paul Cohen with his
development of the technique of forcing. (Cf. Cohen 1963, 1964, and

88More precisely, for each of these questions the expected answer was ‘no’. The
models that were needed to supply a negative answer could not be constructed by
the inner model method. Models constructed by Cohen’s method eventually showed
the expected answers to be correct.

hh A5 mentioned previously, Mostowski, building on earlier work of Fraenkel, had
shown that in the version of set theory that allows individuals as well as pure sets,
the axiom of choice could not be proved. But this left open the possiblity that the
axiom of choice could be proved for the sets of ordinary mathematical practice, such
as the real numbers.

1 This follows from the work of Hajnal, Levy and Shoenfield cited in footnote dd.
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1966.) Cohen showed (under the assumption that ZFC is consistent)
that there are models of ZF in which

(a) AC and GCH hold, but there is a non-constructible set of integers
(so V = L is false);

(b) AC holds, but CH is false;

{(¢) AC fails, and in fact the reals cannot be well-ordered.

Unlike Gédel’s inner model method which, by itself, could produce
only the single model L, the forcing method has proved to be an ex-
tremely flexible and powerful tool for the creation of models in which a
wide variety of set-theoretical propositions can be seen to be consistent
with the axioms of set theory.

On the other hand, the Cohen forcing method is incapable of showing
that a proposition is independent of V = L. It does give a systematic
method for enlarging a countable transitive model of ZFC, M, to a
larger model, &V, in which propositions may well hold that do not hold
in M. But the notion of “constructible set” is absolute between the
two models, and thus the method gives no information about models of
ZFC+V = L.

There are several natural propositions of set theory whose status in
L had been left open by Godel. The most noteworthy was Suslin’s hy-
pothesis (SH), first given in Suslin 1920. This asserts that the following
four properties characterize the real line as a linearly ordered set:

(1) Tt is order-dense. That is, if a and b are reals with a < b, then for
some real ¢, a < ¢ < b.

(2) It is order-complete. That is, every set of reals which is bounded
above has a least upper bound.

(3) It has no least element or greatest element.

(4) Every pairwise disjoint collection of open intervals is at most
countable.

Condition (4) is an easy consequence of the fact (4') that R has a
countable order-dense subset. It is quite easy to see, as Cantor showed
(1895), that conditions (1) through (3) together with (4') do character-
ize R up to order-isomorphism, so SH amounts to the assertion that (4')
can be weakened to (4).

The proposition SH is an extremely natural one that turns up also in
the theories of partially ordered sets and Boolean algebras. It was also
a natural candidate for a new proposition (other than those considered
by Cohen) to be proved independent of the axioms of ZFC. Indeed,
shortly after Cohen’s technique of forcing was developed, it was shown)
that Suslin’s hypothesis is both consistent with and independent of the

HCE. Jech 1967, Tennenbaum 1968, and Solovay and Tennenbaum 1971.
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axioms of ZFC. But that left open the question whether it holds or fails
in L.

There is a reformulation of SH that makes sense for any regular cardi-
nal k. Suslin’s hypothesis is equivalent to the non-existence of a certain
kind of tree (dubbed a Suslin tree) on Xy, the first uncountable cardinal.
One can then generalize the Suslin problem to the question “For which
uncountable regular cardinals « is there a Suslin tree on x7”

It was shown by Jensen (1972) that Suslin’s hypothesis is false in L.
Subsequently, with much more effort, Jensen completely determined for
which regular cardinals « there is a x-Suslin tree in L. It was evident, a
priori, that if & is weakly compact, then no x-Suslin tree exists. Jensen
showed that if V' = L, there is a x-Suslin tree for any regular uncount-
able x that is not weakly compact.

Jensen’s proof that Suslin’s hypothesis fails in I proceeds by deducing
from V = L a previously unconsidered combinatorial principle, which
Jensen dubbed diamond ({) and which is a considerable strengthening
of the continuum hypothesis. In certain circumstances, this principle al-
lows one to meet Ny requirements in the course of a construction of length
Ny. With its aid, the construction of a Suslin tree is relatively straight-
forward. This principle and its variants have subsequently had numerous
other applications in point-set topology and algebra. One noteworthy
example is Shelah’s proof that Whitehead’s problem is undecidable.X¥ In
one direction, Shelah shows that it follows from ¢{ that every W-group
of size Ny is free. In the other direction, he deduces from Martin’s axiom
and 2% > ¥, that there is a W-group of size ¥; that is not free.

We shall now give a precise statement of $. Recall that by definition
a subset C of Ry is club if and only if C is unbounded in ¥; and C
contains the least upper bound of each countable subset of C'.1! A subset
S of Wy is stationary if the intersection of S with any club subset of
R, is non-empty.™™ The proposition ¢ asserts the existence of a family
(Aq : a < Ny} with the following properties:

(a) Ay C a for all @ < Ry.

(b) Let S C Ny. Then {a: A, = SNa} is stationary.

Thus ¢ gives a “guessing procedure” which, for any subset S of Ny,
correctly predicts S N« a significant portion of the time.

kkA W-group is an abelian group G such that Fat(@, Z) = 0, where Z is the set
of integers. Every free abelian group is a W-group, and every countable W-group is
free. The version of Whitehead’s problem considered by Shelah asks if every W-group
of size N is free. (Shelah’s results appear in his 197/, but we strongly recommend
the exposition of his results in Eklof 1976.)

UIThe word “club” comes from the phrase “closed unbounded”.

W The following analogy may be useful. Club subsets of ¥; correspond to sub-
sets of the unit interval [0, 1] having Lebesgue measure 1; stationary subsets of R;
correspond to subsets of [0, 1] having positive Lebesgue measure.
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While Jensen’s solution to the Suslin problem on ¥; is classical in
spirit (since the proof of { involves the same ideas and techniques used
in Gédel’s proof that GCH holds in L), the situation for the general-
ization of Suslin’s problem to higher regular cardinals is quite different.
Again the proof turns on showing that certain remarkable combinato-
rial principles hold in L. But it required a hitherto unknown detailed
level-by-level analysis of the constructible hierarchy. (To facilitate this
analysis, Jensen worked with a slight variant of the L, hierarchy that
had better closure properties.) Roughly speaking, by studying the pre-
cise place where an ordinal becomes singular, Jensen was able to exploit
to good effect the residue of regularity that still remains just before
that level. These techniques, which Jensen dubbed “the study of the
fine structure of L”, have had several other striking applications, no-
tably to the proof of various model-theoretic two-cardinal theorems in L
and to the proof of the Jensen covering theorem, which we shall discuss
presently.

Subsequent to Jensen’s work, Silver developed an alternative ap-
proach (the so-called Silver machines) that yields simpler proofs of most
of the applications of the fine-structure theory (including all those men-
tioned here). Silver never published his work, but a presentation can be
found in Devlin 1984.

Next we consider results having to do with the notion of absoluteness
for sentences. A sentence ¢ is said to be absolute (in ZFC) if we can
prove in ZFC that ¢ holds in V if and only if ¢ holds in L."® (Until the
work of Cohen referred to above, one could not rule out the possibility
that every sentence ¢ in the language of set theory is absolute.) It is
easy to see that every arithmetical sentence®® is absolute, for L’s notion
of the integers is identical to that of V. Similarly, by exploiting the
connection between ITj sentences and the concept of well-ordering and
the fact that the same ordinals appear in V and in L, one can easily
show that II} sentences are absolute.

The best possible result in this direction was obtained by Shoenfield
(1961), who showed that ¥ formulas are absolute. This easily implies
that a II} sentence true in V holds also in L.P? Shoenfield’s theorem
is quite useful in descriptive set theory, since it permits one to prove

nnThig notion is closely related to, but not identical with, the notion of absolute-
ness introduced in Section 3.

%0 An arithmetical sentence is one that asserts that some proposition holds in
the structure consisting of the non-negative integers equipped with the operations of
addition and multiplication.

PPThe converse need not be true. For example, the assertion that every real is
constructible is easily seen to be I'I:lj. In the original forcing models of Cohen, it holds
in L but not in V.
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the absoluteness of statements that prima facie do not appear to be ab-
solute.

Even the simpler fact of the absoluteness of arithmetical statements
is sometimes quite useful. It has the consequence that any arithmetical
statement provable using AC and GCH is provable without their aid.
For example, in the work (1965) of Ax and Kochen on the first-order
theory of p-adic fields, a principal tool is the ultraproduct construction
of models, and the theory of ultraproducts is much smoother if GCH
is assumed. The remark just made ensures that the arithmetical con-
sequences of their investigations (for example, the decidability of the
theory of p-adic fields) are outright theorems of ZFC. (This observation
is credited to Kreisel.)

We turn next to the implications of large cardinal assumptions for
the constructible universe. This part of our subject has had an involved
history, starting with Scott’s proof in 1961 that if there are measurable
cardinals then V is unequal to L, and culminating in the work of Silver,
Kunen, and the present author, to be described below. Important inter-
mediate work, which we shall not describe, was done by Gaifman (1964,
1974) and Rowbottom (1971).

Before going on, it is worth pausing a moment to note Godel’s own
attitude toward large cardinals. In his 1947 he held out the hope that
future discoveries in this area might lead to new axioms that would settle
the continuum problem. This has not yet happened, and the large car-
dinal axioms known to date are relatively consistent with both CH and
its negation. In conversations with the author, Gédel expressed belief in
the existence of measurable cardinals (see pages 167 and 260-261 below)
and offered the following heuristic argument in favor of their existence.
It is known that every strongly compact cardinal is measurable. But the
existence of strongly compact cardinals is equivalent to the statement
that a certain property of ¥y is also shared by some cardinal greater
than Ng. Godel then expressed the belief (which I am unable to present
in a coherent way) that reasonable properties possessed by Ny should
also be satisfied by some cardinal greater than Ng.99

A measurable cardinal is, by definition, a cardinal x such that there
is a non-trivial {0, 1}-valued k-additive measure defined on the collec-
tion of all subsets of k. It has been known since Tarski 1962 that a
measurable cardinal must be very large. In particular, it is a strongly
inaccessible cardinal, and if x is the measurable cardinal in question,

99The restriction to “reasonable properties” is my addition to keep the argument
from being blatantly fallacious. (The property of being the least infinite ordinal is
satisfied only by Ng.) I do not find this particular argument for the existence of
measurable cardinals to be convincing.
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then « is the xth strongly inaccessible cardinal. It follows, by Gddel’s
incompleteness theorem, that the existence of measurable cardinals can-
not be proved in ZFC, and that ZFC + “there is a measurable cardinal”
cannot be proved consistent from the assumption of the consistency of
ZFC.™™ Nevertheless, many set theorists (including the author) believe
that measurable cardinals exist, so that their consequences for the con-
structible universe are true. Among these are the following:

(a) If X is an uncountable cardinal (in V), then Ly is an elementary
submodel of L.

(b) Hence (taking the case A = Nj of (a)), if v is an ordinal definable
in L (such as the ¥y of L, or the third strongly inaccessible cardinal of
L), then « is countable in V. In particular, there are only countably
many constructible sets of integers.

It also follows from (a) that every uncountable cardinal of V' is a limit
cardinal in L. Hence if 7y is an infinite ordinal, then there are precisely
card(vy) constructible subsets of v. Another consequence of (a) is that
the satisfaction relation for L is definable in V.58

Further consequences make use of the construction of models gener-
ated by a set of indiscernibles. Such models were first considered by
Ehrenfeucht and Mostowski (1956), and they are in many ways rather
special. For example, there are rather few types of elements realized
in such models, and they tend to have many elementary monomor-
phisms into themselves. Silver (1971) realized that the techniques of
Ehrenfeucht—Mostowski could be applied fruitfully to the study of L, on
the assumption that there is a measurable cardinal.

Silver showed that there is a canonical generating class C of indis-
cernibles for L {now known as the class of Silver indiscernibles). They
can be characterized as follows:

(1) C is a closed unbounded class of ordinals.

(2) C generates L. That is, every element of L has a first-order defi-
nition in L from a finite number of parameters in C.

(3) The members of C are indiscernible in L. That is, any two in-
creasing n-tuples from C have the same first-order properties in L. In
particular, any two members of C look completely alike in L.

One can show that every uncountable cardinal of V' is a Silver indis-
cernible and that the Silver indiscernibles are very large cardinals in L.
(They are strongly inaccessible, Mahlo, weakly compact, etc.) Indeed,
every large cardinal property that is compatible with V' = L holds, in
L, of the Silver indiscernibles.

rProvided no arithmetical consequence of ZFC is false.

$$This should be contrasted with Tarski’s theorem on the undefinability of truth,
which implies that the satisfaction relation for L (or V') is not first-order definable
in L (or V, respectively).
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In view of (3), one can introduce the following set of integers, 0#,
which encodes the structure of L using only countably many bits of in-
formation. An integer k lies in 0% if and only if it is the Godel number
of some formula of the language of set theory ¢(v1,...,v,) that holds in
L when the v;’s are replaced by an increasing n-tuple from C.

The set 0% is interesting in its own right. Prior to the discovery of
0%, there was no natural example of a definable set of integers that
is not constructible.®® Tt was shown in Solovay 1967 that 0% is a non-
constructible Al set of integers."" It was also proved there that every
constructible set of integers is recursive in 0%, and thus is Al

We shall have occasion in the following to refer to the proposition
“0# exists”. One way of expressing this is to say that L has a closed
generating class of indiscernibles. This formulation has the drawback,
however, that it is not expressible in the usual language of set theory
(since it involves bound class variables). One can, however, produce a
1} formula, ¢(z), that (if a measurable cardinal exists) holds only of
0%. Then “0% exists” can be taken to mean (3z)¢(x). One can show
that all the consequences of measurable cardinals for the structure of L
mentioned above already follow from the proposition “0% exists”.

Kunen has proved that the proposition “0# exists” is equivalent to the
existence of a non-trivial elementary monomorphism of L into itself.VY
This should be compared with the following equivalent of the proposi-
tion “a measurable cardinal exists”: There is a non-trivial elementary
embedding of V into some transitive class M. (In each case, the phrase
“non-trivial” means “not the identity map”.)

In view of the fact that measurable cardinals are extremely large car-
dinals whose existence is incompatible with the axiom of constructibility,
it is of interest to consider the question, “Which large cardinal axioms
are compatible with V' = L?” Godel had remarked at the end of his
1938 that

In this connection, it is important that the consistency proof for
A [that is, V = L] does not break down if stronger axioms of
infinity (e.g., the existence of inaccessible numbers) are adjoined
to T. Hence the consistency of A seems to be absolute in some
sense, although it is not possible in the present state of affairs to
give a precise meaning to this phrase.

*It was known that the existence of a non-constructible ordinal-definable set of
integers is consistent. The question was whether a definable non-constructible set of
integers could be proved to exist in some reasonable extension of ZFC.

8Tt follows from the Shoenfield absoluteness theorem mentioned earlier that the
definability estimate Aé 1s best possible.

YvKunen never published his proof. A different proof of Kunen’s theorem, due to
Silver, appears in V.4 of Devlin 1984.
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We have already indicated that the existence of measurable cardinals
contradicts V' = L in a strong sense. At the moment, the situation
is the following. For large cardinal properties that are not too strong,
for example those of being strongly inaccessible, or Mahlo, or weakly
compact, the property holds of x in L if it holds of x in the universe,
and the existence of 0% implies that all the Silver indiscernibles have
the property. But stronger properties imply the existence of 0%, and
so contradict the proposition V = L in a strong way. A description
of the precise dividing line would involve an excursion into the subject
of partition cardinals; we content ourselves with the remark that there
are currently no large cardinal properties for which the status of their
compatibility with V' = L remains unknown.W%

Another remarkable result due to Jensen, his so-called covering theo-
rem, ensures (roughly speaking) that if 0% does not exist, then there are
rather tight connections between L and V' (Devlin and Jensen 1975).

The theorem is as follows: Assume that 0% does not exist. Let X
be a set of ordinals. Then there is a set of ordinals Y, lying in L, such
that (1) X is a subset of ¥ and (2) card(Y) is at most the maximum of
card{X) and ¥y. (All cardinals referred to in (2) are computed in V.)

The theorem can be roughly paraphrased as follows. Either 0% exists,
whence, by the results cited previously, L is a very sparse subclass of
V; or 0% does not exist, in which case every set of ordinals in V' can be
tightly approximated from above by a constructible set.

The theorem has several striking consequences, of which we mention
only the following two, each under the assumption that 0% does not
exist:

(1) Let % be a singular strong limit cardinal. Then 2% = ™. (That
is, GCH holds at x.)

(2) Let & be a singular cardinal. Then the least cardinal greater than
%, as computed in L, is the same as the least cardinal greater than « as
computed in V.

It is not hard to see that the proposition “0% does not exist” holds in
every forcing extension of L. Thus the Jensen covering theorem can be
used to obtain stringent limitations on what one can accomplish merely
by forcing, without the use of large cardinals. (For example, without
the use of fairly large cardinals one cannot construct a model of ZFC in
which the first & for which 2% # k% is a singular cardinal.**)

wWThe best results on this dividing line appear in Baumgartner and Galvin 1978.

*XIn Magidor 1977 a model is constructed by the forcing method in which GCH
first fails at N,,. Magidor’s ground model for this construction contains a “huge”
cardinal. (The first huge cardinal is far bigger than the first measurable cardinal.)
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Our final topic is the subject of inner models for large cardinals. We
have already mentioned that the proposition V = L contradicts the exis-
tence of measurable cardinals. However, there is a natural generalization
of L, L[D], which has properties closely analogous to L and in which
there is a measurable cardinal.

The model L{D] is obtained by a slight generalization of the notion of
relative constructibility introduced earlier. Let A be a class. Then one
can show that there is a smallest transitive model M of ZF¥, containing
all the ordinals, such that (Vz ¢ M)(ANz e M). This M we call L[A].
If A is a set of ordinals, then this new notion reduces to that considered
on page 14. However, even if A is a set, we need not have A ¢ L[A].

Suppose now that « is a measurable cardinal. Then there is a distin-
guished class of measures on &, the normal measures, defined as follows:

A (two-valued) measure g is a homomorphism from the Boolean al-
gebra P(x) into the two-element Boolean algebra {0,1}. The measure
1 is non-triviel if pu(x) = 1 and the measure of every one-element subset
of k is 0. The measure p is k-additive if the union of fewer than x sets
of measure zero itself has measure zero.

A function f: k — k is regressive on a subset D C k if for every o € D
we have f(a) < a. Finally, p is normalif whenever f: x — & is regressive
on a set of measure one, then f is constant on a (possibly smaller) set
of measure one.

There is a somewhat more conceptual alternative characterization of
normal measures in terms of ultrapowers. If u is a countably additive
measure on &, then the ultrapower construction gives rise to an elemen-
tary embedding j:V — M. Then p is normal if and only if « is the
least ordinal moved by 7 and the identity function represents x in the
ultrapower.

Normal measures tend to concentrate on the large cardinals less than
k. For example, one can show that the set of strongly inaccessible cardi-
nals less than & receives measure one from every normal measure on k.
Moreover, one can show that every measurable cardinal carries a normal
measure.

We can now describe the inner model for a measurable cardinal. Let
¢ be a normal measure on & and let D be the collection of sets of u-
measure one. It is rather easy to show that, in L[D],  is a measurable
cardinal. It follows from results of Kunen (1970) that the model L[D]
depends only on &, that, in L[D], « is the unique measurable cardinal,
and that D N L[D] is the collection of sets of measure one with respect
to the unique normal measure on « in L[D].

It turns out that L[D] very closely resembles L. For example, results
of Silver show that (a) GCH holds in L[D] (1971a), and (b) there is
a good A} well-ordering of the reals in L[D] (1971b). (This should be
compared to the result cited on page 13 that there is a good A} well-
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ordering of the reals in L.) The author showed that there is a “fine
structure theory for L[D]” quite analogous to the usual fine structure
theory of L. (This work was never published, but it is implicit in the
subsequent work of Dodd and Jensen (1981) on the “core model” K.)

It is certainly an interesting fact in its own right that there is a nat-
ural inner model for ZFC + “there is a measurable cardinal” that is
quite analogous to the natural inner model L for the theory ZFC. But
inner models for large cardinals also have important applications to the
problem of establishing lower bounds on the consistency strength of
propositions. For example, it is a theorem of Mitchell (198¢) that if
there is a model of ZFC in which GCH first fails at N,,, then there is a
model of ZFC in which there is a measurable cardinal of high order. An
essential ingredient in his proof is the construction of inner models for
measurable cardinals of high order.

It is therefore an important problem to find L-like models in which
there are various large cardinals. Considerable progress has been made
on this problem by Mitchell (1974, 1979), Dodd and Baldwin. However,
recent results of Woodin show that certain large cardinals, if they have
inner models at all, only have ones that behave very differently from the
inner models discovered to date.

In order to state these results, we shall recall the definitions of some
large cardinals.¥Y First, let j be an elementary embedding of V into a
transitive class M. If j is not the identity, then one can show that j
moves some ordinal. The critical point of j is the least ordinal moved by
j. The critical point of a non-trivial elementary embedding j:V — M
is always a measurable cardinal. The stronger the closure conditions
imposed on M, the stronger the corresponding large cardinal property.
(We remark that Kunen (7977) has shown that there is no non-trivial
elementary embedding of V' into itself.) Let x and A be infinite cardi-
nals. Then & is A-strong if there is an elementary embedding j: V — M
with critical point x such that j(k) > A and R(A) C M. The cardinal
k is strong if it is A-strong for every A > k. & is superstrong if there
is an elementary embedding j:V — M with critical point & such that
R(j(k)) € M. Finally, & is A-supercompact if there is an elementary
embedding j: V — M with critical point « such that M is closed under
sequences of length .

Y¥Two good references on the subject of large cardinals are Kanamori, Reinhardt
and Solovay 1978 and Kanamori and Magidor 1978.
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As far as consistency strength goes, these concepts are related as fol-
lows: If there is a x which is 2%-supercompact, then there is a transitive
model of ZFC with a proper class of superstrong cardinals; if there is
a superstrong cardinal, then there is a transitive model of ZFC with a
proper class of strong cardinals. Building on earlier work of Mitchell
(1979), Dodd (198%) constructed L-like inner models with a proper
class of strong cardinals. In these models, the reals have a good A}
well-ordering.

1t was generally felt that the work of Mitchell and Dodd would eventu-
ally lead to inner models for supercompact cardinals. However, in 1984
Woodin proved the following remarkable theorem: If there is a super-
strong cardinal, then there is no projective well-ordering of the reals.””
But, in all the inner models constructed by Mitchell, Dodd, and Bald-
win, there is in fact a A} well-ordering of the reals. Thus inner models
for cardinals at least as large as superstrong must in some ways be very
different from L.

Woodin’s theorem raises many questions. Here are two:

(1) What is the precise dividing line between cardinals which are com-
patible with a Al well-ordering of the reals and cardinals which are not
so compatible?

(2) Suppose that & is k*-supercompact. Is there a transitive class-
model of ZFC, containing all the ordinals, in which s remains x*-
supercompact and in which GCH holds?

We remark that Woodin has constructed models where the first mea-
surable cardinal » is xT-supercompact. However, in a model of ZFC +
GCH the first  which is kT-supercompact has k measurable cardinals
below it. Thus an affirmative answer to (2) would scem to require some
sort of inner model construction for supercompact cardinals of a sort
not ruled out by the “anti-inner-model” theorem of Woodin just cited.

To sum up: almost all of the natural questions raised by Godel’s work
on L have by now been settled. However, the topic of L -like models for
large cardinals is still rife with mystery, though some important progress
has been made.

Robert M. Solovay

#?Personal communication to the author. Woodin’s work relies in an essential
way on earlier recent work of Foreman, Magidor and Shelah (1989).
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The consistency of the axiom of choice
and of the generalized continuum hypothesis
(1938)

Theorem. Let T be the system of azioms for set theory obtained from
von Neumann’s system' S* by leaving out the aziom of choice (i.e., replacing
Axiom III 3* by Axiom III 3); then, if T is consistent, it remains so if the
following propositions 1-4 are adjoined simultaneously as new azxioms:

1. The axiom of choice (i.e., von Neumann’s Axiom ITI 3*).

2. The generalized continuum hypothesis (i.e., the statement that 2R~ =
Re+1 holds for any ordinal «).

3. The existence of linear non-measurable sets such that both they and
their complements are one-to-one projections of two-dimensional comple-
ments of analytic sets (and which therefore are Bs-sets in Lusin’s terminol-
ogy?).

4. The existence of linear complements of analytic sets, which are of the
power of the continuum and contain no perfect subset.

A corresponding theorem holds if T' denotes the system of Principio
mathematica® or Fraenkel’s system of axioms for set theory,* leaving out
in both cases the axiom of choice but including the axiom of infinity.

The proof of the above theorems is constructive in the sense that, if a
contradiction were obtained in the enlarged system, a contradiction in T
could actually be exhibited.

The method of proof consists in constructing on the basis of the axioms
of T a model for which the propositions 1-4 are true. This model, roughly
speaking, consists of all “mathematically constructible” sets, where the
term “constructible” is to be understood in the semi-intuitionistic sense
which excludes impredicative procedures. This means “constructible” sets
are defined to be those sets which can be obtained by Russell’s ramified
hierarchy of types, if extended to include transfinite orders. The exten-
sion to transfinite orders has the consequence that the model satisfies the
impredicative axioms of set theory, because an axiom of reducibility can

5

1Cf. von Neumann 1929.
20f. Luzin 1930, p. 270.
3Ct. Tarski 1933.

4Cf. Praenkel 1925.

5This means that the model is constructed by essentially transfinite methods and
hence gives only a relative proof of consistency, requiring the consistency of T as a
hypothesis.
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be proved for sufficiently high orders. Furthermore the proposition “Ev-
ery set is constructible” (which I abbreviate by “A”) can be proved to be
consistent with the axioms of T, because A turns out to be true for the
model consisting of the constructible sets. From A the propositions 1-4
can be deduced. In particular, proposition 2 follows from the fact that
all constructible sets of integers are obtained already for orders < wy, all
constructible sets of sets of integers for orders < ws and so on.

| The proposition A added as a new axiom seems to give a natural com-
pletion of the axioms of set theory, in so far as it determines the vague
notion of an arbitrary infinite set in a definite way. In this connection it is
important that the consistency proof for A does not break down if stronger
axioms of infinity (e.g., the existence of inaccessible numbers) are adjoined
to T. Hence the consistency of A seems to be absolute in some sense,
although it is not possible in the present state of affairs to give a precise
meaning to this phrase.

The consistency of
the generalized continuum hypothesis
(1939)

We use the following definitions: 1. My = A; 2. M1 is the set of those
subsets of M, which can be defined by propositional functions containing
only the following concepts: ~, V, the e-relation, elements of M, and quan-
tifiers for variables with range My; 3. Mg = EcsM, for limit numbers
B. Then M, or Mg (£ being the first inaccessible number) is a model
for the system of axioms of set theory (as formulated by A. Fraenkel, J.
von Neumann, T. Skolem, P. Bernays) respectively without (or with) the
axiom of substitution, the generalized continuum hypothesis (2% = R, 1)
being true in both models. Since the construction of the models can be
formalized in the respective systems of set theory themselves, it follows
that 2% = R, is consistent with the axioms of set theory, if these ax-
ioms are consistent with themselves. The proof is based on the following
lemma. Any subset of M,,, which is an element of some Mjg is an element
of M., ,,. This lemma is proved by a generalization of Skolem’s method
for constructing enumerable models. Since the axiom of choice is not used
in the construction of the models, but holds in the models, the consistency
of the axiom of choice is obtained as an incidental result.
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Consistency proof for

the generalized continuum hypothesis'
(1939a)

If M is an arbitrary domain of things in which a binary relation ¢ is
defined, call “propositional function over M” any expression ¢ containing
(besides brackets) only the following symbols: 1. Variables z,y, ... whose
range is M. 2. Symbols aq,...,a, denoting? individual elements of M
(referred to in the sequel as “the constants of ¢”). 3. €. 4. ~ (not), V
(or). 5. Quantifiers for the above variables z,y,....2* Denote by M’ the
set of all subsets of M defined by propositional functions ¢(x) over M.
Call a function f with s variables a “function in M” if for any elements
Z1,...,25 of M | f(z1,...,2s) is defined and is an element of M. If ¢(x)
is a propositional function over M with the following normal form:

(1, 2n) Py, - Ym )21, 2k) (Fug, o) -

L(xamlw"7xn7y1»~~‘7ym)zl7'"7Zk7u17~~~7uea"')

(L containing no more quantifiers) and if @ € M, then call “Skolem functions

for ¢ and a” any functions f1,..., fm, g1, -+, e, - .- in M, with respectively
n,...,n,n+k,...,n+k, ... variables, such that for any elements =1, ..., z,,
Z1y- -y 2k, ... of M the following is true:
Lia,zy, ..., &n, f1(@1, - 20)y ooy fm (X1, o), 21,500y 2,
G1(Z 10 T, 21y ey 2 )y e ey Gl Ty e o s By 21y ey 2R )y e - o)

The proposition ¢(a) is then equivalent with the existence of Skolem func-
tions for ¢ and a.

Now define: My = {A}, Moy1 = M), Mg = Zacp M, for limit
numbers 3. Call a set z “constructible” if there exists an ordinal a such
that z ¢ M, and “constructible of order a” if x € Mgy — My. It follows
immediately that M, C Mg and M, € Mg for o < 3 and that:

1This paper gives a sketch of the consistency proof for propositions 1, 2 of Gédel 1938
if T is Zermelo’s system of axioms for set theory (1908) with or without axiom of substi-
tution and if Zermelo’s notion of “definite Eigenschaft” is identified with “propositional
function over the system of all sets”. Cf. the first definition of this paper.

21t is assumed that for any element of M a symbol denoting it can be introduced.

2aJnless explicitly stated otherwise, “propositional function” always means “proposi-
tional function with one free variable”.

28



Consistency proof 29

Theorem 1. z € y implies that the order of x is smaller than the order
of y for any constructible sets x,y.

It is easy to define a well-ordering of all constructible sets and to as-
sociate with each constructible set (of an arbitrary order «) a uniquely
determined propositional function ¢.(z) over M, as its “definition” and
furthermore to associate with each pair @y, @ (consisting of a propositional
function ¢, over M, and an element a of M, for which ¢,(a) is true)
uniquely determined “designated Skolem functions for ¢, a’.3

Theorem 2. Any constructible subsel m of M,,, has an order < w41
(i-e., a constructible set, all of whose elements have orders < w, has an
order < wy41).

Proof: Define a set K of constructible sets, a set O of ordinals and a set
F of Skolem functions by the following postulates I-VII:

I M,, CKandmeK.

I1. If x € K, the order of z belongs to O.

IIT. If z € K, all constants occurring in the definition of x belong to K.

IV. If & € O and ¢,(x) is a propositional function over M,, all of whose
constants belong to K, then:

1. The subset of M, defined by ¢, belongs to K.
2. For any y ¢ K - M, the designated Skolem functions for ¢, and
y or ~d, and y (according as ¢a(y) or ~¢,(y)) belong to F.

V.If feF, x1,...,25 € K and (x4, ...,2z,) belongs to the domain of
definition of f, then f(z1,...,z,) € K.

VL If z,y e K and z — y # A the first* element of  — y belongs to K.

VII. No proper subsets of K, O, F satisfy I-VI.
| Theorem 3. Ifx #y and z,y € K- My11, then there existsa z e K-M,
such that zex —y or z e y — x.5
(This follows from VI and Theorem 1.)

Theorem 4.8 K+ 0+ F = R,

since M,,, =R, and K + O + F is obtained from M,,, + {m} by forming
the closure with respect to the operations expressed by II-VI.

Now denote by 7 the order type of O and by @ the ordinal corresponding
to « in the similar mapping of O on the set of ordinals < 1. Then we have:

Theorem 5. There exists a one-to-one mapping =’ of K on M, such that
zey=zey forz,yeK anda’ =x forze M,,.

Proof: The mapping z' (which will carry over the elements of order
a of K exactly into all constructible sets of order @ for any a ¢ O) is

3At first, with each ¢o an equivalent normal form of the above type has to be
associated, which can easily be done.

“4In the well-ordering of the constructible sets.
5Theorems 3, 4, 5, are lemmas for the proof of Theorem 2.

S means “power of m”.
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defined by transfinite induction on the order, i.e., we assume that for some
a € O an isomorphic” mapping f of K - M, on Mg?8 has been defined and
prove that it can be extended to an isomorphic mapping g of K + M1
on Mz, ,? in the following way: At first those propositional functions over
M, whose constants belong to K (hence to K - M,) can be mapped in a
one-to-one manner on all propositional functions over Mg by associating
with a propositional function ¢, over M, having the constants a4,...,a,
the propositional function ¢ over Mz obtained from ¢, by replacing a;
by a} and the quantifiers with the range M,, by quantifiers with the range
Mz. Then we have:

Theorem 6. ¢ (1) = ¢gz(z') for any z e K - M,,.

Proof: If ¢,(x) is true, the designated Skolem functions for ¢, and z
exist, belong to F (by IV, 2) and are functions in K- M, (by V). Hence they
are carried over by the mapping f into functions in Mg which are Skolem
functions for ¢, z', because the mapping f is isomorphic with respect to
e. Hence ¢o(z) D dx(z?).

~po(x) D ~¢pz(x?) is proved in the same way.

Now any ¢, over M, whose constants belong to K defines an element
of K - M,y by IV, 1, and any element b of K - M, can be defined by
such a ¢o (if b € Mo41 — My, this follows by IIL; if b € M,, then “z € b” is
such a ¢, ). Hence the above mapping of the ¢, on the ¢z gives a mapping
g of all elements of K - M4 on all elements of Mg with the following
properties:

A. g is single-valued, because, if ¢, ¥, define the same set, we have
ba(z) = Ya(z) for £ € M, - K, hence ¢x(z!) = 1z(x') by Theorem 6, i.e.,
¢z and ¢ also define the same set.

B.zey=zleg(y)forze K- My, ye K- Myy1 (by Theorem 6).

C. g is one-to-one, because if £,y € K - My+1,x # y, then by Theorem 3
thereis a z € (z—y)+(y—x), z € K-M,, hence z* € [g(z)—g(y)]+[9(y)—g(z)]
by B. Hence g(z) # g(y)-

D. g is an extension of the mapping f, i.e., g(x) = 2! for x € K - M,.
| Proof: For any b e K - M, a corresponding ¢, which defines it is = € b,
hence ¢z is x € b, hence g(b) = b.

E. g maps K- M, ezactly on Mz (by D),1° and therefore K (My+1—M,)
on Ma+1 - Ma by C.

F. g is isomorphic fore, i.e., g(x)egly) =z ey for anyz,y e K- My4,.

"Le., z e y = f(z) € f(¥). In the following proof f(z) is abbreviated by z!.
81.e., of the elements of order < a of K on the elements of order < @ of M.
91.e., of the elements of order < « of K on the elements of order < & of M.

10Because f maps K - M, on Mz by inductive assumption.
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Proof: If x € K - M, this follows from B and D; if z € K - (My41 — My ),
then g(x) € Mzy1 — Mz by E, hence both sides of the equivalence are false
by Theorem 1.

By D and F, g is the desired extension of f and hence the existence
of an isomorphic mapping z’ of K on M, follows by complete induction.
Furthermore, since all ordinals < w, belong to O (by I, II) we have B=7
for 8 < w,, from which it follows easily that x = 2’ for z € M,,. This
finishes the proof of Theorem 5.

Now, in order to prove Theorem 2, consider the set m’ corresponding to
m in the isomorphic mapping of K on M,. Its order is < 5 < wyy1,

because m' € M, and 7 = 0 < R, by Theorem 4. Since z ¢ m =
z' em/ for x € K, we have x ¢ m = z € m' for z ¢ M,, by Theorem
5. Since furthermore m C M,,,, it follows that m = m' - M,,,ie., mis an
intersection of two sets of order < w1, which implies trivially that it has
an order < wy,41.

Theorem 7. M,,, considered as a model for set theory satisfies all axioms
of Zermelo'! except perhaps the axiom of choice, and Mg (Q being the
first inaccessible number) satisfies in addition the aziom of substitution,
if in both cases “definite Figenschaft”, respectively “definite Relation”, is
identified with “propositional function over the class of all sets” (with one,
respectively two, free variables).

Sketch of proof for M,,,: Axioms I, IT are trivial, Axiom VII is satisfied
by Z = M,, Axioms III-V have the form (3z)(u)[u € £ = ¢(u)], where
the ¢ are certain propositional functions over M, . Hence, by definition
of Myy1, there exist sets x in M, +1 satisfying the axioms. But from
Theorem 1 and Theorem 2 it follows easily that the order of z is smaller
than w,, for the particular ¢ under consideration, so that there exist sets z
in the model satisfying the axioms.

For Mg Axioms I-V and VII are proved in exactly the same way, and the
axiom of substitution is proved by the same method as Axioms III-V. Now
denote by “A” the proposition “There exist no non-constructible sets”,'?
by “R” the axiom of choice and by “C” the proposition “2%« = R, for
any ordinal a”. Then we have:

Theorem 8. AD R and AD C.

A D R follows because for the constructible sets a well-ordering can be
defined, and A D C holds by Theorem 2, because Mwa = Ng.

Now the notion of “constructible set” can be defined and its theory
developed in the formal systems of set theory themselves. In particular

11C1. Zermelo 1908.

121n order to give A an intuitive meaning, one has to understand by “sets” all objects
obtained by building up the simplified hierarchy of types on an empty set of individuals
(including types of arbitrary transfinite orders).
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Theorem 2 and, therefore, Theorem 8 can be proved from the axioms of
set theory. Denote the notion of “constructible set” relativized for a model
M of set theory (i.e., defined in terms of the e-relation of the model) by
constructibleys; then we have:

| Theorem 9. Any element of M,,, (respectively, Mgq) is constructibley,,
(respectively, constructibley,, ); in other words: A is true in the models M,
and Mq.

The proof is based on the following two facts: 1. The operation M’
(defined on p. 220) is absolute in the sense that the operation relativized
for the model M, , applied to an = € M,,, gives the same result as the
original operation (similarly for Mq). 2. The set N, which has as elements
all the My (for 3 < a) is constructibley,,  for & < w, and constructiblesy,
for ¢ < Q, as is easily seen by an induction on «. From Theorem 9 and
the provability (from the axioms of set theory) of Theorem 8 there follows:

Theorem 10. R and C are true for the models M,,, and Mgq.

The construction of M,,, and Mq and the proof for Theorem 7 and The-
orem 9 (therefore also for Theorem 10) can (after certain slight modifica-
tions)™® be accomplished in the respective formal systems of set theory
(without the axiom of choice), so that a contradiction derived from C, R,
A and the other axioms would lead to a contradiction in set theory without
C, R, A.

13In particular for the system without the axiom of substitution we have to consider
instead of M,,, an isomorphic image of it (with some other relation R instead of the
e-relation), because M, contains sets of infinite type, whose existence cannot be proved
without the axiom of substitution. The same device is needed for proving the consistency
of propositions 3, 4 of the paper quoted in footnote 1.



The consistency of the axiom of choice
and of the generalized continuum hypothesis
with the axioms of set theory

(1940)

Introduction

In these lectures it will be proved that the axiom of choice and Cantor’s
generalized continuum hypothesis (i.e., the proposition that 2%« = R, for
any «) are consistent with the other axioms of set theory if these axioms are
consistent. The system ¥ of axioms for set theory which we adopt includes
the axiom of substitution (cf. Fraenkel 1927, page 115) and the axiom of
“Fundierung” (cf. Zermelo 1930, page 31) but of course does not include
the axiom of choice. It is essentially due to P. Bernays (cf. Bernays 1957)
and is equivalent with von Neumann’s system S* + VI (cf. 1929), if the
axiom of choice is left out, or, to be more exact, if Axiom I1I3* is replaced
by Axiom I11I3. What we shall prove is that, if a contradiction from the
axiom of choice and the generalized continuum hypothesis were derived in
¥, it could be transformed into a contradiction obtained from the axioms
of ¥ alone. This result is obtained by constructing within ¥ (i.e., using
only the primitive terms and axioms of %) a model A for set theory with
the following properties:

1) the propositions which say that the axioms of ¥ hold for A are theo-
rems demonstrable in X,

2) the propositions which say that the axiom of choice and the general-
ized continuum hypothesis hold in A are likewise demonstrable in Y.

In fact there is a much stronger proposition! which can be proved to hold

![Note added in 1951: In particular, this stronger proposition implies that there
exists a projective well-ordering of the real numbers (to be more exact, one whose cor-
responding set of pairs is a PCA-set in the plane). This follows by considering those
pairs of relations s,e between integers which, for some v < w; are isomorphic with
the pair of relations <, &3 (F‘a € F‘8) confined to . The class M of these pairs s,
e can also be defined directly (i.e., without reference to the previously defined F) by
requiring that (1) s is to be a well-ordering relation for the integers, and (2) e, with
respect to the well-ordering s, satisfies certain recursive postulates, which are the exact
analogues of the postulates by which F' is defined (cf. Dfn 9.3). The definition of M, in
this form, contains quantifiers only for integers and sets of integers (i.e., real numbers)
which ensures the projective character of the object defined and makes it possible to
determine its projective order by counting the “changes of sign” of the quantifiers for
real numbers occurring. In terms of M a projective well-ordering of the real numbers
(of the order mentioned) can then be defined. As to consequences of this state of affairs,
cf. Kuratowski 1948.]
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in A and which has other interesting consequences besides the axiom of
choice and the generalized continuum hypothesis (cf. page 47).

In order to define A and to prove the above properties of it from the
axioms of X, it is necessary first to develop abstract set theory to a certain
extent from the axioms of X. This is done in Chapters II-IV. Although
the definitions and theorems are mostly stated in logistic symbols, the
theory developed is not to be considered as a formal system but as an
axiomatic theory in which the meaning and the properties of the logical
symbols are presupposed to be known. However, to everyone familiar with
mathematical logic it will be clear that the proofs could be formalized,
using only the rules of Hilbert’s “engerer Funktionenkalkul”. In several
places (in particular for the “general existence theorem” on page 8 and
the notions of “relativization” and of “absoluteness” on page 42) we are
concerned with metamathematical considerations about the notions and
propositions of the system 3. However, the only purpose of these general
metamathematical considerations is to show how the proofs for theorems
of a certain kind can be accomplished by | a general method. And, since
applications to only a finite number of instances are necessary for proving
the properties 1) and 2) of the model A, the general metamathematical
considerations could be left out entirely, if one took the trouble to carry
out the proofs separately for any instance.?

In the first introductory part about set theory in general (i.e., in Chap-
ters II-IV) not all proofs are carried out in detail, since many of them
can be literally transferred from non-axiomatic set theory and, moreover,
an axiomatic treatment on a very similar basis has been given by J. von
Neumann (1928a).

For the logical notions we use the following symbols: (X), (3X), ~, .,
vV, D, =, =, (E'X), which mean respectively: for all X, there is an X,
not, and, or, implies, equivalence, identity, there is exactly one X. X =Y
means that X and Y are the same object. “For all X” is also expressed by
free variables in definitions and theorems.

The system X has in addition to the e-relation two primitive notions,
namely “class” and “set”. Classes are what appear in Zermelo’s formula-
tion (1908, page 263) as “definite Eigenschaften”. However, in the system
¥ (unlike Zermelo’s) it is stated explicitly by a special group of axioms
(group B on page 5) how definite Eigenschafien are to be constructed.
Classes represent at the same time relations between sets, namely a class
A represents the relation which subsists between « and y if the ordered
pair {z,y) (defined in 1.12) is an element of A. The same e-relation is used

2In particular also the complete inductions used in the proofs of Theorems 1.16, M1,
M2 are needed only up to a certain definite integer, say 20.
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between sets and sets, and sets and classes. The axiom of extensionality
(Fraenkel’s Bestimmtheitsaziom) is assumed for both sets and classes, and
a class for which there exists a set having the same elements is identified
with this set, so that every set is a class.?> On the other hand a class B
which is not a set (e.g., the universal class) can never occur as an element
owing to Axiom A2, i.e., B ¢ X is then always false (but meaningful).

Chapter 1
The axioms of abstract set theory

QOur primitive notions are: class, denoted by €ls; sef, denoted by 9M; and
the diadic relation ¢ between class and class, class and set, set and class,
or set and set. The primitive notions appear in context as follows:

Cls(A), Ais a class,
M(A), Ais a set,
XeY, Xey, zeY, xey,

where the convention is made that X,Y, Z,... are variables whose range
consists of all the classes, and that x,y, z,... are variables whose range is
all sets.

The axioms fall into four groups, A, B, C, D.

Group A
1 Cls(z)
2. XeV.D.M(X)
3 (WueX.=ueY].D.X=Y
4 (@)(Y)Fz)(u)uez.=:u=z.V.u=1y|

Axiom 1 in the group above states that every set is a class. A class which
is not a set is called a proper class, i.e.,

1. Dfn Pr(X) = ~IM(X).

Axiom 2 says that every class which is a member of some class is a set.
Axiom 3 is the principle of extensionality, that is, two classes are the same

3Similarly, von Neumann 1928a.

Note. Dots are also used to replace brackets in the well-known manner.
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if their elements are the same. Axiom 4 provides for the existence of the set
whose members are just z and y, for any sets  and y. Moreover, this set
is defined uniquely for given z and y, by Axiom 3. The element z defined
by 4 is called the non-ordered pair of  and y, denoted by {z,y}, i.e.,

1.1 Dfn we{r,y}=(u=2xVu=y).
1.11 Din {z}={z,z}.

{z} is the set whose sole member is z.
| 112 Din (z,y) = {{z}, {z,9}}.
(z,y) is called the ordered pair of z and y. We have the following theorem:
113 (z,y) = (u,v) . Dz =u.y=v,
that is, two ordered pairs are equal if and ounly if the corresponding elements
of each are equal. In this sense, (z,y) is an ordered pair. The proof of this
theorem is not difficult (cf. Bernays 1937, page 69).
The ordered triple may now be defined in terms of the ordered pair.

1.14 Din (z,y,2) = {z,{y, 2)).

The corresponding theorem holds for the ordered triple. The n-tuple can
be defined by induction as follows:

1.15 Dfn {(z1,29,...,Zy) = {T1,{®2, ..., Tpn)).
This gives the theorem

116 {Z1,- s Tny (Tngiy oo s Toap)) = (&1, s Ty Tng1s- -« Lntp)s
which is proved by induction on n.
In order that { ) be defined for any number of arguments it is convenient
to put

1.17 D ({(z) =z,

which entails the equation 1.16 also for the case p = 1.
We also define inclusion C and proper inclusion C.

12 Din XCY.=.(ufueX.D.ueY];
XCY.=:XCY.X#Y.
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A class is said to be empty if it has no members; “X is empty” is denoted
by “Gm{X)”, i.e.,

1.22 Dfn &m(X) = (u)~ue X.

If X and Y have no members in common, we write “&(X,Y)”, that is, “X
and Y are mutually exclusive’, i.e.,

123 Din &(X, V)= (u)~(ueX.ueY).

X is said to be one-many (single-valued), denoted by “Un(X)”, if for any
u there exists at most one v such that (v, u) ¢ X, that is:

| 1.3  Dfn Un(X) = (u,v,w)[{(v,u) e X .{w,u) e X :D.v=w).

The axioms of the second group are concerned with the existence of classes:

Group B.
L Y
B)3C)(u)ueC.=:ue A.ue B]
B.=.~(ue A)]
=.(3y)({y, ) € 4)]
Wy, z) e B.=.z € A]
L,0) € B.=. (4, ) € 4]
2z, y,2) e B.=.(y,2,z) € A]
2=y, 2) € B.=.(z,2,y) € A]

%NS oA N

Axiom B1 is called axiom of the e-relation, B2 axiom of intersection, B3
axiom of the complement, B4 axiom of the domain, B5 axiom of the direct
product (because it provides essentially for the existence of V x A, V being
the universal class), B6-8 axioms of inversion. Note that the class A in
Axiom B1 and the class B in Axioms B5-8 are not uniquely determined,
since nothing is said about those sets which are not pairs (triples), whether
or not they belong to A (B). On the other hand in Axioms B2—4 the classes
C and B are uniquely determined (owing to Axiom A3). These uniquely
determined classes in B2-4 are denoted respectively by A-B, —A, ©(A) and
called intersection of A, B, complement of A, domain of A, respectively.
Thus A - B, —A, D(A) are defined by the following properties.

4Note that Axioms B7 and B8 have as consequences similar theorems for any per-
mutation of a triple.
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1.4 Din zeA-B=zeA.2¢B
141 Din ze—-A=~z€eA
1.5 Din ze®D(A)= Fy){y,z)e A

The third group of axioms is concerned with the existence of sets.

1. (Fa){~€m(a). (z)[z ca.D. Fy)yca.z Cyl}}
z)(3y)(u,vuev.ver:D. uey]

@) ()fu C =5 uc 4]

z, A{Un(A4) .D. Fy)(w)uecy.=. (Fv)v e z. (u,v) € AlJ}

Axiom 1 is the so-called aziom of infinity. There is a non-void set a
such that, given any element x of a, there is another element y of a, of
which z is a proper subset. According to Axiom 2, for any set z there is
a set y including the sum of all elements of x. Axiom 3 provides for the
| existence of a set including the set of all subsets of z. Axiom 4 is the
aziom of substitution;® for any set x and any single-valued A, there is a set
y whose elements are just those sets which bear the relation defined by A
to members of z. (Instead of C4, Zermelo used the Aussonderungsaziom:

(2, A)Ay)(W)uey.=:uex.ue A,

that is, there is a set whose members are just those elements of x which
have the property A.)

The following axiom (proved consistent by J. von Neumann (1929)) is
not indispensable, but it simplifies considerably the later work:

Axiom D. ~€m(A4).D.(Ju)uc A.E (u,A)),

that is, any non-void class A has some element with no members in common
with A.% It is a consequence of D that

1.6 ~T € T,

5[Note added tn 1951: The term now in use for Axiom C4 is “axiom of replacement”.]

8This axiom is equivalent to the non-existence of infinite descending sequences of
sets? (i.e., such that z;41 € ;) where however the term “sequence” refers only to
sequences representable by sets of the system under consideration. That is (using the
definitions 4.65, 7.4, 8.41 below) Axiom D is (owing to the axioms of the groups A, B,
C, E) equivalent to the proposition ~(3y)()[y‘(¢ + 1) € y'i).

"[Note added in 1951: In this form Axiom D, under the name of “Fundierungsaxiom”,
was first formulated by E. Zermelo (1930).]
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for, if there were such an z, £ would be a common element of z and {z},
but, by D, taking {z} for A, = can have no element in common with {z}.
Likewise

1.7 ~zrey.yex]

This follows by considering {z,y} in an analogous way.
The following axiom is the axiom of choice.’

Axiom E. (3A){Un(A).(z)[~em(z).D.(Fy)[ly e z. (y,z) € A]]}

This is a very strong form of the axiom of choice, since it provides for the
simultaneous choice, by a single relation, of an element from each set of the
universe under consideration. From this form of the axiom, one can prove
that the whole universe of sets can be well-ordered. This stronger form of
the axiom, if consistent with the other axioms, implies, of course, that a
weaker form is also consistent.

| The system of axioms of groups A, B, C, D is called %.9 If a theorem
is stated without further specification it means that it follows from X. If
Axiom E is needed for a theorem or a definition, its number is marked by *.

Chapter II
Existence of classes and sets

We now define the metamathematical notion of a primitive propositional
function (abbreviated ppf). A ppf will be a meaningful formula containing
only variables, symbols for special classes Ay, ..., A, €, and logical opera-
tors, and such that all bound variables are set variables. For example,

(W(ueX.D.ueA) and (Wuex.=.(vV)veu.D.vey]

are ppf. A formula is non-primitive if (X) or (3X) occurs.

8[Note added in 1951: Using Dfn 4.65, the axiom of choice can be expressed in the
following form, equivalent with Axiom E: There exist classes A for whichz e y D A'y e y.]

9The most important differences between % and the system of P. Bernays (1937)

are:

1. Bernays does not identify sets and classes having the same extension.

2. Bernays assumes a further axiom requiring the existence of the class of all {z},
which allows B7 and B8 to be replaced by one axiom.
Axiom D is essentially due to von Neumann (1929, page 231, Axiom VI 4), whose
formulation however is more complicated, because his system has other primitive terms.
The concise formulation used in the text is due to P. Bernays.
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More precisely, ppf can be defined recursively as follows: Let II,T,...,
denote variables or special classes, then:

(
(
(

1) el isa ppf.

2) If ¢ and ¢ are ppf, then so are ~¢ and ¢ . ¢.

3) If ¢ is a ppf, then (3z)¢ is a ppf, and any result of replacing x by
another set variable is a ppf.

(4) Ouly formulas obtained by 1, 2, 3 are ppf.

Logical operators different from ~, ., 3, need not be mentioned since they
can be defined in terms of these three.

The following metatheorem says that the extension of any ppf is repre-
sented by a class:

M1. General existence theorem: If ¢(xy1,...,x,) is a ppf containing no
free variables other than zi,...,z, (not necessarily all these), then there
exists a class A such that, for any sets z1,...,o,,

(T1,...,2n) e A.=.¢(z1,...,Zn).

For the proof of this theorem, several preliminary results are needed.

By means of the axioms on intersection and complement, it is possible
to prove the existence of a universal class V and a null class 0. Because
of the axiom of extensionality, 0 and V are uniquely determined by the
properties

21  Dfn (z)~(ze0),
22 Din (zx)xeV.

As a consequence of Axiom B5, the axiom of the direct product, and
B6, the axiom of the inverse relation, we have

| 23  (A)@EB)(z,y)[{z,y) e B.=.x € Al.

The following three theorems are also consequeces of B5, B7, and BS.

2.31  (A)3B)(z,y,2)[{z,z,y) ¢ B.=.(z,y) € A]
2.32 (A)3EB)(z,y,2)[(z,z,y) e B.=.{(z,y) € A]
2.33  (A)(3B)(z,y,2)[(z,y,2) e B.=.{z,y) € A]

For example, the first of these theorems is proved by substituting an ordered
pair for the second member in the ordered pair appearing in B5, rewriting
the variables properly. The other two are obtained by applying to 2.31 the
axioms of inversion (B7 and BS).

Substituting (1, %2, ...,z,) for z in B5 in a similar way, we get
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24 (A@EB)Y,z1,--,20)[{y, 21,22, ..., Tn) € B.=.
(T1,...,2q) € A].

From this, by iteration,

241 (A)EB)(Y1s-- > Yk T1se - Zo) (Y10 > Yk T1y- -, Tn) € B.=.
(T1,...,2,) € A

Similarly,

].

This may be obtained by iteration from the case k = 1, and this case in
turn is a special case of 2.32 obtained by substituting (z2,...,z,) for y
and applying Theorem 1.16.

The following theorems are derived in an analogous fashion, by substi-
tuting (y1,...,yx) for z and y respectively in 2.33, 2.3, and applying 1.16,

2.5 (A)EB) Y1y Yk Ty e Zo)[{T1, Y150, Yks T2y -, Tn) €BL
(T, Tn) €

Nl

26 (A)(3AB)(x1,z2,y1,- - k) {T1, T2, Y1, -, Yk) € B.=.
(3517332) EA]7

2.7 (A@EB)z,y1s-- o uk) (@, uk) e B.=.x e A

The next (and for the present, the last) theorem is a generalization of
Axiom B4, the axiom of the domain, and is obtained by substituting, in
B4, (z2,...,xz,) for z.

28  (A)(3B)(xa,...,xn)[{Z2s. .., z0)eB.=. (Fz1)[{21,...,20) € A]]

In particular B = ®D(A) satisfies this equivalence.

In the proof of the general existence theorem, it can be assumed that
none of the special classes A; appears as the first argument of the e-relation,
because A; ¢ I’ can be replaced by | (3z)(z = A;.z € I') (by Axiom A2)
and z = A; can be replaced by (u)[u € z = u € 4;] (by Axiom A3).

The proof of M1 is an inductive one, the induction taking place on the
number of logical operators in ¢.

Case 1. ¢ has no logical operators.

In this case ¢ has one of two possible forms, z, € s and z, ¢ Ag, where
1<r, s<n. If ¢isof the form x, € z,, we must show that there exists
a class A such that {(z1,...,2n) € A.= .2, ¢ z,. I r = s, take as A the
null class 0, since, by 1.6, ~(z, € z,). If r # s, ¢ must be either of the
form z, € x4 or x4 € zp, where p < g. For z, € 24, Axiom B1 provides for

10
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the existence of an F' such that (zp,z,) € F.=.2p € 4. For z4 € zp, Bl
followed by B6 provides for the existence of an F such that

(Tp,zq) e F.=. 24 € zp.
Therefore, in either case there is an F' such that
(zp,xq) € F.=.¢(x1,...,Zn).
Now, by 2.6, there is an Fy with the property:
(Tp,Tq, Tgt1,--++Zn) € F1 .=.(xp,zq) € F.
Then by 2.5 there exists Fy such that
(Tpy. . Tn) € Fy .= (Tp, Tq, Tg41,- .., Tn) € Fi,
and finally, by 2.41 there exists a class A such that
(T1,...,Tn) € A.=.(Tp,...Tp) € Fi.
Combining these equivalences the result is:
(T1,.. -, Ty e A =.$(x1,. .. 20 ).
Now suppose ¢ is of the form z, ¢ Agx. By 2.3, there is an F' such
that (2, 2,41} € F.=.¢(x1,...,2,). (If r = n, use Axiom B5 to get
(Tr—1,27) € F.=.¢(x1,...,2,).) Now, as above, by means of Theorems

2.6 and 2.41, combining the resulting equivalences establishes the existence
of A.

Case 2. ¢ has m logical operators (m > 0).
Then ¢ has one of the following three forms:

(@) ~; (b)) ¥.x; (c) (3x)o.

The hypothesis of the induction is that, for all ppfs ¥ (z1,...,z,) with
my < m logical operators and such that no A; appears in the context
A; € I, there exists an A with the properties required by the theorem. ¢,
x, and @ are ppfs with fewer than m logical operators. ¢ and x have no
other free variables than at most zi,...,Zn, whereas 6 has no other free
variables than at most z,z;,...,%,, and 4; cannot appear in the context
A; ¢ T in 9, x or 0, because it does not appear in ¢ in this context.
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Therefore, by the hypothesis of the induction, there exist classes B, C, D

such that
(x1,...,Z0) e B.=.¢(x1,...,Zn),

(T1,...,%n) e C.=.x(Z1,...,Zn),
(,21,...,zn) e D.=.0(x,21,...,2).

For (a) take A as — B, since, by Axiom B3,
(1,...,2n) e —B.=.~({(z1,...,2,) € B),

| so that {z1,...,2,) e —B.=.~9(x1,...,Zy), that is

(X1, Zn) € —B.=.¢(x1,...,Tn).
For {b) take A as B - C, since by Axiom B2,

(1. T e B-C.=:(x1,...,2p) € B.(21,...,25) € C,
that is,
(1, Ty e B-C.=:9(x1,...,20) . x(T1,. .., Zn);

therefore
(T1,-..,xp) e B-C.=.¢(x1,...,Tpn).

For (c), take A as the domain D(D), since by Theorem 2.8
(€1,...,2q) eD(D).=. (3z)[{z,21,...,2n) € D;

therefore
(Z1,...,2n) €D (D). =. ()0 (2,21, .., Zpn),

so that
(1, Tn) €D(D).=.¢(x1,...,Zn).

This completes the proof of the general existence theorem for primitive
propositional functions.

The general existence theorem is a metatheorem, that is, a theorem about
the system, not in the system, and merely indicates once and for all how
the formal derivation would proceed in the system for any given ppf.

So far, the existence theorem is proved only for ppfs; but the use of sym-
bols introduced by definition yields a wider class of propositional functions
for which it would be desirable to have the existence theorem valid. With
this in view, examine the defined symbols introduced thus far. They may
be classified into four types, as follows:

1. Particular classes: 0,V,...,
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2. Notions: M(X), Pe(X), Un(X), X CY,...,
3. Operations: — X, ®(X), X -Y,...,
4. Kinds of variables: z, X, ... (defined by notions).

Henceforth it is to be required that all operations and notions be mean-
ingful, that is, defined, for all classes as arguments. This has been the
case hitherto except for the pairs {z,y} and (z, y), and the n-tuples, which
were defined for sets only. The extension for classes as arguments can be
accomplished simply by replacing the free set-variables by class-variables
in the definitions, i.e.,

31 Do (u{ue{X,Y}.=:u=XV.u=Y]
3.11 DI {X}={X, X},
3.12 Dfn (X,Y)={{X},{X,Y}}, etc.

By these definitions, e.g., {X,Y} is either {X,Y} or {X} or {Y} or 0
according to whether both or one or none of X, Y are sets.!® The same
procedure of extension is to be applied in Definitions 4.211, 4.65, 6.31, 7.4,
where the notions (or operations) under consideration are originally defined
only if certain arguments are sets.!!
| The following metamathematical ideas will be useful. A term is defined
inductively so that (1) any variable is a term, and any symbol denoting
a special class is a term; (2) if 2 is an operation with n arguments and
Ty,...,T, are terms, then A(T'y,...,T,) is a term; (3) there are no terms
other than those obtainable from (1) and (2). If B is a notion with n argu-
ments and I'y, ..., T’y are terms, then B(T'y,...,T',) is said to be a minimal

19[Note added in 1951: One may wish, for aesthetic reasons, that in analogy with
Axiom A2 one should have (X,Y) e Z.D .M (X). M (Y). This can easily be accom-
plished by replacing in Dfn 3.1 u = X by u = X V [P(X) . v € X], and likewise u = Y
by v = Y V[Br(Y).u e Y]. If this definition is adopted, M (A‘z) can be dropped in
Dfn 4.65. Otherwise it is indispensable, as was noted by Mr. W. L. Duda, who called
my attention to its omission in the first edition. It is not difficult to define {X,Y} in
such manner that 1.13 also holds for proper classes, but since there is never any occasion
of making use of this fact there is no point in doing so.]

11Note that in all these definitions it is absolutely unimportant how the notions
or operations under consideration are defined for proper classes as arguments.'? The
only purpose of defining them at all for this case is to simplify the metamathematical
concepts of “term” and “propositional function” defined on page 12 and the formulation
of Theorems M2-M6.

12[Note added in 1951: A similar remark applies to many other concepts which by
their usual definition are meaningful only for certain classes, e.g., €ne, €on, etc. only for
classes of pairs; Mar, £im only for sets of ordinals (with or without greatest element,
respectively), etc. All that is aimed at in the subsequent definitions is that, for those
arguments for which, by their usual definitions, the concepts defined are meaningful, the
definitions given should agree with the usual ones. For Mtar and £im e.g., this requirement
can be satisfied by setting them both equal to & (c¢f. Dfn 7.31).]
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propositional function or minimal formula. A propositional function may
be defined recursively as any result of combining minimal propositional
functions by means of the logical operators: ~, V, ., D, = and quantifiers
for any kind of variables.

For each of the four types of symbols there is a corresponding kind of
definition.

1. A special class A is introduced by a defining postulate ¢(A), where ¢
is a propositional function containing only previously defined symbols, and
it has to be proved first that there is exactly one class A such that ¢(A).

2. A notion B is introduced by the stipulation

B(Xq,..., Xn) =¢(X1,...,Xn),

where ¢ is a propositional function containing only previously defined sym-
bols.
3. An operation 2 is introduced by a defining postulate

(X1y.o oy Xn)o(UA(Xq, ..., X0), X1, .-, Xn),

where ¢ is a propositional function containing only previously defined sym-
bols, and it has first to be proved that

(le e 7Xn)(E'Y)¢(Y; Xl, e 7XTL)

4. A variable ¢ is introduced by a stipulation that for any propositional
function ¢, (r)¢(xr) means

(X)[B(X) D> (X))},

and (3r)¢(r) means
(3X)[B(X) . ¢(X)],

where ‘B is a previously defined notion, the extension of which is called the
range of the variable r.

Special classes, notions and operations are sometimes referred to by the
common name “concepts”.!3

All definitions so far introduced are of this type: B is called a normal

notion if there is a ppf ¢ such that

sB(Xl,...,Xn).E.¢(X1,...,Xn),

13[Note added in 1951: The term “concept” only applies to notions and operations.
Special classes should rather be called “objects”.]
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A is called a normal operation if there is a ppf ¢ such that
YeAd(Xy,...,Xp).=. Y, Xq,..., Xyn),

and a wvariable is called normal if its range consists of the | elements of a
class. The propositional function ¢(X1,...,X,) is called normal if it con-
tains only normal operations, normal notions, and normal bound variables;
and a term is called normal if it contains only normal operations.

M2. Any normal propositional function is equivalent to some ppf,
and therefore M1 holds also for any normal propositional function

(X1, .., Xn)-

Proof: Let ¢(X;,...,X,) be the given normal propositional function.
Since ¢ contains only normal bound variables, all bound variables
not set variables can be replaced by set variables, e.g., (Jr)x(zr) by
(3z)[x € A. x(x)], where A defines the range of the variable r. Next, for any
notion % occurring in ¢, since it is normal, the minimal propositional func-
tion A(T'1,...,Ty) can be replaced by the equivalent ¥(Ty,...,T},), where
¥(X1,...,Xn) is a ppf. Then the only remaining notion is the e-relation.
Again all contexts of the form I' ¢ A, where I' is not a set variable, can be
removed by the metliod explained on page 10 after Theorem 2.8, leaving
only minimal formulas of the form v e I'. But T, if not a variable or a special
class, is of the form B(T'y,...,I[',), where 8 is a normal operation. But
u € B(Ty,...,T,) can be replaced by ¥(u,T'y,...,I'y), where the ppf ¢
is such that u e B(T'y,...,Ty). =.¢(u,Ty,...,I'y). In this way, ¢ is re-
duced, getting all operations out. The final result of such reductions can
be nothing other than a ppf.

This completes the proof that M1 is valid for normal propositional func-
tions. It remains only to verify that all concepts introduced so far are
normal. This will be done by constructing for each of the correspond-
ing expressions Y € 2A(Xy,...,X,) and B(X3,...,X,) equivalent propo-
sitional functions containing only notions, operations and bound variables
previously shown to be normal. These propositional functions are then
equivalent to ppfs by Theorem M2.

X €Y; ¢ is normal, since X €Y is itself a ppf.
X=Y.=(ulueX.=ueY]

M(X).=. (Fu)(u=X)

Pe(X).=.~M(X)

Ze{X,Y}.=:(Z=XNV.Z=Y).M(Z)

Ze(X,YV).=.Z ¢ {{X},{X,Y}} and similarly for triples, etc.
XCY. = (u(ueX.D.ueY)

XcY. = (wueX.DueY). ~(X=Y)
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Xe(-A).=:MX).~(XeA
XeA B=:XeA.XeB
Xe®D(A).=

The general existence theorems M1, M2 (and likewise the later | Theo-
rems M3-M86) are frequently used in these lectures without being quoted
explicitly.

The particular classes Aj,..., Ax that may appear in the normal propo-
sitional function ¢(z1,...,Z,) are entirely arbitrary, and may therefore be
replaced by the general class variables Xi,..., Xk, so that the existence
theorem takes the form

M3. (X1, , Xp)(3A) (@1, .., zn)[(21, ... Zn) e A=
¢($1, v ,m’naXla R an)]a
if ¢ is normal.

The definitions that follow are mostly based on the existence theorem

in this form. In each application of M3 it is apparent upon inspection that
¢ is normal.

The direct (outer) product A x B is defined by the postulate:

41 Din (@)reAxB.=. 3y, 2)z=(y,2) : ye A.z ¢ B]].
A and B are considered as the constant classes in this application of M3,
which assures the existence of A x B for all A and B. That A x B is unique

is guaranteed by the axiom of extensionality.

411 Dfn A2=AxA
412 Dfn A% = A x (A?)

A% A5 ... are defined similarly. Thus V2 is the class of all ordered pairs,
V3 is the class of all ordered triples, etc. Since every triple is a pair, it
follows that

413 Vv3cCcvz

Relations are to be defined as classes of ordered pairs, triadic relations
as classes of ordered triples, etc.

42 D Rel(X).=.X C V2,

14
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421 Dfn Rely (X).=. X C V3,

and similarly for all n > 2. “Rel(X)” may be written as “Rely(X)”.
If A is a relation, then (z,y) € A is read “r bears the relation A4 to y”,
and may be written z Ay, i.e.,

4211 Dfn zAy.=.(z,y) ¢ A

Relations can be thought of as many-valued functions, so that zAy may
be read also as “x is a value of A for the argument y” or “x is an image of
y by A", or “y is an original of x, with respect to A”. As a corollary of the
axiom of extensionality, there is a principle of extensionality for relations:

422 Rel(X) . Rel(Y) :D: (u,v)[{(u,v) e X .=.(u,v) eY].D. X =Y.

| The extensionality principle for relations holds also for n-adic relations,
in a similar manner. As a result, the existence theorem takes the form:

M4. Given a normal propositional function ¢(z1,...,z,), there is exactly
one n-adic relation A such that

(@1, z)[{Z1, ..y zn) e A= 9(21, ..., 20)]

The proof is immediate. Take an arbitrary class A’ satisfying the condi-
tion, and take A as A’ - V", A is an n-adic relation and is unique because
of the principle of extensionality, 4.22.

A, as defined by M4, is denoted by &1,...,Zn[d(z1,.. ., 20)] Hay,...,
@y, are normal variables, &1, ..., &p[d(a1, ..., an)] is by definition the same
as &1,...,En[d(@1, ..., %) .21 € C, ..., 2y, € C], where C is the range of the
variables «;. (Note that the symbol " belongs to none of the four kinds of
symbols introduced on page 11; therefore it must not be used in definitions
or in applications of M2-M86.)

The e-relation E and the identity relation I may be defined by means
of M4.

4.3 Dfn Rel(E).(u,v)[(u,v) e E.=.uev]
4.31 Dfn Rel(I). (u,v)[{u,v) e [ .=.u=v]

I is the class of all pairs {u, u).
The following definitions 4.4, 4.41, 4.411 of the converse relations corre-
spond to the axioms B6, 7, 8.

4.4 D Rel[Cno (X)]. (u,v)[{u,v) € €w(X).=. (v,u) € X]
4.41 Din Relz [Cnvy(X)]. (u, v, w)[{u, v, w) € €vy (X) . =.
(v, w,u) € X]
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4.411 Dfn  Rels [Cnog(X)]. (u, v, w)[{u, v, w) € Cnvg (X) . =.
(u,w,v) € X]

4412 Dfn € (X) is also denoted by €noy(X), X!, and X.
The binary Boolean operations “+” and “—” are defined in terms of “.”
and the complement “—":

442 Din X +Y =-[(-X)-(-Y)],
443 DI X -Y =X.(-Y).
444 D W(X)=D(XY).

W (X) is called domain of values of X.
The relation “A confined to B” is written “Al B”.

45 D A'B=A-(V x B)

AT B consists of all elements of A which are ordered pairs with second
member from B. In that sense, “Al B” is “A confined to B”, since the
arguments of A are restricted to lie in B. This gives the theorem:

| 451 D(AMB)= B -D(A).
4512 Din B1A=A-(BxV)
452 D B“X =20(BlX)

B“X is the class of all images by B of elements of X.

453 Difn (z,y) e R|S.=.(32)(zRz.2Sy).Rel (R|S)
46 Dfn HUny(X).=:4Un(X). Un(X™h

Uny (X) means X is one-to-one, that is, the relation X -V?2 is one-to-one.
If X is a relation, and is single-valued, X is said to be a function.

461 Dfn Fne(X).=:Rel(X). Un(X).
A function X whose domain is A is called a function over A.

463 Din XFnd.=:Fnc(X).D(X)=A

A‘z (the A of x) denotes the y such that (y, z) € A, if that y exists and
is unique; if y does not exist or is not unique, A‘z = 0. Hence the defining

postulate for A‘x reads as follows:

465 Din (Ely)[{y,z)e A].D.(A'z,z) e A :
~(E%)[{y,z) e A].D. A =0.: M(A'x).

16
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The extensionality principle for relations (4.22) gives the following ex-
tensionality principle for functions:

4.67 XFInA. YA :D: (wueAd.D: X'u=Y'u.D.X=Y.
M5. If ¥(uq, ..., uy,) is a normal term, if B C V" and if
(U1,...,up) € B.D. M (p(uy, ..., us)),
then there exists exactly one function C over B such that
Cusy. oy un) = P(Ur,. .., up) for {ui,...,u,) € B.
Proof: Define C by the condition:
(u,u1,. .., uny €C.=u=P(ur, ..., Us) . (U1,...,Us) € B.

Since the right hand side is normal, there is an (n + 1)-adic relation C
satisfying the condition, by M4. C obviously satisfies the conditions of the
theorem.

M5 may be generalized as follows:

Mé6. If By,..., B, are mutually exclusive, B; C V", and if ¥1,..., 9%
are normal terms such that M (¢ (u1,...,u,)) for {ui,...,u,) € B;, then
there exists exactly one function C over By + B2 + --- + B, such that
CHugy .y Un) = Yi(u1, ..., un) for | {ug,...,un) € Bi, i=1,2,...,k.

We now define five special functions Py, ..., Ps by the following postu-
lates:

471 Din Pi{z,y)=z.P V2

472 Dfn Py (z,y) =y.P§nV?3,

4.73 Dfn P3(z,y) = {y,x) . P3gn V2,

4.74 Dfn Pi{z,y,2) = (z,3,y) . P4 §nV?3,

4.75 Dfn Ps{(z,y,z) = (z,2,y). PsgnV3
Existence and unicity of Py,..., Ps follow from M5.

4.8 Din ueS(X).=.(Iv)uev.veX]
BG(X) is called the sum of X. The following results are immediate:
481 S{z,y}t=z+y,

4.82 6&{z} ==z,
483 &(X) = E“X.
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Now define P(X), the power class of X, the class of subsets of X.
484 Dfn weP(X).=.uCX
Some of the operations defined have monotonicity properties, e.g.,
485 X CY.D:D(X)CDY).

It is easily verified that 20, G, B, and €nw; have similar properties. Also
486 ACB.XCY:D.A“X CBYY.

1, I, +, -, and x have similar properties.
We also have some distributivities, such as

487 (AxB)-(CxD)=(A-C)x(B-D).
This leads to the special case

4871 (AxV)-(VxB)=AxB.
Likewise

488 B(X +Y)=6(X)+6(Y),
1890 S(X-Y)C6&(X) &(Y).

| The following theorems result from Definitions 4.71-4.75, and are im-
mediate upon inspection.

491 W(A) = P4
492 D(A)=PsA
4.93 Cno(A) = P5A
4.94 Cwy(A) = PfA
4.95 Cnog(A) = P A
496 VxA=P§A

The proof for the normality of the notions and operations introduced above
and also of those introduced later is contained on page 62.

The results obtained thus far depended on the first two groups of axioms.
Theorems on the existence of sets depend, however, on the later axioms.
The following theorem depends on Axiom C4, the axiom of substitution.

51 Un(A).9M(X) :D.M(A“X)
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Proof: Since MM (X), there is a set y, by C4, whose elements are just
those sets which bear the relation A - V2 to members of X, that is,
(u)fu € y. = .u € A“X], so that, by the axiom of extensionality, y is
identical with A“X. Therefore MM (4“X).

511 9M(X).D.M(X V)

Proof: Substitute ITY for A in 5.1, obtaining M[(IT1Y)“X]. But
(IMY)X =X.Y.

512 M (X). Y C X :D.M(Y)
Proof: Y C X.D.Y = X - Y. Now, by 5.11, the theorem is proved.
5.121 I (X).D.MP(X))

Proof: Axiom C3 provides for the existence of a y such that P(X) C y.
Therefore by 5.12, MM (P(X)).

5122 M(X).D.M(S(X))
Proof: This is proved similarly by using Axiom C2 and 5.12.
513 MX). MY ):D.M(X+Y)

Proof: If X, Y are sets, we have X +Y = G{X,Y}, and, by Axiom A4,
{X,Y} is a set. Therefore by 5.122, M (X +Y"). The next three theorems
are proved by 5.1 using 4.91-4.95.

| 514 M[D(2)]
5.15 M[Cwi(z)] (i=1,2,3)
5.16 MW (z)]

From 5.14 and M5 it follows that there is a function Do such that:

5.17 Din Do‘z =D(z).DognV.
518 M(x x y)

Proof: The members of x X y are the pairs (u,v), where u e z, v e y. In
particular, then, 4 and v are elements of z + y, so that {u} and {u, v} are
subsets of z + y. Therefore {{u}, {u,v}} is a subset of P(z + y), that is,
{(u,v) C P(z + y), so that (u,v) ¢ P[P(z + )], i.e., T x y C P[P(z + v)).
Therefore M(x X y), by 5.121 and 5.12 and 5.13.
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519 Fgnz.D.9M(F)
Proof: F¥nx.D.F C (F*“x) x x, therefore M (F'), by 5.1, 5.18, 5.12.
5.2 Un(F).>.M(F'z)

Proof: F ! is a function over D(F ' z), and D(F T z) C x, hence D(F I x)
is a set. Hence the theorem holds by 5.19.

53  M(0)
Proof: 0 C z, therefore M (0), by 5.12.
5.31 ~M(V)

Proof: z ¢ V; therefore if M (V') we would have V e V, but this is impossi-
ble, by 1.6.

54 Pe(X).D. Pe(G(X))

Proof: Suppose M(S(X)); then MP(S(X))), but X C P(S(X)), there-
fore M (X), contrary to the hypothesis.

Similarly:

541 Pe(X).D. Pe(P(X)),

542 P(X).D.Pe(X +Y),

543 Pe(X).~Em(Y) :D.Pr(X x Y).
Proof: X CO[G(X xY)|,if Y #0.

544 U (F). X CO(F) :D: Pr(X).D. Pe(F“X),
| that is, a one-to-one image of a proper class is a proper class. The proof 20
follows from the fact that X C F“(F“X), if X C D(F). Therefore, if F*X
were a set, X would also be a set by 5.1 and 5.12.

545 Pr(A).D.Pr(4 —x)

This follows from the inclusion A C (A — z) + z, and 5.13.
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| Chapter III
Ordinal numbers

Ordinal numbers may now be defined, with the aid of some preliminary
definitions.

6.1 Dfn YConX.=.X2CY+Y 141,

that is, Y is connex in X if, for any pair of distinct elements u, v of X,
either (u,v) e Y or (v,u) e Y.

6.11 Dfn Y is called transitive in X if, for all elements u, v, w of X,
(u,v) e Y. (v,w) e Y :D. {(u,w) e Y.
6.12 Dfn Y is called asymmetric in X if, for no elements v, v of X,
(u,v) e Y. {v,u) e Y.

6.2 D XWeY.=:YenX.(U)U #0.UC X:>
(I eU.U-Y*v} =10]]

that is, X ¢s well-ordered by Y if Y is connex in X and any non-void
subset U of X has a first element with respect to the ordering Y, since
U -Y“wv} = 0 says that there is no member of U which bears Y to v.
Note that the symbol X 2WeY here introduced is not normal, because of
the bound variable U.'*

6.21 If XWeY, then Y is transitive and asymmetric in X.

Proof: Y is asymmetric in X, since if Yy and yYz the class {z,y} has no
first element. In order to prove the transitivity in X, suppose £Yy and yYz;

14{Note added in 1951: The statements made after Dfns 6.2 and 8.1, and on page
62, to the effect that 2e and ~ are not normal are incorrect, if normality is defined as
on page 12. According to this definition normality of a concept has nothing to do with
the way in which it is defined but only depends on its extension. Therefore all that,
prima facie, can be said about 25¢ and ~ is that they cannot be proved to be normal by
the method applied to the other concepts on page 62. They can however be proved to
be normal in a different way, provided the axiom of choice is assumed. For, under this
assumption, it can be proved that

XY .= X~2Y.Vv:3:(X). Be(Y)

(cf. von Neumann 1929). Moreover U can be replaced by u in Dfn 6.2 because the
existence of a class without first element implies the existence in it of a descending
sequence of type w. The latter proof requires the singling out.of one element in every
non-empty class, which however can be accomplished by considering, in every class, the
subset of elements of lowest “Stufe” (in the sense of von Neumann 1929, page 238).]
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then z # z because of the asymmetry, hence either Yz or zYz. Consider
={z} + {y} + {z}. If 2Yz, U will have no first element, therefore zYz.

6.3 Din XGetgY.=: X CY.[Y: (R“X)CX],

that is, X is an R-section of Y if all R-predecessors in Y of members of X
also belong to X.

6.30 Dfn X is called a proper R-section of Y if it is an R-section of
Y and #Y.
| 631 Din Gegr(X,u) =X R“{u},

that is, if u € X, the R-segment of X generated by u is the class of elements
of X which are R-predecessors of u.

6.32 Gegp(X,u) is an R-section of X, if u ¢ X and if R is transitive
in X.

Therefore

6.33 If X2WeR, then any R-segment generated by an element of X is
an R-section.

Conversely, if X2e R and Y is a proper R-section of X, then Y is an
R-segment of X, namely the one generated by the first element of X — Y.

If R is a one-to-one relation with domain A and converse domain B,
then R is called an isomorphism from A to B with respect to S and T if
for any pair u, v of A such that uSv the corresponding elements of B are
in the relation T, and conversely, i.e.,

6.4 Dfn RJfomgp(A, B).=: Un(R). Rel(R).D(R)
W(R)=B.(u,v)[luecA.veA :D: uSv.=.

)T(R‘v)]-

If there exists an isomorpism from A to B with respect to S and T', A4 is
called isomorphic to B with respect to S and T. If § =T in 6.4, R is said
to be an isomorphism from A to B with respect to S.

6.41 Dfn R is called an isomorphism with respect to S if it is an
isomorphism from D(R) to W(R) with respect to 3.

“Isomorphism with respect to an n-adic relation S” is defined accordingly.

The method to be used in constructing the ordinals is due essentially to
J. von Neumann. The ordinal o will be the class of all ordinals less than
a. For instance, 0 = the null set, 1 = {0}, 2 = {0,1}, w = the set of
all integers, etc. In this way, the class of ordinals will be well-ordered by
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the e-relation, so that « e § corresponds to a < 3. Any ordinal will itself
be well-ordered by the e-relation, since an ordinal is a class of ordinals.
Moreover, any element of an ordinal must be identical with the segment
generated by itself, since this segment is the set of all smaller ordinals.
These considerations lead to the following definition:

Definition: X is an ordinal if

1. XWe E,
2. weX :D.u=6egg(X,u).

| However, as shown by R. M. Robinson (1937, page 35; Bernays showed
previously that transitivity of £ in X and 2’ are sufficient), conditions 1
and 2 may be replaced, owing to Axiom D, by the weaker conditions:

1. EComnX,
2. ueX.D.uCX.

X is said to be complete if it has the property 2/, i.e., if any element of an
element of X is an element of X, that is,

6.5 Din Comp(X).=. (v)ueX.D.uCX]
6.51 Comp(X).=.6(X)C X

The proof is immediate from 6.5 and 4.8.
6.6 Din Ow(X).=:C€omp(X).E€omX

This definition combines conditions 1’ and 2’. An ordinal which is a set is
called an ordinal number, denoted by O(X).

6.61 Dfn O(X).=:00(X).M(X)

The class of ordinal numbers is denoted by On. (Concerning the normality
of D10, cf. page 62.)

6.62 Dfn zeOn.=.9(x)
Din The letters a, 3,7, . .. will be used to denote variables whose
range is the class of ordinal numbers. Evidently these variables
are normal.

663 Din X<Y.=.XeY

664 DIn X<Y.=:X<Y.V.X=Y

6.65 Comp(X).Comp(Y) :D: Comp(X +Y).Comp(X -Y)

Proof: By 4.88, S(X +Y) = 6(X) + &(Y). Therefore, by 6.51, we have
Comp (X + V). Similarly for X - Y by 4.89.
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The next step is to show that the definition 6.6 is equivalent to the
stronger definition, i.e.,

6.7 1. OW(X)D X WekE,
2. O (X).ueX Dy=GCegy(X,u).

Proof of 1: Given any non-void subset ¥ of X, there exists u, by Axiom D,
such that u e Y and Y - u = 0, that is, Y - E“{u} = 0, since u = S[{u}] =
E“{u} by 4.83, 4.82. Therefore X 20e E, by Definition 6.2, since £ €on X,
by definition of O.

Proof of 2: If Ot (X) and u € X, then Gegg(X,u) = X -E“{u} = X -u=u,
by Definition 6.31 and the completeness of X.

| 71 O(X).YCX :D: Comp(Y).D.YeX

Proof: G(Y) CY, so that E“Y C Y by 4.83. Therefore, by Definition 6.3,
Y is a section of X. Hence by 6.33 Y must be a segment of X, generated
by some element « of X. But then Y = u, by 6.7, hence Y ¢ X.

711 O0(X). 00(Y):D:YCX.=YeX

Proof: Since Y is an ordinal, it is complete. Therefore 7.1 establishes one
half of the equivalence. The other half merely expresses the fact that X is
complete, since Y = X is excluded by 1.6.

712 If X and Y are ordinals, one and only one of the following rela-
tions holds:
XeY, X=Y YeX

Proof: X -Y C X and X-Y C Y. Suppose now that X -Y C X and
X YCY;then X -YeXand X-Y €Y, by 7.1, since the intersection of
two complete classes is complete (6.65). But this implies that X-Y ¢ X .Y,
which is impossible, by 1.6 and Axiom A2. Therefore either X - Y = X or
X Y=Y,ie,either Y CXor XCVY,ie, XCYV.X=Y.VYCLX,
hence X ¢ Y.V.X =Y.V.Y ¢ X by 7.11. Therefore at least one of
the three relations holds. Moreover no two can hold simultaneously, since
XeXorXeY.Y eX are impossible, by 1.6 and 1.7 and Axiom A2.

7.12 and 6.63 express the fact that any two ordinals are comparable. By
6.1, this implies the statement:

713 E¢onOn.
714 Ow(4).D.ACOn
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Proof: Let A be an ordinal and z an element of A. We have to show
that E €onz and Comp (x). Take z € y, y € x; then, since A is complete,
y € A; then iterating, 2 € A. F is a relation of well-ordering for A, therefore
transitive in A by 6.21, so that z € . Therefore z is complete. E Con A
and x C A, so that E Conz.

7.15  Comp(On)

Proof: By 7.14, z ¢ On.D>.x C On.
7.16 O (0On)

Proof: 7.13, 7.15, 6.6.

7.161 On (and therefore any class of ordinal numbers) is well-Jordered
by E.

This follows immediately from 7.16 and 6.7 and allows us to prove prop-
erties of ordinal numbers by transfinite induction, if the property under
consideration is defined by a normal propositional function, since under
this assumption the class of ordinal numbers not having the property ex-
ists by M2 and (if not empty) contains a smallest element by 7.161 and
Definition 6.2. By an inductive proof is always meant the reductio ad ab-
surdum of the existence of a smallest ordinal not having the property under
consideration.

By 7.14, any element of an ordinal number is itself an ordinal number,
so that an ordinal number z is identical with the set of ordinals less than
z, recalling that the e-relation is the ordering relation for ordinals.

7.17 P (On)

Proof: On is an ordinal, so that On would be an ordinal number, if 9 (On),
hence On e On, which is impossible (1.6).

7.2 OW(X).D: X e On.V. X = On. The only ordinal not an ordinal
number is On.

Proof: By 7.14, X C On. If X C On, by 7.11, X € On.
7.21 Any E-section of an ordinal is an ordinal.
Proof: Any proper E-section of an ordinal X is (by 6.33 and 6.7(2)) an

element of X, hence an ordinal by 7.14. A non-proper E-section of X is
identical with X.
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7.3 ACOn.>.O0[6(4)]

Proof: G (A) is complete since, if z € & (A), there is an ordinal a such that
zeaeA; thenif y € x, y € o, since o is complete, that is y € G(A4). Also
E €onG(A); for take z # y, elements of G(A); thenreae A, yefe A a
and 8 are comparable so that either & C # or § C a. Then both z and y
are members of the larger of o and 3, so that z € y or y ¢ z, since E Cona
and E €onf3, that is E€onS(A). Therefore O [S(A)].

S(A) is the smallest ordinal greater than or equal to all elements of A,
i.e., is either the mazimum or the limit of the ordinals of A according as to
whether there is or is not a greatest ordinal in A. Therefore we use “£im”
and “Mar” to denote the same operation as &.

731 Dfa Lim(A) = & (A)
Maz (4) = 6 (4)
| 74 Dl z+41==z+{z}

This defines the successor relation for ordinal numbers as seen by Theorems
7.41, 7.411.

741 z+1e¢On.=.2e0n
This is easily proved.

7411 ~(3Af)la<f<a + 1]
Proof: Suppose & < 8 < a + 1; then 8 € a + 1, that is 8 € a + {a}; that
is feaor B =q,so that 8 < a.

Ordinal numbers are to be classified into ordinal numbers of the first
kind and ordinal numbers of the second kind, as follows:

742 Din zeKr.=:Fa)z=a+1].V.z=0.

z is of the first kind if it is the successor of an ordinal number or 0. Oth-
erwise z s of the second kind.

743 Dfn KII =On—K,—
744 Dfn 1=0+41
745 Dfn 2=1+1

Likewise 3 = 2 + 1, etc. Evidently we have:

7.451 If m is a set of ordinal numbers, the ordinal & = & (m) + 1is an
ordinal number greater than any element of m.
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It will now be shown that it is possible to define functions over On
by means of transfinite induction, i.e., determining F‘e: by means of the
behavior of F' for ordinal numbers less than «. Since « is the class of
ordinals less than o, F'I' a is F confined to arguments less than ce. Therefore
the induction should have the form Fa = G*(F ! a), where G is a known
function. The following theorem, then, is what is needed:

75 (G)EF)[F§nOn.(a)(Fa=G'(Fa)))

Proof: Let us construct F. First, by the existence theorem M2, there exists
a class K such that:

feK.=.(3B)[f3nB.(a)aeB.D. fa=G(fa)]

Now set F = G(K). If f, g ¢ K, where f§n8.g%n~y.8 < v, it follows
that f = g1 3, because for o € 8 both f and g satisfy

(%) fra=G(fTa);

and this equation determines an f over 3 uniquely, as is seen by an induc-
tion on «. This means that any two f, g € K coincide within the common
part of their domains. Therefore F' will be a function and its domain will
be the sum | of the domains of all f ¢ K (i.e., D(F) = &(Do“K)) and
F will coincide with each f ¢ K within © (f). F will satisfy (x) for each
a € D (F), because o € D (F') implies a € D (f) e On for some f e K where
f satisfies () in ®(f) and f = FI D (f). Now D (F) is an ordinal by 7.3,
but cannot be an ordinal number a because otherwise F' could be extended
to a function H over « + 1, by virtue of (*) and M6. But then 9 (H),
by 5.19, hence H ¢ K, which would imply & + 1 € . The unicity of F
follows by an induction on a.

7.6 Difn An ordinal function is a function G over an ordinal, with
ordinal numbers as values, that is G §na (for some o) or GFnOn,

and 26 (G) C On.

7.61 Dfn An ordinal function G is said to be strictly monotonic if
a<fB.2.Ga<GBfor a, BeD(G).

By induction it follows that:
7.611 If G is strictly monotonic, then G*a > « for a € D (G).

From this it follows that no two different ordinals X and Y can be isomor-
phic with respect to E,
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762 O (X).00 (V). Hfompp(XY) :D: X =Y -H=1IX.

Proof: By definition of an isomorphism we have: if o, 3 are elements of X
such that « € 3, then H'a ¢ HG, that is, H is strictly monotonic, so that
by 7.611 H'a > «a for o ¢ X. Likewise, fI‘(H‘a) > H'a, that is, o > H'a
for a ¢ X; it follows that H'a = « for a ¢ X, in other words, X =Y, and
H=ITMX.

As a consequence of 7.62, a well-ordered class can be isomorphic to
at most one ordinal. Sufficient conditions for a well-ordered class to be
isomorphic to an ordinal are given by the following theorem.

7.7 1. I Pr(A) and AWe W, and if any proper W-section of A is a
set, then A is isomorphic to On with respect to W and E.
2. If a2We W, a is isomorphic to an ordinal number with respect
to W and E.

Proof of 1: Let F‘a be defined by induction as the first element of A
which has not yet occurred as a value of F', that is F'a = first element of
A —0(F T «). In order to prove the existence of F' by 7.5, this condition
must be expressed in the form

(+) Fla=G(F!a).
Define G by the condition:
(y,z2) e G.=:ye (A—-W(X)).(A—-W(x)) Wy} =0,

and define F by (x) and the condition F §nOn. Then G'z ¢ A — 2 (z)
for any set x because A —20(z) is a proper class by 5.45, 5.16, | hence
# 0. Therefore F'o € A — W (F T a) for any a by (), hence 2 (F) C A.
Moreover F' is one-to-one, so that 20 (F"), being a one-to-one image of the
proper class On, is itself a proper class by 5.44. But 20 (F) is a section of
A, hence by the hypothesis cannot be a proper section, i.e., 20 (F) = A. In
addition, it is easily seen that a < 8.=. (F‘a)W(F*B).

Proof of 2: Construct G and F' exactly as in the proof of 1, replacing A
by a. Now it can be shown that a — 20 (F ! «) = 0 for some «. In fact,
suppose that (a)[a — 20 (F I a) # 0]; then we could conclude, as before,
that 20 (F) C a. Then 28 (F) would be, as before, a proper class; but this
is impossible, since a is a set. Therefore (3a)[a — W (F I a) = 0]. Then,
if o is the smallest ordinal of this kind, F'I' @ establishes the isomorphism
between a and «. From the axiom of choice it follows:

x7.71 For any set a there exists an ordinal number « and a one-to-one
function g over a such that a = g“a.
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Proof: By Axiom E, the axiom of choice, there is a function C over V such
that  # 0.D.C*z € . Define F' by the postulate

(@)[F'a=C(a—2(Fa))]

and F §nOn. Existence and unicity of F follow from 7.5, if first G is defined
by G‘'z = C‘(a — W (z)), GInV, using M5. As in the second part of 7.7,
it is shown that there exists an a such that (a — 2 (F ' a)) = 0. Then if «
is the smallest ordinal of this kind, F' I o can be taken as g.

It is desirable to assign a well-ordering for the ordered pairs of ordinal
numbers:

78 Dfn (o,B)Le(v,8).=:8<86.V.(B=6.a<7).: Le C (On?)?,
7.81 Dfn (a,B)R(y,6).=: Ma{a, 8} < Max{y,6}.V
Dar{a, B} = Mag{y, 8} . (o, BYLe(,8)].: B C (On?)2.

The existence of an Le satisfying 7.8 follows from M4 since the relation Le
defined by

(z,9) € Le = (30, 8,7, )z = {a, B) .y = (7,6) : <6 V. (B=6.a<7)]

evidently satisfies 7.8. Similarly for R. On? is well-ordered by R in such a
way that:

7.811 Any proper R-section of On? is a set.
Proof: Consider a pair {i, v} such that (u,v)R{«x, 3); then

Mar{p, v} < Mar{e, B} < Mar{a, B} + 1.

Therefore p, v e [Mar{a, B} + 1], so that (u,v) € a, where a = [Max{c, 8}
+ 1]2. a is a set by 5.18. Therefore the class of all pairs (i, v) such that
{(u, v} R{a, B) is contained in the set a, hence is itself a set.

| Now, applying 7.7 (since On? is a proper class by 7.17, 5.43), we have:

7.82 On? is isomorphic to On, with respect to R and E. Let the
isomorphism from On? to On be denoted by P, i.e.,
79 Dfn P§On?.20(P)= On :
(@, 8,7, 6)[{a, BYR(v,6) . 2. P{e, B) < P{,6)].
791 P(a,8) > Marfa, B}

Proof: Take v = Mar{c, S}. Then PYa, ) > P‘(v,0) by 7.9; but, since
P*{~,0) considered as a function of « is strictly monotonic by 7.9, we have
v < P(v,0) by 7.611, i.e., P, 8) > Mar{c, 5}
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Chapter IV
Cardinal numbers

We can now proceed with the theory of cardinals. Most of the theorems
and definitions of this chapter (except those concerning finite cardinals)
depend in our development on the axiom of choice, although its use could
be avoided in many cases. Two classes X and Y are said to be equivalent
if there is a one-to-one correspondence between the elements of each, i.e.,

81 D X~Y.=.(32)Un(Z) . Rel(2).D(2) = X.W(Z) =Y)

This notion is not normal;*® the corresponding normal notion is as fol-
lows:

812 Din X ~'Y.=.(32)[Uny(z) Rel(2).D(2) = X .W(2) =Y]
8121 z~y.=.2~

<

Proof: A class Z satisfying the right hand side of 8.1 for two sets X,Y is
a set by 5.19.

813 Dfn (z,y) e Aeq.=.z ~y : Rel(Aeq)

The cardinal of X, denoted by X, is defined by the postulate:'6

8.2 DI z~Z.Te¢On.(a)Ja<T.D.~(a=z)].Pr(X).

U

= On.

sl

By Theorem 7.71 it is seen that X exists. The unicity is immediate. X
is a normal operation, since

Xe?.E:Xe()n.(a)[a ~Y.D.Xeal

Hence by M5 there exists a function Nc over V such that Nc'z = Z for any
set .

x8.20 Dfn Nc'x =%.NcgnV

The cardinal of a set is called a cardinal number, i.e., the class N of
cardinal numbers is defined by:

15[ Note added in 1951: See Note 14 on page 21.]

16[Note added in 1951: Din 8.2, for the case that Pr(X), is justified by J. von
Neumann’s result (concerning ~) quoted in Note 14.]
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x8.21 Din N =20(Nc¢).
*x8.22 N COn

This follows immediately from 8.2, 8.21.

| An ordinal number is a cardinal number if and only if it is equivalent to

no smaller ordinal, i.e., if it is an initial number in the usual terminology.!”
The next five theorems are immediate consequences of the definition of

cardinals.

[0}
3
I
8
[
8l

x8.23

824 T~z

*825 z~y.=.T=7
x8.26 a <«

*8.27 Nc¢'[Nc‘z] = Nc‘x
x828 xCy.D.T <7

Proof: y =~ ¥, therefore there exists a 2 C ¥ such that z ~ 2. zis a
set of ordinal numbers, hence well-ordered by E, hence is isomorphic to
an ordinal number 3 by 7.7, i.e., there is an h such that hJfomgg (3, 2).
Hence a < h‘a for a € 8 by 7.611. But h‘a € z C § for a € 8. Hence
aef.D.a<haeq thatis 8 C 7. But 8=2%, thereforez=3< <7

The Schroeder-Bernstein Theorem appears as a consequence. Namely,
fr~tCyandy~uCux thenZT=7,sinceT=1{<7,andy=1u <7
This proof depends, however, on the axiom of choice.

The proofs of the next three theorems are omitted.

o
*8.31 Un(A).D. A%z <

¥8.32 P (z) > T (Cantor’s theorem)
+8.33 Pr(N)

Proof: Take m C N; then by 8.32 P(S(m)} > &(m). But S(m) > a,
where a is any member of m by 8.28, 8.23. Therefore there is a cardinal
number greater than any element of m; hence m # N, i.e., N can not be a
set.

We now define the class w of integers:

84 Dfn rew.=.z+{z}C Ky,

17This treatment of cardinals is due to von Neumann (cf. 1928a, p. 731).
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i.e., £ is an integer if it is an ordinal number of the first kind and if all
smaller ordinals are likewise of the first kind. It follows immediately that:

841 aecw.D.at+lewandacw.f<a:D.few.
8.42 Difn 1, k are variables whose range is w.

The principle of induction holds for integers:
844 0eA.(k)[keA.D. k+1eA]:D.wCA

| Proof: If w C A is false, there must be a smallest ¢ such that ¢ is not 32
a member of A. This leads to a contradiction with the hypothesis, since
either i =0 ori=k + 1 by 8.4 and 7.42.

Functions over the class of integers may be defined inductively:

845 (a,G)(EF)[F3nw.F0 =a.(k)(F'(k + 1) = G(Fk))].

This can be proved either by specializing G in 7.5 or by arguments
similar to those used in the proof of 7.5,

846 i#k.D.~(i~k)
This can be proved by induction on integers, since
i+1~k+1Di~k.
8461 a#k.D.~ax=k)
Proof by induction on k, since k¥ + 1 ~ a > w would imply % ~ a.
*847 1€ N

This follows from 8.46.
A class is called finife if it is equivalent to an integer; otherwise infinite,
ie.,

8.48 Dfn Jin(z).=. Fo)leew.a~' 7],
8.49 Dfn Jnf(z).=.~Fin(x).
8.491 JFin(z).z C z :D.Fin(z)

Sin(z).Fin(y) :D: Fin(z + ). Fin(z X y)

This is proved by an induction on the integer ¢ equivalent to x.

8.492 Fin(a).=.aew
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This follows from 8.461.
8.5 O (w)

Proof: w is a class of ordinal numbers, hence F €onw. Moreover, every
element of an integer is an integer by Definition 8.4, that is, Comp(w).
Therefore O (w).

8.51 M (w)

Proof: Axiom C1 (the axiom of infinity) provides for the existence of a
non-empty set b, such that for every x ¢ b there is | a y € b which contains
exactly one element more than x; namely take for b the class of all subsets of
elements of the set a, whose existence is postulated by Axiom C1 (b is a set
because b C P[& (a)]). Now consider the class ¢ defined by ¢ = (w 1 Aeq) “b,
i.e., the class of integers equivalent to elements of b. ¢ is a set by 5.1
and 8.46, and w C ¢, as can be shown by induction owing to the above
mentioned property of b.

8.52 weKn

Proof: zew.D.2 + 1ew, by 8.41. If w = a + 1, we would have a € w by
7.4, hence o + 1 € w, i.e., w € w, which is impossible.

8.53 There exists an ordinal number of the second kind.
Proof: By 8.52, w is such an ordinal.

x*854 Din N'=N-w

*8.55 N' C On

*8.56 N’ is isomorphic to On with respect to E.
Proof: Pr(N') by 5.45, since M (w). Moreover any proper section of N’ is
generated by an o € N’, hence C «, hence a set. Therefore 7.7 gives the
result. The 1somorphlsm from On to N’ is denoted by R, i.e.,

*8.57 Dfn NflfomEE (On, N/).
1t follows:

*8.58 NO0=w

since w ¢ N by 8.461. X, and w,, are defined by:

859 Din R, = w, = R'y.
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+8.62 RZ =R,

Proof: Assuming 7y to be the smallest ordinal number for which _@ # N, we
prove w?, =~ w,. To this end, owing to the Schroeder-Bernstein Theorem, it
is sufficient to show P“(w?,) C wy, ie., P{a, ) < w, for a, B < w,, where

P is the function defined by 7.9. Since, for every 6, 6 < w,.= b < Wy,

it is sufficient to show: P‘(a,f) < w, for «, 3 < w,. Now P‘(a, () is the
power of the set of ordinals < P*{c,3). This set by definition of P (7.9)
is mapped by P on the set m of pairs preceding {«, ) in the ordering R.
Hence P*(a, ) = m, but (as seen in the proof of 7.811) m C (u + 1),
where p = Mar{a, 5}
| Now we distinguish two cases:

1. p is finite: then (u + 1)2 < w by 8.491. Hence ™ < (u + 1)2 < w <
w, in this case.

2. p is infinite: then, since p < w, by assumption, & = ws for some

6 < v. Hence ;—3 = 71 by the inductive assumption. Hence (using *8.3)

m < (p+ 1)2 < (u?)? =7 < wy also in this case.
It results that:
¥8.621 For any infinite set z, 2 = T,

and therefore

x8.63 Tnf(z).y#0 :D:z2xy=7z+y=Na(T,7).

Furthermore

+8.64 If for any y e m, F'y < &, then & (F4m) < axm.

The proofs of these results on cardinals are not included, since they do not
differ from the usual proofs.

8.7 Dfn A is closed with respect to R if R“A C A.
871 Dfn A is closed with respect to S as a triadic relation if

S4(A2) C A.
8.72 Y is called closure of X with respect to Ry,...,R; and with
respect to 51,...,5; as triadic relations if ¥ is the smallest class

including X which is closed with respect to the R’s and closed
with respect to the S’s as triadic relations.

The existence of this class will be needed only under the following condi-
tions:

34
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*8.73 M (X) and if the R’s and S’s are single-valued, then the closure

Y exists and is a set, and if in addition X is infinite then YV =X.

Proof: Define GEnV as follows:
Gz=z+Ri'c+ -+ Riz+ Si'(2®) + - + 5§ (2?).

The right-hand side is normal and by 5.1, 5.13, 5.18 is a set for any set x;
hence G exists by M5. Now define f §nw by 8.45 as follows:

fOo=gz, fk+1)=Gf(k)

Now consider & (f“w); this is a set, and satisfies the requirements of Def-
inition 8.72. Now for any infinite set y we have _G:‘y = 7 by 8.31, 8.621,
8.63. Therefore, if z is infinite, f'n = f0 = T, by complete induction on
n. Hence

S(f“w) <z x w = Mar (Z,w) =T by 8.64, 8.63 and
&(/“w) > J°0 = 7 by 8.28.

f Chapter V
The model A

The classes and sets of the model A will form a certain subfamily of
the classes and sets of our original system X, and the e-relation of the
model A will be the original e-relation confined to the classes and sets
of A. We call the classes and sets of A constructible, and denote the
notion of constructible class by £ and the class of constructible sets by L.
Constructible sets are those which can be obtained by iterated application
of the operations given by Axioms A4, B1-8, modified so that they yield sets
if applied to sets. In addition, at certain stages of this generating process
the set of all previously obtained sets will be added as a new constructible
set. This permits the generating process to continue into the transfinite.
The above mentioned axioms lead to the following eight binary operations
F1,-..,35s called fundamental operations:

9.1 Dfn FH(X,Y)={X,Y},
5(X,Y)=E X,
SS(Xa Y) =X-Y,
FuX,Y)=X1Y (ie,=X-(VxY)),
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(X
&6 (Xa
(X
(X

The factor X in Fs,...,Fs is added for reasons that will appear later (The-
orem 9.5). The operation of intersection (given by Axiom B2) is left out
because X Y = X — (X —Y). Owing to 4.92-4.96, §4,...,8s can be
expressed differently as follows:

911 Fu(X,Y)=X-PsY,
3s5(X,Y)=X-PyY,
Fe(X,Y) =X . P§Y,
$(X,Y)=X-P.Y,
3s(X,Y) =X . PLY.

In other words,
912 FH(X,V)=X-QY, i=4,...,8,
where the @; are defined by

| 914 Qi=P,, Qs=Py, Qs=Ps, Qr=P; Qs=Ps.

By means of Theorem 5.11 it is seen that all the fundamental operations
give sets when applied to sets.

Now consider the class 9 x On? (i.e., the class of triples {i,q, 8}, i < 9)
and define the following well-ordering relation S for it:

92 Din pr<9.0.: (o ASvy,8).=:
(o, BYR(7,6) V. ((, B) = (7,6) . p <) : S C (9 x On?)?,

where R is the relation defined by 7.81. Concerning the existence of S, cf.
Definition 7.8. Since

(4,0, 8)8(j4,7,6) . Dt (e, B)R{,6) .V. (e, B) = (7, 6),

it follows from 7.811 and 5.18 that any proper S-section of 9 x On? is a set.
But 9 x On? is not a set by 5.43. Hence 9 x On? is isomorphic to On with
respect to S and E by 7.7, i.e., there exists a J satisfying the following
defining postulate:

9.21 Dfn JEnOxO0n?).W(J)=0n:p,v<9.D
s, BYS(w, 7, 8) .. T, 0, B) < T (v, 7, 6)].
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Now we define nine functions J, ..., JJg over On? by:

9.22 Difn J(a,B)=J0,0,8), JoFnOn?,

Jk{a,B) = J(8,a,8), JsgnOn2.
Evidently we have:

9.23 The W (J;),i=0,...,8, are mutually exclusive and their sum is
On. (It is easily seen, but not used in the sequel, that the 20 (J;)
are the congruence classes of On mod.9 and that J (e, 8) =
9 x PY{a,3) + i, where + and X denote arithmetic addition
and multiplication of ordinals.)

By definition of J there exists for any v a unique triple (i, «, 3} such
that v = J(4,, 3). Hence there are two functions K;, Ky over On such
that: Ky Ji{a, ) = o, K3 J; {a,8) = 8, for any i < 9. K;, K, are defined
by:

9.24 Din (a,7) e Ky = (A, B)[rp < 9.7 = Ju,a,8)]. K1 C On?,
(By) e Ka = (3u,)[p < 9.7 = J(n,, B)]. Ka € On?.

For the J; and K; we have the following theorems:

9.25 J(a,B) > Mar{a, B},
Ji {a, B) > Mar{e, B} for i # 0,
Kia<a, Koa<la,
| Kia<a, Kia<aforaf¢(J).

Proof: Set Mar{a, 3} = ~; then we have Jy{a, B) > J; (7, 0) by Definition
9.21; Jg (v,0) > v by 7.611; J(a, B) > Jo(a, 8) for i # 0 by Definition
9.21. Writing the last three inequalities as one inequality, we obtain (for
i #0):

Jila, B) > Jo e, B) = Jo (7,0) =,
which gives the first two statements of 9.25. The last two express the same
facts in terms of K; and K.

¥9.26 o, B < wy D Ji{a, B) < w,y

Proof: By Definition 9.21 J maps the set m of triples preceding (i, &, 8) in
the ordering S on the set of ordinals < J;' {(«, 3). Hence J; (@, 8) =~ m. But
m C 9 x (Max{a, 8} + 1)? by 9.2 and 7.81. Hence the theorem by 8.491 or
8.63 according as v = 0 or v > 0 (using 8.492 in the first case). Note that
the axiom of choice is not used in the case v = 0.



Continuum hypothesis 71

%9.27 wy € W (Jy)

Proof: wy < J(0,wq, 0} by 9.25; but not we < J*(0,wq, 0), because this
would imply w, = J*(4,7,8) for some triple (i,7, §) preceding (0,wq,0) in
the ordering S. But (i,7, §)5{(0, wq, 0) implies vy, § < wq, hence

J(i,7y,6) < wq

by 9.26. Hence wy = Jy {wq,0), i.e., wy € W(Jp). For a = 0 the axiom of
choice is not used in this argument.

Now we define by transfinite induction a function F (the letter F is to
be used only as a constant from now on. A similar remark applies to R,
S, C defined respectively by 7.81, 9.2, 11.81) over On by the following
postulates:

93 Din aeW(J) D Fa=2(Fla),
ae(J;) D Fa=% (F'Kia FK;a),

a e (Jg) D Fa=3Fs (FKia F'K; ),
F{nOn.

In order to prove the existence of F' by 7.5, it is necessary to define
first a function G over V by the following postulates: If D (z) e 20(Jo),
Gz=W(x); D (z) e W(J;),1=1,2,...,8,

G'z = [z Ki D(z), ' K3 D(x)];

and G'z = 0 everywhere else. Since all symbols occurring are normal (cf.
page 62), GG exists by M6. By 7.5 there exists an F over On satisfying the
equation Fa = G‘(F I o), which implies that F' satisfies 9.3, as is seen by
the following proof: Suppose a € 20 (J;), i # 0. Then, since D(F ' a) = a,
D(F T a) e W(J;). Therefore

G(Fla)=%[(Fla)K e, (Fa)K;a]

Kia < aand Ksa < a, by 9.25, and (Fla)'8 = F'8 if 8 < a, | there-
fore F‘a = G‘(Fla) = §[F'K{ a, F'K; a]. Similarly, if & € 20(Jp), then
D(Fa)e2(Jy), so that

Fla=G(Flra)=2(F!a).

Hence F' exists, and by induction it is seen that F' is uniquely deter-
mined. The following results are consequences of 9.3 obtained by sub-
stituting J; (8,~) for a in the it® line of 9.3 and applying the equations:
Ki Ji{a, B) = a, K5 J{{a, B) = 3, which hold by definition 9.24.

9.31 FJi(B,7) = {FB, F‘v}
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9.32 F'h{(B,y)=E-Fp
9.33 FE(BA)=F

9.31  F'Ji(8,~) = F*
935 weW(J).D.Fla=F‘

The last set of theorems show how F reflects the nine fundamental op-
erations of 9.1.

A set x is said to be constructible if there exists an « such that z = F*a.
The class of constructible sets is denoted by L, i.e.,

94 Dfn L =0(F).

A class A is constructible if all its elements are constructible sets and if
the intersection of A with any constructible set is also a constructible set,
ie.,

941 Difn £(A).=:ACL:zeL.D.A zel.
Din Z,...,Z will be used as variables for constructible sets and
X, ..., Z as variables for constructible classes.

9.42 Dfn The smallest a such that x = F‘«a is called the order of x
and is denoted by Od‘z, i.e.,

9.421 Din (y,z) e Od = (2,y) ¢ F.(2)[z ey D ~(x,2) € F].Od C V2.

9.5  Comp(F“q)

It is sufficient to prove: F‘a C F“a, i.e., all elements of a constructible set
appear earlier than the set itself.

Proof: Let a be the first ordinal for which F‘a C F“a is false. If
a € W (Jp) then Fia = F¥q, hence F'‘a C F“a. If a ¢ W(J;), i # 0, then
a = J{B3,v),1 # 0. By Theorems 9.32, 9.33,9.34,ifi > 1, F‘a C F*53. But
B8 < «a, by 9.25, so that the theorem holds for 3, that is, ¥4 C F“8. Hence
F‘a C F“B. Again, since g < a, F*8 C F“a, therefore F‘a C F“a.
If i = 1, by 9.31 F'a = {F‘3, F*y}, where a = J{8,v). By 9.25, 3,
v < a. Therefore F'8 ¢ Fa and F‘y € F“a, hence {F*‘B3, F'v} C F“q,
ie, Fla C Fta.

9.51 €omp (L), i.e., any element of a constructible set is constructible.
(For constructible classes the same thing is true by Definition
9.41.)

| Proof: Take z ¢ L and let o = Od‘z, so that F*a = z. Then by 9.5,
x C F¥a. Hence z C L, since F“a C L.
The following statement follows from 9.5:
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952 Ifz ey, and z, y € L, then Od'z < Od'y. In other words
zeF'a.D.0dz < a.

§1,---,8s yield constructible sets if applied to constructible sets, i.e.,
9.6 S@(E7g)fL, z=1,,8

Proof: There exist 3, such that T = F‘G, § = F‘y; 9.31 to 9.34 give the
result.

961 T-gel
Proof: T-7 =T — (T — 7); then 9.6 for ¢ = 3 gives the theorem.
9611 Od'T <wu.0dF < we :D.0d(T-7) < wq
Proof by 9.26.
962 zyeL.=.{x,y)el and z,y,z¢L.=.{z,y,2) ¢ L.
Proof: The implication in one direction results from expressing (z,y) as
{{z},{z,y}}, then applying 9.6; and the reverse implication is a conse-

quence of 9.51.

9.621 (z,y)eL.=.{y,z)¢
(zyy, 7 )eL =. (z z, y)eL.E.(x,z,y)eL

(follow immediately from 9.62)
9.623 Q'FeL fori=56,...,8
(follows from 9.62, 9.621)
9.63 zCL.D.(IyxCy]

Proof: Counsider Od“z, which is a set of ordinals; by 7.451 there exists an
ordinal o greater than every element of Od“x, i.e., such that Od“r C a.
Moreover, such an « can be found with the additional restriction that
o € W(Jy) (e.g., by taking Jg (0, ) instead of a, since J (0,a) > « by
9.25), hence F‘a = F“a by 9.35; but z C F¢q, hence z C Féa, and F'a is
a constructible set. It follows that a constructible class which is a set is a
constructible set, i.e.:

| 964 M(X).D.XelL.
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Proof: By 9.41 and 9.63, X is contained in some 3. Therefore X

but X -7 is a constructible set by 9.41.
9.65 £(%)
Proof: By 9.51, % C L; by 9.61, T -7 ¢ L for any 7.

966 T+7ecl

Proof: There is a Z such that T +§ C Z, by 9.51 and 9.63.

Z —[(Z —T) — 7]. Hence 9.6 gives the theorem.
98 0elL
Proof: 0 =7 — &, hence constructible, by 9.6.

9.81 £(L)

7=2X,

Proof: L C L; and because of 9.51, T- L = T, hence T+ L ¢ L. Therefore

£(L) by 9.41.

982 L(E-L)

Proof: E-L C L; also T-F ¢ L by 9.6, since X - E is a fundamental
operation; but T- E =Z-E - L because T C L; hence T-F - L ¢ L, and so

by 9.41, £(E - L).

9.83 £(A-B)
Proof: A—B C L; moreover T - A —7%- B is constructible, by 9.41 and 9.6;
but 7-A—Z-B=7%-(A—B); hence T- (A — B) ¢ L, so that £(A — B),
by 9.41.

Similarly:

9.84 £(A-B),
and

9.85 £(A+B).
9.86 L£(QA), i=5,...,8

and

9.87 £(L-QiA).
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The last two theorems are proved as follows: (s, ..., (Js take constructible
sets into constructible sets, by 9.623; therefore | QA C L, i = 5,...,8.
In order to prove that T.Q;‘A ¢ L for i = 4,...,8, consider an arbitrary

yeZT-QiA, i =4,...,8 yis an image by Q; of some element of A; take
the element 3 of A of lowest order of which y is an image. The totality
of these y' for all elements y of % - QA is a set u of constructible sets and
u C A. By 9.63 we have u C Z, for some Z. Z can be determined so that
Z C A, merely by taking Z- A. Hence we can assume u C Z C A. Therefore
T-QFZCT-QAby 4.86; but alsoT-QFACT Qi‘Z because any element
of T- Qz A has an original in u, hence in zZ. Hence - Q;'A = T - Q;‘Z, but
(T-Qi'Z) ¢ L by 9.6.

By means of Theorems 4.92 to 4.96, Theorems 9.86 and 9.87 take the
following three forms:

9.871 £[D(4)],

9.872 £[¢nk(Z] for k =1,2,3,
9.873 £[L-(V x 4)).

9.88 £(A4A x B)

Proof: By 4.871, AxB=(VxB) - (AxV)=L-(VxB)-L-(AxV),
because A x B C L, by 9.62. By 9.873 and 9.872, £[L - (V x B)] and
L£[L - (A x V)]. Hence, by 9.84 £(4 x B).

9.89 £[20(4)]

Proof: W(4) =D (j), hence the result follows from 9.871 and 9.872.
9.90 £L£[AlB]

Proof: AVB=A4-(V xB)=A-L-(V x B), hence the theorem, by 9.873
and 9.84.

991 £[A“B]

Proof: A“B = 20(A" B), hence the theorem, by 9.89 and 9.90.
992 £({X,Y})

Proof: By Definition 3.1 {X,Y} is either 0 or {X} or {Y} or {X,Y]},
where now only sets can appear within the braces. Hence the theorem, by
9.6, 9.65, 9.8.

Not all operations on constructible classes give necessarily constructible
classes. For example, it cannot be shown that £ [ (X)].
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Now consider the model A obtained as follows:

1. Class is construed as constructible class.
2. Set is construed as constructible set.
3. €,, the membership relation, is to be the e-relation | confined to con-

struct1ble classes, i.e, Xel Y. =XeY.

The operations, notions and special classes defined so far can be rela-
tivized for this model A by replacing in their definition or defining postulate
the variables X,¥,... by X,Y,...; the variables z,y, ... by T, Y,...; € by

€,; and the prev10u<1y defined concepts and variables by the corresponding
relativized ones, leaving the logical symbols (in particular also =, which
is considered as a logical concept) as they stand. The relativized of a
variable r is a variable whose range is obtained by relativizing the notion
which defines the range of r. Note that for an operation or special class the
relativized need not exist a priori, because the theorem which states exis-
tence and unicity (cf. page 12) may not hold in the model A; furthermore
the relativized concept may depend on the particular definition which we
chose, since equivalent definitions need not be equivalent in A. (However,
as soon as we have proved that the axioms of ¥ hold for A, we know that
the relativized always does exist and does not depend on the particular
definition.) If the relativized of a defined class A, operation 2, notion B,
variable ¢ exists (which presupposes that also the relativized of any symbol
occurring in its definition exists), we denote it by A;, ?4;, B, L, (hence T,
X; have the same range as T, X). % and B, are defined for constructible
classes as arguments only, and we have the theorem:

10.1 If A; and 2l exist, then A; is constructible and 2%,(X1,..., X»)
is constructible for any X1,..., X,.

Evidently the relativized classes, notions and operations are at the same
time classes, notions and operations of the system ¥, if the requirement
on page 11, that they be defined for any classes as arguments, is met, e.g., .
by stipulating that % (X1,...,X,) = 0 and B;(X;y,...,X,) is false, if
Xi1,..., X, are not all constructible.

10. Din A special class A or operation % or notion ‘B is called

absolute if A;, A, or ‘B; exists, respectively, and Al = A
Q‘l(Xl,...,Xn) = Q[(Xl, n) or ‘Bl(Xl,.. )
B (X1,...,X,), respectively, for any Xi,...,Xn. A vamable

T is called absolute if the range of r, is the same as the range
of r.
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By Theorem 10.1 we have:

10.11 Tf A (the operation 2A) is absolute, then A is constructible
(A(X1,...,Xn) is constructible for any X1,..., X,).

Concerning the meaning and purpose of the metamathematical notions
of relativization and absoluteness, cf. page 1. The relativized of a propo-
sitional function ¢ or a proposition ¢ | is denoted by },, ¥, respectively, 43
and obtained by replacing any concept and variable occurring in it by the
relativized one (presupposing that they all exist). In particular also the
relativized of a theorem is quoted by putting a subscript [ to its number.

10.12 ¢ is absolute.

This is true by definition of ¢, .

10.13 “C” is absolute.

Proof: X ¢, Y.=.(W)[te, X.D.u¢gY].=.(@Wme X.D.ueY] Also
XCY.= (u)[u ¢X.D.ueY] If (u)ueX.D.ue Y], then in particular
(@)@ e X.D.u e Y] On the other hand, the reverse implication holds,

since, if u is not in L, the condition holds vacuously, because the hypothesis
u € X is false. Therefore X G Y .=. X CY.

10131 X G Y.Y G X :0. X = Y, ie., the relativized axiom of
extensionality holds.

Proof by 10.13 and the axiom of extensionality.

10.14 “C” is absolute.

Proof: X ;Y .=: X Y. X#Y.=.X C ?, by 10.13.
Similarly:

10.15 € is absolute, ie., €y (X,Y).=. &(X,Y).
10.16 &m is absolute, i.e., €m; (X).=.¢m(X).
10.17 The operation {X,Y} is a solute.

Proof: By 3.1 {X,Y}; is the constructible class Z such that
@MueZ.=u=X.V.u=Y)

{X,Y} satisfies this condition on 7 because it satisfies it even with (u)
instead of (%). Moreover, {X,Y} is constructible, by 9.92. Also {X,Y} is
the only constructible class satisfying the condition (by 10.131). Hence the
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relativized of the operation {X,Y} exists and {X,Y}; = {X,Y} for any
X,Y,ie, {X,Y} is absolute.

10.18 If € is defined by €(X) = A(B (X)) and & and B are absolute,
then € is absolute.

Proof: 2 (% (X)) = A (B (X)), but B, (X) is constructible by 10.1, hence
A(B; (X)) = A (B (X)) = G (X).

This principle holds also for operations with more than one argument.
| 10.19 The operation (X,Y") is absolute.
This is an immediate consequence of 10.17 and 10.18. Similarly:

10.20 The operation (X,Y, Z) is absolute.
10.21 4Un is absolute.

Proof: U (X).=. (w,7,0)[(7,T)1¢, X . (W, u)1¢, X :D.7 = w].

By 10.12 and 10.19 the subscript [ can be dropped wherever it appears on
the right. The condition is now equivalent to that obtained by replacing
w, T, W, by u, v, w, respectively, as in the proof of 10.13 (using 9.62).

10.22 97 is absolute and *Pr is absolute.

Proof: 9 (X). .’—_‘__ € L, by definition of the model A on page 41, therefore
M (X ) = . M(X), by 9.64 and Axiom A2. Hence also ~zm,( X). =.
~ (X).

Not all concepts can be proved to be absolute; for example, ‘B and V
cannot be proved to be absolute.

1023 Vi=1L
Proof: V; is defined by the postulate (Z)[Z ¢ V;]. L satisfies the condi-
tion, hence L = V}, because of the relativized axiom of extensionality and
because £ (L) by 9.81.

10.24 0 is absolute.

Proof: (Z)[~Z € 0], and 0 is the only constructible class satisfying this
postulate.
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| Chapter VI
Proof of the axioms of groups A-D for the model A

Every notion and operation appearing in the azioms has now been shown
to be absolute. This facilitates the proofs of the relativized axioms, since in
forming the relativized of a proposition all absolute notions and operations
can be left as they stand, because by 10.1 only constructible classes can
appear as their arguments, so that the relativized axioms may be formed
merely by replacing X by X and z by Z. For convenience we list the axioms
in their relativized form:

All S(E)a
2 76?3%(7),

33 @EeX.=ueY].D.X=Y,
4 (z,_y)(af)(u)[ﬂe Z.=a=y.V.a= Z;
Bl, (3A)Z,9)[(T.7) € A=Te @
2t (A4,B)AC)@)|FeC.=:Tec A.T€B),
3 (E)(HE)(E)[T € § =.~Te A, _
4 (AEB)@)FB.= @F ) 4],
5 (A)EB)EY)w:7) ¢ B.=7cA),
6 (AEB)E,P[E.7eB.=.7,T) e A],

7 (AEB)Z,7,2)(F7,2) € B.=.(7,2,7) e A],
& (D)EFB)F7.2[(@.7.2) ¢ B.=.(7,2,7) ¢ A;
ClL, (Fa){~em(@).(@)Zea.D>.(FW)Fea.z CY]},

2, (@) () (u,D)uerv.TeZ:D.UeT,
3 @EF@ECT.DO.TeT,
4 D.(IW@([TeF-=.(I)TeT.(G,7) € A)]};

&l
>
——
=
=
— &l

D, N@ﬂl(A) N

Al; is Theorem 9.65, A2; is immediate from A2, A3; holds by 10.131,
A4; is satisfied for Z = {Z,7}, which is constructible by 9.6. Now we
prove B1-8; by exhibiting in each case a constructible class satisfying the
conditions, as follows:

Bl; Take A = E- L. The class E - L is constructible by 9.82 and
satisfies (Z,7) e E- L.=.T € ¥, because (T,7) e E.=.T ¢ J and (T,7) € L.

2; Take C = A - B. This class is constructible by 9.84 and satisfies
B2.

3, Take B = L — A. This class is constructible by 9.83, 9.81 and
satisfies B3.

41 Take B=2 (z) By 9.871 D (A) is constructible.
z € B.=.(3y)[(y, ) € A]. Therefore, in particular,

| TeB.=.(3y)(y,T) e A].=. (F)[(7,7) € 4].
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The last equivalence holds, because, if there exists a y it must be con-
structible by 9.62.

5, Take B=L-(V x Z) B is constructible, by 9.873.
(z,y) € B.=.(z,y) € L.y € A; therefore (T,7) ¢ B.=.(%,5) e L.J e A s0

that (Z,7) € E_: 7€ A, since (T, 7) € L, by 9.62.
6; Take B = ¢n U(A) B is constructible, by 9.872.
(z,y) e €nv (A).=. (y,z) € A; therefore, in particular,

(Z,7) e Cw (A) .=. (7, T) € A.

Axioms B7-8; are proved in the same manner. Now consider Axioms
01—41:
1; Cl1; is satisfied by @ = F‘w.

Proof: w € 20 (Jy) by 9.27, hence F'w = Fw. If % ¢ @ (ie., T = F'a,
a < w), let 8 be an integer ¢ W (Jp) and > « (e.g., 8 = J5 (0,a + 1) by
9.25 and 9.26) and put 7 = F*8; then T e @ and § D T because F*3 = F“3
and F‘a C F“p.

Moreover: F'a ¢ F“8 but ~(F‘a € F'a) so that F‘a C F*3.

2; Consider & (Z); this is a set of constructible sets by 5.122 and
9.51. Therefore, by 9.63, there is a ¥ such that 6(Z) C 7. Hence
(w,v)[uev.veT:D.u e, therefore

(G, 0)[ueT.TeZT:D.Tey

that is, 7 satisfies the condition of C2;.

3; Consider L - PB(Z) (which is a set by 5.121) and take § such
that L -P(T) C 7, by 963. Then u ¢ L.P(T).D.uey. Therefore
uel -P(T).D.UeY,sothat TeP(T).D.TeF, thatis, TCT.D.TUeT.

4; Take 7 = A“Z. 7 is constructible, by 9.91.

il

weP.=. () veT.(u,v)e Al

therefore, in particular,

Teg.=. () veT.(Wv)e A

Now, if there is a constructible v, there is a v satisfying the condition; on
the other hand, if there is a v, v will be constructible, since v € Z. Therefore

Tey.=. (W)U eZ. (G, 0)e A

Finally, consider Axiom D;. By Axiom D, (3z)[x € A.&(z,A)]. But z
is constructible, since x € A. Hence there is an T satisfying the condition.
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Since all axioms of ¥ hold in A, it follows now that all theorems proved
so far also hold in the model A, except perhaps those based on the axiom
of choice. Therefore the existence and unicity theorems necessary for the
definition of the special classes and the operations introduced so far also
will hold in A, and, as a result, the relativized of every concept introduced
so far exists (except those definitions marked by =, which depend on the
axiom of choice); in particular also £; and L; exist.

Chapter VII
Proof that V = L holds in the model A

In order to prove that the axiom of choice and the generalized continuum
hypothesis hold for the model A, we shall show: (1) that both of them
follow from the axioms of ¥ and the additional axiom V' = L (which says
that every set is constructible) and (2) that ¥V = L holds in the model A,
i.e., Vi = L;. We begin with item (2). Since V; = L by 10.23, it is sufficient
to prove Ly = L, that is, the class of constructible setls is absolute. To that
end, it will be shown that all operations, etc. used in the construction of L
are absolute.

A general remark for proofs of absoluteness will be useful. In order for
the operation % (X71,...,X,) to be absolute it is sufficient to show that

(1) A gives constructible classes when applied to constructible classes,
and

(2) A satisfies the relativized defining postulate, i.e., if ¥ is defined by
oA (X1, ..., Xp), X1,..., Xy), then ¢ (A(X1,..., X)), X1,..., X0n)

It is easily verified that (1) and (2) are sufficient, namely, as follows:
20 exists, since the model satisfies the axioms of ¥. Hence ¢; has the
property that for any Xi,...,X, there exists at most one Y such that
(:bl(Y’Xh cey X’n)

But

o1 (A (X1, Xn), X1yev oy Xn)
by definition of %; and

by assumption (2). Therefore
W (X, Xn) = A(Ks,. ... T).

Similarly for the particular class A it is sufficient to show that it is con-
structible and satisfies the relativized postulate. Remember also that by
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10.18 operations defined by substituting absolute operations into absolute
operations are absolute.

11.1  “x” is absolute.

Proof: A x B is constructible, by 9.88.

ue AxB.=.(Jv,w)[veA.weB.u= {v,w)] by Definition 4.1. Therefore
TeAxB.=.(3v,w)[veA.weB.T= (v,w)]. Now, in the usual manner,
the condition on the right is equivalent to that obtained by replacing v, w
by ¥, w respectively. Therefore A x B satisfies the relativized postulate;

“ »

hence “x” is absolute, by the remark made above.
11.11 The operations A2, A3, ... are absolute.
| This follows from 10.18 and 11.1.

11.12 fRel and PRels are absolute.

Proof: S)%I(Y_) X CV?and Re(X). =.X
X CL?2.=.X CV? by 9.62. Hence Rel) (X).=.
%2[3.

C L?, by 10.23; but
Rel (X). Similarly for

11.13 D is absolute.

Proof: ® (A) is constructible, by 9.871. z ¢ D (A). =.(3y)[(y,z) ¢ 4],
therefore 7 ¢ D (4) .=. (Jy)[(y,Z) ¢ A]. In the usual way, the last condition
is equivalent to that obtained by replacing y by ¥, so that D (A) satisfies
the relativized postulate.

11.14 “.” is absolute.

constructible, by 9.84. x ¢ A-B.=:z ¢ A.z ¢ B; therefore
ZeA.T e B, that is, A - B satisfies the relativized postulate.

Rm

11.15 €npy is absolute (k = 1,2, 3).

Proof: €nuy (A) is constructible, by 9.872. Consider, e.g., €npy (A). It
satisfies the condition

Rel (Coy (A)) . (z, y)[(z, y) € Cnoy (A) .= (y,z) € A]

by definition. This condition implies the relativized statement by 11.12.
Similarly for €nyg (4).



Continuum hypothesis 83

11.16 “I” 1is absolute.

Proof: A1 B =A-(VxB)and A1,B =A-(LxB). But A-(VxB) C LxL
by 9.62; therefore ANB = A-(V x B)-(LxL)=A-(Lx B), by 4.87.
Therefore A B = Al B.

11.17 “20” is absolute.

Proof: 20(A) = © (Cw (4)) by definition. Hence the theorem by 10.18,
11.13, and 11.15.

11.18 The operation A“B is absolute.
Proof: A“B =20(A" B), by definition. Hence the theorem by 10.18.

11.181 The relativized operation of the complement is L — X.

>l

Proof: L — X is constructible by 9.81, 9.83 and je L — X .=
11.19 The operation A — B is absolute.

| Proof: A~ B=A-(L-B)=A-L-(-B)=A4-(-B)=A-B.
11.20 “4” is absolute.

Proof: A+/B=L—[(L—A4)-(L—B)]=L—[L—(A+B)]=A+B (since
A+BCL).

1121 E,=FE-L
Proof: F - L is constructible by 9.82. Also

Ry (B-L). @ 9T, 7 eE-L.=Tey),

8

since Rel (E - L) and since (Z,7) ¢ L and (Z,%) ¢ E.=.T ¢ §. Therefore
F - L satisfies the relativized postulate.

11.22 & is absolute.

Proof: §, (X, Y) =X 4 E =X-L-E=X" E =% (X,Y), by 11.14,
11.21.

11.221 All the fundamental operations §; (4 = 1,2,...,8) are absolute.
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The proof follows from 10.17, 11.22, 11.19, 11.16, 11.13, 11.15, respectively,
using 10.18 and 11.14.

11.23 The binary operation A‘X is absolute.

Proof: Since any y satisfying (y, X) € 4 is constructible by 9.51, we have:
if there is exactly one constructible set y such that (y, X X) € A, there is
exactly one set, and vice versa. Therefore (A);X = A‘X in this case; in
the contrary case both are 0.

11.3  €omp is absolute.

Proof:
Comp(X).=. (u)ueX.D.uC X].

=.(WueX.D.uC X].=. Comp, (X).
11.31 Ot is absolute.
Proof:

Il

O (X).=: Comp(X) . (u,v)[u,ve X :D

u=v.V.uev.V.veuyl.

I
g
2

The first and last equivalences follow immediately from the definition of
0D and O0;.

11.32 O is absolute.
Proof:

O(X).=: D0 (X).M(X) :=: O (X). M (X).

=:9;(X), by 11.31,10.22.
| 11.31 says that the ordinals of the model A are the same as the ordinals
which belong to the model A. This does not mean that the ordinals of the
model are the same as the ordinals of the original system, since nothing is

said of those ordinals which may not belong to the model (i.e., may not be
constructible). Cf. however 11.42.

11.4 “Fnc” is absolute.

Proof: _ . .
Fno(Y) . =: Rel)(Y) . Uny(Y).

=: Rel(Y) . Un(Y) by 11.12,10.21,4.61.
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11.41 “Fn” is absolute.

Proof:
Yan(X).=:3nq(Y).D(V)=X.
=:Fc(Y). DY) =X by 11.4,11.13,4.63.
11.42 On is absolute.
Proof: O, (Ony) by 7.16; and Pr;(Ony) by 7.17;. But On; is constructible
by 10.1, hence D0 (On;) and Pr(On;) because O and Pr are absolute by
11.31 and 10.22. Hence On; = On by 7.2.

By 10.11, it follows from 11.42 that On C L; in other words, every
ordinal number is constructible. Furthermore 11.42 implies:

11.421 The variables «, 3, ... are absolute.
11.43 “<” is absolute.

Proof: “<” is by definition the same as “€”.

11.44 “<” is absolute.
Proof: X <Y is by definition X e Y V. X =Y.

11.45 “+1” is absolute.
Proof: 7.4, 10.17, 11.20 and 10.18.

11.451 Each of the symbols 0,1,2,3,..., etc. is absolute.
Proof by 10.24 and 11.45.

11.46 & (and therefore Max and Lim) is absolute.
Proof:

2e6(X).=.(I)eev.veX].=. ()eev.5¢ X].=.2¢ 6, (X).
Therefore & (X) = &; (X) by the axiom of extensionality.
| What is left now is to show that the special classes R, S, J, K1, Ko,
F, and finally L, are absolute, where R is the ordering for pairs defined in
7.81, S is the ordering of the triples (i, «, 3) defined by 9.2, and F' is the

function introduced by 9.3 which defines L. For each of these the proof of
absoluteness will be based on the following lemma:
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If the class A is defined by the postulate ¢(A4) and if all defined classes,
operations, notions, and variables appearing in ¢ are absolute, then A is
absolute.

Proof: If ¢ satisfies the condition above, then ¢;(X).=.¢(X). Also ¢;(A4;)
and ¢(A) by definition of 4; and A. Since by 10.1 A; is constructible,
¢1(A4;) implies $(A;), hence A; = A, because both ¢(A;) and ¢(A).

11.5  “R” is absolute.

Proof: By Definition 7.81 we have

R C(On2)2.(a, 8,7, )[{( B), (1,6)) ¢ R.=
2. Max {ev, B} < Mag {~,6} .V :: Max{a, B} = Max {v, 8} :.
B<éNV: =8 a<y]

The following concepts appear in the defining postulate: C, On, 2, (), Mar,
{}, <, ¢, and variables «, 3, . . ., all of which have been proved absolute by
10.13, 11.42, 11.11, 10.19, 11.46, 10.17, 11.43, 10.12, 11.421, respectively.

11.51 “S” is absolute.

Proof: By Definition 9.2 we have

SC(Ox0n*)? (3,7, 6, ) {p<9.v <9:D
(@, B), (1,7,6)) € S.=: (@, B), (7,6)) € R.V
o, B) = (7,8) . < v}

In the postulate for S the following concepts appear, other than those
appearing previously in the postulate for R: x, R, 9, which are absolute
by 11.1, 11.5, 11.451, respectively.

11.52 “J” is absolute.

Proof: By Definition 9.21 we have

JFn(9 x On?). W (J) = On . (a, 8,7, 6, p, V)|t v < 9.D
: (/-1‘70[7/8>S<V777 6) 'D'J‘<u7a7ﬁ> < JL(”afy,(S)]'

The only additional symbols in this postulate are: §n, 20 and ‘, all of which
have been proved absolute by 11.41, 11.17, 11.23, respectively.

11.563 Each “J;” is absolute, ¢ = 0,1,2,...,8.
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Proof: J; (a,B) = J*(0,a,B). JodnOn?. Here there are no symbols but
those mentioned before. Similarly for Jy,..., Js.

| 11.54 K; and K are absolute.

Proof: In the defining postulate 9.24 there are no symbols but those men-
tioned before.

11.6 “F” is absolute.

Proof: The only additional symbols appearing in the defining postulate 9.3
are [ and §,...,%s, which are absolute by 11.16, 11.221, respectively.

11.7  “L’ is absolute.
Proof: L =20(F), and 25, F' are absolute by 11.6, 11.17.

It has now been demonstrated from the axioms of ¥ that L; = L, hence
also that V; = L, i.e., that the proposition V' = L holds in the model A .
This proves that, if there exists a model for the axioms of groups A, B, C,
D, there exists also a model for the augmented set of axioms obtained by
adding as an axiom the proposition V = L, namely, the model consisting
of the classes and sets “constructible” in the given model for ¥. Thus if
the system A, B, C, D is consistent, the augmented system is consistent.
Another way of putting this argument is as follows: If a contradiction were
obtained from V = L and the axioms of X (i.e., the axioms of groups A,
B, C, D), then the same contradiction could be derived also from V; = I
and the relativized axioms A;, B;, C;, D;. But V; = L; and Ay, By, C;, Dy
can be proved in ¥ as shown before; hence ¥ would be contradictory, and
a contradiction in ¥ could actually be constructed if a contradiction from
¥ and V = L were given.

| Chapter VIII
Proof that V' = L implies the axiom of choice and
the generalized continuum hypothesis

Now it remains only to be shown that the axiom of choice and the
generalized continuum hypothesis follow from V = L and X.

For the axiom of choice this is immediate since the relation As defined
in 11.8, which singles out the element of least order in any non-vacuous
constructible set, evidently satisfies Axiom E if V = L.

52

53



54

88 Gédel 1940

11.8 Dfn (y,z) e As.=:yex.(2)[0d'z < Od'y.D.~z ¢ z]. Rel (As)
As‘z is what may be called the “designated” element of z.
11.81 Dfn C‘a = Od[As‘(F‘a)].Cgn0On

C‘a is the order of the “designated” element of F'a. Hence C'a < a by
9.52.

The rest of these lectures is devoted to the derivation of the generalized
continuum hypothesis from V = L and the axioms of ¥. Since we have
just derived the axiom of choice from these assumptions, we are justified in
using all starred theorems and definitions in this derivation. The theorems
which follow from now on are only claimed to be consequences of ¥ and
V = L. However, only 12.2 really depends on V = L; in all the others
V = L is not used, and even the axiom of choice could be avoided in their
proofs, if one wanted to.

121 Ffwy = wq

Proof: Fwa < @a = wa by 8.31. On the other hand, there exists a subset
of wg, namely wy - W (Jy), such that the values of F over this subset are
all different. For if v # 6 and 4,6 € w, - W(Jy), assume v < §; then
Fiy ¢ F'6, by 9.3, so that F‘y # F‘6. But w2 (Jy) > wa, because
Jo (w2) C wqa - W(Jy) by 9.26 and Jy is one-to-one. Hence F“wy > wy.

By 12.1 the generalized continuum hypothesis follows immediately from
the following theorem:

| 122 P(Fwa) CFu,,

1’

This theorem is proved by means of the following lemma;

12.3 If m C On and m is closed with respect to C, Ky, Ky and
with respect to Jy,...,Js as triadic relations and if G is an
isomorphism from m to an ordinal o with respect to E, then
G is also an isomorphism with respect to &G[F‘a e F*‘fF], ie.,
a,BemD[Fae F'3.=. F'Gae F'G‘S].

We show first that 12.3 implies 12.2.

Proof: Consider u € P (F“wy), that is, u € F“ws. By V = L there is a
& such that u = F*6; form the closure of the set w, + {6} with respect
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to C, Ky, Ko, and with respect to J;, i = 0,1,...,8, as triadic relations,
according to 8.73, and let the closure be denoted by m. Now, by 8.73,
m is a set and M = w,. Furthermore, m is a set of ordinals; hence m is
well-ordered by E by 7.161 and is isomorphic to some ordinal number o by
7.7. Let the isomorphism be denoted by G, so that G“m = o. For brevity,
let o denote G*a. By Lemma 12.3 we have:

a,fem.D:Fae F'g.=. F'd e F'f.

Now consider &, the image of § by G. & ¢ o, that is, § < o. Since G

is one-to-one as an isomorphism, 0 = ™ = wq, from which it follows that

0<w,,,, hence § < Wiy Also, for any 3 ¢ m,
FBeF§.=. F@ ¢ F'.

Wo € m, by definition and w, is complete (as an ordinal number). There-
fore wg, is an E-section of m; hence w,, is mapped by G on an E-section of o,
i.e., by 7.21 on an ordinal number. But, by 7.62, this can be only the iden-
tical mapping of w, onto itself. Therefore, if 3 € wy, then 3 = B. Hence
F‘Be F'6.=.F'Be F'¥, for B €wy; that is, F'6 and F‘4’ have exactly the
same elements with F'“w, in common, i.e., F*6 - F“w, = F*‘§' - F“w,; but
Fé6 C F“w,, by assumption; therefore 6 = F'§' - F“w,. But w, € W (Jp)
by 9.27, therefore, by 9.35, F'“w, = F'w,, hence u = F'§ = F'§ - Flw,.
Therefore by 9.611 Od‘u < w_  , in other words, u € Fw .., qed.

In order to prove 12.3, we prove at first the following auxiliary theorem:

12.4  From the hypothesis of 12.3 (leaving out closure with respect to
C) it follows that
(1) G is an isomorphism for the triadic relations J; (1 = 0,...,8),
i.e. (if G‘a is abbreviated by o/): J(o/,3') = [J{a,B)] for a,
Bem,t <9, and
(2) o is closed with respect to the triadic relations .J;.

It outline, the proof runs as follows: By definition of J and the closure
property of m, J establishes an isomorphism with respect to S and E
between the class of triples (i,,3), ¢ < 9, @,8 ¢ m, and m. By G this
isomorphism is carried over to an isomorphism be|tween the set ¢ of triples
(i,0,8), 1 < 9, a,8 € o, and o. But J likewise defines an isomorphic
correspondence between { and some ordinal v, also with respect to S and
E; from this it is inferred by 7.62 that v = o and that J confined to ¢
coincides with the image by G of J confined to 9 x m?. But this is what
the assertion of the theorem says. The detailed proof is as follows:

Set j = J (9 x m?). Then we have D (5) = 9 x m2. Now 28 (5) C m,
since m is closed with respect to all the J;. But also m C 20(y); for
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suppose v € m, then v = J(i, a, 3) for some 4, o, 3 where «, 8 ¢ m, since m
is closed with respect to K7 and Ky; hence v € 20(j). Therefore 20 (j) = m
Moreover,

ik <9.,0,7.6em. (i, )5k, v, 6):2. 5 (i, a, B) < j*(k;,6),

since J has this property, and since for this domain J coincides with j.
Therefore

§Ifomgse (9 x m?, m).

Now denote by j the function into which j is carried over by G, that is, j
is defined by:

IO x o). j i, o ) = [, 0, B)]

for a, 8 ¢ m and i < 9. This may be written j(i,, 8) = [§*(4, 01, 51)]

for a,8 € 0, i < 9, where G‘a is denoted by ;. We want to show that
jjfomSE (9 x 0%,0). Now: D(j) = 9 x 0 and 25 (j) = o, because j has
the corresponding properties. Since G is an isomorphism with respect
to E, it follows by Definition 7.8 that {(a, 8)Le{y,6).=.(a/, 3 )Le{y, &)
for a, B, v, § ¢ m. Likewise, by Definition 7.81, (o, 8)R(v,6). = .
(o, BYR{,8") for o, B,7v,6 € m. Tt follows then by Definition 9.2 that

(i, 001, B1) Sk, 71, 61) .= (4, 0, B) S (K, 7, 6)

for o, 8, v, 6 ¢ 0 and i,k < 9. Now suppose o, 3, v, § € 0, 1,k < 9 and
{i,c, 8)S{k,,8). We have then (i, a1, 31)S{k,v1,61), which implies, since
j Fomgg (9 x m?,m), that j*(i,ay,B1)Ej(k,v1,61). Now, since G is an
isomorphism with respect to E, we conclude that

(70, o1, BV E[j (b, 11, 61)]

that is, (i, @, B)Ej*(k, v, 8). Therefore j Jjomgg (9 x 02, 0).

Now define j, = J I (9 x 02). Then D (j,) = 9 x 0% and 2 (j,) is some
ordinal number ~, since 9 x 0? is an S-section of 9 x On?. Therefore under
J the image must be an E-section of On, i.e., an ordinal by 7.21. Hence
both j, Jfomgg (9 x 02,7) and 7 Homgg (9 x 02, 0); but there can exist but
one isomorphism of this kind of a set on an ordinal number, by 7.62, hence
v = o0 and j, = j. Therefore

go (1,0, B') = 70, o, B') = [j*(i, e, B)Y,

for o, 8 € m, ¢ < 9, which is equivalent, by the construction of j, and j,
to the statement: J*(i,o/, ') = [J(i,a, B)], for o, B € m, i < 9, which,
in turn, is the same as: Ji{o/, ') = [Ji{a,B)], fori =0,...,8, a,B e m,
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which is what we set out to prove. That o is closed with respect to the J;
follows immediately from the last equality.
12.4 can be stated symmetrically as follows:

12.5 If m C On, m' C On, m, m' both closed with respect to K;, K,
and the J; as triadic relations and if | G Jfomgg (m, m’), then G
is an isomorphism for the triadic relations .J;.

The proof is obtained by mapping m and m’ on the same ordinal o by
7.7 and then applying 12.4.

12.51 The hypothesis of 12.5 implies, furthermore,
a e (J;).D.Gael(J;) foraem,i=0,...,8

Proof: « ¢ 2 (J;) implies o = J{(8,7), 3,7 € m, since m is closed with
respect to K1, Ka. Hence o = J; (¢!, ') by 12.5; hence o e 20(.J;).

Next it will be shown that:

12.6 If m, m’, G satisfy the hypothesis of 12.5 and in addition m and
m’ are also closed with respect to C, then G is an isomorphism
for the relations dB(F‘a e F*8) and dB(F‘a = F*8). In other
words,

(a) a,Bem.D:Flae F'f.=.F'd e F*'g3'.
Fa=F8.=.Fa = F'g,

where again G‘a is abbreviated by «'.

The scheme of the proof will be to carry out an induction on n =
Mar{e, 5}. We will assume as the hypothesis of the induction that (a)
is true for a, 8 ¢ m and o, § < 0, and prove it for a, 8 € m, Mar{cx, B} = 1.
(Hence the property which is shown by induction to belong to all ordinals
7 is given by the propositional function:

(o, D, Bem-n=Ma{a,f} :D:(Fae F'S.=. FG'ac FGP3).
(Fa = F'8.=. F'G'a = FG'B)].

This expression is normal; therefore we can apply induction by 7.161.) If
Max {o, B} = n there are 3 possible cases, namely

1) a=0=1.
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In this case the equivalences (a) both hold, since, in the first, both members
are false, and, in the second, both are true. The remaining two cases are
a=1mn, 3 <nand a <5, §=rn. Hence what has to be proved is:

FaeFn.=.Fd ¢ Fy,
FpeFg.=.F e F'f, fora,f<m, «a,Bem,
Fn=Fpg.=.Fy =Ff,

under the hypothesis that n € m and

I. Flrae F'8.=. Fd/ e F'f3, ¢ s

IL Fa=Fg.=.Fo =Fg, [  oPemm
Everything which follows from now on up to the end of the proof of

Theorem 12.6 (in particular the theorems (1)—(9) on pages 57-9) depends

on this inductive hypothesis in addition to the hypothesis of Theorem 12.6.

The following abbreviations will be convenient: » = F“m, | r, =
Fé(m-n), r = F‘m’, and r;, = F*(m’ - 7’). Hence v, C r and r, C 7’
Now we can define a one-to-one mapping H of r, on r; by H = F|G|F~L.
Because of the inductive hypothesis T, H is one-to-one and H'z = F‘o/
if z = F‘a, a« € m - 1. Because of inductive hypothesis I, H is an iso-
morphism with respect to FE. Note that the hypotheses of Theorem 12.6
and the inductive hypothesis are perfectly symmetric in m, m’ and 1,7/, so
that whatever is proved from them will also hold if m, n, r, r;, G, H are

%

interchanged respectively with m’, o', ', r;, G, H.

The next step will be to show that H is an isomorphism for the triadic
relation 229[z = (x,y)] and the tetradic relation 240wz = (u,v,w)), and
for the @;. In order to establish this some preliminary results are needed.

(1) ris closed with respect to the fundamental operations.

Proof: Take z,y € r; then z = F'a, y = F*‘B3, o, 3 € m, so that §;(z,y) er,
by 9.31-9.34, since m is closed with respect to the J;. Therefore x — y,
{z,y}, {z,y), {x,y,2), and z - Q;'y are in r if z,y,z e r. In particular, it
follows that - Q;{y}er if z,y e r.

(2) zer.D.0Od'zem
Proof: {z} € r by (1), hence there is an a ¢ m such that {z} = F‘a. Set

8 = C‘a. Then B € m, since m is closed with respect to C and 8 = Od‘z,
by definition of C' (11.81).
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(3) (zer).(x#0):D.x-7#0

Proof: There is an « ¢ m such that ¢ = F‘a. F‘'C‘a € z, by Definition
11.81; but F*C‘a ¢ r, since m is closed with respect to C; hence z - r # 0.

(3.1) {z,yler.D.z,yer; {(x,y)er.D.x,yer;
(z,y,2) er.D.x,y,z €T,

Proof: It follows from (3) that {z} ¢ r. D .x € r, because z is the only
element of {z}, also {z,y} € r.D.z,y € r, for, either = or y € r by (3);
suppose z € 7, then {z} € r by (1), hence {z,y} — {z} € r by (1), so that
{y} e 7 if x # y, hence y € r. By iteration, {(z,y) e 7. D .z, y € r and
{z,y,2) er.D.x,y,2 er. It follows then that

(4) yer {y,x)eQi:D.xer fori#b.

Proof: Consider Qg, the permutation of the ordered pair: If {y,z) € Qs,
then y = (u,v), (v,u) = z for some u,v. {u,v) € r by assumption, hence
u,v € r by (3.1) so that (v,u) € r, by (1), | that is, z € r. Similarly for the
other permutations, i.e., @7, Q3. Now consider Q4 = Pz_lz assume y € r,
{y,x) € P2_1; then (x,y) ¢ Ps, i.e., y is an ordered pair and x its second
member, hence z € r by (3.1).

There is a weak completeness theorem for ry:

(5) zerp.yex :D:ryer.D.yer,.

Proof: Set o = Od'y. Now a € m, by (2); Od‘y < Od‘z < n, by 9.52; hence
aem-n, that is, y € .

(6) yeF'n.yer:D.yer,
Proof: Od'y < n by 9.52. Od'y ¢ m by (2); hence Od'y e m -n, i.e., y € ry.

(1) A{zy}ery.D.z,yeryand (z,y)ery.D. 2,y €ry;
(x,y,2) ery.D.x,y,2 €1y,

Proof: {z,y} € r, therefore z,y ¢ 7 by (3.1); hence the result follows, by
(5). By iteration it follows that (z,y) € r,. D .2,y € 1, and similarly for

triples.

(8) H is an isomorphism with respect to 2Zglz = {z,y}], 249[z =
(z,y)], 224t[z = (z,y,t)], and the Q; (i = 4,5,...,8).

(In the sequel H*z is abbreviated by z’. So the prime is an abbreviation
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for G or H according as to whether it occurs with a Greek or a Latin letter.)

Proof: Consider {z,y}; we wish to show that
z,y,z€ry. Dz = {x,y}.=.2" = {z',y'}.

Recalling the symmetry of the hypotheses, and that z, y, z € r, is equivalent
to z',y', 2" € r;, it is obvious that it is sufficient to prove implication in one
direction, in order to establish the equivalence. We prove implication from
right to left; 2’ = {«',y'} implies =’ ¢ 2’ and ¥’ ¢ 2/, hence, since H is an
isomorphism with respect to E, x € z and y € z, i.e., {z,y} C z. We have
then only to show that z — {z,y} = 0. Since z,y,z€er, 2~ {z,y} e r by
(1); hence by (3), if z—{z,y} # 0, there is a u € r such that v ¢ [z — {z, y}].
So u € z, and z € ry, hence, by (5), u ¢ 7. Then w € z,u # z and u # y,
hence v’ € 2/, v’ # 2’ and v’ 5 ¢, because H is one-to-one and isomorphic
for E. But this means 2’ # {z,y'}, contrary to assumption.

To establish that H is an isomorphism for z = {z,y), it must be shown
that

Ty, z €y Dz = (z,y) . =2 = (2, y).

Again it is sufficient to establish implication in one direction. Assume
z = {(z,y). It follows that z = {u, v}, where u = {z,2} and v = {z,y}. By
(7), u,v € ry; hence, forming 2/, «', v/, 2/, ¢/, it follows | that v’ = {z', ¢},
o = {z/,2'}, and 2’ = {u/,v'}, that is, 2’ = (', ¢/').

For the ordered triple, assume z = (z,y,{); then z = (z,s), where
s = (y,t); t,s e ry, by (7), since z € r;; therefore 2’ = (2, 5'), s’ = (y/, '),
that is, 2" = (2', ¥/, t').

Consider now ()5 = P»; we must show that

T,y ery. Dz, 2) e P.=.{(z',2) € Py.

As usual, only the implication in one direction is necessary. Assume
(x,z) € Pp; then there is a y such that z = (y,z); by (7) y € ry, there-
fore 2’ = (¢, ') by (8), that is, (z',2') € P». Now since H is an isomor-
phism with respect to Pz, H must be an isomorphism also with respect to
Qs =Pyt

There remain only the permutations Qg, Q7, Qs. Consider Qg, for
example. Assume (x,y) € Q¢; then there exist u and v such that z = {(u,v)
and y = (v,u). Since z,y ¢ 7y, it follows by (7) that u,v ¢ r,, hence
' = (v, v') and ¢ = (v, ') by (8), that is, (', ¢y') € Qs. The proofs are
similar for Q7 and Qg.
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Now consider the three relations which must be proved to establish the
induction, namely,

(9) 1. Flae F'n.=.F'd e F,
2. Fnpe F'B.=.Fy e F*g, for a,Bem - 7.
3. Fop= F'f.=.Ff = '8,

We shall show now that it is sufficient to prove the first of these three
relations. Let us assume then that the first is true, and prove the third.
Assume that F‘n # F*B. Then either F'n — F'G # 0 or F*F — F'n # 0,
and [F'n — F*Gler, [F'8— F'n) er by (1). Hence by (1) and (3) there is a
u € 7 such that either u e [F'n — F*‘G] or u e [F*3 — F*n]. Therefore u e Fn
or u € F*B, hence in both cases u € r,,, by (6) and (5), since F*3 € . Let
us now assume u € [Fn — F*G]; then u ¢ F*ny and ~(u € F*B). Hence by the
inductive hypothesis I, we have ~(u’ ¢ F*3'); but also v’ € F‘r/, because we
have assumed (9) 1 to be true. Therefore F*ny' — F*3’ # 0. Suppose, on the
other hand, that u € [F*3 — F'n]; then u ¢ F*G and ~(u € F'n). Exactly as
above, we have v’ ¢ F'3" and ~(u' € F'y), that is, F*y' # F*3’. Thus we
have shown
Fan# FB.0.Fq #Fg,

and the inverse follows by symmetry as usual.

We have now established that the third relation of (9) follows from the
first. Now we derive the second from the first and third. Assume that
Fne F\B; set « = Od'F'y. By 952 a < 8 <5 and by (2) a ¢ m - 1.
So F'n = F‘a and therefore Fia ¢ F*8; from F'n = F‘a it follows by (9)
3 that F'ny’ = F‘o’; moreover F'a’ ¢ F*3', by the inductive hypothesis
I, hence F'y' € F*@, that is, F'yg ¢ F*8.D .F‘n ¢ F*3' and the inverse
implication by reasons of symmetry. Therefore it is sufficient to show (9)
1 and by symmetry it is sufficient to show:

| FaeFn.D. F'a e F'y foraem-n.

So we assume F‘a € F*n, and consider separate cases according to the
index ¢ such that n € 20(J;).

1. Suppose 5 € W (Jy); by 12.51, ' € W (Jp), hence F‘'n = F“n and
Fy = F“y, by 9.35, so that both members of the equivalence (9) 1 are
true, hence trivially equivalent.

2. Suppose € W(J1). Then 5 = Ji(8,7), where 3,7 ¢ m (by the
closure property of m) and 3,y < n, by 9.25. Also ¥ = Ji {',v') by 12.5,
so that 9.31 gives: Fn = {F‘f3, F*y} and F'y = {F‘B', F'y'}. Suppose
F‘a € F'n; then F‘a = F‘8 or F‘a = F‘v; therefore, by the inductive
hypothesis I, F*o/ = F*f3 or F'a' = F*y', that is,
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Fca/ € {F‘IB,,F"Y,};

in other words, F'a/ ¢ F'y'.

3. If n € W(Jy), then we have, as before, n = J (3, v) and ' =
S (3,7, B,yem-n By 932, F'n=FE -F'Band F'y = E-Fg. If
Fiae F'n, then Fla ¢ F'f and F'a ¢ E. Tt follows that F'a’ € F*3’, by the
hypothesis I of the induction. From F‘a ¢ F it follows that F'a = {x,y)
and z € y for some x,y; F'a € ry, hence z,y ¢ ry, by (7), therefore F'o/ =
(x',y'), by (8), and =’ € ¢/, that is, F*a’ ¢ E. Hence

Fo e E-F3:

in other words, F*a' ¢ F'r'.

4. If n € W (J3), we get in the same fashion, by 9.33, F'n = F‘8 —
Fyand Fof = F*8 — F'Y', B,y e m-n. Assume F‘a ¢ F'n, and the
inductive hypothesis I applied to F'«, with F*8 and F*y, gives F'a’ ¢ F*n
immediately.

5. Suppose 1 € W(J;), i = 4,6,7,8. As above, n = J{8,7), # =
JAB,Y), B,y € m -7, so that F'n = F'f . QF'v and F'q =
Fg . QfFY, by 9.34. Now assume F‘a ¢ F'n, that is, F'a ¢ F*8 and
F‘a € Qi'F‘y. It follows that F‘a’ ¢ F*3'; also by Definition 4.52 there is
an ¢ € F'y such that (F'a,z) € Q;. Now z € r by (4) and © € F'y € 1y,
hence z € 7, by (5), so that, by (8), (F‘e/,2’) € Q;; in addition =’ € F*7Y/,
hence

Fa ¢ QfF'Y;

hence Féa' € F*ny'.

6. There remains now only the case n ¢ 20(J5). As before, n =
Js{B,v) and ¥ = J5(B,'), that is, F'n = F‘B8- Py (F‘y) and Fn =
F@ - Py(F‘9'). Note that x ¢ Ps'y is equivalent to y- Py’ {z} # 0. Suppose
Fio ¢ F'n; then F'a e F*f3, and F'a e PsF'y, that is, F*y - P5{F‘a} # 0.
F'o e v and F'y € r; hence by (1) [F'y - P§{F‘a}] ¢ r, therefore by (3)
there is a u € 7 such that u ¢ Fy.u € P5{F‘a}. Then by (5) u € r,; since
u € F'y and (u, F*a) € Py, it follows that u' ¢ Fy and (v, F‘a’) ¢ P, by
(8), that is,

Fa' ¢ Py (Fy');
therefore, since F*a’ € F*g3', it follows that F*a’ ¢ F*r/. This concludes the
proof of 12.6.

| 12.3 follows immediately from 12.6, since if m, o satisfy the hypothesis
of 12.3, 0 must be closed with respect to .J; by 12.4 and with respect to C,
K, K3 (because Ki a < a, Kz a < a by 9.25 and C*o < «a by definition).
Hence m, o satisfy the hypothesis of 12.6.
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But on page 54 it was shown that 12.2 follows from 12.3. So it is proved
that the generalized continuum hypothesis is a consequence of ¥ and the
additional axiom V = L, q.e.d.}8-22

18[Note added in 1951: The above given consistency proof can easily be extended for
the case that stronger axioms of infinity are added (e.g., the axiom of the existence of
unaccessible numbers, or others given by P. Mahlo (1911, 1913)), for the simple reason
that all these axioms of infinity imply their own relativized form. A similar remark also
applies to extensions of the system 2 by other axioms suggested by the intuitive meaning
of the primitive terms. Note added in 1966: This holds for the axioms of infinity and
other additional axioms known at that time (1951).)

19[Note added in August 1965: In the past few years decisive progress in the founda-
tions of set theory has been achieved by Paul J. Cohen, who invented a powerful method
for constructing denumerable models. This method yields answers to several most im-
portant consistency questions. In particular Paul J. Cohen (1963, 1964, 1966) has
proved that Cantor’s continuum hypothesis is unprovable from the axioms of set theory
(including Mahlo or Levy type axioms of infinity), provided these axioms are consistent.
The value that can consistently be assigned to 28e turns out to be almost completely
arbitrary. See Cohen 1963, 1964, 1966, Solovay 1963 and Easton 1964, 1964a.]

20[Note added in August 1965: Other quite important progress has been made in
the area of axioms of infinity, namely:

1. Mahlo’s axioms of infinity have been derived from a general principle regarding the
totality of sets, that was first introduced by A. Levy (1960). It gives rise to a hierarchy
of different precise formulations. One, given by P. Bernays, implies all of Mahlo’s axioms
(see Bernays 1961).

2. Propositions which, if true, are extremely strong axioms of infinity of an entirely
new kind have been formulated and investigated as to their consequences and mutual
implications in Tarski 1962, Keisler and Tarski 1964 and the papers cited there. In
contradistinction to Mahlo’s axioms the truth (or consistency) of these axioms does not
immediately follow from “the basic intuitions underlying abstract set theory” (Tarski
1962, page 134), nor can it, as of now, be derived from them. However, the new axioms
are supported by rather strong arguments from analogy, such as the fact that they are
implied by the existence of generalizations of Stone’s representation theorem to Boolean
algebras with operations on infinitely many elements. As was conjectured in a general
way in Godel 1947, page 520, one of the new axioms implies the existence of non-
constructible sets (see Scott 1961). Whether one of them implies the negation of the
generalised continuum hypothesis has not yet been determined.]

21[Note added in August 1965: A general discussion of Cantor’s continuum problem
and its relationship to the foundations of set theory is given in Gédel 1947 and 1964.]
22[Note added in August 1965: A slightly different version of the consistency proof

given in these lectures, which exhibits more clearly the basic idea of it, is outlined in
Gédel 1939a.]
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Appendix

The following list is a continuation of the list of page 13 and shows
by the method explained there that all notions and operations for which
special symbols are introduced in these lectures (except only ~ and 20e)
are normal.?3

4.1
4.11
4.2

ZeXxY .= (Fu,v)[{(u,v)=Z.ueX . veY]
Ze¢X? =.7Z¢X x X (similarly for X3)
Rel (X).=.X C V2 (similarly for Rels)

4.4,4.41,4411 Ze@w(X).=.(Ju,v)[(v,v) =Z.(v,u) € X]

4.42
4.43
4.45
4.5

4.52
4.53
4.6

4.61
4.63
4.65
4.8

4.84
6.1
6.3
6.31
6.4

6.5
6.6
6.61

(similarly for Cnpy, €npg)
ZeX+Y.=:ZeX.V.ZeY
ZeX-Y.=:ZeX.~ZeY)
ZeW(X).=. Zei)(@inn(X))
ZeXMY.=.Ze¢X -(VxY) (similarly for 1 (4.512))
ZeX“Y .=.Z ¢ WXIY)
ZeX|Y.=. ( u, v, w)[Z = (u,w) . (u,v) € X .(v,w) e Y]
Uny (X).=:Un(X) . Un(Cno (X))
e (). = (). tn ()
X&FY .= Snc( ). R(X)=Y
ZeX'Y.= (u[Zeu. (v)((v,Y)eX.=.v=u)
Ze6(X).=.(3u)[Z € u.u e X] (the same proposition holds for
May and Lim)
ZeP(X).=M(Z).ZCX
XemY .= Y2 CX+Ew(X)+T
XGetzY =:Y - ZXCX.XCY
ZeGegr(X,Y).=.Ze X -TY}
ijome(X Y) =: SRe[( ) ilnz(Z) Q( )———X.

WZ)=Y .(u, v)[u veX.D.((u,v) e P.=.(Z, ZV) € Q)]
Comp(X).=.6(X)CX
O (X).=: Comp(X). ECon X
O(X).=: 00(X).M(X)

a, 3,7, ... are normal variables since their range is the class On.

I

663,664 X <Y .= XeY; X<Y.=:XeYV.X=Y

7.4
8.12

8.2

ZeX+1.=:ZeX.V.[Z=X.M(Z)]
X Y. =: (Fu)Rel(u) .Uny (u) . X =D (u).Y =W (u)]

Ze?.E:ZeOn.(a)[a ~ X.D.Zea]
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8.48,8.49 Fin(X).=.(Aa)eew.X ~ a], Mj(X).=.~Fin(X)

901 ZeF(X,Y).=.Zc{X,Y), ZeFa(X,Y).=.ZeE-X
(similarly for §s,...,8s)

941 L£(X).=:XCL.(wueLDu-Xel]

Index

. Special Symbols

{z,y}, (1.1), 3 X, (4.412), 15
{z}, (L11), 3 X+Y, (442), 15
{X,Y}, (31, 11 XY, (443), 15
(), (1.17), 4 uXwv, (4.211), 14
(z,y), (1.12), 4 XYy, (4.5), 15
(z,y,2), (1.14), 4 Y1X, (4512), 16
(Z1,...,zs), (1.15), 4 X4y, (4.52), 16
(X,Y), (3.12), 11 XY, (4.53), 16
0, (2.1), 8 XY, (4.65), 16
Xcy, (12), 4 X<Y, (663), 23
Xcy, (12), 4 X<Y, (6.64), 23
XY, (14), 5 X +1, (74), 26
-X, (1.41), 5 1, 2, 3, etc.,
XxY, (41), 14 (7.44,7.45), 26
X% (4.11), 14 X~VY, (81), 30
X3, (4.12), 14 XY, (812), 30
X1 (4.412), 15 Z1,..,8,] ], 15
X, (8.2), 30

* (at the number of a theorem or definition), 7
(), (Jz), (Elz), V, ., D, =, ~, =, 2

I1. Letters and Combinations of Letters

(Note that the letters C, F, R, S also occur as variables before their
respective definitions as constants. Operations and notions are denoted in
general by German letters, classes by Latin letters.)
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; As, (11.8), 53 N, (8.21), 30
Aeq, (8.13), 30 N', (8.54), 33
C, (11.81), 53 Ne, (8.20), 30
s, 3 0, (6.61), 23
Cno, (4.4), 15 Od, (9.421), 38
eno; (i = 1,2,3), On, (6.62), 23

(4.41-4.412), 15 Ow, (6.6), 23
Comp, (6.5), 23 P, (7.9), 29
Con, (6.1), 21 B, (4.84), 17
Do, (5.17), 19 ppf, 8
D, (15), 5 Pr, (1), 3
E, (43), 15 P (i=1,...,5),
¢m, (1.22), 4 (4.71-4.75), 17
&, (1.23), 4 Qi (i=4,...,8),
Fin, (8.48), 32 (9.14), 36
F, (9.3), 37 R, (7.81), 28
S]_,...,s"g, (91), 35 E)f{e[, (42), 14
Sne, (4.61), 16 Rel,, (4.21), 14
Fn, (4.63), 16 S, (4.8), 17
I, (4.31), 15 S, (9.2), 36
Inf, (8.49), 32 Geg, (6.31), 22
Jjom, (6.4), 22 Gect, (6.3), 21
J, (9.21), 36 tn, (1.3), 5
J; (i=0,...,8), fny, (4.6), 16

(9.22), 36 vV, (22), 8
K1, K, (9.24), 36 W, (4.44), 15
K, Ky, (7.42,7.43), 26 We, (6.2), 21
L, (9.4), 38 R, (8.57), 33
g, (9.41), 38 Ra, (8.59), 33
I (subscript), 42 We, (8.59), 33
Le, (7.8), 28 w, (8.4), 31
Sim, (7.31), 25 e, 3
m, 3 07
Mar, (7.31), 25 A, 41

M1-Ms6, 8,13, 14, 15, 16, 16
Variables:

X, Y,Z,..., A,B,C,..., for classes

T,Y, 2,00, Gybyc, ..., for sets

a,B,7,..., for ordinal numbers

i,k,..., for integers

X,Y,..., A,B,..., for constructible classes
Z,7,..., @,b,..., for constructible sets
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absolute (notion, operation,
class, variable), 42

asymmetric, (6.12), 21

cardinal, (8.2), 30

cardinal number, (8.20, 8.21), 30

class, 3

class, particular, 11

class, proper, (1), 3

closed, (8.7, 8.71), 34

closure, (8.72), 34

complement, (1.41), 5

complete, (6.5), 23

concept, 12

confined to, (4.5, 4.512), 15-16

connex, (6.1), 21

constructible, (9.4, 9.41), 38

converse, (4.4, 4.41, 4.411), 15

designated element, (11.8), 53

domain, (1.5), 5

domain of values, (4.44), 15

empty, (1.22), 4

equivalent, (8.1, 8.12), 30

exclusive (mutually), (1.23), 4

finite, (8.48), 32

function, (4.61), 16

function over, (4.63), 16

fundamental operation, (9.1), 35

image (by), 14

infinite, (8.49), 32

integer, (8.4), 31

intersection, (1.4), 5

isomorphism (isomorphic),
(6.4, 6.41), 22

limit, (7.31), 25

maximum, (7.31), 25

minimal formula (or proposi-
tional function), 12

monotonic (strictly), (7.61), 27

normal (notion, operation,
variable, term, propositional
function), 12

notion, 11

n-tuple, (1.15), 4

|null class, (2.1), 8 66

one-many, (1.3), 4, 5

one-to-one, (4.6), 16

operation, 11

order, (9.421), 38

ordinal, (6.6), 23, cf. also page 22

ordinal number, (6.61), 23

ordinal function, (7.6), 27

ordinal number of first and
second kind, (7.42, 7.43), 26

original, 14

pair, non-ordered, (1.1), 3

pair, ordered, (1.12), 4

particular class, 11

postulate, defining, 12

power set (power class), (4.84), 17

primitive propositional function,
8

product, outer (or direct), (4.1),
14

proper class, (1), 3

propositional function, 12

range (of a variable), 12

relation, (4.2), 14

relation, n-adic, (4.21), 14

relativization (of notions,
operations, particular classes,
variables), 42

set, 3

segment, (6.31), 22

section (proper section),
(6.3, 6.30), 21

single-valued, (1.3), 4, 5

sum, (4.42, 4.8), 15, 17

term, 12

transitive, (6.11), 21

triple, ordered, (1.14), 4

universal class, (2.2), 8

value, 14

variable (kind of), 11

well-ordered by, (6.2), 21



Introductory note to 1944

This paper was written for The philosophy of Bertrand Russell, a
volume of Paul Arthur Schilpp’s series the Library of living philosophers.
In his letter of invitation of 18 November 1942, Schilpp proposed the title
of the paper and also wrote: “In talking the matter over last night with
Lord Russell in person, I learned that he too would not only very greatly
appreciate your participation in this project, but that he considers you
the scholar par excellence in this field.” Godel sent in the manuscript on
17 May 1943. There followed a lengthy correspondence about stylistic
editing proposed by Schilpp and Goédel’s own deliberation concerning
revision. Before Godel had submitted the final version, Russell had
completed his reply to the other papers and decided that under the
circumstances he would not reply to Goédel’s. When Godel finally sent
in the revised version on 28 September, he wrote to Russell attempting
to change his mind about not replying. He undertook to disabuse Russell
of his impression that what Gdédel said would not be controversial, and
emphasized his criticisms of Russell. However, Russell confined himself
to the following brief note:

Dr. Godel’s most interesting paper on my mathematical logic came
into my hands after my replies had been completed, and at a time
when I had no leisure to work on it. As it is now about eighteen
years since I last worked on mathematical logic, it would have taken
me a long time to form a critical estimate of Dr. Godel's opinions.
His great ability, as shown in his previous work, makes me think it
highly probable that many of his criticisms of me are justified. The
writing of Principia Mathematica was completed thirty-three years
ago, and obviously, in view of subsequent advances in the subject,
it needs amending in various ways. If I had the leisure, I should
be glad to attempt a revision of its introductory portions, but
external circumstances make this impossible. I must therefore ask
the reader to give Dr. Godel’s work the attention that it deserves,
and to form his own critical judgment on it. (Schilpp 1944, page
741)

Godel subsequently contributed 7949a to the volume on Einstein in
Schilpp’s series and also accepted an invitation to contribute to the
Carnap volume (Schilpp 1963). Several drafts of this paper on Carnap
survive in Gddel’s Nachlass, but it was never actually submitted. Still
later, Godel declined an invitation to contribute to the Popper volume.

The paper 1944 was reprinted twice (1964a, 1972b), with only edito-
rial changes in the text. In an opening footnote added in 1964a, Godel
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clarifies the difference between the use of the term “constructivistic” in
that paper and the more usual uses; this remark is revised and expanded
in 1972b.

The paper is notable as Godel’s first and most extended philosophi-
cal statement. It holds mainly to the form of a commentary on Russell;
as such it has been quite influential. However, Godel is not reticent in
expressing his own views. In the present note I shall give more emphasis
to what it reveals about the thought of its author.

The organization of the paper is difficult for the present commenta-
tor to analyze. He cannot but endorse Hermann Weyl’s remark that
the paper “is the work of a pointillist: a delicate pattern of partly dis-
connected, partly interrelated, critical remarks and suggestions” (1946,
page 210). Nonetheless, Godel’s paper might be divided as follows:

1. Introductory remarks (125-128).

. Russell’s theory of descriptions (128-131).

. The paradoxes and the vicious-circle principle (131-137).

. Gddel’s own realistic view of classes and “concepts” (137-141).

. Contrast with Russell’s “no-classes theory” and the ramified theory
of types; limitations of the latter (141-147).

6. The simple theory of types (147-150).

7. The analyticity of the axioms of Principia (150-152).

8. Concluding remarks on mathematical logic and Leibniz’ project

of a universal characteristic (152-153).
I follow this division in the remainder of this note, where I use a number
in parentheses without a date to indicate a page number in Gddel 1944.

The Gédel archive contains reprints of 1944 (designated below as A-
D) and a loose page (designated E) containing annotations to it. All
changes on A-E are listed in the textual notes for 1944 at the end of
this volume. Many of the annotations are textual emendations, for the
most part either of a stylistic nature or for greater explicitness. A few
indicate changes of view on specific points. There is no way of knowing
whether any of these changes represents a final position for Gédel. They
are hardly reflected at all in the reprints 71964a and 1972b. E contains
some remarks on Bernays’ review 1946 of the paper. I will comment
below on only a few of the annotations.

(SN NVER )

1. Introductory remarks

Early on, Godel remarks on Russell’s “pronouncedly realistic atti-
tude” and the analogy with natural science expressed by Russell’s re-
mark, “Logic is concerned with the real world just as truly as zoology,
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though with its more abstract and general features” (1919, page 169).
He also mentions another, epistemological analogy in Russell’s view that
the axioms of logic and mathematics do not have to be evident in them-
selves but can obtain justification from the fact that their consequences
agree with what has been found evident in the course of the history of
mathematics (127). Godel remarks: “This view has been largely justi-
fied by subsequent development, and it is to be expected that it will be
still more so in the future.”

The essay as a whole might be seen as a defense of these attitudes of
Russell against the reductionism prominent in his philosophy and im-
plicit in much of his actual logical work. It was perhaps the most robust
defense of realism about mathematics and its objects since the para-
doxes had come to the consciousness of the mathematical world after
1900. Bernays’ earlier defense of realism (for example, in 1935) was
more cautious. Godel begins to develop this theme when he turns to
Russell’s approach to the paradoxes (see especially §§3-5 below).

2. The theory of descriptions

This discussion is noteworthy. Godel indicates (128-129 and note 5)
a formal argument for Frege’s thesis that the signification (his transla-
tion of Frege's Bedeutung) of two sentences is the same if they agree in
truth value. The argument collapses intensional distinctions on the ba-
sis of simple assumptions about signification. A similar argument to the
same conclusion, from somewhat different assumptions, occurs in Church
1943, pages 299-300. Such collapsing arguments have been prominent
since in philosophical discussions of meaning and reference, modality
and propositional attitudes. Godel concedes that Russell’s theory of de-
scriptions avoids Frege’s conclusion and allows a senternce to signify a
fact or a proposition.? He expresses the suspicion that it only evades the
problem (130).

aChurch (1942) observes that Russell’s theory of descriptions eliminates apparent
violations of the substitutivity of identity in intensional contexts. The universal
substitutivity of identity is one of the assumptions on which Gédel’s and Church’s
collapsing arguments turn. Church’s observation is the basis for the reply to Quine’s
criticism of modal logic in Smullyan 1948. Quine’s use of the argument in criticizing
modal logic is its most widely known and influential use. However, it does not
occur in either of his two early papers on this theme (1943 and 1947). The earliest
occurrence of a collapsing argument of the Gédel-Church type that I have been able
to find in Quine’s writings is 1958, p. 159; see also 1953a (1976, pp. 163-164). Both
these arguments are essentially the same as Church’s.




Note to 1944 105

3. The paradoxes and the vicious-circle principle

Godel says that Russell “freed them [the paradoxes] from all math-
ematical technicalities, thus bringing to light the amazing fact that our
logical intuitions (i.e., intuitions concerning such notions as: truth, con-
cept, being, class, etc.) are self-contradictory” (131). Many readers
have been puzzled by the contrast between this statement and the de-
fense of the concept of set in 71947, where he says that the set-theoretical
paradoxes “are a very serious problem, but not for Cantor’s set theory”
(page 518), revised in 1964 to “... problem, not for mathematics, how-
ever, but rather for logic and epistemology” (page 262).P Closer exam-
ination makes the passages not difficult to reconcile. In the later paper
Godel says that the concept of set in contemporary mathematics, includ-
ing Cantor’s set theory, can be taken to be what we call the iterative
conception of set, according to which sets are obtained by iterated ap-
plication of the formation of sets of previously given objects, beginning
with some well-defined objects such as the integers. It is this conception
that has “never led to any antinomy whatsoever” and whose “perfectly
‘naive’ and uncritical working” has “so far proved completely self-consis-
tent” (1964, page 263).

In the present paper, Godel is following Russell in being concerned
with the foundations of logic in a larger sense; note that in the above
quotation our logical intuitions are said to be “concerning such notions
as: truth, concept, being, class, etc.” Though it is mentioned (144), the
iterative conception of set is kept in the background, perhaps more so
than was optimal for the purpose of defending realism. But, as we shall
see, Godel’s purpose was not limited to defending realism about sets or
the objects of classical mathematics.

After short remarks about two proposals that Russell discussed briefly
in 1906, the “theory of limitation of size” and the “zig-zag theory”,
Godel turns to the vicious-circle principle. The masterly analysis of
the ambiguities of this principle and the criticism of the principle itself
constitute probably the most influential piece of direct commentary on
Russell in the essay and also supply a major argument for Godel’s own
position. Godel’s main criticism, which had already been intimated by
Ramsey in 1926 (1931, page 41), is that the strongest form of the prin-
ciple, that no totality can contain members definable only in terms of
this totality, is true only if the entities whose totality is in question are
“constructed by ourselves”. Godel adds: “If, however, it is a question of

bPerhaps Gédel thought it necessary to clarify the difference of his concerns from
those of 1944.
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objects that exist independently of our constructions, there is nothing in
the least absurd in the existence of totalities containing members, which
can be described ... only by reference to the totality” (136). Earlier
Godel observed that this form of the principle is not satisfied by classi-
cal mathematics or even by the system of Principia mathematica with
the axiom of reducibility. He considered this “rather as a proof that the
vicious-circle principle is false than that classical mathematics is false”
{(135).

These remarks lead Godel into the declaration of his realistic point
of view. But before discussing this we should note his characteriza-
tion of the position that would justify the strong vicious-circle principle,
which he calls constructivistic or nominalistic. He seems to regard this
viewpoint as involving the eliminability of reference to such objects as
classes and propositions {136-137). His model is clearly Russell’s no-
class theory.

4. Godel’s realism

Classes and concepts, according to Gddel, may be understood as real
objects “existing independently of our definitions and constructions”
(137). Tt should be stressed, as it has not been in previous commen-
tartes on this paper, that Goédel’s realism extends not only to sets as
described in axiomatic set theory, but also to what he calls concepts:
“the properties and relations of things existing independently of our
definitions and constructions”. He is clearly referring to both in his
often-quoted remark that “the assumption of such objects is quite as
legitimate as the assumption of physical bodies” and that “they are in
the same sense necessary to obtain a satisfactory system of mathematics
as physical bodies are necessary for a satisfactory theory of our sense
perceptions” (137). These remarks have excited critical comment.® To
deal in an adequate way with the questions they raise would be quite
beyond the scope of a note of this kind. However, we should state some
of these questions.

(i) What does Godel mean by “real objects” and “existing inde-
pendently of our definitions and constructions”? A question of this
kind arises about any form of philosophical realism. If realism about
sets and concepts is to go beyond what would be asserted by a non-

°For example, Chihara 1973, pp. 61, 75-81; Chihara 1982, part I; Dummett 1978,
p. 204.
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subjectivist form of constructivism, this reality and independence will
have to amount to more than objective existence. In the present paper,
Godel does not undertake very directly to clarify his meaning, though
something can be learned from his discussion of the ramified theory of
types (see below).d Of course, the general question “What is realism?”
has been much debated in quite recent times, largely through the stim-
ulation of the writings of Michael Dummett.®

A point that needs to be stressed, however, is that Gédel saw his real-
ism in the context of concrete problems and as motivating mathematical
research programs. This is perhaps most evident in 1947/1964, with its
defense of the view that the continuum hypothesis is definitely true or
false even though probably (and by 1963 certainly) independent of the
established axioms of set theory. Further reflection shows that it is very
much present in the paper under discussion, where Gadel criticizes ideas
of Russell that obstructed the transfinite extension of the hierarchies of
simple and ramified type theories. The remarks about his own theory of
constructible sets (146-147; see below) are an illustration of the “cash
value” of realism for Godel.f

(ii) How does Godel understand the parallel between the objects of
mathematics and “physical bodies”? It would be tempting to suppose
that Godel views sets and concepts as postulated in a theory to explain
certain data.® This is suggested by the parallel itself between the ne-
cessity of sets and concepts for a “satisfactory system of mathematics”
and the necessity of physical bodies for a “satisfactory theory of our
sense perceptions”; it is also in line with Gddel’s approval, noted above,
of Russell's suggestion that mathematical axioms can be justified by

9In 1949a Godel argues that the general theory of relativity calls in question the
objectivity of time and change. He sees this as a confirmation of idealistic views, in
particular Kant’s. He does not attempt to draw any parallel with a possible anti-
realist view of mathematics.

Of course, Kant did not “deny the objectivity of change” (Gdédel 1949a, p. 557)
if what is meant by the latter is the existence of an objective temporal order that is
the same for all observers with our forms of intuition. Evidently Godel thinks of the
dependence of the temporal ordering of events on the position and state of motion of
the observer according to relativity theory as parallel to the dependence of the very
temporality of the experienced world on the constitution of our cognitive faculties
according to Kant.

®For example, the essays in Dummett 1978, especially “Truth”, “Realism”, and
“The reality of the past”.

fCf. note 48a of Gédel 1931, which Burton Dreben called to my attention.

8This interpretation is assumed by Dummett (1978, p. 204) and in some of Chi-
hara’s criticisms (for example, 1982, pp. 214-215).
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their consequences. But more direct evidence for this interpretation is
lacking 2

Godel does, however, use the notion of “data” with reference to math-
ematics. Indeed, one point of parallelism between mathematics and
physics is simply that “in both cases it is impossible to interpret the
propositions one wants to assert about these entities as propositions
about the ‘data’” (137). But at this point he refrains from saying what
plays the role of data in the case of mathematics. We shall return to
this matter in connection with his discussion of the ramified theory.

(iii) By “concepts” Godel evidently means objects signified in some
way by predicates. The notion “property of set”, which he counts among
the primitives of set theory (1947, note 17, or 1964, note 18), is clearly
a special case of this notion. Why he should have considered “property
of set” a primitive of set theory is clear enough from the role of classes
in set theory and from the generalization with respect to predicates con-
tained in the axioms of separation and replacement. Gdédel therefore did
not lack mathematical motivation for adding something like concepts to
his ontology.!

But what sort of theory of concepts did Godel envisage? What con-
sequences for the theory does realism about concepts have, once the
existence of sets as “real objects” is granted? The use of the notion of
class that is standard in set theory is predicative relative to the universe
of sets. In the above-cited note, he seems to envisage impredicative the-
ories of properties based on the simple theory of types, which he also
mentions as a theory of concepts in the present paper (140). In the note
he remarks that such theories are not deductively stronger than exten-
sions of the axioms referring to sets.

It is clear that Godel takes his realism about concepts to justify an
impredicative theory, and he suggests strongly that he would prefer a
stronger theory than the simple theory of types. He claims (139) that
impredicative specifications of properties do not themselves lead to ab-
surdity and that a property might “involve” a totality of properties to

bGédel does not use the language of explanation in the two passages where he
is most explicit about the justification of mathematical axioms through their conse-
quences (1964, pp. 265, 272), although in the former he does describe a (hypothetical)
situation in which axioms “would have to be accepted in at least the same sense as
any well-established physical theory.” In spite of its lack of direct support, the inter-
pretation in terms of explanation is difficult to refute.

In these passages in 1964, Godel seems to me to be considerably more cautious
about justification of axioms by their consequences than he appears to be in the
above-noted passage (127).

IThis view may be reflected in Gddel’s choice of a theory with class variables as
the framework for 1940. Note the remark on page 2, “Classes are what appear in

9

Zermelo’s formulation ... as ‘definite Eigenschaften’.
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which it belongs, thus contradicting the second of the three forms of the
vicious-circle principle he has earlier distingnished He also remarks:
“Nor is it self-contradictory that a proper part should be identical (not
merely equal) to the whole, as is seen in the case of structures in the
abstract sense” (139). Of course, on the set-theoretic conception of
structure, such identity (as opposed to isomorphism) does not obtain
and would indeed be self-contradictory, at least if one takes “proper
part” in its obvious meaning of a substructure whose domain is a proper
subset of the whole. Gédel is evidently thinking in terms of an informal
notion of structure according to which isomorphic “structures” (in the
set-theoretic sense) are the same structure. But it is a problem to con-
struct a theory in which this sameness is interpreted as identity.
Godel seems to regard the simple theory of types as the best presently
available solution to the paradoxes for a theory of concepts, but “such
a solution may be found ... in the future perhaps in the development of
the ideas sketched on pages 132 and 150” (140). The former refers to his
remarks on Russell’s “zig-zag theory”, the latter to the frequently quoted
but enigmatic suggestion that a concept might be assumed “significant

IWhether the simple theory of types conflicts with this form of the principle de-
pends on how it is interpreted. It seems clear, for example from the emphasis Godel
places on the claim (136) that classical mathematics, and in particular Principia with
reducibility, does not satisfy the first form, that Goédel thinks that the extensional
simple theory of types with its higher-order variables interpreted to range over sets
does satisfy the second form (and the third as well). Whether an intensional form of
the simple theory, in which the variables range over properties and relations, satisfies
the second form will depend on the underlying notion of intension. Godel’s remark
(139) that “the totality of all properties (or of all those of a given type) does lead
to situations of this kind”, in which the second form is violated, makes it clear that
he envisages a notion of property that would lead to an interpretation of the simple
theory of types where the second form of the principle is violated. Godel’s anno-
tations to reprint A, however, call this into question. In 1944, the violation of the
second form of the principle is said to arise because a universal quantification over
properties of a given type contains these properties as constituents of their content
(139). This is questioned in A on the ground that universal quantification “does not
mean in the same way as conjunction does.”

It should be noted that Godel’s first remark in E on Bernays 1946 is “Misun-
derstanding of my interpretation of type theory for concepts.” Presumably he is
attributing such a misunderstanding to Bernays. I am unable to determine in what
the misunderstanding counsists.

KIn the language of category theory, we could say that an object A is a proper
part of an object B if there is a monomorphism of A into B that is not epi; this does
not exclude identity. The alternative, to say that A is a proper part of B if there is a
monomorphism of A into B but there is not an epimorphism, does of course exclude
identity but does not fit what Godel says.

Of course, the relevant difference between the construal of structures as tuples
of a domain and relations on it, and the language of categories, is that the former
forces, while the latter does not, a distinction between isomorphism and identity.
This is a much more superficial difference than the matter of the self-applicability of
categories (see below).
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everywhere except for certain ‘singular points’ or ‘limiting points’, so
that the paradoxes would appear as something analogous to dividing
by zero.” Evidently he has in mind a type-free theory; he mentions as
attempts the work of the early 1930s on theories based on the A-calculus
(in particular Church 1932, 1933), which he views as having had a nega-
tive outcome, in view of Kleene and Rosser 1935. Godel does not return
to this theme in later publications, except for the brief remark that
“the spirit of the modern abstract disciplines of mathematics, in partic-
ular the theory of categories, transcends this [iterative] concept of set,
as becomes apparent, e.g., by the self-applicability of categories” (1964,
page 262, footnote 12; not in 1947). However, he evidently thought that
Mac Lane’s distinction between large and small categories captured “the
mathematical content of the theory” as it then stood. But the program
of constructing a strong type-free theory has attracted others, with in-
conclusive results so far.!

Godel’s remarks about realistic theories of concepts in the present
paper have an inconclusive character; no available theory satisfies him.
In later publications, as we have noted, he is virtually silent on the sub-
ject. The question arises whether Godel himself worked on the project
of constructing a theory that would answer to his conception. Whether
he did is not known, but the absence of more definite information would
suggest the conjecture that he never formulated such a theory to his own
satisfaction. It is to be hoped that transcriptions of Gddel’s shorthand
notebooks will shed light on these questions.

5. The ramified theory of types

Returning to Russell, Godel begins his discussion of the ramified the-
ory by remarking on Russell’s “pronounced tendency to build up logic
as far as possible without the assumption of the objective existence of
such entities as classes and concepts” (141). He reads the contextual
definitions of locutions involving classes in Principia as a reduction of
classes to concepts,™ but reasonably enough finds matters not so clear
when it comes to concepts and propositions. Influenced especially by

IFor a survey see Feferman 1984 and its sequel.

MGodel’s reading is misleading in that he clearly understands concepts to be ob-
jects, while the “ambiguity” that Russell attributes to propositional functions is close
to Frege’s “unsaturatedness”. But, from his later comment on the notion of proposi-
tional function (147-148), it is clear that this does not result from misunderstanding
but is rather a conscious assimilation of Russell’s conceptual scheme to his own. See
note t below.
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the introduction to the second edition, Godel finds:in Principia a pro-
gram according to which all concepts and propositions except logically
simple ones are to “appear as something constructed (i.e., as something
not belonging to the ‘inventory’ of the world)” (142). This program
offers an intrinsic motivation for the ramification of the type hierarchy,
but does not yield a theory strong enough for classical mathematics, for
well-known reasons: the impredicative character of standard arguments
in analysis, and the question whether, to construct number theory, one
can replace the Frege-Russell definition of the predicate “natural num-
ber” by one in which the second-order quantifier is restricted to a definite
order (145-146)."

It is not as clear as it might be how Gddel sees the realization of the
program he attributes to Russell even to obtain ramified type theory
without reducibility. The introduction to the second edition of Prin-
cipia proceeds on the basis of the Wittgensteinian idea that “functions
of propositions are always truth functions, and that a function can only
occur in a proposition through its values” ( Whitehead and Russell 1925,
page xiv). But it is hard to see how propositions involving quantifiers
are to be interpreted as truth functions of atomic propositions unless
infinitary propositional combinations are allowed, as Ramsey in effect
proposed; Godel’s comment on that is that one might as well adopt
the iterative conception of sets as pluralitics (144). Godel says that
Russell “took a less metaphysical course by confining himself to such
truth-functions as can actually be constructed” (145). But what are
the allowed means of construction? Godel apparently has in mind an
interpretation of the ramified theory in which the higher-order variables
range over predicates, that is, the linguistic expressions that “express”
the propositional functions that the quantifiers range over on the naive
reading. This is indicated by Godel’s later remark that for propositional
functions to be “defined (as in the second edition of Principia) to be
certain finite ... combinations (of quantifiers, propositional connectives,
etc.)” (146) would presuppose the notion of finiteness and therefore
arithmetic, and by the earlier characterization of the constructivist view
he is trying to explicate as a form of nominalism (136-137).

Such an interpretation is certainly possible and well known, provided
that at the level of individuals one has elementary syntax. But this read-
ing of Godel still leaves some puzzles. Translating a statement about
propositional functions of order n as one about predicates, namely pred-
icates containing quantifiers only for propositional functions of order

2Godel leaves the latter question open. A negative answer is claimed without
proof in Wang 1959 (see 1962, p. 642). A full treatment, with a proof, is given in
Myhill 1974.
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< n, requires the notion of satisfaction, or at least truth, for the lan-
guage with quantifiers of order < n. It is surprising that Gédel nowhere
remarks on this fact, particularly since in this context we would have
to suppose satisfaction or truth introduced by an inductive definition,
another obstacle to applying the idea in reducing arithmetic to logic.
Moreover, such an interpretation entirely eliminates quantification over
the sort of entities Godel calls concepts, at least in the absence of such
locutions as propositional attitudes, and therefore does not leave “the
primitive predicates and relations such as ‘red’ or ‘colder’” as “real ob-
jects” (142). But to suppose that Godel would have remarked on the
latter point if he had had the present interpretation in mind may be
to attribute to him a Quinean distinction of “ontology” and “ideology”
that is foreign to him.

The difficulties faced by this last interpretation suggest to me that
Godel did not distinguish clearly in his own mind between a nominalist
theory of concepts in which such entities are eliminated, and a theory in
which every concept in the range of a quantifier is “signified” by an ex-
pression for it that is antecedently understood, but in which reference to
concepts is not actually eliminated, because, presumably, one does not
give a contextual definition of quantifiers over them. The latter sort of
theory might now be realized by a substitutional interpretation of quan-
tifiers over concepts; given such an interpretation, the most that can be
asked in establishing the “existence” of a concept is the construction of
a meaningful expression “signifying” it.

Something more should be said about Gdédel’s use of the term “data”.
In the discussion of the ramified theory it refers to that on the basis of
which classes and concepts are constructed, or perhaps to what is al-
lowed as primitive in a theory in which reference to classes and concepts
is eliminated. (See for example note 33, page 142.) Godel does not
say here what epistemological force this might have. The analogy with
sense perception may be limited to the context of interpreting Russell,
who was interested in a program that would represent the objects of
physics as “logical constructions” from sense-data. In Gédel’s own epis-
temological view of mathematics, what corresponds most closely to sense
perception is something quite different, namely elementary arithmetical
evidence (see 128).

Like many other commentators, Gédel found that in the first edition
of Principia the constructivistic attitude was fatally compromised by the
axiom of reducibility, but his description (143) of what survived is worth
noting.® However, Godel’s remarks about the axiom of reducibility show

°Godel mentions here the treatment of propositional connectives as applied to
propositions containing quantifiers, presumably in %9, which he says “proved its
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lack of sensitivity to the essentially intensional character of Russell’s
logic; the fact that every propositional function is coextensive with one
of lowest order does not imply “the existence in the data of the kind of
objects to be constructed” (141), if the objects in question are concepts
or propositional functions rather than classes. It is similarly misleading
to say that, “owing to the axiom of reducibility, there always exist real
objects in the form of primitive predicates, or combinations of such, cor-
responding to each defined symbol” (143). Russell himself was closer to
the mark in saying that the axiom accomplishes “what common sense
effects by the admission of classes” (1908, page 167 of van Heijenoort
1967). The ramified theory with reducibility would fit well with a con-
ception according to which classes are admitted as “real objects”, but
the conception of propositional functions (concepts) is constructivistic.
This insensitivity is quite common in commentators on Russell, but is
somewhat surprising in Godel, since his own “concepts” are evidently
intensions of a kind, and his 1958 shows a very subtle and fruitful han-
dling of intensional notions.P

Godel concludes his discussion of the ramified theory with well known
remarks in which he views his own theory of constructible sets as an ex-
tension of the hierarchy of orders, now within the framework of ordinary
(impredicative) mathematics, to arbitrary transfinite orders (146-147).
After what I have said about Godel’s treatment of the axiom of re-
ducibility, I should call attention to his characterization of his theorem
that every constructible set of integers has order < w; as a “transfinite
theorem of reducibility” 9—thus, when set against Russell, a striking ap-
plication of his realistic point of view.

Godel remarks that even from the predicative standpoint an exten-
sion of the hierarchy of orders is possible and, moreover, demanded by
the theory. This remark may be the first suggestion of a program that

fecundity in a consistency proof for arithmetic”. The connection between *9 and Her-
brand’s work suggests that he has in mind Herbrand 1981, which, however, covered
only first-order arithmetic with quantifier-free induction. A proof within Herbrand’s
framework that covers full first-order arithmetic became known only some years later;
see Dreben and Denton 1970 and Scanlon 1973. Could Gddel have seen at this time
how to extend Herbrand’s proof? The errors in the proof of the fundamental theorem
in Herbrand 1930 would have been an obstacle. At the time Godel was at least aware
of a difficulty; see van Heijenoort 1967, p. 525.

Another possibility, suggested by van Heijenoort, is that Godel was thinking of
the proof he published in 1958, which he had discovered not long before writing the
present paper. This now seems to me somewhat more likely.

POf course, the theory of intensional equality in 1958 is very different from more
usual constructions in intensional logic, and in the present paper he suggests that
concepts might obey extensionality (137).

4In reprint A, Godel amended the text in a way that omits this phrase.
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was pursued by several logicians from 1950 on, of extending and ana-
lyzing the resources of predicative mathematics by means of ramified
theories with transfinite orders. The first work of this kind (Lorenzen
1951a, 1951b, 1955, Wang 1954) sought to give a better reconstruction
of classical mathematics than earlier predicative work by constructing
transfinite ramified theories. It left open the question what ordinal lev-
els can be admitted in such a construction.

Godel already offers a hint in remarking that one can extend the hier-
archy of orders “to such transfinite ordinals as can be constructed within
the framework of finite orders” (147). It seems evident that such a pro-

cedure might e iterated; this gives rise to the notion of autonomous
iteration that is prominent in later analyses of predicativity. The first
such proposal is made in Wang 1954: given an interpreted language X,
(in his setting, ramified set theory with ordinal levels < ), one extends
it by admitting as new levels ordinals § such that a well-ordering of type
B is definable in %, (1962, page 579). In this case, since Wang’s the-
ory ¥o could define all recursive orderings, the iteration closes after one
step. This was shown in Spector 1957. Spector constructed a sequence
of systems similar to Wang’s, indexed by the recursive ordinal notations,
and showed that any well-ordering definable in one of the systems has
as order type a recursive ordinal; he also showed that the sets of nat-
ural numbers definable in some system of the sequence are exactly the
hyperarithmetic sets.

Kleene’s work on the hyperarithmetic hierarchy related it to a trans-
finite ramified hierarchy, and a number of technical results suggested the
thesis, advanced with some reservations by G. Kreisel (1960a, page 373),
that a set of natural numbers is predicatively definable if and only if it
is hyperarithmetic. Kreisel seems to have been more confident of the
“only if” than of the “if” part of this thesis (1960a, pages 387-388; see
also 1962, page 318, and Feferman 1964, page 10). The main reservation
about the latter concerned the use in the definition of a hyperarithmetic
set of the notion of a recursive ordinal; should one not demand, for
an ordinal to count as predicatively obtained, that an ordering of that
type be predicatively recognized to be a well-ordering (1960a, page 387)7"

' Accepting this demand seems to involve giving up the attempt to characterize
predicative definability independently of predicative provability. In fact the inde-
pendent discussion of predicative definability seems to have petered out when Fefer-
man’s and Schiitte’s results became known.

That a definite meaning can be given to the notion “predicatively definable set
of natural numbers” without using impredicative concepts seems very doubtful, and
Kreisel already stressed in 1960a that he was approaching the analysis of predicativ-
ity with the help of impredicative notions, that of a well-ordering in particular. (See
also Lorenzen’s reasons for rejecting the question how far his iterative construction
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This question leads into the analysis of predicative provability, in which
another type of autonomous iteration (first suggested in Kreisel 1960)
plays a role. In the context of ramified theories, one constructs a progres-
sion of theories (in the precise sense of Feferman 1962) such that levels
up to an ordinal given by a primitive recursive ordering are admitted
if at an earlier stage that ordering has been proved to be well-founded.
This led to a precise characterization of the predicatively provable state-
ments of ramified analysis (Feferman 1964; Schiite 1965, 1965a). The
same idea is applied to the admission of stages in the progression of the-
ories, and it is therefore applicable to unramified theories, which allowed
Feferman to extend his characterization to the usual language of anal-
ysis (1964) and to set theory (1966, 1974). The results of Feferman
and Schiitte all point to the conclusion that an ordering that can be
predicatively proved to be a well-ordering is of type less than a certain
recursive ordinal T'g, the first strongly critical number.®

6. The simple theory of types

What is of greatest interest in Godel’s discussion of the simple theory
is his questioning of it as a theory of concepts and the hint for a possible
type-free theory commented on above (§4). It should be noted that he
motivates his suggestion by means of Russell’s idea that propositional
functions have limited ranges of significance (149-150).

7. Analyticity

Godel now turns to “the question whether (and in which sense) the
axioms of Principia can be considered to be analytic”. In a first sense—
roughly, reducibility by explicit or contextual definitions to instances of
the law of identity—he says that even arithmetic is demonstrably non-
analytic because of its undecidability. This sense is of interest because it
seems to be directly inspired by Leibniz. If infinite reduction, with inter-
mediary sentences of infinite length, is allowed (as would be suggested
by Leibniz’s theory of contingent propositions), then all the axioms of
Principia can be proved analytic, but the proof would require “the whole
of mathematics . .. e.g., the axiom of choice can be proved to be analytic

of language strata can be carried, 1955, p. 189.) Kreisel’s attitude was in line with
Godel’s realism and may have been influenced by it. But it should be noted that the
notions involved can still be understood constructively.

s Feferman 1964, part II; see also Schitte 1977, chapter VIIL.
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only if it is assumed to be true” (151). This remark anticipates later
arguments criticizing the thesis that mathematics is analytic, such as
Quine 1960. Godel continues: “In a second sense a proposition is called
analytic if it holds ‘owing to the meaning of the concepts occurring in
it’, where this meaning may perhaps be undefinable (i.e., irreducible
to anything more fundamental).” In this sense, Godel affirms the an-
alyticity of the axioms of the first edition of Principia other than the
axiom of infinity for two interpretations, “namely if the term ‘predica-
tive function’ is replaced either by ‘class’ (in the extensional sense) or
(leaving out the axiom of choice) by ‘concept’” (151). The first is the
sort of interpretation suggested by remarks of Russell such as that in
1908 quoted above.® The second prompts the remark that “the meaning
of the term ‘concept’ seems to imply that every propositional function
defines a concept”. Goédel’s intuitive notion of concept seems in that
respect to have resembled Frege’s notion of extension.”

For analyticity in this sense, G6del sees the difficulty that “we don’t
perceive the concepts of ‘concept’ and ‘class’ with sufficient distinctness,
as is shown by the paradoxes” (151). But, rather than following Russell’s
reductionism, the actual development of logic (even by Russell in much
of his work) has consisted in “trying to make the meaning of the terms
‘class’ and ‘concept’ clearer, and to set up a consistent theory of classes
and concepts as objectively existing entities” (152). In spite of the suc-
cess of the simple theory of types and of axiomatic set theory, “many
symptoms show only too clearly, however, that the primitive concepts
need further elucidation”. But surely Godel must have seen matters
differently with respect to the two notions of class and concept: in the
former, he seems to insist in 1947, there is a well-motivated theory that
is quite satisfactory as far as it goes; what is lacking in our “perception”
of the notion of set is intuition regarding the truth of axioms that would
decide such questions as the continuum problem. In the latter, he had
no theory to offer that answered to his intuitive notion, and it does not
appear that such a theory has been constructed since.

tGodel’s remarks about the axiom of reducibility commented on above might
suggest that he had in mind an extensional interpretation that would collapse the
ramification of the hierarchy. But that in the absence of extensionality such collapse
does not occur is made clear in Church 1976. It is straightforward to construct
possible-worlds models of Church’s formulation where reducibility holds but orders
do not collapse.

UExcept for Frege's commitment to an extensional language, Godel’s “concepts”
closely resemble the objects that Frege says are signified by such phrases as “the
concept horse”. In the Fregean context, they are hardly distinguishable from the
extensions. Indeed, Godel’s suggestion (150; see above) that one might assume a
concept significant everywhere except for certain “singular points” recalls Frege's
unsuccessful proposal for a way out of the paradoxes. (See Frege 1903, p. 262, and
Quine 1955.)
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The seriousness with which Gddel takes the notion of analyticity in
this section has not attracted the attention of commentators. It seems
to show a greater engagement with the ideas of the Vienna Circle than
has usually been attributed to Godel, although there is no doubt that
the disagreement is deep. With the Vienna Circle and many other ana-
lytic philosophers before the impact of Quine’s criticism, Godel believes
firmly that mathematical propositions are true by virtue of “the mean-
ing of the concepts occurring” in them, though others might have said
“words” instead of “concepts”, but he denies that mathematics is true
by convention (as perhaps it would be if it were analytic in his first sense)
or that its truth is constituted by linguistic rules that we lay down or
embody in our usage.” Thus, he says, this position does not contradict
his view that “mathematics is based on axioms with a real content”,
since the existence of the concepts involved would have to be an axiom
of this kind (151, note 47), presumably if one were undertaking to de-
rive the truth of the axioms from their being in some way implied by
the concepts.W

8. Concluding remarks

A sort of coda to this intricate paper is formed by Godel’s closing re-
marks noting that mathematical logic had not yet come close to fulfilling
the hopes of “Peano and others” that it would contribute to the solu-
tion of problems in mathematics, and attributing this to “incomplete
understanding of the foundations”: “For how can one hope to solve
mathematical problems by mere analysis of the concepts occurring, if
our analysis so far does not even suffice to set up the axioms?” (152).
His suggestion that the hopes expressed by Leibniz for his characteris-
tica universalis might, after all, be realistic is one of his most striking

V(Godel’s annotation in reprint A to note 47 seems to reject the possibility that by
virtue of meaning every mathematical proposition can be “reduced to a special case
of a = a”. This thesis is mentioned in the remarks in E on Bernays 1946. Bernays ap-
pears to argue against it, using Frege’s distinction of sense and signification (Godel’s
translation of Bedeutung): since the transformations that reduce a mathematical
proposition to an identity will in general not preserve sense, the “meaning” by virtue
of which the reduction proceeds can only be signification (1946, p. 78). On the latter
reading the thesis reduces to triviality.

There is no way of knowing whether this argument influenced Godel. It seems to
me to be unconvincing. That P can be reduced to @) by virtue of the sense of P need
not imply that the sense of ) is the same as that of P.

WGodel evidently elaborated further on this issue in the unfinished paper, “Is
mathematics syntax of language?” undertaken in the mid-1950s for Schilpp 1963.
(See Wang 1981, p. 658.) From a very brief examination, it seems to reinforce the
points of agreement and disagreement with the Vienna Circle noted in the text.
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and enigmatic utterances. It is known that Godel was for a time much
occupied with the study of Leibniz and that he regarded Leibniz as
the greatest influence on him of the philosophers of the past. But the
strongly Leibnizian flavor of the last pages of the present paper recedes
in his later writings (except perhaps 1946), and about the substance of
his reflections on Leibniz little is known.*

Charles ParsonsY

*But see also Wang 1981, p. 657, n. 8.

¥1 am much indebted to John W. Dawson, Jr., for assistance, and to Burton
Dreben, Wilfried Sieg, Hao Wang, and the editors (especially Solomon Feferman) for
comments and suggestions. Without the work of the late Jean van Heijenoort on
Godel’s annotations to A-E, my own brief comments on them would not have been
possible.




Russell’s mathematical logic*

(1944)

Mathematical logic, which is nothing else but a precise and complete
formulation of formal logic, has two quite different aspects. On the one
hand, it is a section of mathematics treating of classes, relations, combina-
tions of symbols, etc., instead of numbers, functions, geometric figures,
etc. On the other hand, it is a science prior to all others, which contains
the ideas and principles underlying all sciences. It was in this second sense
that mathematical logic was first conceived by Leibniz in his Characteristica
universalis, of which it would have formed a central part. But it was almost
two centuries after his death before his idea of a logical calculus really
sufficient for the kind of reasoning occurring in the exact sciences was put
into effect (in some form at least, if not the one Leibniz had in mind) by
Frege and Peano.! Frege was chiefly interested in the analysis of thought
and used his calculus in the first place for deriving arithmetic from pure
logic. Peano, on the other hand, was more interested in its applications
within mathematics and created an elegant and flexible symbolism, which
permits expressing even the most complicated mathematical theorems in a
perfectly precise and often very concise manner by single formulas.

It was in this line of thought of Frege and Peano that Russell’s work
set in. Frege, in consequence of his painstaking analysis of the proofs, had
not gotten beyond the most elementary properties of the series of integers,
while Peano had accomplished a big collection of mathematical theorems
expressed | in the new symbolism, but without proofs. It was only in Prin-
cipia mathematica that full use was made of the new method for actually
deriving large parts of mathematics from a very few logical concepts and

*[Author’s addition of 1964, ezpanded in 1972: The author wishes to note (1) that
since the original publication of this paper advances have been made in some of the
problems discussed and that the formulations given could be improved in several places,
and (2) that the term “constructivistic” in this paper is used for a strictly nominal-
istic kind of constructivism, such as that embodied in Russell’s “no class theory”. Its
meaning, therefore, is very different from that used in current discussions on the founda-
tions of mathematics, i.e., from both “intuitionistically admissible” and “constructive”
in the sense of the Hilbert School. Both these schools base their constructions on a
mathematical intuition whose avoidance is exactly one of the principal aims of Russell’s
constructivism (see the first alternative in the last sentence of footnote 23 below). What,
in Russell’s own opinion, can be obtained by his constructivism (which might better be
called fictionalism) is the system of finite orders of the ramified hierarchy without the
axiom of infinity for individuals. The explanation of the term constructive given in
footnote 22 below is to be replaced by the remarks just made.]

1Frege has doubtless the priority, since his first publication about the subject, which
already contains all the essentials, appeared ten years before Peano’s.
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axioms. In addition, the young science was enriched by a new instrument,
the abstract theory of relations. The calculus of relations had been de-
veloped before by Peirce and Schréder, but only with certain restrictions
and in too close analogy with the algebra of numbers. In Principia not
only Cantor’s set theory but also ordinary arithmetic and the theory of
measurement are treated from this abstract relational standpoint.

It is to be regretted that this first comprehensive and thorough-going
presentation of a mathematical logic and the derivation of mathematics
from it so greatly lacking in formal precision in the foundations (contained
in *1-*21 of Principia) that it presents in this respect a considerable step
backwards as compared with Frege. What is missing, above all, is a precise
statement of the syntax of the formalism. Syntactical considerations are
omitted even in cases where they are necessary for the cogency of the proofs,
in particular in connection with the “incomplete symbols”. These are in-
troduced not by explicit definitions, but by rules describing how sentences
containing them are to be translated into sentences not containing them.
In order to be sure, however, that (or for what expressions) this transla-
tion is possible and uniquely determined and that (or to what extent) the
rules of inference apply also the new kind of expressions, it is necessary to
have a survey of all possible expressions, and this can be furnished only by
syntactical considerations. The matter is especially doubtful for the rule
of substitution and of replacing defined symbols by their definiens. If this
latter rule is applied to expressions containing other defined symbols it re-
quires that the order of elimination of these be indifferent. This however is
by no means always the case (¢4 = 4[¢lu), e.g., is a counter-example). In
Principia such eliminations are always carried out by substitutions in the
theorems corresponding to the definitions, so that it is chiefly the rule of
substitution which would have to be proved.

I do not want, however, to go into any more details about | either the
formalism or the mathematical content of Principia,? but want to devote
the subsequent portion of this essay to Russell’s work concerning the analy-
sis of the concepts and axioms underlying mathematical logic. In this field
Russell had produced a great number of interesting ideas some of which
are presented most clearly (or are contained only) in his earlier writings. I
shall therefore frequently refer also to these earlier writings, although their
content may partly disagree with Russell’s present standpoint.

What strikes one as surprising in this field is Russell’s pronouncedly
realistic attitude, which manifests itself in many passages of his writings.
“Logic is concerned with the real world just as truly as zoology, though with
its more abstract and general features”, he says, e.g., in his Introduction to
mathematical philosophy (edition of 1920, page 169). It is true, however,

2Cf. in this respect Quine 1941.
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that this attitude has been gradually decreasing in the course of time®
and also that it always was stronger in theory than in practice. When
he started on a concrete problem, the objects to be analyzed (e.g., the
classes or propositions) soon for the most part turned into “logical fictions”.
Though perhaps this need not necessarily mean (according to the sense in
which Russell uses this term) that these things do not exist, but only that
we have no direct perception of them.

The analogy between mathematics and a natural science is enlarged
upon by Russell also in another respect (in one of his earlier writings).
He compares the axioms of logic and mathematics with the laws of nature
and logical evidence with sense perception, so that the axioms need not
necessarily be evident in themselves, but rather their justification les (ex-
actly as in physics) in the fact that they make it possible for these “sense
perceptions” to be deduced; which of course would not exclude that they
also have a kind of intrinsic plausibility similar to that in physics. I think
that (provided “evidence” is understood in a sufficiently strict sense) this
view has been largely justified by subsequent developments, and it is to
be expected that it will be still more so in the future. It has turned out
that (under the | assumption that modern mathematics is consistent) the
solution of certain arithmetical problems requires the use of assumptions
essentially transcending arithmetic, i.e., the domain of the kind of elemen-
tary indisputable evidence that may be most fittingly compared with sense
perception. Furthermore it seems likely that for deciding certain questions
of abstract set theory and even for certain related questions of the theory
of real numbers new axioms based on some hitherto unknown idea will be
necessary. Perhaps also the apparently unsurmountable difficulties which
some other mathematical problems have been presenting for many years
are due to the fact that the necessary axioms have not yet been found. Of
course, under these circumstances mathematics may lose a good deal of its
“absolute certainty”; but, under the influence of the modern criticism of
the foundations, this has already happened to a large extent. There is some
resemblance between this conception of Russell and Hilbert’s “supplement-
ing the data of mathematical intuition” by such axioms as, e.g., the law
of excluded middle which are not given by intuition according to Hilbert’s
view; the borderline, however, between data and assumptions would seem
to lie in different places according to whether we follow Hilbert or Russell.

An interesting example of Russell’s analysis of the fundamental logical
concepts is his treatment of the definite article “the”. The problem is:
what do the so-called descriptive phrases (i.e., phrases as, e.g., “the author

3The above quoted passage was left out in the later editions of the Introduction.
[Blackwell (1976) has observed that Gédel was mistaken on this factual matter.]
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of Waverley” or “the king of England”) denote or signify* and what is the
meaning of sentences in which they occur? The apparently obvious answer
that, e.g., “the author of Waverley’ signifies Walter Scott, leads to unex-
pected difficulties. For, if we admit the further apparently obvious axiom,
that the signification of a composite expression, containing constituents
which have themselves a signification, depends only on the signification
of these constituents (not on the manner in which this signification is ex-
pressed), then it follows that the sentence “Scott is the author of Waverley’
signifies the same thing as “Scott is Scott”; and this again leads | almost
inevitably to the conclusion that all true sentences have the same significa-
tion (as well as all false ones).®> Frege actually drew this conclusion; and he
meant it in an almost metaphysical sense, reminding one somewhat of the
Eleatic doctrine of the “One”. “The True”-—according to Frege’s view—is
analyzed by us in different ways in different propositions, “the True” being
the name he uses for the common signification of all true propositions.®
Now, according to Russell, what corresponds to sentences in the outer
world is facts. However, he avoids the term “signify” or “denote” and
uses “indicate” instead (in his earlier papers he uses “express” or “being
a symbol for”), because he holds that the relation between a sentence and
a fact is quite different from that of a name to the thing named. Fur-
thermore, he uses “denote” (instead of “signify”) for the relation between
things and names, so that “denote” and “indicate” together would corre-
spond to Frege’s “bedeuten”. So, according to Russell’s terminology and
view, true sentences “indicate” facts and, correspondingly, false ones in-
dicate nothing.” Hence Frege’s theory would in a sense apply to false
sentences, since they all indicate the same thing, namely nothing. But

41 use the term “signify” in the sequel because it corresponds to the German word
“bedeuten” which Frege, who first treated the question under consideration, used in this
connection.

5The only further assumptions one would need in order to obtain a rigorous proof
would be (1) that “¢(a)” and the proposition “a is the object which has the property ¢
and is identical with a” means the same thing and (2) that every proposition “speaks
about something”, i.e., can be brought to the form ¢(a). Furthermore one would have
to use the fact that for any two objects a, b, there exists a true proposition of the form
¢(a,b) as,e.g., a #bora=ab=h

6Cf. Frege 1892, p. 35.

"From the indication (Bedeutung) of a sentence is to be distinguished what Frege
called its meaning (Sinn), which is the conceptual correlate of the objectively exist-
ing fact (or “the True”). This one should expect to be in Russell’s theory a possible
fact (or rather the possibility of a fact), which would exist also in the case of a false
proposition. But Russell, as he says, could never believe that such “curious shadowy”
things really exist. Thirdly, there is also the psychological correlate of the fact which
is called “signification” and understood to be the corresponding belief in Russell’s lat-
est book An inquiry into meaning and truth [1940]. “Sentence”, in contradistinction to
“proposition”, is used to denote the mere combination of symbols.



Russell’s mathematical logic 123

different true sentences may indicate many different things. Therefore this
view concerning sentences makes it necessary either to drop the above men-
tioned principle about the signification (i.e., in Rusjsell’s terminology the
corresponding one about the denotation and indication) of composite ex-
pressions or to deny that a descriptive phrase denotes the object described.
Russell did the latter® by taking the viewpoint that a descriptive phrase
denotes nothing at all but has meaning only in context; for example, the
sentence “the author of Waverley is Scotch” is defined to mean: “There
exists exactly one entity who wrote Waverley and whoever wrote Waverley
is Scotch.” This means that a sentence involving the phrase “the author of
Waverley” does not (strictly speaking) assert anything about Scott (since
it contains no constituent denoting Scott), but is only a roundabout way of
asserting something about the concepts occurring in the descriptive phrase.
Russell adduces chiefly two arguments in favor of this view, namely (1)
that a descriptive phrase may be meaningfully employed even if the ob-
ject described does not exist (e.g., in the sentence: “The present king of
France does not exist.” ); (2) that one may very well understand a sentence
containing a descriptive phrase without being acquainted with the object
described, whereas it seems impossible to understand a sentence without
being acquainted with the objects about which something is being asserted.
The fact that Russell does not consider this whole question of the interpre-
tation of descriptions as a matter of mere linguistic conventions, but rather
as a question of right and wrong, is another example of his realistic atti-
tude, unless perhaps he was aiming at a merely psychological investigation
of the actual processes of thought. As to the question in the logical sense, I
cannot help feeling that the problem raised by Frege’s puzzling conclusion
has only been evaded by Russell’s theory of descriptions and that there is
something behind it which is not yet completely understood.

There seems to be one purely formal respect in which one may give
preference to Russell’s theory of descriptions. By defining the meaning
of sentences involving descriptions in the above manner, he avoids in his
logical system any axioms about the particle “the”, i.e., the analyticity of
the theorems about “the” is made explicit; they can be shown to follow
from | the explicit definition of the meaning of sentences involving “the”.
Frege, on the contrary, has to assume an axiom about “the”, which of
course is also analytic, but only in the implicit sense that it follows from
the meaning of the undefined terms. Closer examination, however, shows
that this advantage of Russell’s theory over Frege’s subsists only as long
as one interprets definitions as mere typographical abbreviations, not as

8He made no explicit statement about the former; but it seems it would hold for the
logical system of Principia, though perhaps more or less vacuously.
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introducing names for objects described by the definitions, a feature which
is common to Frege and Russell.

I pass now to the most important of Russell’s investigations in the field
of the analysis of the concepts of formal logic, namely those concerning the
logical paradoxes and their solution. By analyzing the paradoxes to which
Cantor’s set theory had led, he freed them from all mathematical technicali-
ties, thus bringing to light the amazing fact that our logical intuitions (i.e.,
intuitions concerning such notions as: truth, concept, being, class, etc.)
are self-contradictory. He then investigated where and how these common-
sense assumptions of logic are to be corrected and came to the conclusion
that the erroneous axiom consists in assuming that for every propositional
function there exists the class of objects satisfying it, or that every proposi-
tional function exists “as a separate entity”;? by which is meant something
separable from the argument (the idea being that propositional functions
are abstracted from propositions which are primarily given) and also some-
thing distinct from the combination of symbols expressing the propositional
function; it is then what one may call the notion or concept defined by it.!?
The existence of this concept already suffices for the paradoxes in their
“intensional” form, where the concept of | “not applying to itself” takes
the place of Russell’s paradoxical class.

Rejecting the existence of a class or concept in general, it remains to
determine under what further hypotheses (concerning the propositional
function), these entities do exist. Russell pointed out (loc. cit.) two possible
directions in which one may look for such a criterion, which he called
the zig-zag theory and the theory of limitation of size, respectively, and
which might perhaps more significantly be called the intensional and the
extensional theory. The second one would make the existence of a class or
concept depend on the extension of the propositional function (requiring
that it be not too big), the first one on its content or meaning (requiring a
certain kind of “simplicity”, the precise formulation of which would be the
problem).

The most characteristic feature of the second (as opposed to the first)
would consist in the non-existence of the universal class or (in the inten-
sional interpretation) of the notion of “something” in an unrestricted sense.

9In Russell’s first paper about the subject (1906). If one wants to bring such para-
doxes as “the liar” under his viewpoint, universal (and existential) propositions must be
considered to involve the class of objects to which they refer.

10 «propositional function” (without the clause “as a separate entity”) may be un-
derstood to mean a proposition in which one or several constituents are designated as
arguments. One might think that the pair consisting of the proposition and the argu-
ment could then for all purposes play the role of the “propositional function as a separate
entity”, but it is to be noted that this pair (as one entity) is again a set or a concept
and therefore need not exist.
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Axiomatic set theory as later developed by Zermelo and others can be
considered as an elaboration of this idea as far as classes are concerned.!!
In particular the phrase “not too big” can be specified (as was shown by J.
von Neumann'?) to mean: not equivalent with the universe of all things,
or to be more exact, a propositional function can be assumed to determine
a class when and only when there exists no relation (in intension, i.e., a
propositional function with two variables) which associates, in a one-to-one
manner with each object, an object satisfying the propositional function
and vice versa. This criterion, however, does not appear as the basis of the
theory but as a consequence of the axioms and inversely can replace two
of the axioms (the axiom of replacement and that of choice).

For the second of Russell’s suggestions too, i.e., for the zig-zag theory,
there has recently been set up a logical system which shares some essential
features with this scheme, namely, | Quine’s system.!? It is, moreover, not
unlikely that there are other interesting possibilities along these lines.

Russell’s own subsequent work concerning the solution of the paradoxes
did not go in either of the two afore-mentioned directions pointed out by
himself, but was largely based on a more radical idea, the “no-class theory”,
according to which classes or concepts never exist as real objects, and
sentences containing these terms are meaningful only to such an extent as
they can be interpreted as a facon de parler, a manner of speaking about
other things (cf. page 141). Since in Principia and elsewhere, however, he
formulated certain principles discovered in the course of the development of
this theory as general logical principles without mentioning any longer their
dependence on the no-class theory, I am going to treat of these principles
first.

I mean in particular the vicious circle principle, which forbids a certain
kind of “circularity” which is made responsible for the paradoxes. The
fallacy in these, so it is contended, consists in the circumstance that one
defines (or tacitly assumes) totalities, whose existence would entail the
existence of certain new elements of the same totality, namely elements
definable only in terms of the whole totality. This led to the formulation
of a principle which says that “no totality can contain members definable
only in terms of this totality, or members involving or presupposing this
totality” (vicious circle principle). In order to make this principle applica-
ble to the intensional paradoxes, still another principle had to be assumed,
namely that “every propositional function presupposes the totality of its

UThe intensional paradoxes can be dealt with e.g. by the theory of simple types or
the ramified hierarchy, which do not involve any undesirable restrictions if applied to
concepts only and not to sets.

120f. von Neumann 1929.
13Cf. Quine 1937.
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values” and therefore evidently also the totality of its possible arguments.!*
(Otherwise the concept of “not applying to itself” would presuppose no to-
tality (since it involves no quantifications),'® and the vicious circle principle
would not prevent its application to itself.) A corresponding vicious circle
principle | for propositional functions which says that nothing defined in
terms of a propositional function can be a possible argument of this func-
tion is then a consequence.'® The logical system to which one is led on the
basis of these principles is the theory of orders in the form adopted, e.g., in
the first edition of Principia, according to which a propositional function
which either contains quantifications referring to propositional functions of
order n or can be meaningfully asserted of propositional functions of order
n is at least of order n + 1, and the range of significance of a propositional
function as well as the range of a quantifier must always be confined to a
definite order.

In the second edition of Principia, however, it is stated in the Introduc-
tion (pages x1 and xli) that “in a limited sense” also functions of a higher
order than the predicate itself (therefore also functions defined in terms
of the predicate as, e.g., in p‘x € k) can appear as arguments of a predi-
cate of functions; and in Appendix B such things occur constantly. This
means that the vicious circle principle for propositional functions is virtu-
ally dropped. This change is connected with the new axiom that functions
can occur in propositions only “through their values”, i.e., extensionally,
which has the consequence that any propositional function can take as an
argument any function of appropriate type, whose extension is defined (no
matter what order of quantifiers is used in the definition of this extension).
There is no doubt that these things are quite unobjectionable even from
the constructive standpoint (see page 136), provided that quantifiers are
always restricted to definite orders. The paradoxes are avoided by the the-
ory of simple types,!? which in | Principia is combined with the theory of

14Cf. Whitehead and Russell 1925, p. 39.

15Quantifiers are the two symbols (3x) and (), meaning respectively “there exists
an object z” and “for all objects z”. The totality of objects =z to which they refer is
called their range.

16Cf. Whitehead and Russell 1925, p. 47, section IV,

7By the theory of simple types I mean the doctrine which says that the objects of
thought (or, in another interpretation, the symbolic expressions) are divided into types,
namely: individuals, properties of individuals, relations between individuals, properties
of such relations, etc. (with a similar hierarchy for extensions), and that sentences of
the form: “a has the property ¢”, “b bears the relation R to ¢”, etc. are meaningless,
if a,b,¢, R, ¢ are not of types fitting together. Mixed types (such as classes containing
individuals and classes as elements) and therefore also transfinite types (such as the class
of all classes of finite types) are excluded. That the theory of simple types suffices for
avoiding also the epistemological paradoxes is shown by a closer analysis of these. (Cf.
Ramsey 1926 and Tarski 1935, p. 399.
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orders (giving as a result the “ramified hierarchy”) but is entirely indepen-
dent of it and has nothing to do with the vicious circle principle (cf. page
147).

Now as to the vicious circle principle proper, as formulated on page 133,
it is first to be remarked that, corresponding to the phrases “definable only
in terms of”, “involving”, and “presupposing”, we have really three differ-
ent principles, the second and third being much more plausible than the
first. It is the first form which is of particular interest, because only this
one makes impredicative definitions'® impossible and thereby destroys the
derivation of mathematics from logic, effected by Dedekind and Frege, and
a good deal of modern mathematics itself. It is demonstrable that the for-
malism of classical mathematics does not satisfy the vicious circle principle
in its first form, since the axioms imply the existence of real numbers defin-
able in this formalism only by reference to all real numbers. Since classical
mathematics can be built up on the basis of Principia (including the axiom
of reducibility), it follows that even Principia (in the first edition) does not
satisfy the vicious circle principle in the first form, if “definable” means
“definable within the system” and no methods of defining outside the sys-
tem (or outside other systems of classical mathematics) are known except
such as involve still more comprehensive totalities than those occurring in
the systems.

I would consider this rather as a proof that the vicious circle principle
is false than that classical mathematics is false, and this is indeed plausi-
ble also on its own account. For, first of all one may, on good grounds,
deny that reference to a totality necessarily implies reference to all single
elements of it or, in other words, that “all” means the same as an infi-
nite logical | conjunction. One may, e.g., follow Langford’s and Carnap’s'®
suggestion to interpret “all” as meaning analyticity or necessity or demon-
strability. There are difficulties in this view; but there is no doubt that in
this way the circularity of impredicative definitions disappears.

Secondly, however, even if “all” means an infinite conjunction, it seems
that the vicious circle principle in its first form applies only if the entities
involved are constructed by ourselves. In this case there must clearly exist a
definition (namely the description of the construction) which does not refer
to a totality to which the object defined belongs, because the construction
of a thing can certainly not be based on a totality of things to which
the thing to be constructed itself belongs. If, however, it is a question of

18 These are definitions of an object « by reference to a totality to which « itself (and
perhaps also things definable only in terms of &) belong. As, e.g., if one defines a class a
as the intersection of all classes satisfying a certain condition ¢ and then concludes that
o is a subset also of such classes u as defined in terms of  (provided they satisfy ¢).

19Gee Carnap 1931, p. 103, and 1987, p. 162, and Langford 1927, p. 599.
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objects that exist independently of our constructions, there is nothing in
the least absurd in the existence of totalities containing members which
can be described (i.e., uniquely characterized)?® only by reference to this
totality.2! Such a state of affairs would not even contradict the second form
of the vicious circle principle, since one cannot say that an object described
by reference to a totality “involves” this totality, although the description
itself does; nor would it contradict the third form, if “presuppose” means
“presuppose for the existence” not “for the knowability”.

So it seems that the vicious circle principle in its first form applies only
if one takes the constructivistic (or nominalistic) standpoint?? toward the
objects of logic and mathematics, in particular toward propositions, classes
and notions, e.g., if one understands by a notion a symbol together with
a rule for translating sentences containing the symbol into such sentences
as do | not contain it, so that a separate object denoted by the symbol
appears as a mere fiction.??

Classes and concepts may, however, also be conceived as real objects,
namely classes as “pluralities of things” or as structures consisting of a
plurality of things and concepts as the properties and relations of things
existing independently of our definitions and constructions.

It seems to me that the assumption of such objects is quite as legitimate
as the assumption of physical bodies and there is quite as much reason to
believe in their existence. They are in the same sense necessary to obtain
a satisfactory system of mathematics as physical bodies are necessary for a
satisfactory theory of our sense perceptions and in both cases it is impossi-
ble to interpret the propositions one wants to assert about these entities as
propositions about the “data”, i.e., in the latter case the actually occurring
sense perceptions. Russell himself concludes in the last chapter of his book
on Meaning and truth [1940], though “with hesitation”, that there exist
“universals”, but apparently he wants to confine this statement to concepts
of sense perceptions, which does not help the logician. I shall use the term
“concept” in the sequel exclusively in this objective sense. Omne formal
difference between the two conceptions of notions would be that any two
different definitions of the form a(z) = ¢(z) can be assumed to define two

20 An object a is said to be described by a propositional function ¢(z) if ¢(z) is true
for £ = @ and for no other object.

21Cf. Ramsey 1926.

221 shall use in the sequel “constructivism” as a general term comprising both these
standpoints and also such tendencies as are embodied in Russell’s “no class” theory.

230ne might think that this conception of notions is impossible, because the sen-
tences into which one translates must also contain notions so that one would get into
an infinite regress. This, however, does not preclude the possibility of maintaining the
above viewpoint for all the more abstract notions, such as those of the second and higher
types, or in fact for all notions except the primitive terms which might be only a very few.
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different notions « in the constructivistic sense. (In particular this would
be the case for the nominalistic interpretation of the term “notion” sug-
gested above, since two such definitions give different rules of translation
for propositions containing «.) For concepts, on the contrary, this is by no
means the case, since the same thing may be described in different ways.
It might even be that the axiom of extensionality?* or at least something
near to it holds for | concepts. The difference may be illustrated by the
following definition of the number two: “Two is the notion under which
fall all pairs and nothing else.” There is certainly more than one notion in
the constructivistic sense satisfying this condition, but there might be one
common “form” or “nature” of all pairs.

Since the vicious circle principle, in its first form, does apply to con-
structed entities, impredicative definitions and the totality of all notions or
classes or propositions are inadmissible in constructivistic logic. What an
impredicative definition would require is to construct a notion by a combi-
nation of a set of notions to which the notion to be formed itself belongs.
Hence if one tries to effect a retranslation of a sentence containing a symbol
for such an impredicatively defined notion it turns out that what one ob-
tains will again contain a symbol for the notion in question.?5 At least this
is so if “all” means an infinite conjunction; but Carnap’s and Langford’s
idea (mentioned on page 136) would not help in this connection, because
“demonstrability”, if introduced in a manner compatible with the construc-
tivistic standpoint towards notions, would have to be split into a hierarchy
of orders, which would prevent one from obtaining the desired results.?® As
Chwistek has shown,2” it is even possible under certain assumptions ad-
missible within constructivistic logic to derive an actual contradiction from
the unrestricted admission of impredicative definitions. To be more spe-
cific, he has shown that the system of simple types becomes contradictory
if one adds the “axiom of intensionality” which says (roughly speaking)
that to different definitions belong different notions. This axiom, however,
as has just been pointed out, can be assumed to hold for notions in the
constructivistic sense.

Speaking of concepts, the aspect of the question is changed completely.
Since concepts are supposed to exist objectively, there seems to be objec-
tion neither to speaking of all of them | (cf. page 143) nor to describing

241e., that no two different properties belong to exactly the same things, which, in a
sense, is a counterpart to Leibniz’s Principium identitatis indiscernibilium, which says
no two different things have exactly the same properties.

25Cf. Carnap 1931, p. 103, and 1937, p. 162.

26Nevertheless the scheme is interesting because it again shows the constructibility
of notions which can be meaningfully asserted of notions of arbitrarily high order.

27See Chwistek 1933.
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some of them by reference to all {or at least all of a given type). But,
one may ask, isn’t this view refutable also for concepts because it leads to
the “absurdity” that there will exist properties ¢ such that ¢(a) consists
in a certain state of affairs involving all properties (including ¢ itself and
properties defined in terms of ¢), which would mean that the vicious circle
principle does not hold even in its second form for concepts or proposi-
tions? There is no doubt that the totality of all properties (or of all those
of a given type) does lead to situations of this kind, but I don’t think they
contain any absurdity.?® It is true that such properties ¢ (or such proposi-
tions ¢(a)) will have to contain themselves as constituents of their content
(or of their meaning), and in fact in many ways, because of the proper-
ties defined in terms of ¢; but this only makes it impossible to construct
their meaning (i.e., explain it as an assertion about sense perceptions or
any other non-conceptual entities), which is no objection for one who takes
the realistic standpoint. Nor is it self-contradictory that a proper part
should be identical (not merely equal) to the whole, as is seen in the case
of structures in the abstract sense. The structure of the series of integers,
e.g., contains itself as a proper part and it is easily seen that there exist
also structures containing infinitely many different parts, each containing
the whole structure as a part. In addition there exist, even within the do-
main of constructivistic logic, certain approximations to this self-reflexivity
of impredicative properties, namely propositions which contain as parts of
their meaning not themselves but their own formal demonstrability.?® Now
formal demonstrability of a proposition (in case the axioms and rules of in-
ference are correct) implies this proposition and in many cases is equiva|lent
to it. Furthermore, there doubtlessly exist sentences referring to a totality
of sentences to which they themselves belong as, e.g., the sentence: “Every
sentence {(of a given language) contains at least one relation word.”

Of course, this view concerning the impredicative properties makes it
necessary to look for another solution of the paradoxes, according to which
the fallacy (i.e., the underlying erroneous axiom) does not consist in the
assumption of certain self-reflexivities of the primitive terms but in other
assumptions about these. Such a solution may be found for the present in
the simple theory of types and in the future perhaps in the development
of the ideas sketched on pages 132 and 150. Of course, all this refers only

28The formal system corresponding to this view would have, instead of the axiom of
reducibility, the rule of substitution for functions described, e.g., in Hilbert and Bernays
1934, p. 90, applied to variables of any type, together with certain axioms of inten-
sionality required by the concept of property which, however, would be weaker than
Chwistek’s. It should be noted that this view does not necessarily imply the existcnce
of concepts which cannot be expressed in the system, if combined with a solution of the
paradoxes along the lines indicated on p. 149.

29Cf. my 1931, p. 173, or Carnap 1937, §35.
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to concepts. As to notions in the constructivistic sense, there is no doubt
that the paradoxes are due to a vicious circle. It is not surprising that
the paradoxes should have different solutions for different interpretations
of the terms occurring.

As to classes in the sense of pluralities or totalities, it would seem that
they are likewise not created but merely described by their definitions and
that therefore the vicious circle principle in the first form does not apply.
I even think there exist interpretations of the term “class” (namely as a
certain kind of structures) where it does not apply in the second form
either.3® But for the development of all contemporary mathematics one
may even assume that it does apply in the second form, which for classes
as mere pluralities is, indeed, a very plausible assumption. Oneis then led
to something like Zermelo’s axiom system for set theory, i.e., the sets are
split up into “levels” in such a manner that only sets of lower levels can
be elements of sets of higher levels (i.e., z € y is always false if = belongs
to a higher level than y). There is no reason for classes in this sense to
exclude mixtures of levels in one set and transfinite levels. The place of
the axiom of reducibility is now taken by the axiom | of classes (Zermelo’s
Aussonderungsaziom) which says that for each level there exists for an
arbitrary propositional function ¢(x) the set of those z of this level for
which ¢(z) is true, and this seems to be implied by the concept of classes
as pluralities.

Russell adduces two reasons against the extensional view of classes,
namely, the existence of (1) the null class, which cannot very well be a
collection, and (2) the unit classes, which would have to be identical with
their single elements. But it seems to me that these arguments could, if
anything, at most prove that the null class and the unit classes (as distinct
from their only element) are fictions (introduced to simplify the calculus
like the points at infinity in geometry), not that all classes are fictions.

But in Russell the paradoxes had produced a pronounced tendency to
build up logic as far as possible without the assumption of the objective ex-
istence of such entities as classes and concepts. This led to the formulation
of the aforementioned “no class theory”, according to which classes and con-
cepts were to be introduced as a fagon de parler. But propositions, too, (in
particular those involving quantifications)®! were later on largely included
in this scheme, which is but a logical consequence of this standpoint, since
e.g., universal propositions as objectively existing entities evidently belong
to the same category of idealistic objects as classes and concepts and lead
to the same kind of paradoxes, if admitted without restrictions. As regards

30Ideas tending in this direction are contained in Mirimanoff 1917, 191%7a, and 1920.
Cf. in particular 1917a, p. 212.

3LCf. Russell 1906a.
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classes, this program was actually carried out; i.e., the rules for translating
sentences containing class names or the term “class” into such as do not
contain them were stated explicitly; and the basis of the theory, i.e., the
domain of sentences into which one has to translate, is clear, so that classes
can be dispensed with (within the system Principia), but only if one as-
sumes the existence of a concept whenever one wants to construct a class.
When it comes to concepts and the interpretation of sentences containing
this or some synonymous term, the state of affairs is by no means as clear.
First of all, some of them | (the primitive predicates and relations such
as “red” or “colder”) must apparently be considered as real objects;3? the
rest of them (in particular according to the second edition of Principia, all
notions of a type higher than the first and therewith all logically interesting
ones) appear as something constructed (i.e., as something not belonging to
the “inventory” of the world); but neither the basic domain of propositions
in terms of which finally everything is to be interpreted, nor the method of
interpretation is as clear as in the case of classes (see below).

This whole scheme of the no-class theory is of great interest as one of
the few examples, carried out in detail, of the tendency to eliminate as-
sumptions about the existence of objects outside the “data” and to replace
them by constructions on the basis of these data.>® The result has been
in this case essentially negative; i.e., the classes and concepts introduced
in this way do not have all the properties required for their use in math-
ematics, unless one either introduces special axioms about the data (e.g.,
the axiom of reducibility), which in essence already mean the existence in
the data of the kind of objects to be constructed, or makes the fiction that
one can form propositions of infinite (and even non-denumerable) length,3*
i.e., operates with truth-functions of infinitely many arguments, regardless
of whether or not one can construct them. But what else is such an infi-
nite truth-function but a special kind of an infinite extension (or structure)
and even a more complicated one than a class, endowed in addition with a
hypothetical meaning, which can be understood only by an infinite mind?
All this is only a verification of the view defended above that logic and
mathematics (just as physics) are built up on axioms with a real content
which cannot be “explained away” .

What one can obtain on the basis of the constructivistic attitude is the
theory of orders (cf. page 134); only now (and this | is the strong point of

32In Appendix C of Principia a way is sketched by which these also could be con-
structed by means of certain similarity relations between atomic propositions, so that
these latter would be the only ones remaining as real objects.

33The “data” are to be understood in a relative sense here; i.e., in our case as logic
without the assumption of the existence of classes and concepts.

34Cf. Ramsey 1926.



Russell’s mathematical logic 133

the theory) the restrictions involved do not appear as ad hoc hypotheses for
avoiding the paradoxes, but as unavoidable consequences of the thesis that
classes, concepts, and quantified propositions do not exist as real objects.
It is not as if the universe of things were divided into orders and then one
were prohibited to speak of all orders; but, on the contrary, it is possible to
speak of all existing things; only, classes and concepts are not among them;
and if they are introduced as a facon de parler, it turns out that this very
extension of the symbolism gives rise to the possibility of introducing them
in a more comprehensive way, and so on indefinitely. In order to carry
out this scheme one must, however, presuppose arithmetic (or something
equivalent), which only proves that not even this restricted logic can be
built up on nothing.

In the first edition of Principia, where it was a question of actually
building up logic and mathematics, the constructivistic attitude was, for
the most part, abandoned, since the axiom of reducibility for types higher
than the first together with the axiom of infinity makes it absolutely nec-
essary that there exist primitive predicates of arbitrarily high types. What
is left of the constructive attitude is only: (1) The introduction of classes
as a facon de parler; (2) the definition of ~, V, etc., as applied to propo-
sitions containing quantifiers (which incidentally proved its fecundity in
a comnsistency proof for arithmetic); (3) the step by step construction of
functions of orders higher than 1, which, however, is superfluous owing
to the axiom of reducibility; (4) the interpretation of definitions as mere
typographical abbreviations, which makes every symbol introduced by def-
inition an incomplete symbol (not one naming an object described by the
definition). But the last item is largely an illusion, because, owing to the
axiom of reducibility, there always exist real objects in the form of primitive
predicates, or combinations of such, corresponding to each defined symbol.
Finally also Russell’s theory of descriptions is something belonging to the
constructivistic order of ideas.

In the second edition of Principia (or, to be more exact, in the intro-
duction to it) the constructivistic attitude is resumed again. The axiom of
reducibility is dropped, and it is stated explicitly | that all primitive predi-
cates belong to the lowest type and that the only purpose of variables (and
evidently also of constants) of higher orders and types is to make it pos-
sible to assert more complicated truth-functions of atomic propositions,3®
which is only another way of saying that the higher types and orders are
solely a facon de parler. This statement at the same time informs us of
what kind of propositions the basis of the theory is to consist, namely of
truth-functions of atomic propositions.

351.e., propositions of the form S(a), R(a,b), etc., where S, R are primitive predicates
and a, b individuals.
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This, however, is without difficulty only if the number of individuals
and primitive predicates is finite. For the opposite case (which is chiefly of
interest for the purpose of deriving mathematics) Ramsey (1926) took the
course of considering our inability to form propositions of infinite length as
a “mere accident”, to be neglected by the logician. This of course solves
(or rather cuts through) the difficulties; but is to be noted that, if one
disregards the difference between finite and infinite in this respect, there
exists a simpler and at the same time more far reaching interpretation of
set theory (and therewith of mathematics). Namely, in case of a finite
number of individuals, Russell’s aper¢u that propositions about classes can
be interpreted as propositions about their elements becomes literally true,
since, e.g., “x ¢ m” is equivalent to

“e=apVer=asV---Vz=a"

where the a; are the elements of m; and “there exists a class such that

.” is equivalent to “there exist individuals z1, T2, ..., z, such that ...” 36
provided n is the number of individuals in the world and provided we
neglect for the moment the null class which would have to be taken care
of by an additional clause. Of course, by an iteration of this procedure
one can obtain classes of classes, etc., so that the logical system obtained
would resemble the theory of simple types except for the circumstance that
mixture of types would be possible. Axiomatic set theory appears, then, as
an extrapolation of this scheme for the case of infinitely many individuals
or an infinite iteration of the process of forming sets.
| Ramsey’s viewpoint is, of course, everything but constructivistic, unless
one means constructions of an infinite mind. Russell, in the second edition
of Principia, took a less metaphysical course by confining himself to such
truth-functions as can actually be constructed. In this way one is again led
to the theory of orders, which, however, appears now in a new light, namely
as a method of constructing more and more complicated truth-functions of
atomic propositions. But this procedure seems to presuppose arithmetic in
some form or other (see next paragraph).

As to the question of how far mathematics can be built up on this basis
(without any assumptions about the data i.e., about the primitive pred-
icates and individuals except, as far as necessary, the axiom of infinity),
it is clear that the theory of real numbers in its present form cannot be
obtained.?” As to the theory of integers, it is contended in the second edi-
tion of Principia that it can be obtained. The difficulty to be overcome

36The z; may, of course, as always, be partly or wholly identical with each other.

37 As to the question how far it is possible to build up the theory of real numbers
presupposing the integers, cf. Weyl 1918 or 1932.
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is that in the definition of the integers as “those cardinals which belong to
every class containing 0 and containing z + 1 if containing z”, the phrase
“every class” must refer to a given order. So one obtains integers of dif-
ferent orders, and complete induction can be applied to integers of order
n only for properties of order n; whereas it frequently happens that the
notion of integer itself occurs in the property to which induction is applied.
This notion, however, is of order n + 1 for the integers of order n. Now, in
Appendix B of the second edition of Principia, a proof is offered that the
integers of any order higher than 5 are the same as those of order 5, which
of course would settle all difficulties. The proof as it stands, however, is
certainly not conclusive. In the proof of the main lemma x89.16, which
says that every subset a (of arbitrarily high order)3® of an inductive class
8 of order 3 is itself an inductive class of order 3, induction is applied to
a property of 3 involving o (namely @ — 8 # A, which, however, | should
read o — 8 ~ € Inducty, because (3) is evidently false). This property,
however, is of an order > 3 if « is of an order > 3. So the question whether
(or to what extent) the theory of integers can be obtained on the basis of
the ramified hierarchy must be considered as unsolved at the present time.
It is to be noted, however, that, even in case this question should have a
positive answer, this would be of no value for the problem whether arith-
metic follows from logic, if propositional functions of order n are defined
(as in the second edition of Principia) to be certain finite (though arbitrar-
ily complex) combinations (of quantifiers, propositional connectives, etc.),
because then the notion of finiteness has to be presupposed, which fact is
concealed only be taking such complicated notions as “propositional func-
tion of order »” in an unanalyzed form as primitive terms of the formalism
and giving their definition only in ordinary language. The reply may per-
haps be offered that in Principia the notion of a propositional function of
order n is neither taken as primitive nor defined in terms of the notion
of a finite combination, but rather quantifiers referring to propositional
functions of order n (which is all one needs) are defined as certain infinite
conjunctions and disjunctions. But then one must ask: Why doesn’t one
define the integers by the infinite disjunction:

z=0Vz=0+1Vz=04+1+1V.-- ad infinitum,

saving in this way all the trouble connected with the notion of inductive-
ness?. This whole objection would not apply if one understands by a propo-
sitional function of order n one “obtainable from such truth-functions of

38That the variable « is intended to be of undetermined order is seen from the later
applications of *89.17 and from the note to *89.17. The main application is in line (2) of
the proof of *89.24, where the lemma under consideration is needed for a’s of arbitrarily
high orders.
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atomic propositions as presuppose for their definition no totalities except
those of the propositional functions of order < n and of individuals”; this
notion, however, is somewhat lacking in precision.

The theory of orders proves more fruitful if considered from a purely
mathematical standpoint, independently of the philosophical question
whether impredicative definitions are admissible. Viewed in this manner,
i.e., as a theory built up within the framework of ordinary mathemat-
ics, where impredicative definitions are admitted, there is no objection to
extending it to arbitrarily high transfinite orders. Even if one rejects im-
predicative definitions, there would, I think, be no objection to | extend it
to such transfinite ordinals as can be constructed within the framework of
finite orders. The theory in itself seems to demand such an extension since
it leads automatically to the consideration of functions in whose definition
one refers to all functions of finite orders, and these would be functions
of order w. Admitting transfinite orders, an axiom of reducibility can be
proved. This, however, offers no help to the original purpose of the theory,
because the ordinal a—such that every propositional function is extension-
ally equivalent to a function of order a—is so great, that it presupposes
impredicative totalities. Nevertheless, so much can be accomplished in this
way, that all impredicativities are reduced to one special kind, namely the
existence of certain large ordinal numbers (or well-ordered sets) and the
validity of recursive reasoning for them. In particular, the existence of a
well-ordered set, of order type w; already suffices for the theory of real num-
bers. In addition this transfinite theorem of reducibility permits the proof
of the consistency of the axiom of choice, of Cantor’s continuum hypothesis
and even of the generalized continuum hypothesis (which says that there
exists no cardinal number between the power of any arbitrary set and the
power of the set of its subsets) with the axioms of set theory as well as of
Principia.

I now come in somewhat more detail to the theory of simple types which
appears in Principia as combined with the theory of orders; the former is,
however, (as remarked above) quite independent of the latter, since mixed
types evidently do not contradict the vicious circle principle in any way.
Accordingly, Russell also based the theory of simple types on entirely dif-
ferent reasons. The reason adduced (in addition to its “consonance with
common sense” ) is very similar to Frege’s, who, in his system, already had
assumed the theory of simple types for functions, but failed to avoid the
paradoxes, because he operated with classes, (or rather functions in exten-
sion) without any restriction. This reason is that (owing to the variable
it contains) a propositional function is something ambiguous (or, as Frege
says, something unsaturated, wanting supplementation) and therefore can
occur in a meaningful proposition only in such a way that this ambiguity
is eliminated (e.g., by substituting a | constant for the variable or applying
quantification to it). The consequences are that a function cannot replace
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an individual in a proposition, because the latter has no ambiguity to be re-
moved, and that functions with different kinds of arguments (i.e., different
ambiguities) cannot replace each other; which is the essence of the theory
of simple types. Taking a more nominalistic viewpoint (such as suggested
in the second edition of Principia and in Meaning and truth) one would
have to replace “proposition” by “sentence” in the foregoing considerations
(with corresponding additional changes). But, in both cases, this argument
clearly belongs to the order of ideas of the “no class” theory, since it con-
siders the notions (or propositional functions) as something constructed
out of propositions or sentences by leaving one or several constituents of
them undetermined. Propositional functions in this sense are so to speak
“fragments” of propositions, which have no meaning in themselves, but
only in so far as one can use them for forming propositions by combining
several of them, which is possible only if they “fit together”, i.e., if they
are of appropriate types. But, it should be noted that the theory of simple
types (in contradistinction to the vicious circle principle) cannot in a strict
sense follow from the constructive standpoint, because one might construct
notions and classes in another way, e.g., as indicated on page 144, where
mixtures of types are possible. If on the other hand one considers con-
cepts as real objects, the theory of simple types is not very plausible since
what one would expect to be a concept (such as, e.g., “transitivity” or the
number two) would seem to be something behind all its various “realiza-
tions” on the different levels and therefore does not exist according to the
theory of types. Nevertheless, there seems to be some truth behind this
idea of realizations of the same concept on various levels, and one might,
therefore, expect the theory of simple types to prove useful or necessary
at least as a stepping stone for a more satisfactory system, a way in which
it has already been used by Quine.?® Also Russell’s “typical ambiguity” is
a step in this direction. Since, however, it only adds certain simpli|fying
symbolic conventions to the theory of types, it does not de facto go beyond
this theory.

It should be noted that the theory of types brings in a new idea for
the solution of the paradoxes, especially suited to their intensional form.
It consists in blaming the paradoxes not on the axiom that every proposi-
tional function defines a concept or class, but on the assumption that every
concept gives a meaningful proposition, if asserted for any arbitrary object
or objects as arguments. The obvious objection that every concept can
be extended to all arguments, by defining another one which gives a false
proposition whenever the original one was meaningless, can easily be dealt
with by pointing out that the concept “meaningfully applicable” need not
itself be always meaningfully applicable.

39 Quine 1937.
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The theory of simple types (in its realistic interpretation) can be consid-
ered as a carrying through of this scheme, based, however, on the following
additional assumption concerning meaningfulness: “Whenever an object x
can replace another object y in one meaningful proposition, it can do so
in every meaningful proposition.”*® This of course has the consequence
that the objects are divided into mutually exclusive ranges of significance,
each range consisting of those objects which can replace each other; and
that therefore each concept is significant only for arguments belonging to
one of those ranges, i.e., for an infinitely small portion of all objects. What
makes the above principle particularly suspect, however, is that its very as-
sumption makes its formulation as a meaningful proposition impossible,*!
because z and y must then be confined to definite ranges of significance
which are either the same or different, and in both cases the statement
does not express the principle or even part of it. Another consequence is
that the fact that an object x is (or is not) of a given type also cannot be
expressed by a meaningful proposition.
| It is not impossible that the idea of limited ranges of significance could
be carried out without the above restrictive principle. It might even turn
out that it is possible to assume every concept to be significant everywhere
except for certain “singular points” or “limiting points”, so that the para-
doxes would appear as something analogous to dividing by zero. Such a
system would be most satisfactory in the following respect: our logical
intuitions would then remain correct up to certain minor corrections, i.e.,
they could then be considered to give an essentially correct, only somewhat
“blurred”, picture of the real state of affairs. Unfortunately the attempts
made in this direction have failed so far;*? on the other hand, the impos-
sibility of this scheme has not been proved either, in spite of the strong
inconsistency theorems of Kleene and Rosser.*3

In conclusion I want to say a few words about the question whether
(and in which sense) the axioms of Principia can be considered to be an-
alytic. As to this problem, it is to be remarked that analyticity may be
understood in two senses. First, it may have the purely formal sense that

40R ussell formulates a somewhat different principle with the same effect, in Principia,
vol. 1, p. 95.

41This objection does not apply to the symbolic interpretation of the theory of types,
spoken of on p. 148, because there one does not have objects but only symbols of different
types.

42A formal system along these lines is Church’s (cf. his 1932 and 193%), where,
however, the underlying idea is expressed by the somewhat misleading statement that
the law of excluded middle is abandoned. However, this system has been proved to be
inconsistent. See footnote 43.

430f. Kleene and Rosser 1935.
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the terms occurring can be defined (either explicitly or by rules for elimi-
nating them from sentences containing them) in such a way that the axioms
and theorems become special cases of the law of identity and disprovable
propositions become negations of this law. In this sense even the theory
of integers is demonstrably non-analytic, provided that one requires of the
rules of elimination that they allow one actually to carry out the elimina-
tion in a finite number of steps in each case.** Leaving out this condition
by admitting, e.g., sentences of infinite (and non-denumerable) length as
intermediate steps of the process of reduction, all axioms of Principia | (in-
cluding the axioms of choice, infinity and reducibility) could be proved to
be analytic for certain interpretations (by considerations similar to those
referred to on page 144).*> But this observation is of doubtful value, be-
cause the whole of mathematics as applied to sentences of infinite length
has to be presupposed in order to prove this analyticity, e.g., the axiom of
choice can be proved to be analytic only if it is assumed to be true.

In a second sense a proposition is called analytic if it holds “owing to the
meaning of the concepts occurring in it”, where this meaning may perhaps
be undefinable (i.e., irreducible to anything more fundamental).*®¢ It would
seem that all axioms of Principia, in the first edition, (except the axiom of
infinity) are in this sense analytic for certain interpretations of the prim-
itive terms, namely if the term “predicative function” is replaced either

by “class” (in the extensional sense) or (leaving out the axiom of choice)’

by “concept”, since nothing can express better the meaning of the term
“class” than the axiom of classes (cf. page 140) and the axiom of choice,
and since, on the other hand, the meaning of the term “concept” seems
to imply that every propositional function defines a concept.*” The diffi-
culty is only that we don’t perceive the concepts of “concept” and of “class”

44Because this would imply the existence of a decision procedure for all arithmetical
propositions. Cf. Turing 1957.

450f. also Ramsey 1926, where, however, the axiom of infinity cannot be obtained,
because it is interpreted to refer to the individuals in the world.

46The two significations of the term analytic might perhaps be distinguished as tau-
tological and analytic.

47This view does not contradict the opinion defended above that mathematics is
based on axioms with a real content, because the very existence of the concept of e.g.,
“class” constitutes already such an axiom; since, if one defined e.g., “class” and “€” to
be “the concepts satisfying the axioms”, one would be unable to prove their existence.
“Concept” could perhaps be defined in terms of “proposition” (cf. p. 148), although
I don’t think that this would be a natural procedure; but then certain axioms about
propositions, justifiable only with reference to the undefined meaning of this term, will
have to be assumed. It is to be noted that this view about analyticity makes it again
possible that every mathematical proposition could perhaps be reduced to a special case
of a = a, namely if the reduction is effected not in virtue of the definitions of the terms
occurring, but in virtue of their meaning, which can never be completely expressed in a
set of formal rules.
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with sufficient distinctness, as is shown by the paradoxes. In view of this
situation, Russell took the course of considering | both classes and concepts
(except the logically uninteresting primitive predicates) as nonexistent and
of replacing them by constructions of our own. It cannot be denied that this
procedure has led to interesting ideas and to results valuable also for one
taking the opposite viewpoint. On the whole, however, the outcome has
been that only fragments of mathematical logic remain, unless the things
condemned are reintroduced in the form of infinite propositions or by such
axioms as the axiom of reducibility which (in case of infinitely many in-
dividuals) is demonstrably false unless one assumes either the existence of
classes or of infinitely many “qualitates occultae”. This seems to be an
indication that one should take a more conservative course, such as would
consist in trying to make the meaning of the terms “class” and “concept”
clearer, and to set up a consistent theory of classes and concepts as objec-
tively existing entities. This is the course which the actual development
of mathematical logic has been taking and which Russell himself has been
forced to enter upon in the more constructive parts of his work. Major
among the attempts in this direction (some of which have been quoted in
this essay) are the simple theory of types (which is the system of the first
edition of Principia in an appropriate interpretation) and axiomatic set
theory, both of which have been successful at least to this extent, that they
permit the derivation of modern mathematics and at the same time avoid
all known paradoxes. Many symptoms show only too clearly, however, that
the primitive concepts need further elucidation.

It seems reasonable to suspect that it is this incomplete understanding
of the foundations which is responsible for the fact that mathematical logic
has up to now remained so far behind the high expectations of Peano
and others who (in accordance with Leibniz’s claims) had hoped that it
would facilitate theoretical mathematics to the same extent as the decimal
system of numbers has facilitated numerical computations. For how can
one expect to solve mathematical problems systematically by mere analysis
of the concepts occurring if our analysis so far does not even suffice to set
up the axioms? But there is no need to give up hope. Leibniz did not
in his writings about the Characteristica universalis speak of a utopian
project; if we are to | believe his words he had developed this calculus of
reasoning to a large extent, but was waiting with its publication till the
seed could fall on fertile ground.*® He went even so far*® as to estimate the
time which would be necessary for his calculus to be developed by a few
select scientists to such an extent “that humanity would have a new kind
of an instrument increasing the powers of reason far more than any optical

48 Leibniz 1890, p. 12. Cf. also Vacca 1903, p. 72, and the preface to Leibniz 1923.
49 [eibniz 1890, p. 187.
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instrument has ever aided the power of vision.” The time he names is five
years, and he claims that his method is not any more difficult to learn than
the mathematics or philosophy of his time. Furthermore, he said repeatedly
that, even in the rudimentary state to which he had developed the theory
himself, it was responsible for all his mathematical discoveries; which, one
should expect, even Poincaré would acknowledge as a sufficient proof of its
fecundity.3°

501 wish to express my thanks to Professor Alonzo Church of Princeton University,
who helped me to find the correct English expressions in a number of places.
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Introductory note to 1946

In 1946, the year of its bicentennial, Princeton University organized
several conferences. The conference on problems of mathematics took
place on 17-19 December 1946. Its more than seventy participants in-
cluded most of the leading American mathematicians and several from
abroad. Its sessions included discussions of practically the whole range
of pure mathematics. The university printed a pamphlet containing a
summary of the discussion in each of the sessions ( Princeton University
1947). Alfred Tarski was listed as “discussion leader” in the session on
mathematical logic, held on 17 December, and evidently gave the prin-
cipal invited talk. Godel’s remarks took their point of departure from
Tarski’s talk, and may have been invited or planned as a comment.

No proceedings of the conference were published, but a larger volume
entitled Problems of mathematics was planned at the time. Gdadel sent
his paper to J. C. C. McKinsey early in 1947 for this purpose. Corre-
spondence with J. W. Tukey indicates that a chapter was planned on the
Hilbert problems, for which Gédel was asked to write on the first two
(the continuum problem and the problem of the consistency of analy-
sis). Godel agreed to do the first but declined to do the second, on
the ground that it ought to be done by someone more sympathetic to
Hilbert’s views.

Although it could not have been unknown, the paper Géodel 1946
seems to have had little circulation before its publication in Davis 1965.%
Its main new technical idea, ordinal definability, was rediscovered inde-
pendently by several others (see below). The reprint Gédel 1968 con-
tained several changes in the text. Correspondence between Godel and
Mario Casolini, evidently an editor with the publisher of 1968, shows
that the principal changes were proposed by Godel.

Godel’s paper consists largely of an exploration of possible absolute
notions of demonstrability and definability, which would not have to be
relative to a particular formal system or formalized language. From the
summary of the discussion ( Princeton University 1947, pages 10-12), ev-
idently much of the session was concerned with decision problems; Godel
thus began by noting that, with the concept of general recursiveness or
Turing computability, “one has for the first time succeeded in giving an
absolute definition of an interesting epistemological notion, i.e., one not

aDavis has informed me that he did not know of the existence of this paper until
S. C. Kleene suggested its inclusion in The undecidable and supplied a copy. Kleene
has indicated that the paper was published there with Godel’s approval.
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depending on the formalism chosen” (Géddel 1946, page 1). Godel refers
here not primarily to the equivalence of different formulations such as
Turing computability, A-definability and Herbrand—-Gddel general recur-
siveness, but to the absence of the sort of relativity to a given language
that leads to stratification of the notion, such as (in the case of defin-
ability in a formalized language) into definability in languages of greater
and greater expressive power. Such stratification is driven by diagonal
arguments. But, since a function enumerating the recursive functions is
not recursive and there is no reason to think it computable, the diagonal
function it gives rise to is simply non-recursive, rather than “recursive
at the next level”. One can of course effectively enumerate computing
procedures (partial recursive functions), but then the diagonal proce-
dure simply leads to partial recursive functions that must be undefined
for certain arguments (and to the undecidability of the question whether
an arbitrary partial recursive function is defined for a given argument).

Godel is thus encouraged to search for absolute notions of demon-
strability and definability. His remarks on the former notion (pages
1-2) are brief. Reflection on a formalism that makes the notion of prov-
ability precise “gives rise to new axioms which are exactly as evident and
justified as those with which you started”. (That the new axioms are
ezactly as evident might be questioned, even in the case of the weakest,
such as the statement of the consistency of the formalism.) The process
of transfinite iteration of such extension, which he then mentions, had
already been studied in Turing 1939; completeness results of the sort en-
visaged in the remark that all steps of such an extension process “could
be described and collected together in some non-constructive way” were
proved in Feferman 1962, but such results are essentially arithmetic in
character. In set theory, Godel suggests that absolute provability would
have to incorporate a notion of proof using stronger and stronger axioms
of infinity. The notion of an “axiom of infinity” could not be given a
“combinational and decidable” characterization, but an axiom of infinity
might be characterized as a sentence of a certain formal structure that is
true; then by absolute demonstrability one might mean proof with the
help of axioms of infinity in that sense. But evidently Godel thought this
suggestion very speculative. It was perhaps bound up with the hope, so
far disappointed, that suitable axioms of infinity would suffice to decide
the continuum problem.

Godel now turns to mathematical definability, where he says he “can
give somewhat more definite suggestions”. A hierarchy of concepts of
definability is forced on us by a “finitistic concept of language”, but to
collect into one notion all the stages of a hierarchy of this kind requires
“as many primitive terms as you wish to consider steps in this hierar-
chy of languages, i.e., as many as there are ordinal numbers” (page 2).
It is noteworthy that he considers immediately a hierarchy indexed
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by arbitrary ordinals in the set-theoretic sense. He is led immediately to
the concept of ordinal definability (pages 2-3):

The simplest way of doing it is to take the ordinals themselves
as primitive terms. So one is led to the concept of definability in
terms of ordinals, i.e., definability by expressions containing names
of ordinal numbers and logical constants, including quantification
referring to sets.

Godel observes that one obtains no new ordinal-definable sets by extend-
ing the language by a truth predicate, presumably for formulas contain-
ing names of arbitrary ordinals. This implies immediately that “z is an
ordinal-definable set” is expressible in the language of ZF, an assertion
that has usually been proved by means of Levy’s reflection principle.”? An
extension of that argument proves Godel’s assertion about the ordinal-
definable sets (OD).° It is reasonable to conjecture that Godel knew the
reflection principle at the time. Otherwise he would have had to have a
quite different argument in mind; moreover, an argument like the proof
of the principle figures in the proof in Gédel 1940 that V = L (where
V is the universe of all sets and L is the class of all constructible sets)
implies the generalized continuum hypothesis.

Godel remarks that his notion of constructible set is also a kind of
definability in terms of ordinals (see Gédel 1939a). Since it admits quan-
tification only over constructible sets and not over sets in general, how-
ever, “you can actually define sets, and even sets of integers, for which
you cannot prove that they are constructible” (1946, page 3). For this
reason he considers constructibility not satisfactory as a notion of defin-
ability. Godel’s language is puzzling, since he seems to be saying that,
for some definition of a set of integers, it is unprovable that that set is

b Myhill and Scott 1971, p. 272; Krivine 1968 or 1971, Chapter 6.

“Let Sat(z,y) mean: z is a formula of the language of set theory, y is an as-
signment of objects to the free variables of x, and y satisfies z. Now let A(x) be a
formula of the language of set theory augmented by Sat, with ordinal parameters,
that is uniquely true of the set zg. Then, by the extended reflection principle, we
can find an ordinal 3 such that zg € Vj, the ordinal parameters are less than 5 and
(V3,€) is an elementary substructure of the universe. In other words, for all formulas
u of the language of set theory and all assignments y of objects in Vj,

(1) Sa't(u1y) A Sato(u, Vﬂ?y)v

where Sato(x,z,y) is the satisfaction predicate for formulas with quantifiers inter-
preted to range over z, and moreover Vg reflects the formula A(x), that is, for any
z e Vg,

(2) A(z) = AV8(z).

But now (1) implies that in AY3(z) we may replace any subformula Sat(u,v) by
Sato(u, Vg, v), which is a formula of ZF. It follows by (2) that xp is definable in ZF
from the given ordinal parameters and 8, that is, zo € OD.
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constructible. How would he have known this then? The first published
proof of the consistency of the existence of non-constructible sets of in-
tegers is in Cohen 1963.4

The remainder of the paper deals with the claim that the notion
of ordinal definability is a satisfactory absolute notion and with the
mathematical interest of this notion. Reversing Godel’s order, we note
that he conjectures that the ordinal-definable sets satisfy the axioms of
set theory “and so will lead to another and probably simpler proof of the
consistency of the axiom of choice” (page 4). He does not claim to be in
possession of such a proof, which has since been given by others by means
of the observation that the hereditarily ordinal-definable sets (HOD) are
an inner model satisfying the axiom of choice. Since the proof of this is
rather straightforward {see Myhill and Scott 1971), Gédel’s caution may
mean simply that he had not worked it out in detail. Goédel’s second and
closing remark is that, although it can be proved (in ZF) that there is a
bound on the ordinals needed to obtain ordinal-definable sets of integers,
he doubts that one can prove that the bound is w1, as in the case of the
constructible sets. Therefore the proof of the consistency of the axiom
of choice will not extend to the continuum hypothesis as did that by the
constructible sets. It was subsequently proved in McAloon 1966 that
V = HOD is consistent with the negation of the continuum hypothesis,
thus verifying this conjecture of Godel’s.® Godel may have thought this
a virtue of the notion, since V. = HOD might then be compatible with
the sort of axiom Gddel speculates about in 1947 that would refute the
continuum hypothesis.f He offers no direct comment on the question of
the truth of V.= 0OD.8

Godel’s philosophical remarks are prompted by the obvious objection
that admitting all ordinals as primitive terms makes his notion no longer

41t was later shown by Solovay (1967) that strong axioms of infinity, such as the
existence of a measurable or Ramsey cardinal, imply the existence of even analytically
definable sets (of integers) that are not constructible.

€Godel wished to add to 1968 a note stating this result, but it was received too
late by the publisher. The note is included in the present volume.

In default of the axioms, there cannot be definite results on this question. How-
ever, V = OD has been shown consistent with strong axioms of infinity incompatible
with V = L. Let M be the proposition that there exists a measurable cardinal.
McAloon 1966 shows that, if ZF + M is consistent, then ZF + M +V = OD is
consistent. (This follows from Corollary 6.5 of Kunen 1970.) It is extended from
measurable to supercompact cardinals in Menas 1973.

Yet it seems doubtful that Gédel’s primary interest in the notion was as a means
of proving the consistency of the axiom of choice in settings where V' = L fails. Wang
reports that in 1941 Godel had another general method of proving the consistency
of the axiom of choice ( Wang 1981, p. 657).

ENote that, since Vo ¢ OD and HOD is transitive, if HOD = OD then V =
HOD = OD. Thus V = 0OD, HOD = OD, and V = HOD are all equivalent.
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a notion of definability. He finds it plausible that “all things conceivable
by us are denumerable”. Does this mean that for any z, if z is conceiv-
able by us, then z is denumerable, or that there are only denumerably
many things conceivable by us? The latter reading seems more likely.
Godel remarks that, because of the paradox of the least indefinable or-
dinal, a notion of mathematical definability that makes the notion itself
mathematically definable will have to have all ordinals definable. But
what follows is that a notion satisfying the “postulate of denumerability”
must involve some “extramathematical element concerning the psychol-
ogy of the being which deals with mathematics” (page 4). It seems to
me that the point is not just that to characterize such a notion will re-
quire some extramathematical vocabulary, for what will rule out a least
ordinal not definable with the help of the extra vocabulary? Apparently
the extra vocabulary must have the property that “definable with the
help of the extra vocabulary” is no longer definable with the help of the
extra vocabulary. Godel finally argues that ordinal definability at least
captures the notion of “being formed according to a law” as opposed to
“being formed by a random choice of the elements” (page 4). In partic-
ular, there is not a random element in the ordinals themselves.

I would note further that, since the notion of definability contains a
modal element, the question whether ordinal definability is a genuine no-
tion of definability depends on the underlying modal notion, the “can” in
“can be defined”. Admitting all ordinals as definable might be viewed as
an extreme extension of the notion of abstract mathematical possibility
that arises in other contexts in the foundations of mathematics, such as
that of computable function, where complete abstraction is made both
from the limitations of “hardware” and from feasibility in terms of the
time required for a computation. It should be kept in mind that an or-
dinal definition of a set requires only finitely many ordinals (which can
be reduced to one). To deny that an ordinal-definable set is “really” de-
finable implies the existence of ordinals that are not really definable, no
matter how our means of such definition might be extended. It is hard
to see how a case could be made out for this so long as one stays on the
abstract mathematical plane and does not introduce notions concerning
“the psychology of the being which deals with mathematics”, at least in
a broad sense.l

It appears that subsequent work on ordinal definability was done al-
most entirely independently of Godel’s. In 1952, Post rediscovered the

bn unpublished work, Allen Hazen argues that a physicalist theory of the mind
implies that there is an absolute notion of definability satisfying the condition of
denumerability, or at least some other cardinality restriction that makes the paradox
of the least indefinable ordinal a genuine problem.
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notion and proved some of its principal properties (see Myhill and Scott
1971, page 278), but his abstract 1953 was evidently too cryptic to be
understood, and Post died soon afterward. The idea was also implicit in
Takeut; 1961. The concept became more widely known through the work
of Myhill and Scott in the early 1960s. They showed the definability of
“g is an ordinal-definable set”, carried out the relative consistency proof
for the axiom of choice, and also proved the equivalence of ordinal defin-
ability and constructibility if both are phrased in terms of definability in
second-order logic. Further work was stimulated by Cohen’s discovery
of the method of forcing. Since obviously L € HOD C OD C V, and
HOD = OD implies V = OD (see footnote g), the question naturally
arises as to what can consistently be assumed about the equality and
inequality of L, HOD, and V. Let us define A C B to be A C B and
A # B. Levy (1965) proved that Cohen’s model showing the indepen-
dence of V = L from ZFC + GCH satisfies L = HOD, thus establishing
the consistency of L = HOD C V. McAloon (1966) showed the consis-
tency of L C HOD =V, both with GCH and with CH false (see his
1971). In 1966 he also established the consistency of L C HOD C V.

Classes related to HOD have been used in model constructions for
other purposes. A noteworthy example occurs in Solovay 1970. The
main result of his paper is the consistency relative to ZF + DC (the
axiom of dependent choices) + I (‘there exists a strongly inaccessible
cardinal’) of a list of propositions including ‘every set of reals is Lebesgue
measurable’. One constructs a forcing extension N of a ground model
M of ZFC 4 I. With the help of the fact that, in N, a strongly inac-
cessible cardinal of M is collapsed to Ny, it is shown that, although the
axiom of choice still holds in IV, all sets of reals definable from a count-
able sequence of ordinals are Lebesgue measurable (Theorem 2). Within
N, one then constructs the submodel Ny of sets hereditarily definable
from countable sequences of ordinals; in /Ny all sets of reals are Lebesgue
measurable (1970, page 52).

The exploration in 1946 of the notions of absolute demonstrability
and absolute definability, and the development in the latter context of
the notion of ordinal definability, are instances of the application to con-
crete problems of Godel’s realistic point of view.! But it should be noted
that Godel qualifies the “absoluteness” of the notions he considers: they
are “not absolute in the strictest sense, but only with respect to a certain
system of things, namely the sets as described in axiomatic set theory”
(1946, page 4). The question whether such notions can be treated in a
“completely absolute way” is left open.

iSee my introductory note to Gédel 1944 in this volume.
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The pagination in the text follows the original typescript, whose pag-
ination differs somewhat from that of Davis 1965.

Charles Parsons!

T am indebted to John P. Burgess, Martin Davis, John W. Dawson, Jr., Solomon
Feferman, Kenneth McAloon, Dana Scott and Hao Wang for information, assistance
and suggestions.

Remarks before the
Princeton bicentennial conference
on problems in mathematics

(1946)

Tarski has stressed in his lecture (and I think justly) the great impor-
tance of the concept of general recursiveness (or Turing’s computability).
It seerns to me that this importance is largely due to the fact that with this
concept one has for the first time succeeded in giving an absolute defini-
tion of an interesting epistemological notion, i.e., one not depending on the
formalism chosen.! In all other cases treated previously, such as demon-
strability or definability, one has been able to define them only relative to
a given language, and for each individual language it is clear that the one
thus obtained is not the one looked for. For the concept of computability,
however, although it is merely a special kind of demonstrability or decid-
ability, the situation is different. By a kind of miracle it is not necessary
to distinguish orders, and the diagonal procedure does not lead outside the
defined notion. This, I think, should encourage one to expect the same
thing to be possible also in other cases (such as demonstrability or defin-
ability). It is true that for these other cases there exist certain negative
results, such as the incompleteness of every formalism or the paradox of
Richard. But closer examination shows that these results do not make a

1[Footnote added in 1965: To be more precise: a function of integers is computable
in any formal system containing arithmetic if and only if it is computable in arith-
metic, where a function f is called computable in S if there is in S a computable term
representing f.]
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definition of the absolute notions concerned impossible under all circum-
stances, but only exclude certain ways of defining them, or, at least, that
certain very closely related concepts may be definable in an absolute sense.

Let us consider, e.g., the concept of demonstrability. It is well known
that, in whichever way you make it precise by means of a formalism, the
contemplation of this very formalism gives rise to new axioms which are ex-
actly as evident and justified as those with which you started, and that this
process of extension can be iterated into the transfinite. So there cannot
exist any formalism which would embrace all these steps; but this does not
exclude that all these steps (or at least all of them which give something
new for the domain | of propositions in which you are interested) could
be described and collected together in some non-constructive way. In set
theory, e.g., the successive extensions can most conveniently be represented
by stronger and stronger axioms of infinity. 1t is certainly impossible to
give a combinational and decidable characterization of what an axiom of
infinity is; but there might exist, e.g., a characterization of the following
sort: An axiom of infinity is a proposition which has a certain (decidable)
formal structure and which in addition is true. Such a concept of demon-
strability might have the required closure property, i.e., the following could
be true: Any proof for a set-theoretic theorem in the next higher system
above set theory (i.e., any proof involving the concept of truth which I just
used) is replaceable by a proof from such an axiom of infinity. It is not
impossible that for such a concept of demonstrability some completeness
theorem would hold which would say that every proposition expressible in
set theory is decidable from the present axioms plus some true assertion
about the largeness of the universe of all sets.

Let me consider a second example where I can give somewhat more
definite suggestions, namely the concept of definability (or, to be more
exact, of mathematical definability). Here also you have, corresponding
to the transfinite hierarchy of formal systems, a transfinite hierarchy of
concepts of definability. Again it is not possible to collect together all
these languages in one, as long as you have a finitistic concept of language,
i.e., as long as you require that a language must have a finite number of
primitive terms. But, if you drop this condition, it does become possible
(at least as far as it is necessary for the purpose), namely, by means of a
language which has as many primitive terms as you wish to consider steps
in this hierarchy of languages, i.e., as many as there are ordinal numbers.
The simplest way of doing it is to take the ordinals themselves as primitive
terms. So one is led to the concept of definability in terms of ordinals, | i.e.,
definability by expressions containing names of ordinal numbers and logical
constants, including quantification referring to sets. This concept should,
I think, be investigated. It can be proved that it has the required closure
property: By introducing the notion of truth for this whole transfinite
language, i.e., by going over to the next language, you will obtain no new
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definable sets (although you will obtain new definable properties of sets).

The concept of constructible set I used in the consistency proof for the
continuum hypothesis can be obtained in a very similar way, i.e., as a kind
of definability in terms of ordinal numbers; but, comparing constructibility
with the concept of definability just outlined, you will find that not all
logical means of definition are admitted in the definition of constructible
sets. Namely, quantification is admitted only with respect to constructible
sets and not with respect to sets in general. This has the consequence
that you can actually define sets, and even sets of integers, for which you
cannot prove that they are constructible (although this can of course be
consistently assumed). For this reason, I think constructibility cannot be
considered as a satisfactory formulation of definability.

But now, coming back to the definition of definability I suggested, it
might be objected that the introduction of all ordinals as primitive terms
is too cheap a way out of the difficulty, and that the concept thus ob-
tained completely fails to agree with the intuitive concept we set out to
make precise, because there exist undenumerably many sets definable in
this sense. There is certainly some justification in this objection. For it
has some plausibility that all things conceivable by us are denumerable,
even if you disregard the question of expressibility in some language. But,
on the other hand, there is much to be said in favor of the concept under
consideration; namely, above all it is clear that, if the concept of mathemat-
ical definability is to be itself mathematically definable, it must necessarily
be so that all ordinal numbers are definable, because otherwise you could
define the first ordinal number not definable, and | would thus obtain a
contradiction. I think this does not mean that a concept of definability
satisfying the postulate of denumerability is impossible, but only that it
would involve some extramathematical element concerning the psychology
of the being who deals with mathematics.

But, irrespective of what the answer to this question may be, I would
think that “definability in terms of ordinals”, even if it is not an ade-
quate formulation for “comprehensibility by our mind”, is at least an ad-
equate formulation in an absolute sense for a closely related property of
sets, namely, the property of “being formed according to a law” as opposed
to “being formed by a random choice of the elements”. For, in the ordi-
nals there is certainly no element of randomness, and hence neither in sets
defined in terms of them. This is particularly clear if you consider von Neu-
mann’s definition of ordinals, because it is not based on any well-ordering
relations of sets, which may very well involve some random element.

You may have noticed that, in both examples I gave, the concepts ar-
rived at or envisaged were not absolute in the strictest sense, but only
with respect to a certain system of things, namely the sets as conceived in
axiomatic set theory; i.e., although there exist proofs and definitions not
falling under these concepts, these definitions and proofs give, or are to
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give, nothing new within the domain of sets and of propositions expressible
in terms of “set”, “¢” and the logical constants. The question whether the
two epistemological concepts considered, or any others, can be treated in
a completely absolute way is of an entirely different nature.

In conclusion I would like to say that, irrespective of whether the concept
of definability suggested in this lecture corresponds to certain intuitive
notions, it has some intrinsic mathematical interest; in particular, there are
two questions arising in connection with it: (1) Whether the sets definable
in this sense satisfy the axioms of set theory. I think this question is to
be answered in the affirmative, and so will lead to another, and probably
simpler, proof for the consistency of the axiom of choice. (2) It follows from
the axiom of replacement that the ordinals necessary to define all sets of
integers which can at all be defined in this way will have an upper limit. I
doubt that it will be possible to prove that this upper limit is wy, as in the
case of the constructible sets.?

2[Footnote added on 26 June 1968: 1 have recently been informed that this conjecture
has been verified by Kenneth McAloon in a dissertation at the University of California
at Berkeley: to be more precise, that Dr. McAloon, using Cohen’s method, has proved
the consistency (with the Zermelo—Fraenkel axioms of set theory) of the assumption that
all sets are ‘ordinal definable’ and that 280 is much greater than ¥;.]



Introductory note to 1947 and 1964

1. Introduction

Cantor’s continuum problem served as one of the principal and peri-
odic foci for Godel’s research from 1935 until his death more than four
decades later. His article 1947 (substantially revised and expanded to
become 1964) originated from a request, made in 1945 by the editor of
the American mathematical monthly, for a paper on the continuum prob-
lem. The result was an expository article written in the style for which
the Monthly is well known, but having a flavor that reflected Godel’s
distinctive blend of mathematical and philosophical interests. Although
1947 contains no new technical results, it gives considerable insight into
his philosophical views on set theory and on what would and would not,
in his opinion, constitute a solution to the continuum problem. In one
sense, 1947 can be regarded as a continuation, and as a variation in
a different key, of his reflections in 71944 on Russell and mathematical
logic. Like 1944, the article 1947 originated from a request for a contri-
bution by Gédel, and included both technical hints for possible future
research in mathematics and cogent philosophical arguments in favor
of Platonism. But 1947, unlike 1944, was expository (indeed, the only
expository article that Godel ever published) and concerned a specific
mathematical problem rather than a philosopher’s contribution to logic.

This introductory note has seven sections, which serve different pur-
poses. Section 2 places 1947 in a historical context by tracing the con-
tinuum problem from its origins to Godel’s attempts (circa 1938-1942)
to establish the independence of the continuum hypothesis. Section 3
recounts the circumstances which led Godel to write 1947. The content
of 1947 is analyzed in Section 4, while Section 5 indicates how Goédel’s
perspective changed in the revised version 1964 (and in his 1966 plans
for a third version of the paper). Section 6 discusses the effect of recent
mathematical developments on Godel’s claims in 1947 and 1964. Fi-
nally, Section 7 concerns his two unpublished articles on the continuum
hypothesis, both written about 1970.

2. Historical background to the continuum problem,
including Godel’s work before 1947

The continuum problem, which Cantor first posed in 1878, grew out
of research that he began in 1873. At that time, in a letter to Dedekind,
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Cantor posed the question whether the set R of real numbers can be
put in one-to-one correspondence with the set N of natural numbers.
Although Dedekind at first doubted the importance of this question,
he was pleased when Cantor discovered a proof that such a correspon-
dence cannot exist. In January 1874 Cantor posed a further question
to Dedekind: Can a line segment be put in one-to-one correspondence
with a square and its interior? Three years passed before Cantor suc-
ceeded in showing that there exists such a correspondence between a line
segment and n-dimensional space for any n.* At the end of the article
(1878) detailing this proof, Cantor stated that every uncountable set of
real numbers can be put in one-to-one correspondence with the set of
all real numbers, i.e., that there is no cardinal number strictly between
that of N and that of R. This proposition was the original form of the
continuum hypothesis. Since there is no standard terminology for this
form, we shall call it the weak continuum hypothesis.

When in 1883 Cantor developed the notion of well-ordering and as-
serted that every set can be well-ordered, he gave a second and more
elegant form to this hypothesis: R has the same power as the set of
countable ordinals. In his aleph notation of 1895 this can be stated as
2% = R;, the form in which the continuum hypothesis (CH) is now
known. (It is easily seen that CH is equivalent to the conjunction of
the weak continuum hypothesis and the proposition that R can be well-
ordered.) Cantor himself never used the term “continuum hypothesis”;
instead, in his 1882 correspondence with Dedekind, he referred to the
weak continuum hypothesis as the “two-class theorem”.

In 1883 Cantor began to generalize CH, asserting that the set of all
real functions has the third infinite power; in his later notation, this
stated that 28t = N,. He never discussed any more general form of CH,
perhaps because he saw no use for such a generalization. The general-
ized continuum hypothesis (GCH), which states that 28« = X, for all
ordinals ¢, was first formulated by Hausdorff (1908, pages 487, 494) and
was given this name by Tarski (1925).

Despite very intense research, especially during 1884, Cantor never
succeeded in demonstrating CH. However, he obtained a special case of
the weak continuum hypothesis: Every uncountable closed subset of R
has the power of R (1884). For a while that year, during August and
again during October, he believed that he had proved CH, and then, for
a brief period in November, that he had refuted CH (Moore 1982, pages
43-44).

In August 1904 a Hungarian mathematician, J. Konig, also claimed
to have disproved CH. This occurred in a lecture he gave at the Inter-

2See Noether and Cavaillés 19587, pp. 12-13, 20-21, 25.
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national Congress of Mathematicians at Heidelberg. However, the next
day E. Zermelo found the gap in Ko6nig’s argument. When revised for
publication (Kdnig 1905), Konig's result was that the power of R can-
not equal N4, for any ordinal . In the light of Hausdorfl’s 1906-1908
researches on cofinality, the result was extended to the following: 2%o
cannot equal Rg for any 3 of cofinality w. In 1947 Godel observed that
nothing beyond this was known about the cardinality of R.

As F. Bernstein noted (1901, page 14), one line of research on the
continuum problem consisted in trying to extend, to larger and larger
classes of subsets of R, Cantor’s result that the weak continuum hypoth-
esis holds for the closed subsets of R. The hierarchy soon used for this
purpose was that of the Borel sets, introduced by E. Borel (1898) and
first extended to transfinite levels by H. Lebesgue (1905). In 1903 W. H.
Young strengthened Cantor’s result by showing that every uncountable
G's subset of R has the power of R. A decade later Hausdorff succeeded
in extending the result further, first to the Gg,s sets (1914a) and then
to the entire Borel hierarchy (1916).

For the next two decades, almost all progress on CH had a close
connection with N. Luzin and his students (such as P. S. Aleksandrov
and M. Suslin), who together made up the Moscow school of function
theorists. The school’s first result occurred when Aleksandrov (1916)
obtained the above-mentioned theorem on the Borel hierarchy at the
same time that Hausdorff did. In 1917 Luzin and Suslin extended the
Borel hierarchy by introducing the analytic sets, the first level of what
later became the projective hierarchy. Suslin established that the weak
continuum hypothesis holds for the analytic sets, now called the X} sets,
since every uncountable analytic set has a perfect subset.” Yet, as Godel
observed in 1947 (page 517), progress stopped there; for it had not been
shown that the weak continuum hypothesis holds for every II} set but
only that an uncountable IT} set has either the cardinality ®; or that of
R—a result due to K. Kuratowski (7933, page 246).

A second approach to the continuum problem was begun by
Luzin (1914) and pursued vigorously in Poland by his collaborator W.
Sierpiniski. In this approach, various propositions were shown to be con-
sequences of CH. By assuming CH as a hypothesis, set theorists gained
knowledge about its strength and were able to settle various open prob-
lems. Sierpifiski, beginning in 71919, was especially concerned to find
interesting propositions equivalent to CH. He summarized his results in
a book, Hypothése du continu (1954), the source for the “paradoxical”
consequences of CH that Godel cited in 1947.

b Luzin 1917. For discussion of the projective hierarchy, as well as the definition
of £} and IIL sets, see p. 13 above of the introductory note to 1938.
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In 1923 D. Hilbert claimed that his recently developed proof theory
could not only provide a foundation for mathematics but could even
settle classical unsolved problems of set theory such as the continuum
problem (1923, page 151). Three years later he published his attempt
to skeich a proof, based on definability considerations, of what he called
the “continuum theorem” (1926). This attempted proof of CH met with
widespread skepticism, in particular from Fraenkel (1928) and from
Luzin (1929). In 1935 Luzin returned to this question, arguing that
there was not in fact one continuum hypothesis but rather several con-
tinuum hypotheses; he dubbed as the “second continuum hypothesis”
the following proposition contradicting CH:

%o = o1,

Finally, he argued that the second continuum hypothesis accorded with
a proposition (contradicting CH) of whose truth he felt certain: Every
subset of R having power R; is a I1} set (7935, pages 129-131). Godel
referred in passing to these matters (1947 page 523) while mentioning
that Luzin, like Godel himself, believed CH to be false.

In the absence of a proof or refutation of CH, mathematicians could
try to establish its undecidability on the basis of the accepted axioms of
set theory. As early as 1923, T. Skolem conjectured that CH cannot be
settled by Zermelo’s 1908 axiom system (Skolem 1923a, page 229). But,
when Skolem wrote, the understanding of models of set theory was still
very rudimentary. Luzin hoped that Hilbert’s proof theory would supply
a consistency proof for the “second” continuum hypothesis as well as for
CH (Luzin 1935, pages 129-131).

During the 1920s it was also uncertain whether models of set theory
should be studied within second-order logic, as did Fraenkel (1922a)
and Zermelo (1929, 1930), or within first-order logic, as Skolem pro-
posed (1923a, 1930). In 1930 Zermelo showed that all second-order
models of Zermelo-Fraenkel set theory (ZF) consist of the ath stage of
the cumulative type hierarchy, where « is a strongly inaccessible ordi-
nal. In an unpublished report of about 1930 to the Emergency Society
of German Science, Zermelo pointed out that CH is either true in all of
these models or false in all of them, so that in either case CH'is decided
in second-order ZF.¢ This result contrasts with the later discoveries of

©This report is printed in Moore 1980, pp. 130-134, and the observation on CH
can be found on p. 134. Kreisel (1967a, pp. 99-100) also emphasized this point,
though unaware that Zermelo had formulated it almost four decades earlier; however,
L. Kalmar (1967, p. 104) and A. Mostowski (1967a, p. 107) reacted negatively to
Kreisel’s observation, and the second-order version of CH has been little studied.
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Godel and P. J. Cohen that CH is undecided in the first-order version
of ZF.

About 1935 Godel realized that if Zermelo’s cumulative hierarchy
were restricted at each level to the sets first-order definable from those
obtained at previous levels, then one would have a class model of first-
order ZF in which various important propositions held. Originally, in
1935, he proved only that the axiom of choice is such a proposition, but
by 1937 he had shown that GCH holds in the model as well. In 1938
he was inclined to accept the axiom of constructibility as true, referring
to it as “a natural completion of the axioms of set theory” (page 557),
and hence to believe that the generalized continuum hypothesis is also
true. Yet Godel refrained, for more than a year, from publishing an
announcement of these relative consistency results. A clue to his silence
can be found in his letter, written in December 1937 to Karl Menger,
which reveals Godel’s hopes for an even stronger result about CH:

I continued my work on the continuum problem last summer, and
I finally succeeded in proving the consistency of the continuum hy-
pothesis (even in the generalized form 2% = N,,) with respect
to general set theory. But I ask you, for the time being, please not
to tell anyone about this. So far, except for you, I have communi-
cated this result only to von Neumann .... Right now I am also
trying to prove the independence of the continuum hypothesis, but
do not yet know whether I will succeed with it ....

Unfortunately, Godel did not succeed in proving the independence of
CH, despite repeated attempts.

On the other hand, Gédel’s efforts to show the independence of the
axiom of choice, and consequently of the axiom of constructibility as
well, were more fruitful. When Cohen received the Fields Medal for
establishing the independence of CH, A. Church pointed out, in his
speech awarding the medal (1968, page 17), that

Godel ... in 1942 found a proof of the independence of the axiom of
constructibility in [finite] type theory. According to his own state-
ment (in a private communication), he believed that this could be
extended to an independence proof of the axiom of choice; but due
to a shifting of his interests toward philosophy, he soon afterward
ceased to work in this area, without having settled its main prob-
lems. The partial result mentioned was never worked out in full
detail or put into form for publication.

Godel also commented on his independence results in a letter of 1967 to
W. Rautenberg, who had written to Godel inquiring about Mostowski’s
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claim that Godel, about 1940, had obtained most of Cohen’s indepen-
dence results. In his reply {written in German and translated here),
Godel confirmed what Church had stated:

In reply to your inquiry I would like to refer to the presentation
of the facts that Professor Alonzo Church gave in his lecture at the
last International Congress of Mathematicians.

Mostowski’s assertion is incorrect insofar as 1 was merely in
possession of certain partial results, namely, of proofs for the in-
dependence of the axiom of constructibility and of the axiom of
choice in type theory. Because of my highly incomplete records
from that time (i.e., 1942) I can only reconstruct the first of these
two proofs without difficulty. My method had a very close connec-~
tion with that recently developed by Dana Scott [Boolean-valued
models] and had less connection with Cohen’s method.

I never obtained a proof for the independence of the continuum
hypothesis from the axiom of choice, and I found it very doubtful
that the method that I used would lead to such a result.

Thus there can be no doubt that Godel believed that he had obtained
some significant independence results, but not for CH.

By the time that Godel composed 1947 he had become convinced,
contrary to the views he expressed in 1938, that CH (and hence the
axiom of constructibility as well) was false.

3. The origins of Gédel 1947

Godel undertook to write the article 1947 at the request of Lester R.
Ford, the editor of the American mathematical monthly. “For some time

we have been running a series of papers ...”, Ford wrote Godel on 30
November 1945,

which we call the “What Is?” series. In these papers the authors
have presented some small aspect of higher mathematics in as sim-
ple, elementary and popular a way as they possibly can. We have
had papers by both Birkhoffs, Morse, Kline, Wilder and several
others.

I am writing this to ask if you would like to prepare such a pa-
per. The subject would be of your own choosing, but I had thought
of “What is the problem of [the] continuum?”

When Godel did not respond, Ford wrote again on 31 January 1946. On
14 February, Godel, who had not received the earlier letter, expressed
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his willingness to consider the matter, adding that “in any case I could
not write the paper immediately, because I am unfortunately very busy
with other things at present.” A week later, Ford replied: “Let me know
as promptly as you can whether you can write this paper. I ought to
have it by the month of July. It will not be a long paper and its writing
ought not to take a great deal of time.”

Ford did not realize that, when composing an article, Godel was an
extreme perfectionist. Another year passed before Godel completed the
paper that, in March 1946, he agreed to write. On 13 August 1946 Ford
inquired about the paper, since he wished to print it before his editor-
ship ended in December. Goédel answered on 31 August: “The paper
about the continuum problem ... was finished and typewritten a few
weeks ago, but on rereading it, I found some insertions desirable, which
I have now about completed.” Once again, this was not to be.

Finally, on 29 May 1947, Godel sent the paper to the new editor,
C. V. Newsom. In his covering letter, Godel mentioned that he had
“inserted a great number of footnotes whose order does not completely
agree with the order in which they occur in the text.” He suggested that
the new footnotes be printed after the text of the article. Unfortunately,
as Godel learned when he saw the article in print, the footnotes had
been renumbered in page proof without changing the internal references
to them.? He had received no page proofs, having returned his galley
proofs at the last moment. Newsom apologized for the errors, which
occurred when the compositor tried to make sense of the footnotes, and
added by way of compensation: “Your paper has brought many compli-
ments; it is by far the best article in volume 54.”

4. How Godel viewed the continuum problem in 1947

Godel’s essay 1947 consists of four sections: (1) a discussion of the
notion of cardinal number, (2) a survey of the known results about the
power 280 of the continuum R, (3) a philosophical analysis of set theory,
and (4) a proposal for solving the continuum problem.

In Section 1, Godel stressed that Cantor’s notion of cardinal number
is unique, provided one accepts the minimal requirement that if two sets
have the same cardinal number, then there exists a one-to-one corre-
spondence between them. Here Godel did not discuss how the notion of
cardinal number might be defined, contenting himself with the definition

dThese errors, which Gédel noted in volume 55 of the Monthly, are corrected in
the text of 1947 printed in the present volume.
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of equality between cardinal numbers. In this context he introduced the
contimium problem as the question of how many points there are on a
Euclidean straight line (or equivalently, how many sets of integers ex-
ist). This problem would lack meaning, he observed, if there were not
a “natural” representation for the infinite cardinal numbers. But since
the alephs R, provide such a representation and since, by the axiom of
choice, the cardinal number of every set is an aleph, it follows that the
continuum problem is meaningful. In footnote 2 he defended such uses
of the axiom of choice by arguing, on the one hand, that this axiom is
consistent relative to the usual axioms for set theory (as shown in his
1940); on the other hand, he asserted that the axiom of choice is quite
as self-evident as the usual axioms for the notion of arbitrary set and is
even provable for “sets in the sense of extensions of definable properties”
(that is, for the constructible sets, as well as for the ordinal-definable
sets of his 1946).

In Section 2, Godel reformulated the continuum problem as the ques-
tion:

Which N, is the cardinal number of R?

He noted that Cantor had conjectured CH as an answer. But he did not
mention that Cantor not only conjectured the truth of CH but also, on
numerous occasions, claimed in print to have proved CH. (In fact, many
mathematicians took CH as true during the 1880s and 1890s.) Nor did
Godel distinguish between C'H and the weak continuum hypothesis, re-
garding them as equivalent since he assumed the axiom of choice. Later
researchers, however, would find it necessary to distinguish carefully be-
tween CH and the weak continuum hypothesis when they attempted to
solve the continuum problem (especially when the axiom of determinacy
was involved; cf. Section 6 below).

Godel stressed how little was known about the power 280 of R, despite
the many years that had passed since Cantor formulated CH. Indeed,
Godel remarked that only two facts were known: (a) 2% does not have
cofinality w and (b) the weak continuum hypothesis holds for the X}
sets (the analytic sets), which, however, are only a tiny fraction of all
the subsets of R. In particular, he added, it was not known whether:

(i) There is some given aleph that is an upper bound for 2%,

(ii) 2% is accessible or is weakly inaccessible,

(iii) 2®° is singular or regular,
or

(iv) 2™ has any restrictions on its cofinality other than Konig’s result

that its cofinality is uncountable.
What was known, he continued, was merely a large number of proposi-
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tions that follow from CH as well as several propositions that are equiv-
alent to it.°

Godel observed that our ignorance about the power of the continuum
was part of a greater ignorance about infinite cardinal products. In
particular, the power of the continuum, 2%, is the simplest non-trivial
cardinal product, namely, the product of 8y copies of 2. He added that
it was not even known whether

(v) there is some given cardinal that is an upper bound for some

infinite product of cardinals greater than 1.

All that was known were certain lower bounds on infinite products, such
as Cantor’s theorem that the product of Ry copies of 2 is greater than
Ng and the Zermelo-Konig theorem that if m,, < n, for all & in some

given set I, then
>m, < IIn,.
ael

ael

Thus it was not even known whether the product of ¥y copies of 2 is less
than the product of N; copies of 2, that is, whether

AP

In Section 3 Godel argued that this lack of knowledge was not due
entirely to a failure to find the appropriate proofs, but stemmed from
the fact that the concept of set required “a more profound [conceptual]
analysis ... than mathematics is accustomed to give” (page 518). He be-
gan his philosophical analysis of this concept by rejecting intuitionism,
because it is destructive of set theory, and by laying aside the semi-
intuitionistic viewpoints of Poincaré and Weyl for the same reason. In-
stead, he insisted that axiomatic set theory provides the proper founda-
tion for Cantorian set theory. Protecting himself against the objection
that the paradoxes threaten set theory, he asserted that no paradox has
ever emerged for the iterated notion of “set of” (the cumulative type
hierarchy V,,).f Here Gédel permitted a set of urelements (the integers,
for example) as the basis from which the cumulative hierarchy is built
up; incidentally, this corroborates the view that he adopted the cumu-
lative hierarchy from Zermelo 1930. Finally, Godel insisted that the
continuum problem—if formulated in a combinatorial way as the ques-
tion whether CH can be deduced from the axioms of set theory—retains

®What is now known about (i)—(iv) is discussed in Section 6 below.

fPhe cumulative hierarchy Vi is also called R(a). On this hierarchy, see p. 4
above of the introductory note to 1938.
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a meaning, independently of one’s philosophical standpoint, even for the
most extreme intuitionist.

If the usual axioms of set theory are consistent, Godel remarked, then
CH is either provable, disprovable, or undecidable. After noting that his
1940 ruled out the second possibility, he asserted that the third one is
probably correct. To attempt to establish that CH is undecidable, he
insisted, was the most promising way of attacking the problem.®

What is especially important, however, is this: Although Gddel ar-
gued that CH is almost certainly independent from ZF (as formulated
in first-order logic), he insisted strongly that a proof of its independence
would notf solve the continuum problem. Indeed, he emphasized, as Zer-
melo (1930) had done, that “the axioms of set theory by no means form
a system closed in itself, but, quite on the contrary, the very concept of
set on which they are based [the cumulative hierarchy] suggests their
extension by new axioms which assert the existence of still further itera-
tions of the operation ‘set of’” (1947, page 520). Consequently, he urged
mathematicians to search for new large cardinal axioms which would,
he hoped, decide CH. He added, with his incompleteness theorems in
mind, that such axioms would settle questions about Diophantine equa-
tions undecidable by the usual axioms.

Here Godel’s strongly held Platonism was visible, as it had been in
1944 and as it would be even more strongly in 1964. If the undecidabil-
ity of Cantor’s conjecture CH were established, he stressed, this would
not settle the continuum problem—for essentially philosophical reasons.
In fact, he wrote (1947, page 520),

only someone who (like the intuitionist) denies that the concepts
and axioms of classical set theory have any meaning (or any well-
defined meaning) could be satisfied with such a solution, not some-
one who believes them to describe some well-determined reality.
For in this reality Cantor’s conjecture must be either true or false,
and its undecidability from the axioms as known today can only
mean that these axioms do not contain a complete description of
this reality.

After granting that all large cardinal axioms known at the time failed
to settle CH, since all of them were consistent with the axiom of con-
structibility, Godel made an eloquent plea for new axioms (1947, page
521):

€0n the other hand, Gédel did not mention that in 1923a Skolem had also argued
for the independence of CH, nor that he himself had worked intensively at establishing
its independence during 1942 (as his Arbeitshefte attest).
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Even disregarding the intrinsic necessity of some new axiom, and
even in case it had no intrinsic necessity at all, a decision about its
truth is possible also ... inductively by studying ... its fruitfulness
in consequences and in particular in ... consequences demonstra-
ble without the new axiom, whose proofs by means of the new
axiom, however, are considerably simpler and easier to discover,
and make it possible to condense into one proof many different
proofs .... There might exist axioms so abundant in their verifi-
able consequences, shedding so much light upon a whole discipline,
and furnishing such powerful methods for solving given problems
(and even solving them, as far as that is possible, in a construc-
tivistic way) that quite irrespective of their intrinsic necessity they
would have to be assumed at least in the same sense as any well-
established physical theory.

This allusion to physics illustrates his view (already stated in 1944,
page 137) that the assumption of an underlying reality is as “necessary
to obtain a satisfactory theory of mathematics” as the assumption of
the reality of physical objects is “necessary for a satisfactory theory of
our sense perceptions”.

In Section 4, Gédel returned to his conjecture that CH is not decided
by the usual axioms for set theory, arguing that there were at least two
reasons for expecting such undecidability. The first was that there exist
two quite different classes satisfying the usual axioms: the class of con-
structible sets and the class of “sets in the sense of arbitrary multitudes”
(page 521). Thus he believed that one could not expect CH to be settled
if one did not specify axiomatically which of these two classes was being
considered. (He did not mention here, perhaps for philosophical reasons,
a third such class, namely the class of ordinal-definable sets, to which
he alluded in footnote 26.») Half of his conjecture about undecidability
had already been verified, namely the relative consistency of CH with
the usual axioms, since C'H is true in the class of constructible sets.

Godel then made the important suggestion that “from an axiom in
some sense directly opposite to this [axiom of constructibility] the nega-
tion of Cantor’s conjecture [ CH] could perhaps be derived” (page 522).
The difficulty, of course, with Godel’s suggestion resides in the phrase
“directly opposite”, since he himself rightly believed that the mere nega-

b At first glance it might appear that in footnote 20 he conflated the class of
ordinal-definable sets, introduced in 1946, with the class of constructible sets. How-
ever, by comparing footnote 20 with footnote 26, one sees that in the earlier footnote
he had in mind the constructible sets and, in the latter, the ordinal-definable sets.
Likewise, in footnote 21 of 1964 he meant the constructible sets rather than the
ordinal-definable ones.
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tion of the axiom of constructibility would not suffice for this purpose
(see Section 5). Yet insofar as the axiom of constructibility is a min-
imality axiom (expressing that the power set of a set, and hence the
universe, is as small as possible), he may have had in mind here some
kind of maximality axiom, as he certainly did in 1964 (see pages 167-168
below).

Godel’s second reason for expecting the independence of CH was that
CH has certain “paradoxical” consequences which he found unlikely to
be true—in particular, the existence of certain very thin subsets of R
that have the power 2%, The first effect of CH was to ensure that some
kinds of thin subsets of R, proved in ZFC to have instances that are
uncountable, can actually have the power 28, Examples of such sets
are

(1) sets of first category on every perfect subset of R,
and

(2) sets carried into a set of measure zero by every continuous one-

to-one mapping of R onto itself.

The second effect of C'H was to imply that certain kinds of thin sub-
sets of R can have the power 2% even though, in ZFC, no instances of
these kinds are known that are uncountable. Here he gave as an example
the sets of absolute measure zero (by definition, such a set is coverable
by a given sequence of intervals of arbitrarily small positive lengths).
He then gave several other examples, such as a subset of R including no
uncountable set of measure zero.!

Godel attempted to protect himself against the rejoinder that many
kinds of point-sets obtained without CH (such as a Peano curve) are
highly counterintuitive. In these cases, he argued, the implausibility of
the point-sets was due to “a lack of agreement between our intuitive
geometrical concepts and the set-theoretical ones occurring in the theo-
rems” (page 524).

Nevertheless, there appears to be little evidence that analysts and
set theorists now regard as “paradoxical” the kinds of thin sets cited by
Godel. For example, P. J. Cohen, when asked his opinion of these thin
sets of power 2%, was not troubled by themJ Likewise, in an article sur-
veying recent work on CH, D. A. Martin responded negatively to Godel’s
claim: “While Gddel’s intuitions should never be taken lightly, it is very
hard to see that the situation [with CH] ¢s different from that of Peano
curves, and it is even hard for some of us to see why the examples Godel
cites are implausible at all” (1976, page 87).

In the conclusion to his article, Gddel insisted that “it is very suspi-

This particular example, however, was dropped in his 71964 version of the article.
iPersonal communication from P. J. Cohen, April 1984.




166 Note to 1947 and 196/

cious that, as against the numerous plausible propositions which imply
the negation of the continuum hypothesis, not one plausible proposition
is known which would imply the continuum hypothesis” (1947, page
524). What are these “numerous plausible propositions”? We cannot be
certain, since Godel did not mention even one of them explicitly. Per-
haps he simply intended such propositions to be the negations of those
that he had called “paradoxical”. In any case, here he was uncharac-
teristically incautious in his assertion. In 1970 he himself would find a
proposition, which he then regarded as quite plausible, that implies CH
(see Section 7).

5. Godel’s altered perspective in 1964

The article 1964 resulted from a request, made to Gdodel by P.
Benacerraf and H. Putnam, for permission to reprint both of the essays
1944 and 1947 in their forthcoming source book Philosophy of mathe-
matics: Selected readings. At first, Godel hesitated to grant permission,
fearing that the introduction to their book would subject his article
to positivistic attacks. He asked Benacerraf, in conversation, for what
amounted to editorial control of the editor’s introduction to the source
book. As an alternative, since such control could not be granted, Be-
nacerraf assured Godel that he would be shown the introduction and,
furthermore, that the editors did not intend it to make a major philo-
sophical statement but rather to outline the issues. Thus placated, Godel
gave permission to reprint his two essays, and began extensively revising
1947. Benacerraf met with Godel a number of times to go over the revi-
sions, since Godel felt that he did not know English “well enough”. Yet
Benacerraf knew no one with a more subtle grasp of the various ways
in which an English text could be interpreted. While considering the
proposed changes, Godel repeatedly pointed out to Benacerraf various
of their unwanted consequences.¥

Whereas Godel made no substantive modifications in reprinting 1944,
merely adding an initial footnote, he introduced more than one hundred
separate alterations in 1947 in the course of preparing 1964. Most of
these changes were stylistic and reflected his increasing acquaintance
with the nuances of the English language. In particular, a number of
long and rather Germanic sentences were divided into shorter and more
idiomatic ones.

kPersonal communications from P. Benacerraf, July 1982 and March 1986.
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Nevertheless, a substantial number of his changes were more than
stylistic. A minor example is his reference in 1947 to a “natural” repre-
sentation of the infinite cardinal numbers (the alephs), replaced in 1964
with a reference to a “systematic” representation. Far more surprising is
his omission in 1964 of all reference to the ordinal-definable sets, which
in 1947 he had discussed on page 522 and in footnote 26. It is uncertain
what prompted him to omit this notion of set that he had introduced in
his 1946.

In Godel’s Nachlass there exist two drafts of his 1964, each an offprint
of 1947 with alterations written on it. The second of these contains a
revision, not incorporated into 1964, that credits Zermelo (1930) with
“substantially the same solution of the paradoxes” as is embodied in the
cumulative type hierarchy, which Godel designates by his notion “set
of”. Again, it is unknown why he intended to credit Zermelo and then
decided not to do so.

One particularly important addition occurred in footnote 20 of 1964,
where large cardinal axioms were discussed. Here he remarked that D.
Scott (1961) had proved that the existence of a measurable cardinal
contradicts the axiom of constructibility—in contrast to earlier large
cardinal axioms, such as those of Mahlo (1911, 1913), which are con-
sistent with that axiom. Consequently, he continued, the relative con-
sistency proof for CH by means of the class of constructible sets fails if
one assumes that there is a measurable cardinal. (In 1971a, however,
J. Silver established that GCH holds in the class of sets constructible
from a countably additive measure on the least measurable cardinal. In
1967, Levy and Solovay had already shown, by means of forcing, that
CH is relatively consistent with a measurable cardinal; see footnote p
below.) Godel then added that it was not yet certain whether “the gen-
eral concept of set” implies the existence of a measurable cardinal in the
same way as it implies Mahlo’s axioms. By contrast with this uncer-
tainty, in Gddel’s unpublished revision of September 1966 he argued for
the existence of a measurable cardinal since this follows “from the ex-
istence of generalizations of Stone’s representation theorem to Boolean
algebras with operations on infinitely many elements” (page 261 below).!

Another noteworthy addition occurred in footnote 23 of 1964.
Whereas in the 71947 version of this footnote, Gédel had argued that
CH might be decided by means of some axiom diametrically opposite to
the axiom of constructibility, in 7964 he spelled out what he meant:

1See also Gédel’s oral comments about measurable cardinals to Solovay on p. 19
above.
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I am thinking of an axiom which (similar to Hilbert’s completeness
axiom in geometry) would state some maximum property of the
system of all sets, whereas axiom A [the axiom of constructibility]
states a minimum property. Note that only a maximum property
would seem to harmonize with the concept of set explained in foot-
note 14 [arbitrary sets of the cumulative type hierarchy].

Hilbert’s axiom of completeness (1902), which belongs to second-order
logic, had characterized Euclidean geometry (and, analogously, the real
numbers) as the maximal structure satisfying his other axioms. What
Godel proposed for set theory was vague but suggestive; in particular,
the various large cardinal axioms can be regarded as steps in the di-
rection of maximality. His meaning is made more definite by a letter
he wrote to S. Ulam (quoted in Ulam 1958, page 13) apropos of von
Neumann's axiom (1925) that a class S is a proper class if and only if
S is equipotent with the class V' of all sets:

The great interest which this axiom has lies in the fact that it
is a maximum principle, somewhat similar to Hilbert’s axiom of
completeness in geometry. For, roughly speaking, it says that any
set which does not, in a certain well-defined way, imply an incon-
sistency exists. Its being a maximum principle also explains the
fact that this axiom implies the axiom of choice. I believe that the
basic problems of abstract set theory, such as Cantor’s continuum
problem, will be solved satisfactorily only with the help of stronger
axioms of this kind, which in a sense are opposite or complementary
to the constructivistic interpretation of mathematics.

More recent attempts to formulate such a maximum principle have
not been completely successful. J. Friedman (1971) proposed one such
proposition, called the generalized maximization principle, and showed
it to be equivalent to GCH; thus far it has attracted little attention. Re-
cently, S. Shelah’s strong version of his proper forcing axiom, PFA+ (by
which, in 1982, he generalized Martin’s axiom in the direction of maxi-
mality), and the principle dubbed “Martin’s maximum” by M. Foreman,
M. Magidor and Shelah have each been shown (by them in 798%, and
independently by S. Todorcevic) to imply that 2% = Ry; more recently,
Todorcevic has announced a proof that 2% = R, already follows from
PFA. At present, there is no consensus among set theorists as to the
truth of these hypotheses. Nor does the author wish to conjecture what
Godel would have thought of them.

By far the most substantial alteration in Gddel 1964 was the addition
of a long supplement, together with a brief postscript noting that Cohen
(1963, 1964) had just established the independence of CH and thereby




Note to 1947 and 1964 169

had verified Gédel’s 1947 claim that CH would not be settled by the
usual axioms for set theory. The supplement consists of a discussion of
new results that Godel considered important, along with an extended
philosophical defense of his Platonist position on CH.

Ostensibly, this defense was stimulated by A. Errera’s article 1952,
claiming that if CH is not decided by the usual axioms for set the-
ory, then the question whether CH is true will lose its meaning, just as
happened to the parallel postulate when non-Euclidean geometry was
proved consistent. Godel insisted that, on the contrary, “the situation
in set theory is very different from that in geometry, both from the
mathematical and from the epistemological point of view” (1964, page
270). Here he stressed the asymmetry between assuming that there is,
and assuming that there is not, a strongly inaccessible cardinal. The
former assumption was fruitful in the sense of having consequences for
number theory, while the latter was not. Likewise, he continued, CH
“can be shown to be sterile for number theory ..., whereas for some
other assumption about the power of the continuum this perhaps is not
so” (page 271). This “sterility”, for first-order number theory, was due
to the fact that N is absolute for L, the class of all constructible sets.
(In his revisions of 1966—1967, discussed below, he here replaced CH by
GCH, and “power of the continuum” by “power of 2%«".)

By using later results, we can say more. In 1969 R. A. Platek estab-
lished that if a sentence of second-order number theory is provable from
CH, then it is already provable from the usual axioms of set theory along
with the axiom of choice; moreover, he showed that the same holds for
any II2? sentence of third-order number theory.™ (No further extension
was possible, since CH itself is a ¥? sentence.) By 1965 Solovay had
independently found Platek’s result on CH, and in addition had discov-
ered a corresponding result for not- CH: If a I3 sentence of second-order
number theory is provable from not- CH, then it is already provable from
ZF and the axiom of choice.” In this sense, then, both CH and not-CH
are sterile for number theory.

The Platonist views put forward by Godel in 1947 were strengthened
in 1964, not only in the supplement but in the text as well, where he
described himself as “someone who considers mathematical objects to
exist independently of our constructions” (page 262). Nevertheless, his
Platonism was most visible in the supplement, where on page 271 he
pursued at some length the analogy between mathematics and physical
theories that he had already broached in 1947

™85, Kripke and J. Silver had each independently arrived at the same result { Platek
1969, p. 219).

PPersonal communication from R. M. Solovay, 27 October 1984.
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Despite their remoteness from sense experience, we do have some-
thing like a perception also of the objects of set theory, as is seen
from the fact that the axioms force themselves upon us as being
true. I don’t see any reason why we should have less confidence
in this kind of perception, i.e., in mathematical intuition, than in
sense perception, which induces us to build up physical theories
and to expect that future sense perceptions will agree with them,
and, moreover, to believe that a question not decidable now has
meaning and may be decided in the future.

In September 1966, Godel wrote an addendum called “Changes to be
made in 3rd edition”, anticipating that 7964 would be reprinted.® Al-
ready in the postscript to 1964, which was added when 196/ was almost
in press, Godel had mentioned Cohen’s 1963 proof of the independence of
CH. But in the 1966 addendum Gédel expressed himself more strongly:
“Cohen’s work . .. is the greatest advance in the foundations of set the-
ory since its axiomatization”. He added that Cohen’s forcing “has been
used to settle several other important independence questions”; yet he
mentioned only one result, namely, that all known large cardinal axioms
“are not sufficient to answer the question of the truth or falsehood of
Cantor’s continuum hypothesis” (page 270 below). Although he did not
give a reference, he was almost certainly referring to the result of Levy
and Solovay that, for all known large cardinals x (and in particular for
measurable cardinals), if there is a model of set theory containing &,
then there is a model containing « in which CH is true and another
model containing & in which CH is false.P

6. Later research affecting 1947 and 196/

There were two major developments that affected Godel’s program,
as proposed in 1947 and 1964, for settling CH. The first of these was re-
search on large cardinals, and the second consisted of new independence
results obtained by Cohen’s method of forcing. In fact, there has been
an extremely fruitful interaction, which still continues, between these
two lines of development.

°These changes have been incorporated into the text of 1964 in the present vol-
ume, where they are printed in square brackets. Godel made additional changes in
a manuscript of October 1967. The textual notes record the exact changes to 1964
made in 1966 and 1967. On the other hand, the reprinting of 1964 in Benacerraf and
Putnam 1983 does not include these alterations and additions.

PThis result, announced in Levy 1964 and independently in Solovay 19650, was
proved in detail in Levy and Solovay 1967.
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The question of the relationship of CH to large cardinal axioms, and
to new axioms such as the axiom of determinacy (AD), has turned out
to be unexpectedly complicated. Large cardinal axioms are now known
to affect the class of sets for which the weak continuum hypothesis is
true. In particular, Solovay showed (1969) that if there exists a measur-
able cardinal, then the weak continuum hypothesis is true for X3 sets.
Moreover, AD, which may be regarded as a kind of large cardinal ax-
iom, implies that the weak continuum hypothesis holds for every subset
of R. Unfortunately, AD contradicts CH, since it implies that the real
numbers cannot be well-ordered (Mycielski 1964, page 209), and so was
surely unacceptable to Godel as a solution to the continuum problem.
On the other hand, the axiom of projective determinacy (that is, AD
restricted to the projective sets) is also a kind of large cardinal axiom
and has recently been shown to be consistent with the axiom of choice,
provided a sufficiently large cardinal exists. Indeed, D.A. Martin and
J.R. Steel (198?) have recently established, among other things, that
if there is a supercompact cardinal (or, what is weaker, infinitely many
Woodin cardinals), then projective determinacy is true and hence the
weak continuum hypothesis is true for all projective sets.q

The second line of development, independence proofs, profoundly af-
fected Godel’s program. In 1963 Cohen established not only that CH is
independent but also that 2% can be arbitrarily large among the alephs.
Feferman then showed that it is consistent with ZF to have 2% = 281,
Luzin’s second continuum hypothesis (Cohen 1964, page 110). From
Cohen’s work it followed, in regard to (i)—(iv} on page 161 above, that
2% js not bounded above by any given aleph and can be either acces-
sible or weakly inaccessible, singular or regular; moreover, there are no
restrictions on the cofinality of 2% other than Konig's theorem. Solo-
vay independently determined the a for which 2% = R, is consistent,
namely all 8, of uncountable cofinality (1965). Thus it was shown that
our ignorance regarding (i)—(iv) is inevitable if we assume only the usual
first-order axioms of set theory. (In 796/, Gédel was inclined to believe
that 2%0 ig rather large, and favored the proposition that 2% is the first
weakly inaccessible cardinal (1964, page 270).)

Shortly after Cohen announced his results in 1963, research on the
continuum problem turned to establishing what are the possibilities for
the continuum function F(R,) = 2%, defined on all ordinals. The first
major breakthrough was Easton’s theorem (1964, 1970) that the contin-
uum function F' can, on regular cardinals, be any nondecreasing function

9By combining this result with earlier work of Woodin, one obtains from a su-
percompact cardinal the existence of a transitive class model of ZF + AD + DC
containing all real numbers and all ordinals.
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for which the cofinality of F/(X,) is greater than R,. For a decade there
was a consensus among set theorists that something analogous to Eas-
ton’s result would also be shown for singular cardinals. Both Easton
and Solovay, among others, attempted to solve what came to be called
the singular cardinals problem.

Consequently, set theorists were quite surprised in 1974 when Silver
established that if GCH holds below a singular cardinal s of uncount-
able cofinality, then it holds at k as well (Silver 1975). Even this result,
however, by no means settled the singular cardinals problem—provided
that this problem is taken as asking for all the laws about cardinal ex-
ponentiation relative to singular cardinals. A first step occurred when
Bukovsky (1965) proved that cardinal exponentiation is determined by

the so-called gimel function Ngf(N"’)—a result that Godel had stated but
not proved in 1947 (page 517).

One important spinoff of Silver’s result was Jensen’s covering theo-
rem (Devlin and Jensen 1975), which states that if the large cardinal
axiom asserting the existence of 0% is false, then the singular cardinals
hypothesis is true.” This hypothesis asserts that the continuum function
F(R,) = 2% is determined by its behavior at regular R,. Thus, al-
though known large cardinal axioms did not settle CH, the negation of
a large cardinal axiom settled the behavior of the continuum function F
at singular cardinals.

Silver’s result was extended by Galvin and Hajnal (1975) for the case
where & is a singular strong limit cardinal of uncountable cofinality. For
such a k, they found an upper bound on 2% in terms of the behavior of 2*
for a stationary set of A < k. Somewhat earlier, in 1974, Solovay proved
that if x is strongly compact, then there is a proper class of cardinals for
which GCH holds, namely, the class of singular strong limit cardinals
greater than k.

Magidor (1977) established that Silver’s assumption of uncountable
cofinality is necessary. In particular, Magidor showed, using a very
large cardinal, that if GCH holds below N, then it may happen that
2% = N, . Shelah (1982) obtained a bound on 2%~ under the as-
sumption that GCH holds below ¥N,. Furthermore, Shelah discovered
an analogue of the Galvin—Hajnal result for singular cardinals of count-
able cofinality. Finally, using a large cardinal assumption, Foreman and
Woodin found a model of ZFC in which GCH fails everywhere; Woodin
later improved this to 28« = R, for all a.. (It is known, thanks to an
earlier result of L. Patai, that if, for all o and for a fixed 3, 28« = Notg,
then f is finite; see Jech 1978, pages 48 and 580.)

TConcerning 0%, see p. 21 above of the introductory note to 1938.
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Recently Foreman (1986) has proposed the axiom of resemblance,
which he regards as a generalization of large cardinal axioms, and has
announced that it implies both GCH and the axiom of projective de-
terminacy. (He has shown in 1986 that, from CH and the axiom of
resemblance, GCH follows.) For Godel, however, the fact that the ax-
iom of resemblance implies GCH would probably have disqualified it as
settling the continuum problem.®

7. Godel’s unpublished papers on CH

After his proposal for using large cardinal axioms to decide CH did
not succeed, Godel introduced other axioms that he hoped would decide
it. In January 1964, before he knew that such axioms, and in particular
the existence of a measurable cardinal, did not settle CH, he wrote to
Cohen about a related question:

Once the continuum hypothesis is dropped, the key problem con-
cerning the structure of the continuum, in my opinion, is the ques-
tion of whether there exists a set of sequences of integers of power
N; which, for any given sequence of integers, contains one majoriz-
ing it from a certain point on .... I always suspected that, in
contrast to the continuum hypothesis, this proposition is correct
and perhaps even demonstrable from the axioms of set theory.

Six years later, Godel postulated the existence of such a set of sequences
as one of his axioms, now called Gddel’s square axioms, which were in-
tended to resolve the continuum problem.

The square axioms are an axiom schema stating that, for each natural
number n, there exists a scale, of type wyy1, of functions from w, to
wy,.t Perhaps Godel was led to formulate the square axioms by reading
Borel 1898, which he cites. On page 116, Borel claimed that there exists
a scale for the case n = 0 for all “effectively defined” functions, though
he did not give a proof of his claim.

Gddel introduced these axioms in his final contribution to solving the
continuum problem, a short paper written in 1970 and entitled “Some
considerations leading to the probable conclusion that the true power of
the continuum is Np”, which he intended to publish in the Proceedings

A recent argument that 280 > R, can be found in Freiling 1986.

“In other words, let ' be the set of functions from wy, t0 wy; then F has a subset
S of power Ry 11 such that for any function f in F there is some function g in S such
that for some o and for all g > a, f(3) < g(8).
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of the National Academy of Sciences.® In this paper he proposed four
axioms (or axiom schemas), of which the square axioms were the first.
The second axiom asserted that there are exactly R,, initial segments of
the scale given by the square axioms. The third axiom was that there
exists a maximal scale of functions from N to R such that “every as-
cending or descending sequence has cofinality w”. The fourth and final
axiom consisted of the Hausdorfl continuity axiom for the scale given by
Godel’s third axiom. (Axiom 4 implies that 2% = 2% )

Godel mailed his paper to Tarski, who then asked Solovay to examine
its correctness. D. A. Martin, to whom Solovay had sent a copy of the
paper, found that a result in it contradicted a theorem of Solovay’s. In
particular, Martin observed, since Solovay had shown that the square
axioms do not put an upper bound on the size of 2%, Gddel had to
be mistaken in his claim that these axioms yield the result that 28 is
bounded by R;.Y On 19 May 1970 Tarski returned the paper to Godel,
adding in his covering letter that “you will certainly hear still in this
matter either from me or from somebody else in Berkeley.”

The whole matter was tinged with irony. For by 1965, having be-
come convinced of the proposition that the square axioms do put an
upper bound on 2%, Godel discussed this proposition with Solovay at
the Institute for Advanced Study. At Godel’s request Solovay looked
into the matter and found that there are models of set theory satisfy-
ing the square axioms but having 2% arbitrarily large. Godel remained
unconvinced, despite K. Prikry’s assurances that Solovay was correct.”
Solovay’s result had to be rediscovered independently by E. Ellentuck
(about 1973) before Gddel came to accept it.*

In 1970, not long after receiving Tarski’s letter, Godel drafted a sec-
ond version of his paper on CH, entitled “A proof of Cantor’s continuum
hypothesis from a highly plausible axiom about orders of growth”. His
title represented a sudden and unexpected shift in his longstanding re-
jection of CH. This change in attitude appears to have been due to his
belief that the square “axioms for N,, (or even any regular ordinal) are
highly plausible, much more so than the continuum hypothesis.” Indeed,
he claimed that CH follows from the square axiom for ¥; (that is, for
n = 1). In conclusion, he wrote:

UThe various versions of this paper are being considered for inclusion in Volume
11T of these Collected works.

VPersonal communication from D. A. Martin and R. M. Solovay, 13 February
1984.

WPersonal communication from R. M. Solovay, 4 April 1984.

*Ellentuck only learned of Solovay’s priority for this result after finding it himself;
sec Ellentuck’s note, dated February 1973, in Gédcl’s Nachlass.
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It seems to me this argument gives much more likelihood to the
truth of Cantor’s continuum hypothesis than any counterargument
set up to now gave to its falsehood, and it has at any rate the
virtue of deriving the power of the set of all functions w — w
from that of certain very special sets of these functions. Of course
the argument can be applied to higher cases of the generalized
continuum hypothesis (in particular to all N,). It is, however,
questionable whether the whole generalized continuum hypothesis
follows.

At the top of this second version Gédel had written “nur fiir mich
geschrieben” (“written only for myself”). It is unclear who, if anyone,
saw this version before Godel’s death.

A third version of the paper (so Godel described it) was a draft of a
letter to Tarski, apparently never sent, that survives in Godel’s Nach-
lass. This letter is much closer in spirit to the first version of the paper
than to the second. In the letter Godel stated that he had written the
first version hurriedly right after an illness for which he had been taking
medication. What he had proved, he now believed, “is a nice equivalence
result for the generalized continuum hypothesis ... [showing that it] fol-
lows from certain very special and weak cases of it.” Godel concluded
the letter with some speculations:

My conviction that 2% = R, of course has been somewhat shaken.
But it still seems plausible to me. One of my reasons is that I don’t
believe in any kind of irrationality such as, e.g., random sequences
in any absolute sense. Perhaps 2% = R, does follow from my
axioms 1-4, but unfortunately Axiom 4 is rather doubtful, while
axioms 1-3 seem eztremely likely to me.

Yet he conceded that Axioms 1-3 do not imply 28 < R,.¥
Thus ended Godel’s last attempt to settle the continuum problem,
which he had analyzed so brilliantly in 71947 and 1964.%

Gregory H. Moore

YBefore 1973, Godel’s square axioms were studied by G. Takeuti, who established
that the existence of a scale from wj to wo implies CH. These axioms are also inves-
tigated in Ellentuck 1975, Takeuti 1978 and P. E. Cohen 1979.

“] would like to thank S. Feferman for many substantive suggestions, and J.
Dawson for many stylistic ones, to an earlier draft of this introductory note; Dawson
has also been of considerable assistance on archival matters. I am especially grateful
to R. M. Solovay for his many useful suggestions regarding Section 6.




What is Cantor’s continuum problem?
(1947)

1. The concept of cardinal number

Cantor’s continuum problem is simply the question: How many points
are there on a straight line in Euclidean space? In other terms, the question
is: How many different sets of integers do there exist?

This question, of course, could arise only after the concept of “number”
had been extended to infinite sets; hence it might be doubted if this exten-
sion can be effected in a uniquely determined manner and if, therefore, the
statement of the problem in the simple terms used above is justified. Closer
examination, however, shows that Cantor’s definition of infinite numbers
really has this character of uniqueness, and that in a very striking manner.
For whatever “number” as applied to infinite sets may mean, we certainly
want it to have the property that the number of objects belonging to some
class does not change if; leaving the objects the same, one changes in any
way whatsoever their properties or mutual relations (e.g., their colors or
their distribution in space). From this, however, it follows at once that
two sets (at least two sets of changeable objects of the space-time world)
will have the same cardinal number if their elements can be brought into
a one-to-one correspondence, which is Cantor’s definition of equality be-
tween numbers. For if there exists such a correspondence for two sets A
and B it is possible (at least theoretically) to change the properties and
relations of each element of A into those of the corresponding element of
B, whereby A is transformed into a set completely indistinguishable from
B, hence of the same cardinal number. For example, assuming a square
and a line segment both completely filled with mass points (so that at each
point of them exactly one mass point is situated), it follows, owing to the
demonstrable fact that there exists a one-to-one correspondence between
the points of a square and of a line segment, and, therefore, also between
the corresponding mass points, that the mass points of the square can be
so rearranged as exactly to fill out the line segment, and vice versa. Such
considerations, it is true, apply directly only to physical objects, but a
definition of the concept of “number” which would depend on the kind of
objects that are numbered could hardly be considered as satisfactory.

So there is hardly any choice left but to accept Cantor’s definition of
equality between numbers, which can easily be extended to a definition
of “greater” and “less” for infinite numbers by stipulating that the cardi-
nal number M of a set A is to be called less than the cardinal number
N of a set B if M is different from N but equal to the cardinal number
of some subset of B. On the basis of these definitious it becomes possible to
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prove that there exist infinitely many different infinite cardinal numbers or
“powers”, and that, in particular, the number of subsets of a set is always
greater than the number of its elements; furthermore, it becomes possible
to extend (again without any arbitrariness) the arithmetical operations to
infinite numbers (including sums and products with any infinite | number of
terms or factors) and to prove practically all ordinary rules of computation.

But, even after that, the problem to determine the cardinal number of
an individual set, such as the linear continuum, would not be well-defined
if there did not exist some “natural” representation of the infinite cardinal
numbers, comparable to the decimal or some other systematic denotation
of the integers. This systematic representation, however, does exist, owing
to the theorem that for each cardinal number and each set of cardinal
numbers’ there exists exactly one cardinal number immediately succeeding
in magnitude and that the cardinal number of every set occurs in the series
thus obtained.? This theorem makes it possible to denote the cardinal
number immediately succeeding the set of finite numbers by Xy (which is
the power of the “denumerably infinite” sets), the next one by Ry, etc.; the
one immediately succeeding all ®; (where ¢ is an integer), by N, the next
one by N1, etc., and the theory of ordinal numbers furnishes the means
to extend this series farther and farther.

2. The continuum problem, the continuum hypothesis
and the partial results concerning its truth
obtained so far

So the analysis of the phrase “how many” leads unambiguously to quite
a definite meaning for the question stated in the second line of this paper,
namely, to find out which one of the R’s is the number of points on a
straight line or (which is the same) on any other continuum in Euclidean
space.  Cantor, after having proved that this number is certainly greater
than Ng, conjectured that it is Ny, or (which is an equivalent proposition)
that every infinite subset of the continuum has either the power of the set of
integers or of the whole continuum. This is Cantor’s continuum hypothesis.

!As to the question why there does not exist a set of all cardinal numbers, see
footnote 14.

2In order to prove this theorem the axiom of choice (see Fraenkel 1928, p. 288 ff.)
is necessary, but it may be said that this axiom is, in the present state of knowledge,
exactly as well-founded as the system of the other axioms. It has been proved consistent,
provided the other axioms are so (see Gédel 1940). 1t is exactly as evident as the other
axioms for sets in the sense of arbitrary multitudes and, as for sets in the sense of ex-
tensions of definable properties; it also is demonstrable for those concepts of definability
for which, in the present state of knowledge, it is possible to prove the other axioms,
namely, those explained in footnotes 20 and 26.
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But, although Cantor’s set theory has now had a development of more
than sixty years and the problem is evidently of great importance for it,
nothing has been proved so far relative to the question what the power of
the continuum is or whether its subsets satisfy the condition just stated,
except (1) that the power of the continuum is not a cardinal number of a
certain very special kind, namely, not a limit of denumerably many smaller
cardinal numbers,® and (2) that the proposition just mentioned about the
subsets of the continuum is | true for a certain infinitesimal fraction of these
subsets, the analytical? sets.> Not even an upper bound, however high, can
be assigned for the power of the continuum. Nor is there any more known
about the quality than about the quantity of the cardinal number of the
continuum. It is undecided whether this number is regular or singular,
accessible or inaccessible, and (except for Konig’s negative result) what its
character of cofinality? is. The only thing one knows, in addition to the
results just mentioned, is a great number of consequences of, and some
propositions equivalent to, Cantor’s conjecture.

This pronounced failure becomes still more striking if the problem is
considered in its connection with general questions of cardinal arithmetic.
It is easily proved that the power of the continuum is equal to 280, So the
continuum problem turns out to be a question from the “multiplication ta-
ble” of cardinal numbers, namely, the problemn to evaluate a certain infinite
product (in fact the simplest non-trivial one that can be formed). There is,
however, not one infinite product (of factors > 1) for which only as much
as an upper bound for its value can be assigned. All one knows about the
evaluation of infinite products are two lower bounds due to Cantor and
Konig (the latter of which implies a generalization of the aforementioned
negative theorem on the power of the continuum), and some theorems con-
cerning the reduction of products with different factors to exponentiations
and of exponentiations to exponentiations with smaller bases or exponents.
These theorems reduce’ the whole problem of computing infinite products
to the evaluation of N;“““) and the performance of certain fundamental
operations on ordinal numbers, such as determining the limit of a series

of them. fo(““)., and therewith all products and powers, can easily be

3See Hausdorff 1914, p. 68. The discoverer of this theorem, J. Kénig, asserted more
than he had actually proved (see his 1905).

4See the list of definitions at the end of this paper.

5See Hausdorff 1935, p. 32. Even for complements of analytical sets the guestion
is undecided at present, and it can be proved only that they have (if they are infinite)
either the power Ng or Ri or that of the continuum (see Kuratowski 1933, p. 246).

8See Sierpitiski 1934.
7This reduction can be effected owing to the results and methods of Tarski 1925.
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computed® if the “generalized continuum hypothesis” is assumed, i.e., if
it is assumed that 2% = R, for every a, or, in other terms, that the
number of subsets of a set of power X, is N, ;. But, without making any
undemonstrated assumption, it is not even known whether or not m < n
implies 2™ < 2™ (although it is trivial that it implies 2™ < 2"), nor even
whether 2% < 2%,

3. Restatement of the problem on the basis
of an analysis of the foundations of set theory
and results obtained along these lines

This scarcity of results, even as to the most fundamental questions in
this field, may be due to some extent to purely mathematical difficulties;
it seems, however (see Section 4 below), that there are also deeper reasons
behind it and that a complete solution of | these problems can be obtained
only by a more profound analysis (than mathematics is accustormed to give)
of the meanings of the terms occurring in them (such as “set”, “one-to-one
correspondence”, etc.) and of the axioms underlying their use. Several
such analyses have been proposed already. Let us see then what they give
for our problem.

First of all there is Brouwer’s intuitionism, which is utterly destructive
in its results. The whole theory of the N’s greater than N; is rejected as
meaningless.” Cantor’s conjecture itself receives several different mean-
ings, all of which, though very interesting in themselves, are quite different
from the original problem, and which lead partly to affirmative, partly to
negative answers;'? not everything in this field, however, has been clari-
fied sufficiently. The “half-intuitionistic” standpoint along the lines of H.
Poincaré and H. Weyl'! would hardly preserve substantially more of set
theory.

This negative attitude towards Cantor’s set theory, however, is by no
means a necessary outcome of a closer examination of its foundations, but
only the result of certain philosophical conceptions of the nature of mathe-
matics, which admit mathematical objects only to the extent in which they

8For regular numbers R, one obtains immediately:
sz(Na) — NE" — 2Na — Rn{+1~
9See Brouwer 1909.
108¢e Brouwer 1907, 1, 9; 111, 2.
1Gce Weyl 1932. If the procedure of construction of sets described there (p. 20)
is iterated a sufficiently large (transfinite) number of times, one gets exactly the real
numbers of the model for set theory spoken of below in Section 4, in which the continuum

hypothesis is true. But this iteration would hardly be possible within the limits of the
half-intuitionistic standpoint.
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are (or are believed to be) interpretable as acts and constructions of our
own mind, or at least completely penetrable by our intuition. For some-
one who does not share these views there exists a satisfactory foundation
of Cantor’s set theory in its whole original extent, namely, axiomatics of
set theory, under which the logical system of Principia mathematica (in a
suitable interpretation) may be subsumed.

It might at first seem that the set-theoretical paradoxes would stand in
the way of such an undertaking, but closer examination shows that they
cause no trouble at all. They are a very serious problem, but not for
Cantor’s set theory. As far as sets occur and are necessary in mathematics
(at least in the mathematics of today, including all of Cantor’s set theory).
they are sets of integers, or of rational numbers (i.e., of pairs of integers).
or of real numbers (i.e., of sets of rational numbers), or of functions of real
numbers (i.e., of sets of pairs of real numbers), etc.; when theorems about
all sets (or the existence of sets) in general are asserted, they can always
be interpreted without any difficulty to mean that they hold for sets of
integers as well as for sets of real numbers, etc. (respectively, that there
exist either sets of integers, or sets of real numbers, or ... etc., which have
the asserted property). This concept of set, however, according to which
a set is anything obtainable from the integers (or some other well-defined
| objects) by iterated application'? of the operation “set of”,'* and not
something obtained by dividing the totality of all existing things into two
categories, has never led to any antinomy whatsoever; that is, the perfectly
“naive” and uncritical working with this concept of set has so far proved
completely self-consistent.

But, furthermore, the axioms underlying the unrestricted use of this
concept of set, or, at least, a portion of them which suffices for all mathe-
matical proofs ever produced up to now, have been so precisely formulated
in axiomatic set theory!® that the question whether some given proposition
follows from them can be transformed, by means of logistic symbolism. into

12This phrase is to be understood so as to include also transfinite iteration. the
totality of sets obtained by finite iteration forming again a set and a basis for a further
application of the operation “set of”.

13The operation “set of x’s” cannot be defined satisfactorily (at least in the present
state of knowledge), but only be paraphrased by other expressions involving again the
concept of set, such as: “multitude of z's”, “combination of any number of z's”. “part
of the totality of 2’s”; but as opposed to the concept of set in general (if considered as
primitive) we have a clear notion of this operation.

141t follows at once from this explanation of the term “set” that a set of all sets
or other sets of a similar extension cannot exist, since every set obtained in this way
immediately gives rise to further application of the operation “set of” and. therefore. to
the existence of larger sets.

15Gee, e.g., Bernays 1937, 1941, 1942, 1942a, 1943, von Neumann 1925: cf. also von
Neumann 1928a and 1929, Gdodel 1940.
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a purely combinatorial problem concerning the manipulation of symbols
which even the most radical intuitionist must acknowledge as meaningful.
So Cantor’s continuum problem, no matter what philosophical standpoint
one takes, undeniably retains at least this meaning: to ascertain whether
an answer, and if so what answer, can be derived from the axioms of set
theory as formulated in the systems quoted.

Of course, if it is interpreted in this way, there are (assuming the con-
sistency of the axioms) a priori three possibilities for Cantor’s conjecture:
It may be either demonstrable or disprovable or undecidable.’® The third
alternative (which is only a precise formulation of the conjecture stated
above that the difficulties of the problem are perhaps not purely mathe-
matical) is the most likely, and to seek a proof for it is at present one of
the most promising ways of attacking the problem. One result along these
lines has been obtained already, namely, that Cantor’s conjecture is not
disprovable from the axioms of set theory, provided that these axioms are
consistent (see Section 4).

It is to be noted, however, that, even if one should succeed in proving its
undemonstrability as well, this would (in contradistinction, for example,
to the proof for the transcendency of 7) by no means settle the question
definitively. | Only someone who (like the intuitionist) denies that the
concepts and axioms of classical set theory have any meaning (or any well-
defined meaning) could be satisfied with such a solution, not someone who
believes them to describe some well-determined reality. For in this reality
Cantor’s conjecture must be either true or false, and its undecidability
from the axioms as known today can only mean that these axioms do not
contain a complete description of this reality; and such a belief is by no
means chimerical, since it is possible to point out ways in which a decision
of the question, even if it is undecidable from the axioms in their present
form, might nevertheless be obtained.

For first of all the axioms of set theory by no means form a system closed
in itself, but, quite on the contrary, the very concept of set'” on which they
are based suggests their extension by new axioms which assert the existence
of still further iterations of the operation “set of”. These axioms can also
be formulated as propositions asserting the existence of very great cardinal
numbers or (which is the same) of sets having these cardinal numbers.

161n case of the inconsistency of the axioms the last one of the four a priori pos-
sible alternatives for Cantor’s conjecture would occur, namely, it would then be both
demonstrable and disprovable by the axioms of set theory.

17Similarly also the concept “property of set” (the second of the primitive terms
of set theory) can constantly be enlarged and, furthermore, concepts of “property of
property of set” etc. be introduced whereby new axioms are obtained, which, however,
as to their consequences for propositions referring to limited domains of sets (such as
the continuum hypothesis) are contained in the axioms depending on the concept of set.
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The simplest of these strong “axioms of infinity” assert the existence of
inaccessible numbers (and of numbers inaccessible in the stronger sense)
> Ng. The latter axiom, roughly speaking, means nothing else but that the
totality of sets obtainable by exclusive use of the processes of formation
of sets expressed in the other axioms forms again a set (and, therefore, a
new basis for a further application of these processes).!® Other axioms of
infinity have been formulated by P. Mahlo.!® Very little is known about
this section of set theory; but at any rate these axioms show clearly, not
only that the axiomatic system of set theory as known today is incomplete,
but also that it can be supplemented without arbitrariness by new axioms
which are only the natural continuation of the series of those set up so far.

That these axioms have consequences also far outside the domain of very
great transfinite numbers, which are their immediate object, can be proved;
each of them (as far as they are known) can, under the assumption of consis-
tency, be shown to increase the number of decidable propositions even in the
field of Diophantine equations. As for the continuum problem, there is little
hope of solving it by means of those axioms of infinity which can be set up
on the basis of principles known today (the above-mentioned proof for the
undisprovability of the continuum hypothesis, e.g., goes through for all
of them without any change). But probably there exist others based on
hitherto unknown principles; also there may exist, besides the ordinary
axioms, the axioms of infinity and | the axioms mentioned in footnote 17,
other (hitherto unknown) axioms of set theory which a more profound un-
derstanding of the concepts underlying logic and mathematics would enable
us to recognize as implied by these concepts.

Furthermore, however, even disregarding the intrinsic necessity of some
new axiom, and even in case it had no intrinsic necessity at all, a decision
about its truth is possible also in another way, namely, inductively by study-
ing its “success”, that is, its fruitfulness in consequences and in particular
in “verifiable” consequences, i.e., consequences demonstrable without the
new axiom, whose proofs by means of the new axiom, however, are consid-
erably simpler and easier to discover, and make it possible to condense into
one proof many different proofs. The axioms for the system of real num-
bers, rejected by the intuitionists, have in this sense been verified to some
extent owing to the fact that analytical number theory frequently allows
us to prove number-theoretical theorems which can subsequently be ver-
ified by elementary methods. A much higher degree of verification than
that, however, is conceivable. There might exist axioms so abundant in

8Gee Zermelo 1930.

19Gee his 1911, pp. 190-200, 1913, pp. 269-276. From Mahlo’s presentation of the
subject, however, it does not appear that the numbers he defines actually exist.
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their verifiable consequences, shedding so much light upon a whole dis-
cipline, and furnishing such powerful methods for solving given problems
(and even solving them, as far as that is possible, in a constructivistic way)
that quite irrespective of their intrinsic necessity they would have to be
assumed at least in the same sense as any well-established physical theory.

4. Some observations about the question:
In what sense and in which direction may a solution
of the continuum problem be expected?

But are such considerations appropriate for the continuum problem? Are
there really any strong indications for its unsolubility by the known axiorns?
I think there are at least two.

The first one is furnished by the fact that there are two quite differently
defined classes of objects which both satisfy all axioms of set theory written
down so far. One class consists of the sets definable in a certain manner by
properties of their elements,?° the other of the sets in the sense of arbitrary
multitudes irrespective of if, or how, they can be defined. Now, before it
is settled what objects are to be numbered, and on the basis of what one-
to-one correspondences, one could hardly expect to be able to determine
their number (except perhaps in case of some fortunate coincidence). If,
however, someone believes that it is meaningless to speak of sets except in
the sense of extensions of definable properties, or, at least, that no other
sets exist, then, too, he can hardly expect more than a small fraction of the
problems of set theory to be solvable without making use of this, in his opin-
ion essential, characteristic of sets, namely, that they are | all derived from
(or in a sense even identical with) definable properties. This characteristic
of sets, however, is neither formulated explicitly nor contained implicitly
in the accepted axioms of set theory. So from either point of view, if in
addition one has regard to what was said above in Section 2, it is plau-
sible that the continuum problem will not be solvable by the axioms set
up so far, but, on the other hand, may be solvable by means of a new axiom

20Namely, definable “in terms of ordinal numbers” (i.e., roughly speaking, under
the assumption that for each ordinal number a symbol denoting it is given) by means
of transfinite recursions, the primitive terms of logic, and the e-relation, admitting,
however, as elements of sets and of ranges of quantifiers only previously defined sets.
See my papers 1939a and 1940, where an exactly equivalent, although in its definition
slightly different, concept of definability (under the name of “constructibility”) is used.
The paradox of Richard, of course, does not apply to this kind of definability, since the
totality of ordinals is certainly not denumerable.
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which would state or at least imply something about the definability of
sets.2!

The latter half of this conjecture has already been verified; namely, the
concept of definability just mentioned (which is itself definable in terms of
the primitive notions of set theory) makes it possible to derive the general-
ized continuum hypothesis from the axiom that every set is definable in this
sense.?? Since this axiom (let us call it “A”) turns out to be demonstrably
consistent with the other axioms, under the assumption of the consistency
of these axioms, this result (irrespective of any philosophical opinion) shows
the consistency of the continuum hypothesis with the axioms of set theory,
provided that these axioms themselves are consistent.?®> This proof in its
structure is analogous to the consistency proof for non-Euclidean geome-
try by means of a model within Euclidean geometry, insofar as it follows
from the axioms of set theory that the sets definable in the above sense
form a model for set theory in which furthermore the proposition A and,
therefore, the generalized continuum hypothesis is true. But the definition
of “definability” can also be so formulated that it becomes a definition of
a concept of “set” and a relation of “element of” (satisfying the axioms of
set theory) in terms of entirely different concepts, namely, the concept of
“ordinal numbers”, in the sense of elements ordered by some relation of
“greater” and “less”, this ordering relation itself, and the notion of “recur-
sively defined function of ordinals”, which can be taken as primitive and be
described axiomatically by way of an extension of Peano’s axioms.?* (Note
that this does not apply to my original formulation presented in the papers
quoted above, because there the general concept of “set” with its element
relation occurs in the definition of “definable set”, although the definable
sets remain the same if, afterwards, in the definition of “definability” the
term “set” is replaced by “definable set”.)
| A second argument in favor of the unsolubility of the continuum problem
on the basis of the ordinary axioms can be based on certain facts (not known
or not existing at Cantor’s time) which seem to indicate that Cantor’s

21D. Hilbert’s attempt at a solution of the continuum problem (see his 1926), which,
however, has never been carried through, also was based on a consideration of all possible
definitions of real numbers.

220n the other hand, from an axiom in some sense directly opposite to this one the
negation of Cantor’s conjecture could perhaps be derived.

238ee my paper 1940 and note 1939a. For a carrying through of the proof in all
details, my paper 1940 is to be consulted.

24For such an extension see Tarski 1924, where, however, the general concept of “set
of ordinal numbers” is used in the axioms; this could be avoided, without any loss in
demonstrable theorems, by confining oneself from the beginning to recursively definable
sets of ordinals.
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conjecture will turn out to be wrong;2® for a negative decision the question
is (as just explained) demonstrably impossible on the basis of the axioms
as known today.

There exists a considerable number of facts of this kind which, of course,
at the same time make it likely that not all sets are definable in the above
sense.?® One such fact, for example, is the existence of certain properties of
point sets (asserting an extreme rareness of the sets concerned) for which
one has succeeded in proving the existence of undenumerable sets having
these properties, but no way is apparent by means of which one could
expect to prove the existence of examples of the power of the continuum.
Properties of this type (of subsets of a straight line) are: (1) being of
the first category on every perfect set,?” (2) being carried into a zero set
by every continuous one-to-one mapping of the line on itself.? Another
property of a similar nature is that of being coverable by infinitely many
intervals of any given lengths. But in this latter case one has so far not
even succeeded in proving the existence of undenumerable examples. From
the continuum hypothesis, however, it follows that there exist in all three
cases not only examples of the power of the continuum,?® but even such
as are carried into themselves (up to denumerably many points) by every
translation of the straight line.3°

And this is not the only paradoxical consequence of the continuum
hypothesis. Others, for example, are that there exist: (1) subsets of a
straight line of the power of the continuum which are covered (up to denu-
merably many points) by every dense set of intervals, or (in other terms)
which contain no undenumerable subset nowhere dense on the
straight line,3' (2) subsets of a straight line of the power of the contin-
uum which contain no undenumerable zero set,3? (3) subsets of Hilbert

25Views tending in this direction have been expressed also by N. Luzin in his 1935,
p. 129 ff. See also Sierpiriskt 1935.

26That all sets are “definable in terms of ordinals” if all procedures of definition, i.e.,
also quantification and the operation & with respect to all sets, irrespective of whether
they have or can be defined, are admitted could be expected with more reason, but still
it would not at all be justified to assume this as an axiom. It is worth noting that the
proof that the continuum hypothesis holds for the definable sets, or follows from the
assumption that all sets are definable, does not go through for this kind of definability,
although the assumption that these two concepts of definability are equivalent is, of
course, demonstrably consistent with the axioms.

27See Sierpiriski 1934a and Kuratowski 1953, p. 269 f£.

288ee Luzin and Sierpinski 1918 and Sierpiniski 1934a.

29For the 3rd case see Sierpiriski 1934, p. 39, Theorem 1.

30See Sierpinski 1935a.

318ee Luzin 1914, p. 1259.

328ee Sierpiriski 1924, p. 184.
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space of the power of the continuum which contain no undenumerable sub-
set of finite dimension,®® (4) an infinite sequence A* of decompositions of
any set M of the power of the continuum into continuum | many mutually
exclusive sets A% such that, in whichever way a set A;i is chosen for each i,
II{M — A% ) is always denumerable.>* Even if in (1)-(4) “power of the
czontinuum"’ is replaced by “N;”, these propositions are very implausible;
the proposition obtained from (3) in this way is even equivalent with (3).

One may say that many of the results of point-set theory obtained
without using the continuum hypothesis also are highly unexpected and
implausible.?> But, true as that may be, still the situation is different
there, insofar as in those instances (such as, e.g., Peano’s curves) the ap-
pearance to the contrary can in general be explained by a lack of agreement
between our intuitive geometrical concepts and the set-theoretical ones oc-
curring in the theorems. Also, it is very suspicious that, as against the
numerous plausible propositions which imply the negation of the contin-
uum hypothesis, not one plausible proposition is known which would imply
the continuum hypothesis. Therefore one may on good reason suspect that
the role of the continuum problem in set theory will be this, that it will
finally lead to the discovery of new axioms which will make it possible to
disprove Cantor’s conjecture.

Definitions of some of the technical terms

Definitions 4-12 refer to subsets of a straight line, but can be literally
transferred to subsets of Euclidean spaces of any number of dimensions;
definitions 13~14 refer to subsets of Euclidean spaces.

1. Tcall “character of cofinality” of a cardinal number m (abbreviated by

“cf(m)”) the smallest number n such that m is the sum of n numbers
< m.

2. A cardinal number m is regular if cf(m) = m, otherwise singular.

3. An infinite cardinal number m is inaccessible if it is regular and has
no immediate predecessor (i.e., if, although it is a limit of numbers
< m, it is not a limit of fewer than m such numbers); it is inaccessible
in the stronger sense if each product (and, therefore, also each sum) of
fewer than m numbers < m is < m. (See Sterpiriski and Tarski 1930,
Tarski 1938. From the generalized continuum hypothesis follows the
equivalence of these two notions. This equivalence, however, is a

33See Hurewicz 1932.

34See Braun and Sierpinski 1932, p. 1, proposition (). This proposition and the
one stated under (3) in the text are equivalent with the continuum hypothesis.

35See, e.g., Blumenthal 1940.
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much weaker and much more plausible proposition. ¥y evidently is
inaccessible in both senses. As for finite numbers, 0 and 2 and no
others are inaccessible in the stronger sense (by the above definition},
which suggests that the same will hold also for the correct extension
of the concept of inaccessibility to finite numbers.)

A set of intervals is dense if every interval has points in common
with some interval of the set. (The endpoints of an interval are not
considered as points of the interval.)

A zero set is a set which can be covered by infinite sets of intervals
with arbitrarily small lengths-sum.

A neighborhood of a point P is an interval containing P.

A subset A of B is dense in B if every neighborhood of any point of
B contains points of A.

. A point P is in the exterior of A if it has a neighborhood containing

no point of A.

A subset A of B is nowhere dense on B if those points of B which
are in the exterior of A are dense in B. (Such sets A are exactly the
subsets of the borders of the open sets in B, but the term “border-set”
is unfortunately used in a different sense.)

A subset A of B is of the first category in B if it is the sum of
denumerably many sets nowhere dense in B.

. Set A is of the first category on B if the intersection A - B is of the

first category in B.

A set is perfect if it is closed and has no isolated point (i.e., no point
with a neighborhood containing no other point of the set).

Borel sets are defined as the smallest system of sets satisfying the
postulates:

{1) The closed sets are Borel sets.

{(2) The complement of a Borel set is a Borel set.

(3) The sum of denumerably many Borel sets is a Borel set.

A set is analytic if it is the orthogonal projection of some Borel set
of a space of next higher dimension. (Every Borel set therefore is, of
course, analytic.)

Quantifiers are the logistic symbols standing for the phrases: “for all
objects z” and “there exist objects #”. The totality of objects x to
which they refer is called their range.

The symbol “2” means “the set of those objects x for which ...”.
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Introductory note to 1949
and 1952

These two papers represent Goédel’s main contribution to relativis-
tic cosmology. In the 1920s and the 1930s, the Friedmann-Robertson—
Walker cosmological models had been introduced as the simplest solu-
tions of the equations of Einstein’s general theory of relativity that were
consistent with the observed red-shift of distant galaxies. These models
were spatially homogeneous and isotropic, and were expanding but were
non-rotating. Godel was the first to consider models that were rotating.
The possible rotation of the universe has a special significance in general
relativity because one of the influences that led Einstein to the theory
in 1915 was Mach’s principle. The exact formulation of the principle is
rather obscure, but it is generally interpreted as denying the existence of
absolute space. In other words, matter has inertia only relative to other
matter in the universe. The principle is generally taken to imply that
the local inertial frame defined by gyroscopes should be non-rotating
with respect to the frame defined by distant galaxies.

Godel showed that it was possible to have solutions of the Einstein
field equations in which the galaxies were rotating with respect to the lo-
cal inertial frame. He therefore demonstrated that general relativity does
not incorporate Mach’s principle. Whether or not this is an argument
against general relativity depends on your philosophical viewpoint, but
most physicists nowadays would not accept Mach’s principle, because
they feel that it makes an untenable distinction between the geometry
of space-time, which represents the gravitational and inertial field, and
other forms of fields and matter.

In the first of these papers (1949) Godel presented a rotating solu-
tion that was not expanding but was the same at all points of space and
time. This solution was the first to be discovered that had the curious
property that in it it was possible to travel into the past. This leads to
paradoxes such as “What happens if you go back and kill your father
when he was a baby?” It is generally agreed that this cannot happen
in a solution that represents our universe, but Goédel was the first to
show that it was not forbidden by the Einstein equations. His solution
generated a lot of discussion of the relation between general relativity
and the concept of causality.

The second paper (1952) describes more reasonable rotating cosmo-
logical models that are expanding and that do not have the possibil-
ity of travel into the past. These models could well be a reasonable
description of the universe that we observe, although observations of the

189
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isotropy of the microwave background indicate that the rate of rotation
must be very low.

S. W. Hawking
[For a more detailed discussion of Gdodel’s cosmological models,

the reader is referred to Hawking and Fllis 1973, pages 168-170, to
Malament 1985, and to Raychaudhuri 1979, pages 92-95.]

An example of a new type
of cosmological solutions
of Einstein’s field equations of gravitation

(1949)

1. The main properties of the new solution

Al cosmological solutions with non-vanishing density of matter known
at present! have the common property that, in a certain sense, they contain
an “absolute” time coordinate,? owing to the fact that there exists a one-
parametric system of three-spaces everywhere orthogonal on the world lines
of matter. It is easily seen that the non-existence of such a system of three-
spaces is equivalent with a rotation of matter relative to the compass of
inertia. In this paper I am proposing a solution (with a cosmological term
# 0) which exhibits such a rotation. This solution, or rather the four-
dimensional space S which it defines, has the further properties:

(1) S is homogeneous, i.e., for any two points P, @ of S there exists a
transformation of S into itself which carries P into ). In terms of physics
this means that the solution is stationary and spatially homogeneous.

(2) There exists a one-parametric group of transformations of S into
itself which carries each world line of matter into itself, so that any two
world lines of matter are equidistant.

1See, for example, Robertson 1933.

2 As to the philosophical consequences which have been drawn from this circumstance
see Jeans 1936 and my article 1949a, forthcoming in the Einstein volume of the Library
of Living Philosophers.
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(3) S has rotational symmetry, i.e., for each point P of S there exists
a one-parametric group of transformations of S into itself which carries P
into itself.

(4) The totality of time-like and null vectors can be divided into +- and
—-vectors in such a way that: (a) if £ is a +-vector, —¢ is a —-vector, (b)
a limit of +- (or —-)vectors, if # 0, is again a +- (or —-)vector. That
is, a positive direction of time can consistently be introduced in the whole
solution.

After a direction of time has been introduced in this way, a temporal
orientation is defined for the world line of every (real or possible) particle
of matter or light, i.e., it is determined for any two neighboring points on
it which one is earlier. On the other hand, however, no uniform temporal
ordering of all point events, agreeing in direction with all these individual
orderings, exists. This is expressed in the next property:

(5) It is not possible to assign a time coordinate ¢ to each space-time
point in such a way that ¢ always increases, if one moves in a positive time-
like direction; and this holds both for an open and a closed time coordinate.

(6) Every world line of matter occurring in the solution is an open line
of infinite length, which never approaches any of its preceding points again;
but there also exist closed time-like lines.® In particular, if P, @ are any
two points on a world line of matter,* and P precedes @ on this line, there
exists a time-like line connecting P and @ on which @ precedes P; i.e., it
is theoretically possible in these worlds to travel into the past, or otherwise
influence the past.

(7) There exist no three-spaces which are everywhere space-like and
intersect each world line of matter in one point.

(8) If T is any system of mutually exclusive three-spaces, each of which
intersects every world line of matter in one point,” then there exists a
transformation which carries S and the positive direction of time into itself,
but does not carry Y. into itself; i.e., an absolute time does not exist, even if
it is not required to agree in direction with the times of all possible observers
(where “absolute” means: definable without reference to individual objects,
such as, e.g., a particular galactic system).

(9) Matter everywhere rotates relative to the compass of inertia with
the angular velocity 2(1mp)%, where p is the mean density of matter and »
Newton’s gravitational constant.

3If the tangent of a line is discontinuous, the line is to be considered as time-like only
if the corners can be so rounded off that the resulting line is everywhere time-like.

4“World line of matter” without further specification always refers to the world lines
of matter occurring as such in the solution under consideration.

5Another hypothesis about ¥ under which the conclusion holds is that £ is one-
parametric and oriented (where the orientation refers to the space whose points are the
elements of X).
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2. Definition of the linear element
and proof that it satisfies the field equations

The linear element of S is defined by the following expression:®

a2(dm02 - d-Z'lz + (62m1 /2)d(L‘22 - dl‘gz + 26“1d:n0d:172),

448 | where a is a positive number. The matrices of the g;; and ¢**, therefore,

are the two:
1 0 e*1 0 -1 0 2e ™4 0
2 || 0 -1 0 0 i 0 ~1 0 0
Tlem 0 ey2 ol 2 ll2em 0 —2e72m 0
0 0 0 -1 0 0 0 -1

Owing to the fact that only two of the forty dgix [0z, are # 0, namely
0g22/0x1 and 8ggz/0x1, the Ty and 'y, can very easily be computed.
One obtains the values:

Loz = —T102 =Ty = (a®/2)e™,

[0 = —Tg 12 = —(a?/2)e”,

Fgl =1, Iﬂ[l)z :P(1)2 = e /2,

i, = e /2, T3 = —e ™.
These T; r; and I['};, and those obtained from them by interchanging the

last two (or the lower two) indices are the only ones that do not vanish.
Using for Ry the formula’

0 18%lo 1__ dlo
Rip = 5—TG — s o2 4 -7g, 88 _ Ieil ok
Oz, 20x;0x, 2 Oz,
6This quadratic form can also be written thus
e2%1

2 2
) d:I)z —dzg 5

which makes it evident that, as required, its signature is everywhere —2. The three-
space obtained by leaving out the term —dz3® has a simple geometric meaning (see

448 below). Essentially the | same three-space, but with the signature +3 and with more
general values of the constants, has been investigated in connection with the theory of
continuous groups, without any reference to relativity theory. See, for example, Bianchi
1918, p. 565.

"Note that physicists frequently denote with —R;, what is here denoted with R,
with a corresponding change of sign in the field equations.

a? [(dmo + e®ldxs)? — dz ? —
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and taking account of the fact that 9/0z;, except for ¢ = 1, vanishes for
every magnitude of the solution, and that g = (a%/2)e?*, we obtain

o o
Ry, = %IF},C + T — T,

This yields the values for the R
Roo =1, Ry =¢*", Rpy= Ry =e";
all other R;; vanish. Hence,
R=1/d%

The unit vector u in the direction of the zg-lines has the contravariant
components 1/a, 0, 0, 0 and, therefore, the covariant components a, 0,
ae® | 0.

Hence we obtain:

Rik = 1/@2 c U U

Since, furthermore, R is a constant, the relativistic field equations (with
the zg-lines as world lines of matter), i.e., the equations®

1
Ry, — §gikR = 8WKpus Uk + Agik

are satisfied (for a given value of p) if we put
1/a* = 8mkp, A= —R/2=~1/2a> = —4nkp.

The sign of the cosmological constant here is the opposite of that occurring
in Einstein’s static solution. It corresponds to a positive pressure.

3. Proofs for the properties enumerated

That there exists no one-parametric system of three-spaces orthogonal
on the zg-lines follows immediately from the necessary and sufficient con-
dition which a vector field v in a four-space must satisfy, if there is to exist

8The linear element is supposed to give time-like distances in seconds and space-like

distances in light seconds. Therefore, the coefficient of u;uy, differs from the usual one

by a factor c2.
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a system of three-spaces everywhere orthogonal on the vectors of the field.
This condition requires that the skew symmetric tensor

o _v.(%_% b (O _0uY  (Ovi _ Ou
k=N Oz, Oz k\oz; oz "\or, 0z

should vanish identically. The components of the corresponding vector

ikl

w! = maikl,

however, in our case (i.e., for v; = wu;) have the values 0, 0, 0, v/2/a®.
The non-vanishing of w® shows, moreover, that there exist no surfaces
orthogonal on the zy-lines in the subspaces x3 = constant.

If v is the unit vector representing the velocity of matter, the vector w
(which evidently is always orthogonal to v) is twice the angular velocity of
matter in a local inertial system in whose origin matter is at rest at the
moment considered.® Hence, property (9) follows at once.

The properties (1) and (2) follow from the directly verifiable fact that
the space S admits the following four systems of transformations into itself,

(T To=x¢ +b ) To =1z +b
xz; =z fori #0 z; =x; fori #2
(I11) r3=1x3' +b w Ty =z +b
z; =x; fori #£3 Tg = To'e P
To = .'L'Q,
r3 = x3/,

where b is an arbitrary real number.

A division of the time-like and null vectors into +- and —-vectors as
required by (4) can be effected by defining £ to be a +- or a —-vector
according as to whether the inner product (£u) = g&uf is > or < 0.

In order to prove (3) we introduce new coordinates r, ¢, ¢, y (where 7,
¢, t are cylindrical coordinates in the subspaces x3 = constant, and y, up
to a constant factor, is = z3) by the following formulas of transformation,
| which are easily solvable with respect to the x;,

€® = ch2r + cos ¢psh2r

Z0€™! = v/ 2sin ¢sh2r

9This is an immediate consequence of the definition of a local inertial system, which
requires that g;x = £6;* and 9g;,/0z; = O for every 4, k, L.
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tg <i¢1 + To — 2t> = (3_2'"tgqS where 2

2 2/ 2’
x3 = 2y.

.’170—2t) T

W2 | 2

This leads!® to the expression for the linear element,
4a2(dt® — dr? — dy® + (sh*r — sh®r)d¢? + 2v/2sh®rdgdt),

which directly exhibits the rotational symmetry, since the g;; do not depend
on ¢.

Property (6) now follows easily: if ¢ is defined by she =1 (ie., ¢ =
log(1++/2)), then for any R > ¢ we have sh*R—sh®R > 0; hence, the circle
defined by r = R, t = y = 0 is everywhere time-like (the positive direction
of time, by the above definition, being that of increasing ¢). Hence, the
line defined by

r=R, y=0, t=—ap (0<¢<2m)

for sufficiently small « also will be everywhere time-like. However, the
initial point @ of this line (i.e., the point corresponding to ¢ = 0) and the
end point P (i.e., that corresponding to ¢ = 27) are situated on the ¢-line:
r=R,y=¢ =0, and P precedes @ on this line if & > 0. Repeating this
procedure, any point preceding @ on its ¢-line can be reached, and because
of the homogeneity of the solution the same can be done for every point.

Property (7), in view of (2) and (4), is an immediate consequence of (6).
For, a three-space satisfying the two conditions stated in (7) in conjunc-
tion with time measured along the world lines of matter in their positive
direction would yield a coordinate system with the property that the oth
coordinate always increases if one moves in a positive time-like direction,
in contradiction to {6), which implies that all coordinates of the initial and
the end point of a time-like line are equal in certain cases.

Property (5), for an open time coordinate, is an immediate consequence
of the existence of closed time-like lines; for a closed time coordinate it
follows from the fact that the subspaces ¢ = constant would contradict
property (7) (as can easily be shown owing to the simple connectivity of
S).

In order to prove property (8), let U be an element of X; then U intersects
the subspace Sp of S defined by z3 = 0 in a surface V' (for it has one point

10This computation is rather cumbersome. It is simpler to derive both forms of the
linear element independently from each other from the geometrical meaning of S given
below. The first form is obtained by taking for the z;z3-space of the coordinate system
the point set corresponding to any two-parametric subgroup of the multiplicative group
of the hyperbolic quaternions as defined in footnote 14.
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in common with each zo-line situated on Sp). Now, according to what was
proved, V' cannot be orthogonal on all zg-lines in Sy. So let I be an zg-line
in Sp on which it is not orthogonal, and P the point of intersection of V'
and [. Then by rotating Sy around ! (and every Sj defined by zo = b
by the same angle around the zy-line obtained from | by the translation
x5 = &3+ b), U goes over into a three-space different from U, but passing
through P, hence not contained in 3, since the elements of ¥ were assumed
to be mutually exclusive. Hence ¥ goes over into a system different from X.

4. Some additional theorems and considerations
about the solution

I am mentioning without proof that, disregarding the connectivity in
the large (which can be changed by identifying the points of certain point
sets with each other), the solution given and Einstein’s static universe are
the only spatially homogeneous cosmological solutions with non-vanishing
density of matter and equidistant world lines of matter.'?

The space S has a simple geometric meaning. It is the direct product of
a straight line and the three-space Sy, defined by z3 = 0; and Sy is obtained
from a space R of constant positive curvature and signature + — — by
stretching the metric!? in the ratio v/2:1 in the direction of a system of
time-like Clifford parallels.'3

This definition of Sy also leads to an elegant representation of its group
of transformations. To this end we map the points of R on the hyperbolic
quaternions ug + u1j1 + uaje + u3js of positive absolute value!* by means

L1There exist stationary homogeneous solutions in which the world lines of matter
are not equidistant. They lead, however, into difficulties in consequence of the inner
friction which would arise in the “gas” whose molecules are the galaxies, unless the
irregular motion of the galaxies is zero and stays so.

12By “stretching the metric in the ratio u in the direction of the lines of a system
7" 1 mean that a new distance PQ’ of neighboring points is introduced by the equation
(PQ"Y? = PR + (u- RQ)?, where R is the foot of the perpendicular drawn from P on
the line of 7 passing through @Q; or in other terms: (ds’)? = ds? + (u? — 1)(vydzx;)?,
where v is the field of the tangent vectors of unit length of the lines of .

13That is, a system of pairwise equidistant straight lines which for each point of space
contains exactly one line passing through it.

14Here the u; are real numbers and the units j, are defined by j1 = i1, jo = i - ia,
j3 = i-i3, where the i, are the units of the ordinary quaternions and ¢ the imaginary unit,
which is assumed to commute with all i,,. The term “hyperbolic quaternions” occurs in
the literature in a different sense, but the number system just defined evidently is what
should be so called. For: norm(u) = u -4 = uwo? + u1? — up? — uz?, and moreover, the
multiplicative group of these quaternions, if quaternions differing by a real factor are
identified, is isomorphic with the group of transformations of the Lobatchefskian plane
into itself. That the metric of R remains invariant under the transformations given in
the text follows immediately from the equation norm(uv) =norm(u)-norm(v).
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of projective coordinates'® ugujusus so chosen that Klein’s fundamental
quadric takes on the form | u? +u;% — u2% —u32. Then, any motion u — v’
of R into itself can be represented in the form u’' = p-u-q, where p and ¢ are
hyperbolic quaternions of positive norm. A system 7 of Clifford parallels
can be represented by o® - u, where ¢ is a hyperbolic quaternion depending
on m alone, and the individual lines of 7 are obtained by assigning a fixed
value to u and varying « from —oo to +00. It follows that those motions
of R into itself which leave m (and the orientation of its lines) invariant are
represented by v/ = o - u - g, where 3 varies over all real numbers and ¢
over all hyperbolic quaternions of positive norm. These motions, however,
evidently form the four-parametric continuous group of transformations
which carry S into itself. The lines of 7, of course, are the world lines of
matter.

Evidently, in whatever ratio g the metric of R is stretched in the di-
rection of the lines of w, the resulting space R’ has rotational symmetry.
Therefore, the contracted Riemann tensor of R’ x I (I being a straight
line), if the coordinate system in the point considered is orthonormal, and
its first basis vector e(® has the direction of the 7-lines, its last one e(®
the direction of [, has the form

o o
o~ O

0

where a and b are functions of y. Computation shows that u = /2 yields
b=0,ie, Ry = a-e;®er(?, which makes it possible to satisfy the field
equations in the manner described above.

As to the physical meaning of the solution proposed in this paper, it is
clear that it yields no red shift for distant objects. For, by using the trans-
formation (I) defined in the proof of the properties (1) and (2), one proves
immediately that light signals sent from one particle of matter (occurring
in the solution) to another one arrive with the same time intervals in which
they are sent. For the period of rotation one obtains 2 - 10! years, if for
p the value of 1073%/cm? is substituted. Assuming galactical systems
were formed by condensation of matter originally distributed uniformly,
and taking for the ratio of contraction 1:200 (which is suggested by the

151t is to be noted, however, that there exist different topological forms of spaces
of constant positive curvature and signature —1, and that that form which can be rep-
resented in projective coordinates in a one-to-one manner does not lead exactly to the
space S defined before, but rather to a space obtained from S by identifying any two
points which are situated on the same line of the system n and whose distance on that
line is equal to a certain constant. A corresponding difference subsists for the groups of
transformations.
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observed average ratio of 1:200 between diameter and distance of galaxies),
one obtains (using the law of conservation of angular momentum) for the
average period of rotation of galactic systems 5-10° years. This number is
of the correct order of magnitude, but, in view of the fact that this would
have to be approximately the period of rotation in the outer parts of the
nebulae, the observed value is found to be considerably larger.'® Of course
such comparison with observation has very little significance before an ex-
pansion has been combined with the rotation. Moreover, an explanation
would have to be found for the apparent irregularity of the distribution of
the axes of rotation of the galaxies. This, however, is perhaps not impos-
sible, since there exist various circumstances which would tend to blur the
original order, or make it appear blurred, especially if the axes of rotation
of matter in different places (unlike in the solution described above) were
not parallel with each other. The radius of the smallest time-like circles, in
the solution given in this paper, is of the same order of magnitude as the
world radius in Einstein’s static universe.

15From the numerical data which E. Hubble (1984, p. 74) gYives about two galaxies
of medium size follow periods of rotation of 2- 107 and 7 - 10" years at a distance of
about half the radius from the center. The period of rotation of the Andromeda Nebula
in the central region is estimated at 1.5- 107 years.



Introductory note to 1949a

This paper, written for a collection intended to honor and to dis-
cuss the work of Einstein, appears to be the only published piece by
Godel that deals with philosophical issues not directly concerned with
mathematics. In it Godel argues, on the basis of the very interesting
cosmological solutions of Einstein’s general-relativistic field equations
obtained by him (7949), that those philosophers are right who have de-
nied the “objectivity of change”.?

A caution seems in order concerning the use in the title of this paper
of the phrase “idealistic philosophy”. The word “idealism” has been used
historically in connection with a very diverse class of metaphysical views,
whose common characteristic is the claim that what is ultimately “real”
is something fundamentally “mental”. By no means all such philosophies
have denied the objectivity of change—for change may be attributed to
minds or their contents. On the other hand, the contention that change
is not objective, but is in some sense a “mere appearance”, need not
be associated with the view that all that is real is mental; and, indeed,
it is far from plain in Godel’s paper that the latter is his own view,
since he bases his argument on the physical possibility (“compatibility
with the laws of nature”) of worlds in which temporal relations have
the bizarre characteristics he describes: thus his conclusion seems to be,
not that the world of physics is grounded in something “mental”, but
that our conception of the world as changing is subjective or illusory—a
contribution of our minds.

20One point in Godel’s discussion of his cosmological solutions perhaps deserves
comment, although it does not substantially affect the argument of the paper. Godel
defends these solutions against a charge of absurdity by the consideration that the
“time travel” that is physically possible in the “worlds” they describe would not
be practically possible. Others have in fact rejected these solutions as “unphysical”
because of the possibility of time travel. But it is hard to see the cogency of this
rejection—or the need for the defense Godel offers. Objections of the type “What if
I were to go back and, for example, murder my own younger self?” admit a perfectly
straightforward answer: in a cosmos of the sort in question, that act would simply
not be possible. It would seem, in fact, that such a cosmos would have to be regarded
as fully deterministic—or fully determinate; but Godel’s own argument against “the
objectivity of change” leads in any case to determinateness as characteristic of things.
And, after all, classical physics was generally conceived as deterministic. However
obnoxious this notion has been to some philosophies, the objection “But I can always
choose whether or not, for instance, to lift my arm” has never really carried any
weight; and the objection raised in the context of time travel, although in some sense
more poignant, is fundamentally of the same type.
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This conclusion has a distinct relation to the position of Kant, to
whom Godel refers and who himself repudiated metaphysical idealism,
but asserted what he called the “transcendental ideality” of time- (as
well as of space). The force of this assertion was that spatial and tem-
poral attributes fundamentally characterize, not things “as they are in
themselves”, but a certain relation of those things to us—to our faculties
of perception and representation. In particular, it is the special consti-
tution of these latter faculties, according to Kant, that is responsible
for the general structures of space and time that form the subject of
geometry and of what may be called “pure chronometry”; in this sense,
Kant characterizes these disciplines as concerned with the “pure form”
of our “intuitive” (that is, our receptive or sensitive) faculty. As to the
issue of metaphysical idealism, Kant rejects altogether any claims to
knowledge of what things are apart from our experience (what they are
“in themselves”); but within experience—that is, within the entire field
of what can in any way be known—the structures of space and time
by his doctrine are fully objective; as “forms” that condition the very
possibility of perception, they constitute a universal framework for all
objective scientific knowledge. Thus, affirming the “transcendental ide-
ality” of space and time, Kant as emphatically asserts their “empirical
reality”. Furthermore, on his doctrine, these universal and empirically
real structures can be known independently of experience, just because
they are effects of our own constitution and are conditions of all possible
experience.

On this latter point, it is evident that Godel cannot adhere to Kant’s
view, since his own examples depart radically from the structure Kant
thought necessary a priori for science, and since, far from claiming a
grounding in something like Kant’s “pure intuition”, he emphasizes the
“astonishing” and “strange” character of the results that form the basis
of his argument, and their departure from “the intuitive idea” of an abso-
lute and objective lapse of time. Further light is thrown on the question
of Godel’s own conception of the relation of his view to Kant’s by an as
yet unpublished manuscript (found in his Nachlass, and bearing the title
“Some observations about the relationship between theory of relativity
and Kantian philosophy”), which discusses that relation in some detail
and which makes explicit that a central difference from Kant concerns
just this point: Kant, in Gddel’s opinion, overemphasized in his episte-
mological discussion the dependence of spatiotemporal structure upon
our faculty of representation, and was led by this into two errors—he
concluded, erroneously, that the temporal properties of things (perhaps
one should rather say, “of events”) must be the same for all human be-
ings (since human beings all have the same species of representational
faculty); and he failed to see that geometry is at least in one sense an
empirical science.
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Thus, so far as Kantian philosophy is concerned, the principal anal-
ogy that Godel has in mind between it and relativity theory concerns the
strong sense in which temporal properties become (in general) well de-
fined only relative to certain structures within the world: the world-lines
of bodies. In the case of the bodies of sentient beings, these world-lines
are also the loci of their immediate sensual contact with the reality out-
side themselves—so that in this special case the relation can be said
to be “to the sensibility of the observer”. This relativity of course af-
fects the notion of “change” or “passage”, centrally emphasized in the
present paper. But to be relative is not to be illusory: in this paper,
(Godel speaks of “an unequivocal proof for the view of those philosophers
who ... consider change as an illusion due to our special mode of percep-
tion”, whereas in the manuscript referred to (which does not explicitly
mention “idealistic philosophy”) he puts great stress upon the objective
character of the relations in question.

In view of Godel’s well-known, long-standing, and deep interest in
philosophical matters, it is cause for great regret that what we thus far
possess of his reflections on such matters is so meager. The apparent
discrepancy just noted between the present paper and the unpublished
manuscript makes one wish both to know their comparative dates (if
that can be determined) and to obtain further light—perhaps recon-
ciling what appears discrepant—upon the metaphysical view here too
briefly adumbrated. There is even greater need for clarification of the
epistemological side of these views: we have so far in print only a brief
comment, quoted (from a letter) in Greenberg 1980 (page 250), sug-
gesting that Godel did believe that we have in some sense an a priori
“physical intuition” of spatial structure “in the small”; and some enig-
matic but intriguing remarks (Gddel 1964, pages 271-272, and Wang
1974, pages 84-85) about the relation to reality of human knowledge. It
is very much to be hoped that the materials found in the Godel Nachlass
will help to illuminate our understanding of his philosophical position.

Howard Stein
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A remark about the relationship between
relativity theory and idealistic philosophy
(1949a)

One of the most interesting aspects of relativity theory for the philo-
sophical-minded consists in the fact that it gave new and surprising in-
sights into the nature of time, of that mysterious and seemingly self-
contradictory! being which, on the other hand, seems to form the basis
of the world’s and our own existence. The very starting point of special
relativity theory consists in the discovery of a new and very astonishing
property of time, namely the relativity of simultaneity, which to a large
extent implies? that of succession. The assertion that the events A and B
are simultaneous (and, for a large class of pairs of events, also the assertion
that A happened before B) loses its objective meaning, in so far as another
observer, with the same claim to correctness, can assert that A and B are
not simultaneous (or that B happened before A).

Following up the consequences of this strange state of affairs, one is led
to conclusions about the nature of time which are very far reaching indeed.
In short, it seems that one obtains an unequivocal proof for the view of
those philosophers who, like Parmenides, Kant, and the modern idealists,
deny the objectivity of change and consider change as an illusion or an
appearance due to our special mode of perception.* The argu|ment runs
as follows: Change becomes possible only through the lapse of time. The
existence of an objective lapse of time,* however, means (or, at least, is
equivalent to the fact) that reality consists of an infinity of layers of “now”

1Ct., e.g., McTaggart 1908.

2 At least if it is required that any two point events are either simultaneous or one
succeeds the other, i.e., that temporal succession defines a complete linear ordering of
all point events. There exists an absolute partial ordering.

3Kant, in the Critique of pure reason (1787, p. 54), expresses this view in the following
words: “Those affections which we represent to ourselves as changes, in beings with
other forms of cognition, would give rise to a perception in which the idea of time, and
therefore also of change, would not occur at all.” This formulation agrees so well with
the situation subsisting in relativity theory that one is almost tempted to add: such as,
e.g., a perception of the inclination relative to each other of the world lines of matter in
Minkowski space.

40One may take the standpoint that the idea of an objective lapse of time (whose
essence is that only the present really exists) is meaningless. But this is no way out
of the dilemma: for by this very opinion one would take the idealistic viewpoint as to
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which come into existence successively. But, if simultaneity is something
relative in the sense just explained, reality cannot be split up into such
layers in an objectively determined way. Each observer has his own set of
“nows”, and none of these various systems of layers can claim the prerog-
ative of representing the objective lapse of time.5

This inference has been pointed out by some, although by surprisingly
few, philosophical writers, but it has not remained | unchallenged. And ac-
tually to the argument in the form just presented it can be objected that the
complete equivalence of all observers moving with different (but uniform)
velocities, which is the essential point in it, subsists only in the abstract
space-time scheme of special relativity theory and in certain empty worlds
of general relativity theory. The existence of matter, however, as well as
the particular kind of curvature of space-time produced by it, largely de-
stroys the equivalence of different observers® and distinguishes some of

the idea of change, exactly as those philosophers who consider it as self-contradictory.
For in both views one denies that an objective lapse of time is a possible state of affairs,
a fortiori that it exists in reality, and it makes very little difference in this context,
whether our idea of it is regarded as meaningless or as self-contradictory. Of course, for
those who take either one of these two viewpoints the argument from relativity theory
given below is unnecessary, but even for them it should be of interest that perhaps there
exists a second proof for the unreality of change based on entirely different grounds,
especially in view of the fact that the assertion to be proved runs so completely counter
to common sense. A particularly clear discussion of the subject independent of relativity
theory is to be found in Mongré 1898.

51t may be objected that this argument only shows that the lapse of time is something
relative, which does not exclude that it is something objective, whereas idealists maintain
that it is something merely imagined. A relative lapse of time, however, if any meaning
at all can be given to this phrase, would certainly be something entirely different from the
lapse of time in the ordinary sense, which means a change in the existing. The concept
of existence, however, cannot be relativized without destroying its meaning completely.
It may furthermore be objected that the argument under consideration only shows that
time lapses in different ways for different observers, whereas the lapse of time itself may
nevertheless be an intrinsic (absolute) property of time or of reality. A lapse of time,
however, which is not a lapse in some definite way seems to me as absurd as a colored
object which has no definite colors. But, even if such a thing were conceivable, it would
again be something totally different from the intuitive idea of the lapse of time to which
the idealistic assertion refers.

60Of course, according to relativity theory all observers are equivalent in so far as the
laws of motion and interaction for matter and field are the same for all of them. But this
does not exclude that the structure of the world (i.e., the actual arrangement of matter,
motion, and field) may offer quite different aspects to different observers, and that it
may offer a more “natural” aspect to some of them and a distorted one to others. The
observer, incidentally, plays no essential role in these considerations. The main point,
of course, is that the [four-dimensional] world itself has certain distinguished directions,
which directly define certain distinguished local times.
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them conspicuously from the rest. namely. those which follow in their mo-
tion the mean motion of matter.” Now in all cosmological solutions of the
gravitational equations (i.e., in all possible universes) known at present
the local times of all these observers fit together into one world time. so
that apparently it becomes possible to consider this time as the “true” one.
which lapses objectively. whereas the discrepancies of the measuring results
of other observers from this time may be conceived as due to the influence
which a motion relative to the mean state of motion of matter has on the
measuring processes and physical processes in general.

From this state of affairs. in view of the fact that some of the known
cosmological solutions seem to represent our world correctly. James Jeans
has concluded® that there is no reason to abandon the intuitive idea of an
absolute time lapsing objectively. I do not think that the situation justifies
this conclusion and am basing my opinion chiefly® on the following facts
and considerations:

There exist cosmological solutions of another kind'® than those known
at present. to which the aforementioned procedure of defining an ahsolute
time is not applicable. because the local times of the special observers
used above cannot be fitted together into one world time. Nor can any
other procedure which would accomplish this purpose exist for them: i.e..
these worlds possess such properties of symmetry that for each possible
concept of simultaneity and succession there exist others which cannot be
distinguished from it by any intrinsic properties. but only by reference to
individual objects. such as. e.g.. a particular galactic system.

"The value of the mean motion of matter may depend essentially on the size of the
regions over which the mean is taken. What may be called the “true mean motion” is
obtained by taking regions so large that a further increase in their size does not any
longer change essentially the value obtained. In our world this is the case for regions
including many galactic systems. Of course a true mean motion in this sense need not
necessarily exist.

8Cf. Jeans 1936. pp. 22-23.

9 Another circumstance invalidating Jeans™ argument is that the procedure described
above gives only an approximate definition of an absolute time. No doubt it is possible to
refine the procedure so as to obtain a precise definition. but perhaps only by introducing
more or less arbitrary elements (such as. e.g.. the size of the regions or the weight function
to be used in the computation of the mean motion of matter). It is doubtful whether
there exists a precise definition which has so great merits that there would be suflicient
reason to consider exactly the time thus obtained as the true one.

10The most conspicuous physical property distinguishing these solutions from those
known at present is that the compass of inertia in them everywhere rotates [in the same
direction] relative to matter. which in our world would mean that it rotates relative to
the totality of galactic systems. These worlds. therefore. can fittingly be called “rotating
universes”. In the subsequent considerations I have in mind a particular kind of rotating
universes which have the additional properties of being static and spatially homogeneous.
and a cosmological constant < 0. For the mathematical representation of these solutions.
cf. my forthcoming 1949 [and. for a general discussion of rotating universes. my 1952].
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Consequently. the inference drawn above as to the non-objectivity of
change doubtless applies at least in these worlds. Moreover it turns out
that temporal conditions in these universes (at least in those referred to
in the end of footnote 10) show other surprising features. strengthening
further the idealistic viewpoint. Namely. by making a round trip on a
rocket ship in a sufficiently wide curve. it is possible in these worlds to
travel into any region of the past. present. and future. and back again.
exactly as it is possible in other worlds to travel to distant parts of space.

This state of affairs seems to imply an absurdity. For it enables one. e.g..
to travel into the near past of those places where | he has himself lived.
There he would find a person who would be himself at some earlier period
of his life. Now he could do something to this person which. by his memory.
he knows has not happened to him. This and similar contradictions. how-
ever. in order to prove the impossibility of the worlds under consideration.
presuppose the actual feasibility of the journey into one’s own past. But
the velocities which would be necessary in order to complete the vovage in a
reasonable length of time!! are far beyond everything that can be expected
ever to become a practical possibility. Therefore it cannot be excluded a
priori. on the ground of the argument given. that the space-time structure
of the real world is of the type described.

As to the conclusions which could be drawn from the state of affairs
explained for the question being considered in this paper. the decisive point
is this: that for every possible definition of a world time one could travel
into regions of the universe which are past according to that definition.'?
This again shows that to assume an objective lapse of time would lose every
justification in these worlds. For. in whatever way one may assume time to
be lapsing. there will always exist possible observers to whose experienced
lapse of time no objective lapse corresponds (in particular also possible

1 Basing the calculation on a mean density of matter equal to that observed in our
world. and assuming one were able to transform matter completely into energy. the
weight of the ~fuel” of the rocket ship. in order to complete the voyage in ¢ vears (as
measured by the traveller). would have to be of the order of magnitude of 1022 /2 times
the weight of the ship (if stopping. too. is effected by recoil). This estimate applies to
t < 10, Irrespective of the value of ¢. the velocity of the ship must be at least 1/v/2
of the velocity of light.

[Translation of the author's addition to the German edition (1955): A second reason
for excluding a priori the universes mentioned above could be found in the possibility of
“telegraphing a message into one's own past”. But the practical difficulties in doing so
would hardly seem to be trifling. Moreover. the boundary between difficulties in practice
and difficulties in principle is not at all fixed. What was earlier a practical difficulty in
atomic physics has today become an impossibility in principle. in consequence of the
uncertainty principle: and the same could one day happen also for those difficulties that
reside not in the domain of the “too small”. but of the “too large™ ]

12For this purpose incomparably smaller velocities would be sufficient. Under the
assumptions made in footnote 11 the weight of the fuel would have to be at most of the
same order of magnitude as the weight of the ship.
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observers whose whole existence objectively would be simultaneous). But,
if the experience of the lapse of time can exist without an objective lapse
of time, no reason can be given why an objective lapse of time should be
assumed at all.

It might, however, be asked: Of what use is it if such conditions prevail
in certain possible worlds? Does that mean anything for the question in-
teresting us whether in our world there | exists an objective lapse of time?
I think it does. For: (1) Our world, it is true, can hardly be represented by
the particular kind of rotating solutions referred to above (because these
solutions are static and, therefore, yield no red-shift for distant objects);
there exist however also erpanding rotating solutions. In such universes
an absolute time also might fail to exist,’® and it is not impossible that
our world is a universe of this kind. (2) The mere compatibility with the
laws of nature!* of worlds in which there is no distinguished absolute time,
and [in which], therefore, no objective lapse of time can exist, throws some
light on the meaning of time also in those worlds in which an absolute time
can be defined. For, if someone asserts that this absolute time is lapsing,

13 At least if it required that successive experiences of one observer should never be
simultaneous in the absolute time or (which is equivalent) that the absolute time should
agree in direction with the times of all possible observers. Without this requirement
an absolute time always exists in an expanding (and homogeneous) world. Whenever
I speak of an “absolute” time, this of course is to be understood with the restriction
explained in footnote 9, which also applies to other possible definitions of an absolute
time.

[ Translation of the author’s addition to the German edition (1955): By an “absolute
time” I understand a world time that can be defined without reference to particular
objects and that satisfies the requirement formulated at the beginning of this footnote.
More precisely, this should be called a “possible absolute time”, since several can exist
within one world, even though that is only exceptionally the case in spatially homoge-
neous universes.]

14The solution considered above only proves the compatibility with the general form
of the field equations in which the value of the cosmological constant is left open; this
value, however, which at present is not known with certainty, evidently forms part of the
laws of nature. But other rotating solutions might make the result independent of the
value of the cosmological constant (or rather of its vanishing or non-vanishing and of its
sign, since its numerical value is of no consequence for this problem). At any rate these
questions would first have to be answered in an unfavorable sense before one could think
of drawing a conclusion like that of Jeans mentioned above. Note added 2 September
1949: 1 have found in the meantime that for every value of the cosmological constant
there do exist solutions in which there is no world time satisfying the requirement of
footnote 13.

[ Translation of the author’s addition to the German edition (1955): The second law of
thermodynamics would also seem to be compatible with the solutions above. For within
them a positive direction can be defined for all time-like lines in a unique and continuous
way. Furthermore, the probability of any material system returning exactly to a former
state is vanishingly small; and, if that happens only approximately, it merely means that
somewhere two examples of the same system (in general having different entropies) exist
simultaneously side by side. Of course, the initial conditions in such worlds cannot be
chosen entirely freely.]
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he accepts as a consequence that whether or not an objective lapse of time
exists (i.e., whether or not a time in the ordinary sense of the word exists)
depends on the particular way in which matter and its motion are arranged
in the world. This is not a straightforward contradiction; nevertheless, a
philosophical view leading to such consequences can hardly be considered
as satisfactory.



Rotating universes in general relativity theory
(1952)

[The introductory note to this paper and to 1949 is found on page 189,
immediately preceding 1949.]

In this lecture I am setting forth the main results (for the most part
without proofs) to which my investigations on rotating universes have led
me so far.

1. Definition of the type of rotatory solutions
to be considered

I am starting from the relativistic field equations:’

(1) Rix ~ 5ol = T ~ Agis
and am assuming that:
1) the relative velocity of masses (i.e., galactic systems) close to each
other is small compared with ¢;
2) no other forces except gravitation come into play.
Under these assumptions T takes on the form:

(2) Ty = pusvg
where:

(3) p >0,

(4) gikvivk = _17

and, of course:
(5) The signature of g is + 2.

The local angular velocity of matter relative to the compass of inertia

11 am supposing that such measuring units are introduced as make ¢ = 1,
8nk/c? = 1.

208



Rotating universes in general relativity theory 209

can be represented by the following vector w (which is always orthogonal
on v):

. 6ik:lm

(6) W= o gyirE Mkt

where the skew-symmetric tensor agy,, is defined by:

oy OV vy Oug v, Oy

7 = —Z B by 2 ) o [ — - =— ).
(1) akim = v (8zm z1 "\owy ~ 0zm /) ™\0z ~ 0z

That w represents the angular velocity relative to the compass of in-
ertia is seen as follows: In a coordinate system which, in its origin, is
geodesic and normal, and in whose origin matter is at rest (i.e., for which in
O: 89 /011 = 0, gir, = Mk, v* = 1, v* = 0 for i # 4),2 one obtains for w*
in O:

(8) 1L f{ﬁ_@ﬁ _1[(o f __a_ f ete
vy dry  Oxs) 2 \0ze \ 04 Oxz \vt/) )’ )

(9) wt=0.

| In such a coordinate system, however, since parallel displacement (in its
origin) means constancy of the components, the angular velocity relative
to the compass of inertia, in O, is given by the same expressions as in
Newtonian physics, i.e. the right-hand sides of (8) are its components. Ev-
idently w s the only vector the first 3 components of which, in the particular
coordinate systems defined, coincide with the angular velocity computed as
in Newtontan physics and the 4th component is 0.

Any Riemann 4-space with some p, v; defined in it, which everywhere
satisfies the conditions (1)—(5) and permits of no extension free from sin-
gularities, and for which, moreover, w is continuous and # 0 in every point,
represents a rotating universe. However, in the sequel I am chiefly con-
cerned with solutions satisfying the following three further postulates (sug-
gested both by observation and theory):

I. The solution is to be homogeneous in space (i.e., for any two world
lines of matter [,m there is to exist a transformation of the solution into
itself which carries ! into m).

II. Space is to be finite (i.e., the topological space whose points are the
world lines of matter is to be closed, i.e., compact).

ITI. p is not to be a constant.

2A coordinate system satisfying the first two conditions may fittingly be called a
“local inertial system”.
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Postulate III is indispensable also for rotating universes, since it can be
proved that a red-shift which, for small distances, increases linearly with
the distance implies an expansion, no matter whether the universe rotates
or not.?

As to the question of the existence of rotating solutions satisfying the
postulates I, II, IT1, cf. §5.

2. Some general properties of these solutions

In view of III the equation p = constant defines a one-parameter system
of 3-spaces. In rotating universes these 3-spaces of constant density cannot
be orthogonal on the world lines of matier. This follows immediately from
the fact that agy, = 0 is the necessary and sufficient condition for the
existence of any system of 3-spaces orthogonal on a vector field v.

The inclination of the world lines of matter toward the spaces of constant
density yields a directly observable necessary and sufficient criterion for the
rotation of an expanding spatially homogeneous and finite universe: namely,
for sufficiently great distances, there must be more golaxies in one half of
the sky than in the other half.

In the first approximation, i.e., for solutions differing little from one
spatially isotropic, the magnitude of this effect is given by the following
theorem: If Ny, Ny are the numbers of galaxies in the two hemispheres
into which a spatial sphere* of radius v (small compared with the world
radius R) is decomposed by a | plane orthogonal on w, then:

|w|rRh
pe)

|N1 - No|

10
( ) Nl + ]\]’2

9
=3 ,
where h is Hubble’s constant (=R/R).

For plausible values of the constants (where w is estimated from the
velocity of rotation of the galaxies®) this effect is extremely small. But the
uncertainty in the knowledge of the constants is too great for drawing any
definitive conclusions.

The group of transformations existing owing to I evidently carries each of
the spaces p = constant into itself, and therefore (the case of isotropy being

3Provided, of course, that the atomic constants do not vary in time and space, or,
to be more exact, provided that the dimensionless numbers definable in terms of the
constants of nature (such as e?/hc) are the same everywhere.

41.e., one situated in a 3-space orthogonal on v at the point under consideration.
5Cf. my 1949, p. 450.
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excluded) can only have 3 or 4 parameters.® The number 4 (i.e., the case
of rotational symmetry) cannot occur either. There exist no rotationally
symmetric rotating universes satisfying the conditions stated in §1.7 The
only symmetry around one point which can occur is that of one rotation
by w. This case will be referred to as the symmetric one.

In any case the group of transformations must be 3-parameter. Since
moreover, owing to II, it must be compact, and since (as can easily be
shown) it cannot be commutative in rotating universes,® it follows that the
group of transformations of any rotating solution of the type characterized
in §1 must be isomorphic (as a group of transformations) with the right (or
the left) translations of a 3-space of constanl posilive curvature, or with
these translations plus certain rotations by an angle w. Hence also the
topological connectivity of space must be that of a spherical or elliptical
3-space.

The metric g;; can be decomposed (relative to the world lines of mat-
ter) into a space-metric g5 and a time-metric gg, by defining the spatial
distance of two neighboring points P;, P» to be the orthogonal distance of
the two world lines of matter passing through P;, P;, and the temporal
distance to be the orthogonal projection of Py Py on one of these two lines.
This decomposition evidently is exactly that which (in the small) holds for
the observers moving along the world lines of matter. It has the following
properties:

(11) Tik = —V;Vk, ik = ik + V;Vk,

Det (Gix) = Det (gir ) = 0.

If the coordinate system is so chosen that the z4-lines are the world
lines of matter and the z4-coordinate measures the length of these lines,
7ir takes on the form:

(12) e

il

| (where h;; is positive definite) and the Hubble-constant in the space-
direction dz* (orthogonal on v), as measured by an observer moving along
with matter, becomes equal to:

1 hydatda® here h — Ohik

———————, Wwhere h;, = .

2 higdeidz®’ * Oy

8There exists, in every space p = constant, a positive definite metric which is carried
into itself, namely the metric h;; defined below.

"This even is true irrespective of postulate II (the finiteness of space).

8The reason is that the curl of a vector field invariant under a transitive commutative
group vanishes identically.
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The surface hzkxzxk = 1 in the 3-dimensional subspace, orthogonal on v,
of the tangent space, may be called the ellipsoid of expansion or, more
generally, the quadric of expansion.

The theorem about the nonexistence of rotationally symmetric solu-
tions,® under the additional hypothesis that the universe contains no closed
time-like lines (cf. §3), can be strengthened to the statement that the
quadric of expansion, at no moment of time, can be rotationally symmet-
ric around w. In particular it can never be a sphere, i.e., the expansion
is necessarily coupled with a deformation. This even is true for all solu-
tions satisfying I-1II and gives another directly observable property of the
rotating universes of this type.

Moreover the asymmetry of the expansion around w opens up a possibil-
ity for the explanation of the spiral structure of the galaxies. For, if under
these circumstances a condensation is formed, the chances are that it will
become an oblong body rotating around one of its smaller axes; and such
a body, because its outer parts will rotate more slowly, will, in the course
of time, be bent into a spiral. It remains to be seen whether a quantitative
elaboration of this theory of the formation of spirals will lead to agreement
with observation.

3. Rotation and time-metric

The formulae (6), (7), (11) show that it is, in the first place, the time-
metric (relative to the observers moving along with matter) which deter-
mines the behavior of the compass of inertia. In fact a necessary and
sufficient condition for a spatially homogeneous universe to rotate is that
the local simultaneity of the observers moving along with matter be not inte-
grable (i.e., do not define a simultaneity in the large). This property of the
time-metric in rotating universes is closely connected with the possibility
of closed time-like lines.

The latter anomaly, however, occurs ounly if the angular velocity sur-
passes a certain limit. This limit, roughly speaking, is that value of |u|
for which the maximum linear velocity caused by the rotation becomes
equal to ¢; i.e., it is approximately ¢/R if, at the moment considered, the
space-metric in the 3-space p = constant does not differ too much from a
space of the constant curvature 1/R2. The precise necessary and sufficient
condition for the nonexistence of closed time-like lines (provided that the
one-parameter manifold of the spaces p = | constant is not closed) is that

9This theorem makes it very likely that there exist no rotating spatially homogeneous
and expanding solutions whatsoever in which the ellipsoid of expansion is permanently
rotationally symmetric around w.
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the metric in the spaces of constant density be space-like.*® This holds for
solutions satisfying all conditions stated in §1.

For these solutions, also, the nonexistence of closed time-like lines is
equivalent with the existence of a “world-time”, where by a world-time we
mean an assignment of a real number ¢ to every space-time point, which
has the property that ¢ always increases if one moves along a time-like line
in its positive direction.’! If in addition any two 3-spaces of simultaneity
are equidistant and the difference of ¢ is their distance, one may call it
a metric world-time. If the spaces of constant density are space-like, a
metric world-time can be defined by taking these 3-spaces as spaces of
simultaneity. Evidently (up to transformations # = f(¢)) this is the only
world-time invariant under the group of transformations of the solution.

4. Behavior of the angular velocity
in the course of the expansion

No matter whether postulates I-IIT are satisfied or not, the temporal
change of w is described by the following theorem: In a coordinale system
in which the x4-lines are the world lines of matter, guqs = —1 everywhere,
and moreover g;4 = 0 (for i # 4) on the Xy-axis, one has along the whole
Xy-axis:

(13) w'(—g)'/? = w'h'/? = constant (1=1,2,3).

The proof can be given in a few lines: Evidently v* = 1, v* = 0 (for
i # 4) everywhere; hence: v; = g;4. Substituting these values of v; in (7),
one obtains on Xy:

09k 094
3.’Ei 8:ck ’

(14) Q4ik = a193 = 0.

But 8g4;/0xs = 0 (because the z4-lines are geodesics and gqq =
—1). Hence by (14), Oagim/0xs = 0 on X,;. Hence by (6) also,
Iwi(—g)/?)/0xs = 0 on Xj.

The equation (13) means two things:

10This condition, too, means that at the border separating the two cases the linear
velocity caused by the rotation becomes equal to ¢, if by this linear velocity is understood
the velocity of matter relative to the orthogonals on the spaces of constant density.

1A time-like vector is positive if it is contained in the same half of the light-cone as
the vector v.
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A. that the vector w (or, to be more exact, the lines I, whose tangent
everywhere has the direction w) permanently connects the same particles
with each other;

B. that the absolute value | w| increases or decreases in proportion to the
contraction or expansion of matter orthogonal on w, where this contraction
or expansion is measured by the area of the intersection of an infinitesimal
spatial cylinder* around l,, (permanently including the same particles) with
a surface orthogonal on [,.

Since in the proof of (13) nothing was used except the fact that the
world | lines of matter are geodesics (and in particular the homogeneity -of
space was not used), (13), and therefore A, B, also describe the behavior
of the angular velocity, if condensations are formed under the influence of
gravitation;!? i.e., |w|, under these circumstances, increases by the same
law as in Newtonian mechanics.

The direction of w, even in a homogeneous universe, need not be dis-
placed parallel to itself along the world lines of matter. The necessary and
sufficient condition for it to be displaced parallel at a certoin moment is
that it coincide with one of the principal azes of the quadric of expansion.
For, if P, are two neighboring particles connected by w, then, only under
the condition just formulated, the direction P at the given moment, will
be at rest relative to the compass of inertia (in order to see this one only
has to introduce the local inertial system defined in §1 (cf. footnote 2) and
then argue exactly as in Newtonian physics). Since however (because of
A) the direction of w coincides permanently with the direction of PQ), the
same condition applies for the direction of w. This condition however, in
general, is not satisfied (only in the symmetric case it is always satisfied).

The fact that the direction of w need not be displaced parallel to itself
might be the reason for the irregular distribution of the directions of the
axes of rotation of the galaxies (which at first sight seems to contradict an
explanation of the rotation of the galaxies from a rotation of the universe).
For, if the axis of rotation of the universe is not displaced parallel, the
direction of the angular momentum of a galaxy will depend on the moment
of time at which it was formed.

5. Existence theorems
It can be shown that, for any value of A (including 0), there exist oc®

rotating solutions satisfying all conditions stated in §1. The same s true
if in addition it is required that a world-time should exist (or should not

120f course, only as long as the gas and radiation pressure remain small enough to
be neglected.
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erist). The value of the angular velocity is quite arbitrary, even if p and
the mean world radius (at the moment under consideration) are given. In
particular, there exist rotating solutions with A = 0 which differ arbitrarily
little from the spatially isotropic solution with A = 0.

Thus the problem arises of distinguishing, by properties of symmetry or
simplicity, certain solutions in this vast manifold of solutions. E.g., one
might try to require that the universe should expand from one point and
contract to one point.

6. Method of proof

The method of proof by which the results given above were obtained is
based on postulate I of §1. This postulate implies that all world lines of
matter (and all orthogonals on the spaces of constant density) are equiva-
lent with each other. It is, therefore, sufficient to confine the consideration
to one | such world line (or one such orthogonal). This reduces the problem
to a system of ordinary differential equations.

Moreover, this system of differential equations can be derived from a
Hamiltonian principle, i.e., it is a problem of analytical mechanics with
a finite number of degrees of freedom. The equations of relativity theory,
however, assign definite values to the integrals of energy and momentum, so
that the relativistic problem is a little more special than the corresponding
one of analytical mechanics.

The symmetric case, by means of the integrals of momentum, can be
reduced to a problem with three degrees of freedom (g1, gs,93), whose
Lagrangian function reads as follows:

(15) {Zgzgk [2291—(2.%)] ——Yz—}gl/z

i<k 91(92 - 93)2
2\ 1/2
+2 (1 + V—) ,
0

where g = g1 9293 and V' is a constant which determines the velocity of rota-
tion. The general case can be reduced to a system of differential equations
of the 8th order.

7. Stationary rotating solutions

It might be suspected that the desired particular solutions (cf. §5 above)
will have a close relationship to the stationary homogeneous solutions, and
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it is therefore of interest to investigate these, too. By a stationary homo-
geneous solution we mean one whose group, for any two points P, @ of the
whole 4-space, contains transformations carrying P into Q.

These solutions can all be determined and expressed by elementary func-
tions. One thus obtains the following results:

1. There exist no stationary homogeneous solutions with A = 0.

2. There exist rotating stationary homogeneous solutions with finite
space, no closed time-like lines, and A > 0; in particular also such as differ
arbitrarily little from Einstein’s static universe.

The world lines of matter in these solutions, however, are not equidistant:
neighboring particles of matter, relative to the compass of inertia, rotate
around each other, not in circles, but in ellipses (or, to be more exact, in
rotating ellipses).



Introductory note to 1958 and 1972

1. Preliminary remarks; history of the paper

Godel’'s “Dialectica paper” appeared in 1958, in German, in honor
of P. Bernays’ 70th birthday; it is reproduced, following this introduc-
tory note, together with a translation into English by Stefan Bauer-
Mengelberg and Jean van Heijenoort. The ideas in this paper date back
at least as far as 1941, since Godel lectured at that time on his interpre-
tation at Princeton and Yale. (In Gédel’s Nachlass there is the text of
a lecture, “In what sense is intuitionistic logic constructive?”, given at
Yale University on 15 April 1941.)

In this volume there is also a second version of Gddel 1958, which
has not previously appeared in print. This, too, has a long history; in
the form reproduced here it dates from circa 1972. Between the first
and the second version, Godel’s interest shifted from the mathematical
result to its philosophical aspects; as he wrote in a letter to Bernays of
16 May 1968, “In those days, after all, T set no particular store by the
philosophical aspect; rather, it was chiefly the mathematical result that
was important to me, while now it is the other way around.”® Neverthe-
less, 1958 is already presented by Godel as a foundational contribution,
not as a technical one.

Godel never managed to express his ideas on the philosophical aspects
of the interpretation to his own satisfaction, as is evidenced by the vi-
cissitudes of the second version of the Dialectica paper (henceforth cited
as Gadel 1972). In 1965 Bernays informed Godel of the plan to publish
an English translation (by Leo F. Boron) of 1958, again in Dialectica.
Godel then undertook to revise his paper for that occasion; and in Jan-
uary 1967 he expressed satisfaction with the result.

In 1968, however, on rereading the philosophical introduction to the
original paper, Godel became dissatisfied with it and rewrote it com-
pletely. Equally dissatisfied with this revision, he gave up the idea of
rewriting the introduction and decided to add a series of notes {a—n) in-
stead (Godel to Bernays, 16 May and 17 December 1968). In 1970 the re-
vised version, after much active prompting and help from Bernays and D.
S. Scott, was sent to the printer. When the proof sheets arrived, Godel
was not pleased with notes i and h, and rewrote them almost completely,

2“Ich legte ja damals keinen besonderen Wert auf das Philosophische, sondern
es kam mir hauptsachlich auf das mathematische Resultat an, wéhrend es jetzt
umgekehrt ist.”
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but never returned the proof sheets. Apparently he continued to make
minor revisions and corrections as late as 1972—at least there are some
handwritten corrections on the proof sheets which concern points raised
by Bernays in a letter to Godel of 16 March 1972.

Godel had been in poor health since 1968, and this may have had
much to do with the hesitations and doubts that are manifested in the
style of the additional notes in 1972, which lack the sureness of touch of
Godel’s earlier work (see Kreisel 1980). A less subjective reason for the
difficulties lies in the material itself: it is quite difficult to formulate the
philosophical gain achieved in 1958 and 1972.

The presentation of the mathematical results also leaves much to be
desired; the system T is given in outline only, in the main body of text;
the description is then expanded and/or modified in the additional notes
for 1972. Similarly, the description of interpretations of T is not at all
clear-cut. Accordingly, after discussing the aims of Godel’s paper in Sec-
tion 2 below, we devote a (long) Section 3 to the technical background
of Gédel’s system T and his main result, while Section 4 is devoted
to interpretations of T; Section 5 describes further work that has been
prompted by Godel 1958.

Our commentary on these papers concentrates on 1972; references to
1958 are explicitly noted in the text. We use Troelstra 1973 as a source
of technical background information.

References to Godel’s notes: We list Godel’s notes 1-11 and a—n with
an indication of where they are referred to in our introduction: 3 (2.2),
5 (4.1), 6 (2.1, 2.2, 4.1), 7 (3.1, 3.2), 8 (3.2), 10 (3.1); b (2.1, 2.2), ¢
(2.2, 3.3), d (5.1), e (2.1), g (4.2), h (2.1, 3.3, 4.1-3), i (3.1-3), j (3.1),
1(3.2), m (3.1), n (3.2, 3.3, 4.3).

2. Aims of Godel’s paper

2.1 Godel originally devised his interpretation for technical applica-
tions; specifically, the underivability of —-=Vz(A(x) V -A(z)) in intu-
itionistic predicate logic (Kleene 1973, note 7). In correspondence, G.
Kreisel wrote that Godel wanted to establish that intuitionistic proofs
of existential theorems provide explicit realizations.

However, in 1958 Godel presents his results as a contribution to a
liberalized version of Hilbert’s program: to justify classical systems, in
particular arithmetic, in terms of notions as intuitively clear as possible.
Hilbert wanted to find these intuitively clear notions in the domain of
‘finitary mathematics’.

In Hilbert’s sense, this may be described as mathematics of a purely
combinatorial nature, dealing with configurations of finite, discrete, con-
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cretely representable objects that can be surveyed (grasped) in all their
parts. Elementary-school arithmetic may be regarded as typically fini-
tary in Hilbert’s sense: it deals with natural numbers and certain specific
operations on them, such as addition and multiplication, which have
purely combinatorial character. On the other hand, the general concept
of a function from N to N is not finitary (see Gdel’s note b). Even more
abstract in character, and therefore further removed from finitary math-
ematics, is the use of abstract (intuitionistic) proofs in the explanation®
of the intuitionistic logical operators (see the opening paragraph of 1958
or of 1972, and notes e and h). In this explanation the meaning of
the logical operators is given by describing proofs of logically compound
statements in terms of the constituent statements. Two typical clauses
are the following:

(1) p proves AV B if p is either of the form (0, p'), where p’ is a proof
of A, or of the form (1,p'), where p’ is a proof of B.

(2) p proves A — B if p is a construction (method) which, when ap-
plied to any proof ¢ of A, yields a proof p(q) of B. (‘p proves —A’ is a
special case: p transforms any hypothetical proof of A into a proof of an
absurdity.)

Thus AV —A is not valid for this interpretation. Accepting these
explanations for intuitionistic logic provides us with a justification and
consistency proof for intuitionistic first-order arithmetic HA (‘Heyting’s
arithmetic’) comparable to the technically trivial consistency proof for
classical first-order arithmetic PA (‘Peano arithmetic’) that simply con-
sists in interpreting PA in the intended (standard) model and observing
that the logical rules preserve truth. Combining the indicated justi-
fication for HA with Gddel’s own ‘negative translation’ (1933e) that
reduces® PA to HA, one obtains a justification of PA in terms of intui-
tionistic principles. As Godel observes in note 6, even if we do not have
a sufficiently clear idea of the notion of a constructive proof, we do not
doubt that the laws of intuitionistic logic hold for it. (Conversely, if one
is worried about the coherence of the explanations of intuitionistic logic
in terms of abstract proofs, but accepts the classical notion of truth,
then HA C PA is an immediate justification of HA.)

2.2 Godel argues that, since the finitistic methods considered are not
sufficient to carry out Hilbert’s program, one has to admit at least
some abstract notions in a consistency proof; the necessity of this is

bGodel calls this Heyting’s explanation, though “Heyting—Kolmogorov” might be
more appropriate. See our introductory notes to 1983e and 1933f in Volume I.

¢The systems of classical and intuitionistic arithmetic considered in 1938e are not
identical with PA and HA of the recent literature, but that is not essential.
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shown both by the second incompleteness theorem and by our experi-
ence with known consistency proofs, all of which appeal at some point
to an abstract notion (see the second paragraph of 1958 or 1972, and
notes 3 and c; as to the use of the term ‘finitary’, see also b). In a
letter to Bernays, dated 25 July 1969, Gddel said that the restriction to
‘visualizable’ objects in Hilbert’s finitism was quite unnatural.
However, Godel did not want to go as far as admitting Heyting’s ab-
stract notion of constructive proof; hence he tried to replace the notion
of constructive proof by something more definite, less abstract (that is,
more nearly finitistic), his principal candidate being a notion of ‘com-
putable functional of finite type’ which is to be accepted as sufficiently
well understood to justify the axioms and rules of his system T, an es-
sentially logic-free theory of functionals of finite type (see note 6).

2.3 The method used by Godel consists in associating with each A in
the language of arithmetic a formula of the form IaVyAp(z, y), where
Ap is quantifier-free and x, y are strings of variables for functionals
of finite type. This association is such that, if HA proves A, then T
proves Ap(t, y) for a suitable sequence of terms ¢ (not containing ).
For a quantifier-free A, Ap = A; thus consistency follows if we accept
T, since, if T is correct, one cannot derive 1 = 0.

We are not asked to think of the reinterpretation of the logical opera-
tors of A, involved in the transition to Ap, as particularly fundamental;
the main point is that it permits a translation of A in logic-free terms
(see our comments in 3.2 below).

2.4 In order to gain a better understanding of what exactly Godel
achieved, it helps to go into the technical background and content of
Godel’s paper. We do so at length in the next two sections; in 4.4 we
shall return to an assessment of Godel’s reduction.

3. Goédel’s main result

This section is quite long and technically the most complicated one
in this introduction. The best procedure for the reader is perhaps to
alternate between Godel’s text and our explanations, starting with the
present section.

3.1 The basic languages and systems
As noted earlier, Godel’s description of his system T is rather sketchy:

it is supposed to be a quantifier-free theory of computable finite-type
functionals, with a primitive notion of decidable (intensional) equality




222 Note to 1958 and 1972

for all finite types {(note 7) and in which functionals can be introduced
by explicit definition and recursion. Additional specifications are con-
tained in note i. To explain them in definite and precise terms, we begin
by describing a version T of T that seems to correspond well to Godel’s
intentions in 1958 and the main text of 71972; from this we extract a
subsystem T, suggested by note i and sufficient for Gédel’s principal
result. The motivation for our choice is found in subsection 3.3.

We shall use A, V, —, =, V, 3 for the logical operators (Godel has D,
( ) for —, V). Intuitionistic arithmetic HA (Godel’s ‘H’; see notes 10, j
and i5) is taken to be formulated with number variables (z, y, z, u, v,
w), the Peano axioms for zero (0) and successor {S7), the induction ax-
iom schema (or the corresponding rule), and constants for all primitive
recursive functions, with their defining equations as axioms.d

The type structure 7 (on which T is based) is generated from type

0 (natural numbers) by the rule: if o, 7,...,7, are types, then so is
(o, T1,...,7y). Intuitively, (o, 71,...,7,) consists of n-place functions
which, applied to arguments of types 71,..., 7, give a value of type o.

These are called functionals in general, since, for 7; # 0, the arguments
are themselves functions.

For Godel’s type (o, 7) we shall write (7)o or 7 — . Then Schonfin-
kel’s device of reducing n-place functions to unary functions by means
of the isomorphism XY *Z 2 (XY)Z permits us to think of the type (o,
T1,...,Tn) a8 an abbreviation for (1) ... (r,)o. The restriction to unary
functionals is customary in the literature and technically convenient. We
also use 1 for the type (0)0 and 2 for (1)0.

The language £ of T contains variables for each type o of 7T (27, y°,
2%, u’, v?, w?, possibly subscripted) and individual constants for cer-
tain types, to be specified below. The informal interpretation is that the
variables of type o, for o # 0, range over the computable functionals of
that type; this will be analyzed in more detail in Section 4 below.

For each type o € 7 there is a primitive binary predicate constant =,
in £ for equality at type o.

The letters ¢ and s (possibly with sub- or superscripts) will be used
for terms. ‘¢ is of type o’ can be written as t ¢ o or as t; where there
is no ambiguity, type superscripts are suppressed. If t ¢ (o)1, ' € o,
then App, . (t,t') (“t applied to ¢'”) is a term of type 7, for which we
shall simply write (') or even t#’. The notation tity...t, Iis
short for ;(¢2)(¢3) ... (ts), which corresponds to Godel’s t1(ta, ..., t,).

dAs observed by Gédel in note m, one can dispense with negation as a primitive,
defining =4 as A — 1 = 0. In fact, in HA one can also dispense with disjunction,
defining it as AV B := 3z[(z = 0 — A) A (z # 0 — B)]. In note i5 Godel observes
that, because of the presence of the predecessor function, one of the Peano axioms is
in fact redundant.
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When suppressing type specifications for compound expressions, we shall
always tacitly assume types to be “fitting’, that is, in a term ¢¢’, ¢ must
be of type (o)7, t’ of type o, for certain o, 7 ¢ 7.

Prime formulas of £ are term equations: ¢ =, s, or simply ¢ = s
without type indications; compound formulas are constructed by means
of the propositional operators A, V, —; = A is an abbreviation for A —
St0=0.

The logical basis of T is the intuitionistic (many-sorted) propositional
calculus with equality, where equality is assumed to be decidable for each
type o, that is, t =, sVt #, s. Equivalently, one might have taken clas-
sical propositional logic as the basis, since the decidability of the prime
formulas entails the decidability of all compound formulas by intuition-
istic logic. Godel adds a rule of substitution: if we have derived A(x”),
we may infer A(t?); but this rule is not needed if, instead, all schemas
formulated with free variables are replaced by schemas formulated for
arbitrary terms.

Before continuing our description of T, we introduce some further ab-
breviations, which will enable us to deal with finite strings of variables
and terms. We shall use u, v, w, x, v, 2, U,..., Z for finite sequences
of variables, and ¢, s, S for finite sequences of terms.

Let £ = (z1,...,2,), ¥ = (y1,..-,¥m). Then Va, 3z abbreviate
Vri...VYap, 3z1...3x, respectively; Vay stands for YaVy; etc. If ¢t =
(t1,...,ty) and 8 = (81,...,8m), then t8in a formula A(ts) stands for a
finite sequence ({181...8m,-.-,tn81...8m); t = 8 is a sequence of equa-
tions t1 = $1,...,%, = 8, (n has to be equal to m).

We often write t[z] or t[zy,...,,] in order to refer to the (possi-
bly empty) sets of free occurrences of the variables z, or z1,...,%,, in
t. Then t[t1,...,1,] denotes the result of simultaneously substituting
t1,...,t, for x1,..., z,, respectively.

The non-logical axioms and rules for T contain the (Peano) axioms
for zero (0) and successor (S*) and the induction rule

IND-R A(0), A(2%) — A(ST20) = A(z).

Besides 0 and S*, T should also contain (i) constants for functionals
introduced by explicit definition (combinatorial completeness), that is,
whenever ¢ is a term built by application from variables z1,...,z, and
constants already introduced, there is a constant ¢ such that

qﬁxl...xn:t,

and (ii) constants for functionals defined by primitive recursion.

(1) can be guaranteed by having A-abstraction in T, or, as is often
technically more convenient, by having combinator constants K, , of
type (0)(7)o and Sy 0,r of type ((p)(0)7)((p)o)(p)o such that
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(1) Ky oy =z, Sp,a,—rxyz = xz(yz),

it is well known that these permit us to define a term Az.t[z], for each
term ¢, such that (Az.t[z])(t') = ¢[t'] (see Troelstra 1973, 1.6.8).

As to (ii), it suffices to add for each o a ‘recursor’ R, of type
(¢)((6)(0)0)(0)o such that

(2) Ryzy0 =z, Rery(ST2)=y(R,zyz)z.

From the R, one can define (sequences of) constants for simultaneous
recursion (see Troelstra 1973, 1.7).

Following Godel’s note i4, let T (with language £o) be the subsystem
of T obtained by restricting prime formulas to numerical equalities (that
is, now =¢ is the only primitive notion of equality). Of course, the
equality axioms (1) and (2) for higher types cannot be expressed in
Ty as they stand; instead, one assumes the corresponding replacement
schemas; for an arbitrary term s[z] of type 0 we have

3 s[Ktt'] = s[t], s[Stt't"] = s[tt" (t't")],
(3) s[Rtt'0] = s[t], s[Rtt'(SHt")] = s[t' (Ret't")t"].

The decidability of equality for type 0 can be proved; for higher types
the decidability assumption is dropped.

This completes our description of one precise version T of Godel’'s T
and a significant subsystem T of T.

3.2 Godel’s translation and interpretation

Godel’s translation P (denoted by ’ in Godel’s paper) assigns to each
A in the language of HA a formula AP of the form 3aVyAp(z, y), where
Ap € Lo (that is, Ap is quantifier-free). Go6del’s principal result may
then be stated as follows:

(I) If HA + A, then for some sequence of terms t, T + Ap(t, y)
(y not in ¢).

In fact, already To F Ap(t,y). If T (Ty) is regarded as embodying
evident principles, this can be regarded as a consistency proof for HA.
To obtain a similar result for PA, one first applies the translation from
Godel 1933e.

It is not too easy to explain the intuitive content of AP in a few words;
so we shall first formally define the translation and afterwards return to
this question. AP is defined for arbitrary formulas by induction on their
logical complexity.
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(=)P  For A prime, &, y are empty sequences and AP = Ap = A.

For all other clauses, let A” = JavyAp(z,y), BP = IuwvBp(u,v).
Then

(APY (AN B)P :=3zuvvy(Ap A Bp),

(vP)  (AVB)P: =3 cuvvy[(z = 0A Ap) V (2 = L A Bp)],
(VP)  (VzA(2))P : = JavzyAp(z2, y),

(3P)  (F2A(2))P : = JzaVyAp(z, z, ¥),

(-»P) (4= B)P . =3UYVav(Ap(z, Yov) — Bp(Uz, v)).

In the above definition certain obvious requirements on the variables are
to be met; for example, in (A?) the sequences z, u, v, y must all be
kept disjoint, if necessary by renaming variables. As to the clause (V?),
see Godel’s note 1.¢

Suppose PA - A and let A’ be a prenex form of —A; with the help of
the ‘negative translation’ (Gddel 1933¢) one easily sees that HA F —A’;
then by (I) there are terms ¢ such that HA + —A (=, tx). This is
Kreisel’s no-counterexample interpretation! for PA (Kreisel 1951, 1952;
see also Troelstra 1973, 3.5.3).

In 1958 and 1972 the definition of AP is given only for formulas A
of the language of HA, that is, z is of type 0 in the clauses (V7), (37).
But, formally, these clauses make just as good sense when extended to
variables z of any finite type. We write £*, L for the languages of T,
T, extended with quantifiers for all finite types. AP is thus defined for
all A in £*.

The following may serve to motivate the definition of AP. It is ob-
vious how we can constructively verify statements 3avVyA(x, y), for A
quantifier-free, namely by providing an explicit ¢ such that A(¢, y) holds
(the constructive meaning of a quantifier-free statement is taken to be
immediate). If we wish to assign a similar interpretation to arbitrary A,
we should look for a statement AP = JavyAp(z, y) (classically) equiv-

eThe clause (VP) can also be formulated as
(Av B)P .= 3%uVoy[(z = 0 — Ap) A (2 # 0 — Bp)],
which corresponds precisely with the definition of V given in footnote d.

fThis treatment of the no-counterexample interpretation (n.c.i.) introduces type-2
functionals via the higher types. Such a detour can be avoided by a direct treatment,
as shown by Tait. An adequate system of type-2 functionals is given in Test 1965a. A
nice treatment is in Schwichtenberg 1977. The no-counterexample interpretation, and
hence also Godel’s interpretation, may be viewed as an extension and generalization
of Herbrand’s theorem to arithmetic (see e.g. Girard 1982); in this connection it is
perhaps interesting that Godel already realized in the early forties (in 1943 or before)
that Herbrand’s proof of his theorem was in need of correction.
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alent to A. Godel’s definition of AP accomplishes this in such a way that
explicit realization of existential quantifiers and choices of disjuncts for
disjunctions are encoded in the verifying «, as may be seen by inspecting
the clauses (VP) and (3P). As to the required equivalence A «— AP note
that A < AP for A prime, and intuitionistically (A A B)? — AP A BP,
(AV B)P « AP v BP and (32A(2))P « 3zA(2)7; (VzA)P — VzAP
holds if we accept

AC VedyB(z,y) — 3YVeB(x, V).

Finally, clause (—)?

steps (Spector 1962):

can be motivated® by the following sequence of

[FavyAp(z, y) — JuvvBp(u, v)] ——
Ve(VyAp(z, y) — FuvvBp(u, v

)]
Vedu(VyAp(z,y) — YvBp(u, 'u))] —Z
VzduVv(VyAp(z, y) — Bp(u, v))]

)]

VeduVvdy(Ap(z, y) — Bp(u,v
IUYVzv(Ap(z, Yav) — Bp (U, v)).

All steps (i)—(iv) are classically justified, in fact (i) and (iii) are intuition-
istic; {v) consists in a double application of AC. A further discussion of
the assumptions involved in (ii) and (iv) will be taken up in 3.3 below.

It should be pointed out that Godel does not claim any fundamen-
tal significance for P as such; his principal interest lies in achieving a
conceptual reduction of intuitionistic arithmetic to ‘nearly finitistic’ no-
tions; that the translation used is perhaps very tortuous is irrelevant to
this aim.

The verification of the main result (I} proceeds by induction on the
length of deductions in HA, that is, by showing that, for suitable ¢,

(%) T+ Ap(t,y)

holds for each axiom A of HA and is preserved by the rules of inference.
Details are given in Troelstra 1973. There are only two delicate points
involved. Ome comes when verifying (%) for instances of induction in
HA. It may be seen that what is needed in T for this purpose is the
generalization of the rule of induction mentioned by Godel in note il.

8Godel’s own motivation, in the text, is presented differently.
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This rule is in fact derivable in T, as asserted by Godel (i3); for a proof,
see Troelstra 1973, 1.7.

A second point occurs in verifying (*) for the seemingly innocuous
axioms of the form A — A A A. Here we need not only the decidability
of prime formulas but the stronger fact that there exist characteristic
terrs for them, that is to say that for each prime formula A(z) with
free variables among the @ there is a term 4 such that tgz =0 — A(x).
To see how the need for {4 arises, let us consider the interpretation of
A— ANA. Let AP = 3a¥yAp; then (A — A A A)P becomes

[Bavydp — 32y ' (Ap(,y) A Ap(2’, y")]° =
Jya 'Vay' ' (Ap(z, yzy'y') — Ap(d'z, ) A Ap(a'z of")).

Now, if 42y = 0 « Ap(x, y), we can take

_ " ; y/ iftAic"l/#O
¥=iz.z, o =Az.z, Wﬂ/?/‘{g/' if tazy = 0.

The definition of y is an instance of definition-by-cases, which is readily
justified with the help of the recursor constants. Note that the choice of
interpretation here is in some respects arbitrary; we might equally well
have taken

yeyy =y iftazy’ #£0, yxy'y' =19 otherwise.

This is to say, the straightforward construction of terms ¢ such that (*)
holds, by induction on the length of derivations in HA, is not canonical
at this step.

If A is arithmetical, Ap will be quantifier-free with equality of type
0 only (that is, Ap belongs to Ly), and the existence of t4,, satisfying
ta, = 0 « Ap is in fact provable in Ty. The rule for disjunctive
definition as stated in Godel’s note i2 is in fact equivalent to the existence
of characteristic functions plus the following more restricted rule for
definition-by-cases of a functional f,

fx=t1 ft=0, fx=1y otherwise

(all free variables of ¢1, t2, ¢ contained in ).

Next we wish to discuss T as it actually figures in Godel’s text. We
believe that T as described in 3.1 corresponds pretty well to Godel’s in-
tentions. Certainly in 71958 Godel wanted T to have a decidable primitive
notion of equality for each finite type (note 7), since the decidability of
prime formulas together with intuitionistic logic justifies the decidabil-
ity of all formulas of T, and the formulas may therefore be regarded as
essentially ‘logic-free’. (No abstract interpretation of the logical opera-
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tions is involved, as there is, for example, in the proof-interpretation of
—)

It is doubtful whether in 71958 Gdidel had already realized the need
for characteristic functions in connection with the axiom A — AA A. In
a letter of 1970 J. Diller explicitly drew Godel’s attention to the role of
characteristic functions. Godel reacted in a letter to Bernays (14 July
1970) as follows: “I do not understand what it means to say that in
my proof of the formula p D p A p a passage (which is not possible) to
the characteristic term of a formula is required. What is required is the
decidability of intensional equations between functions.”?

Godel probably regarded the existence of (computable) equality func-
tionals as a concomitant of the decidability of equality; from the passage
just quoted one cannot tell whether Godel realized that in general (that
is, at higher types) the decidability of equality does not entail, axiomat-
ically, the presence of equality functionals at higher types. In any case
the proof sheets of 1972 contain an earlier, crossed-out version of foot-
note i2 which reads:

2. The principle of disjunctive definition, added to Axiom 5 in the
present version of the paper, is the following: A function f may be
defined by stipulating

AD f(x) =1, -AD f(.’L') = {g,

where 1, ty are terms and A is a formula, both containing only
previously defined functions and no variables except those of the
sequence x. This principle is needed for the proofs that the axioms
1 and 4 of H and the deduction rule 6 of H hold in the interpre-
tation defined below. It can be derived if equality functions with
the axioms G(f,g) = 0 = f = g are introduced as primitive terms
at all types. At any rate either disjunctive definition, or the axiom
for equality functions, must be added to the axioms mentioned in
the first edition.

Afterwards Godel must have realized that Ap for arithmetical A re-
quired only equations between numerical terms, and he accordingly
rewrote note i2 to the version we find in the text.! Diller and Nahm, on

h«Jch verstehe nicht was es heissen soll, dass in meinem Beweis der Formel
p D p A p ein (nicht moglicher) Ubergang zum characteristischen Term einer Formel
notig sei. Was notig ist, ist die Entscheidbarkeit von intensionalen Gleichungen zwi-
schen Funktionen.”

IThus, in the words of G. Kreisel, the whole issue of decidability of equality and
characteristic functions for equality at higher types turned out to be a “red herring”,
at least for Godel’s purposes.
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the other hand, had attempted to extend Goédel’s result to higher-type
arithmetic formulated in the language L£*, that is, £ with quantifiers
vz, 3z° added, where equality functionals at all types (or equivalently,
characteristic functions at all types) are necessary. In 1974 they gave a
variant * of the translation P which also achieved reduction to 3V-form,
for which an interpretation theorem similar to (I) could be proved and
for which no appeal to decidability of prime formulas and characteristic
functions was necessary (more about this in Section 5.4).

(GGodel’s note i4 shows that he realized that one can dispense with all
references to equality at higher types for Theorem I, provided one refor-
mulates the defining axioms for the functional constants as replacement
schemas for terms, as we did (3.1(3)) in formulating Ty. Clearly, in note
i4 Godel had something like our Ty in mind. He also observes that one
can in fact dispense with the propositional operators, reducing every-
thing to a term-equation calculus; in the context of primitive recursive
arithmetic PRA this fact was first proved by Goodstein (1945; see also
his 1957). Hilbert and Bernays 1934 (Chapter 7) showed that proposi-
tional combinations of term equations can be replaced by a single term
equation, but not that the addition of the propositional operators with
their usual rules is in fact a conservative addition to the term-equation
calculus.

In note n, Godel refers to the system o of Spector 1962 minus
axiom F', corresponding to the system WE-HAY as described below
in 3.3. However, the extensionality rule of Spector’s system does not
seem to fit in with Godel’s decidedly intensional view of equality; and in
fact Godel’s own paraphrase of ¥o—{F'}, when read in combination with
note i4, rather points to the system HA{ (‘quantified To’; see 3.4
below).

We do not feel quite certain of the correct reading of note 8. One pos-
sible interpretation is the following: since, for Godel, T has functionals
with n arguments as a primitive notion, one can introduce a constant
functional P of higher type by (P(z1,...,2n))(¥1,-- - Ym) = t, where
all free variables of ¢ are contained in {z1,...,25,¥1,. .., ¥m}; with the
notation Az for simultaneous abstraction for a sequence of variables one
might write P = Az(Ay.t). So P is of type ({(7,71,...,Tm),01,--.,00)
(Godel’s notation), where o; is the type of z;, 7; of y;, and 7 of ¢
This has no analogue in the usual formulation of PRA, since there only
functions with values of type 0 are introduced. This formal difference
disappears if we apply the Schénfinkel method for reducing everything
to unary functions, both to PRA and to T. On this reading, Godel’s
note refers only to a fairly superficial formal difference between PRA
and T.




230 Note to 1958 and 1972

3.3 Extensions to finite type arithmetic; constructive content of ¥

It is quite illuminating to see what happens to Godel’s result (1)
if one tries to extend it from HA to various systems of intuitionistie
higher-type arithmetic. Let £ and £* be the languages of Ty and T,
respectively, extended with higher-type quantifiers. Let HAY be the
extension of T to £ with intuitionistic predicate logic; HA® is the
corresponding extension of T to £*, but without assuming decidability
of equality at higher types; I-HA* is HA® with characteristic functions
E, for equality at type o, ¢ € 7, added. E; is certainly not defin-
able in HA®, since all type-2 functionals of HA" are continuous, while
Ayt E(Az°.0)y is not continuous in y?.

An extensional variant E-HAY in the language £§ is obtained by
defining equality at higher types as extensional equality, assuming the
usual equality axioms for this defined equality at all types. A weakly
extensional variant WE-HA® has, instead of the substitution schema
t9 =t A A[t1] — Alt2], the weaker rule

01T1...Tp =162Z1...%np, A(tl) = A(tz),

where z1, ..., T, is a string of variables, not occurring free in ¢;, ¢2, such
that t1xy ... %y, tax1 ...y are of type 0. Schematically

c I-HA*®
c E-HAY

I
C WE-HA® C E-HA".

Cc HAY {
HA c HAY

As shown in Rath 1978, HA® is in fact conservative over HAg'.

If H is one of the systems HAY, HAY, I HAY, WE-HA®, E-HA",
qf-H denotes the fragment without quantifiers (“quantifier-free”), so
qf-HAY = Ty, and T C of- - HA®.

For H any one of LHAY, WE-HA® or HA{, we can show straight-
forwardly the following extensions of Gédel’s (I):

(II) H+ A(x) = of-H - Ap(tz, y, ) for a suitable sequence ¢ of
closed terms;

(II) H+ A = H - AP (soundness, as a corollary to II).
Soundness must necessarily fail for HA"“, as shown by Howard ( Troel-

stra 1973, 3.5.6), since soundness for systems in the language L*
would entail Vylzl(=—y! = 2! vV —y! = 21), i.e., a weak form of decid-
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ability, which cannot be proved in HA®; and soundness also fails for
E-HAY, since no functional of E-HA® can satisfy the P translation of
VeW0rlyl(z = y — 22 = 2y) (Howard, in Troelstra 1973, Appendix).
Of course, there is an indirect method for interpreting E-HAY: first
interpret this theory in HA{ by hereditarily restricting all quantifiers in
HAY to elements of type o which respect extensional equality, and then
apply the Dialectica interpretation; this is the road taken in Luckhardt
1973.

WE-HA" as an intermediate possibility is not very attractive: the
deduction theorem does not hold for this theory. (However, it does hold
for g-WE-HA"; in this respect the comments in Troelstra 1973, 1.6.12,
are misleading and partly wrong. See also Godel’s note n.)

Let us now return to a discussion of the equivalence A — AP. If the
sole aim of the translation were to associate with each A a classically
equivalent (modulo AC) A’ of the form JaxVyA’(z,y), any standard
recipe for rewriting A in prenex normal form, followed by a number of
applications of AC so as to bring all 3 in front (“Skolemization”), would
do the job. However, AP is designed so as to keep as close as possible
to an intuitionistic reading of A, by minimizing the non-intuitionistic
steps in the translation from A to A”. The only clause which needs
inspection in this connection is (—?), since the other clauses involve
only AC and transitions valid by intuitionistic logic. As noted already
in 3.2, the crucial steps in the definition of (A — B)® are (ii) and (iv).
Step (ii) is an instance of the schema

1P’ (VaC, — JyCa) — Fy(YaCy — Cs)

(C1, C2 quantifier-free, y not free in C'y, x not free in C3). The notation
IP’ derives from “Independence of Premiss”, since, assuming YaC; —
JyCy, TP’ requires that we can a priori indicate y, independently of the
truth of VaCy; an intuitionistic reading of VxCy — JyCy requires only
that, once a proof of VaC} is given, we can find a y (possibly depending
on the given proof).

Step (iv) can be justified on the basis of the following generalization
of “Markov’s principle”:

M’ Vo€ — Jv=C (C quantifier-free)

((iv) is justified if Bp{u, v) holds; if not, apply M’ with Ap(z, y) for C).
Markov’s principle as accepted by the Russian constructivist school is
the special case where v is of type 0 and C primitive recursive.

For the interpretation in terms of abstract proofs, IP' and M’ are
usually not accepted as valid, and AC only in special cases (in particular
where z is of type 0). However, nothing in the intuitionist point of view
prevents us from giving a more special interpretation to the logical oper-
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ators in the context of a given language, provided that interpretation
is itself meaningful and intelligible from an intuitionistic point of view
(which is certainly the case for ). For the same reasons, however, one
should question Go6del’s remark (at the end of note h) that his inter-
pretation is more constructive than the proof-interpretation because it
validates Markov’s schema. In fact, Markov’s schema is false for some
perfectly coherent intuitionistic theories such as the theory of lawless se-
quences (see Troelstra 1977, Chapter 1), while Gédel himself, at the end
of note ¢, regards choice sequences as coming close to being finitistic.

Not only does the Dialectica interpretation validate Markov’s princi-
ple, but in fact any instance of M, IP’ and AC. As a result, we obtain
the following strengthening of (II) and (III), for the same systems H as
before:

IV H+1P' + M + ACH A & AP and
H+1IP' +M +ACHF A= of-HF Ap(t,y) for suitable &.

The first half of (IV) also holds for H = E-HA® or HA”, and is im-
plicit in Kreisel 1959 (2.11,3.51). The second half of (IV) was explicitly
stated in Yasugi 1963 for WE-HA",

4. Models for T

For the sake of definiteness, we shall here identify Godel’s T with our
T of 3.1. Three models for T are mentioned in Gédel’s paper: the com-
putable functionals, the hereditarily recursive operations, and the term
model. We shall now briefly discuss each of them in turn.

4.1 The computable functionals of finite type

These are informally described by Goédel as follows: the computable
functions of type 0 are the natural numbers; a computable function of
type (o)1 is a well-defined mathematical procedure which, applied to a
computable function of type o, yields a computable function of type 7.
Here “well-defined mathematical procedure” must be taken as an un-
derstood primitive notion, and Godel stresses (note 6) the parallel with
the role of “constructive proof” in Heyting’s explanations of the logical
operators.

The precise wording of the description of this notion together with
the explanatory note 6 caused Goédel a good deal of trouble. In a letter
to Bernays, dated 17 December 1968, Godel, referring to note 1 of 1958
(corresponding to note 6 of 1972), observes that “it seems to be very
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difficult (or impossible) to make this more precise and yet to maintain
it to its full extent”.

In the description of computable function, the proof sheets have, in-
stead of “this general fact is constructively evident ... without any fur-
ther explanation [6]”, the following crossed-out passage: “this general
fact is intuitionistically demonstrable. This definition of ‘computable
function of type ({o, t1,. - ., tx)’ must be accepted as having a clear mean-
ing without any further explanation [6] provided one already has clear
ideas of the meanings of the phrases ‘computable function of type ¢;’ for
i=0,1,...,k” (Godel’s [6] is note 6 in 1972 as reproduced here.)

As Bernays observed in a letter to Godel of 12 December 1970, this
makes it appear as if the notion of computable function depends on
the general notion of intuitionistic proof, contrary to Godel’s intentions.
Consequently, Godel replaced “intuitionistically demonstrable” by “con-
structively evident”, but he remained dissatisfied as is shown by his let-
ters to Bernays (that of 26 December 1972, in particular). His note h,
discussed below, may be seen as an attempt to interpret T with the help
of a narrower concept of proof that is more obviously independent of the
general notion of intuitionistic proof.

As Godel realized, it was not possible to avoid a certain “impred-
icativity” in the notion of a finite-type function. “Impredicative” here
refers to the fact that, e.g., functionals of type (0)0 could be defined via
functionals of much more complex types—just as an intuitionistic proof
of a statement may perhaps refer to proofs of more complex statements.
It is this fact which makes it difficult to formulate the epistemological
gain obtained in replacing the general concept of intuitionistic proof by
“computable function of finite type” or by one of the interpretations
discussed in 4.2 and 4.3 below.

4.2 The hereditarily recursive operations HRO

For each o € T, define V, the set of (Godel numbers of) hereditarily
recursive operations as follows

Vo:=N, Vi i={z:VyeV,3ze V.({z}(y) = 2)}.

Here {-} are the “Kleene-brackets” for partial recursive function appli-
cation; i.e., with Kleene’s T-predicate and result-extracting function U,

{z}(y) = z & Iu(T(z,y,u) AU(u) = 2).

Equality at each type o is interpreted as equality of Go6del numbers.
The reader should note that with increasing complexity of the type o
the arithmetical complexity (level in the arithmetical hierarchy) of the
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predicates V, increases without bound, and that = € V, as a predicate of
z is certainly not recursive for ¢ # 0. Thus the only “reductive gain” of
the interpretation of T in terms of HRO is that arbitrary arithmetical
predicates are explained in terms of the more special predicates z ¢ V.
For details, see Troelstra 1973, 2.4.8. Clearly it is this model to which
Godel refers in notes g and h as based on Turing’s notion of a com-
putable function.

4.3 The term model

Many variants of this can be given; we choose a simple version that
is easy to describe and is suitable for illustrating Godel’s intentions.

Redezes are terms of one of the following forms: Ktt', Stt't", Rtt'0,
Rtt'(S*T+"), where t, t', t" do not contain subterms that are redexes;
these convert respectively to &, " ('t"), t, t/(Rtt't" }t". It can be shown
that each closed term ¢ can be reduced to a unique redex-free term (the
normal form of t), by successively converting redexes occurring as sub-
terms. We use NV F for the set of closed terms in normal form.

The most straightforward method for proving this is by means of so-
called’ ‘computability’ predicates ( Tait 1967). Let t, ' range over closed
terms, and put

Compy(t) := ¢ is of type 0 and reduces to normal form,

Comp,), (t) := ¢ reduces to normal form

and Vt' ¢ Comp, (tt' ¢ Comp, ).

The proof then proceeds by noting that all applicative combinations
of computable terms are computable, and that all constants are com-
putable; afterwards one can prove the normal form to be unique.

For the model of T one takes the t ¢ NF of type ¢ to be the objects of
type o. Equality is interpreted as literal identity (hence it is recursive!)
and application App(s,t) as the (unique) normal form of s(t).

In view of Godel’s choice of terminology (“reductive proof”) in note
nl, it is tempting to think he had something like a term model, defined
via reductions, in mind. But there is no conclusive evidence for this.
Though we may assume that Tait 1967 was known to Godel, he does
not refer to it in the paper, nor does he ever refer to Tait’s work in his
letters to Bernays. Nevertheless, the model NF may be used in an effort
to understand Goédel’s intentions in note h—at the same time revealing
problematic aspects.

iThe terminology ‘hereditarily normalizable’, instead of ‘computable’, would have
been more appropriate.
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So let us attempt to interpret note h in terms of NF', taking Tq for
T. We may then think of T as an equation calculus of finite-type func-
tionals, and take Godel’s T/ to be Ty interpreted in NF. ‘Reductively
provable’ for an equation between closed terms £ = s would then mean
that the equation can be verified by reducing ¢, s to their normal forms
tV, sN and finding that tV¥ = s¥. This is indeed decidable, and the
proof-procedure is defined in advance (see note h1,2).

Of course, the proofs of Ty are not reductive proofs as such; but ac-
cording to Godel, it should be possible to justify all of them on the basis
of the notion of reductive proof alone (note h3: “no other concept of
proof ... occurs in ...”). The simplest way to interpret this claim is to
verify that NF is indeed a model for Ty (see Troelstra 1973, 2.5). This
can be done in a fairly straightforward manner, though it is not entirely
trivial; the obvious metamathematical argument relies on induction plus
the existence of a unique normal form for each closed term. In fact, we
have for equations between closed terms ¢ and s

(1) (2)
HAYFt=s5+=Tott=s =tV =s"

(&t = s true in NF & t = s reductively provable, by definition). Here
(1) holds by the soundness of Gddel’s interpretation ((II) in Section 3.3),
(2) by the fact that NF is a model for Ty.

One might also think of a stricter interpretation of Gédel’s claim,
namely, that it ought to be possible to justify all proofs in Tq by a
method that would explicitly transform any proof of a closed term equa-
tion in Ty into a reductive proof. (For proofs with free variables in the
conclusion, we ought then to require that this be possible for each sub-
stitution of closed terms for the free variables of the conclusion.)

A step in such a transformation could be the replacement of an ap-
plication of the induction rule A(0), A(n) — A(S*n) = A(m) for
a numeral 7, by m applications of modus ponens to proofs of A(0),
A(0) — A(1),...,A(m — 1) — A(T) (see Gddel’s observation on induc-
tion in note n).

Though it is possible to carry through this stricter interpretation, it
is certainly not trivial.

4.4 Assessment of the reduction achieved by Godel

We now return to the issues left hanging in 2.4. The “impredicativity”
of T has already been mentioned. As will have become clear from 4.2
and 4.3, narrowing down the intended interpretation does not remove
this feature: we may make the description of the intended model of T
very definite and concrete, but the “impredicativity” then pops up in
the arguments needed to show that the interpretations for T are correct.
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Not only the V,,, but also the arithmetized version of the predicates
Comp,, run through all stages of the arithmetical hierarchy as the com-
plexity of ¢ increases. Godel’s aim was to replace the abstract intuition-
istic logical notions by a notion of functional, as concrete as possible; he
succeeded in fact in eliminating the logic except for the logic hidden in
the precise definition of the intended class of functionals. (In 4.1, we got
rid of the logic by accepting “computable functional” as a primitive; in
4.2 and 4.3 the remaining logic resides in the predicates z € V;, respec-
tively « ¢ Comp,.)

If we look at the generalization of Godel’s result, for example to HAY,
we see that the logic is “absorbed”, under the interpretation, by the no-
tion of higher-type functional. In short, there is some reductive gain
though it is not clear-cut; we think it falls short of Gédel’s aims.X

5. Later research flowing from Godel 1958

In this section we intend to present a brief survey of research more or
less directly inspired by Godel’s paper.! As principal themes we distin-
guish

(1) extensions of Goédel’s main result to other systems,

(2) investigations of the functionals needed for the interpretation,

(3) metamathematical applications,

(4) the study of related interpretations.

To each of these topics we devote a subsection.

5.1 Extensions of Godel’s main result

Already in Kreisel 1959 it was observed that Godel’s result is easily
extended to intuitionistic arithmetic with transfinite induction.

Spector (1962) extended Godel’s result to analysis formalized with
function variables by adding to T a new definition principle, the schema

kWe should mention, however, that Godel, as late as 1974, expressed himself
in the following terms, writing about 7958: “...the most direct way of arriving at
an intuitionistic interpretation of T ... does not pass through Heyting’s logic, or
the general intuitionistic concept of proof or implication, but rather through much
narrower (and in principle decidable) concepts of ‘provable’ and ‘implies’. Thus the
implicit use of ‘implication’ and ‘demonstrability’ in the definition of ‘computable
function of finite type’ does not give rise to any circularity” (from a letter, or draft
of a letter, to a Mr. Sawyer, then a graduate student at the University of Pittsburgh;
we do not know whether the letter was actually sent or not).

ISome papers connected with the Dialectica interpretation and Goédel’'s T not
explicitly reviewed below are: Kreisel 1959a, 1959b, Grzegorczyk 1964, Diller and
Schiitte 1971, Vesley 1972, Schwichtenberg 1973, 1975, 1979, Goodman 1976 and
Scott 1978.
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of bar recursion at all finite types. Bar recursion (BR) is closely related
to the axiom schema BI of bar induction at all finite types, and BR
can in fact be justified with the help of BI. Brouwer’s “bar theorem” is
equivalent to Bly, bar induction of type 0. Gddel, in note d, refers to
Spector’s work, but does not distinguish clearly between bar recursion
and bar induction. The justification of Bly mentioned by Godel refers
to the method of elimination of choice sequences,™ which reduces Bl
to the theory of a single generalized inductive definition.

Spector’s work was later refined by Howard (1968) and Luckhards
(1973). Howard (1972) also extended Godel’s result to a theory of
abstract constructive ordinals (again a theory of a single generalized
inductive definition, namely an abstract version of Kleene’s recursive
ordinals), thereby realizing a possibility suggested by Godel at the end
of note d.

Quite recently Friedrich (1984, 1985) has carried the interpretation
through for analysis extended with a game quantifier.

Girard (1971, 1972) was the first to treat classical analysis and finite
type theory formulated with set (predicate) variables of finite type and
full comprehension. Girard had to invent several new technical devices,
such as the introduction of a type structure with variable types and the
use of ‘reducibility candidates’; in establishing normalization for his sys-
tem of functionals. The latter idea led to direct proofs of normalization
and cut-elimination for analysis and the theory of types (Girard 1972,
Prawitz 1971, Martin-Lof 1971).

MaaB (1976) gave a treatment of predicative analysis. Koletsos
(1985) extended Godel’s interpretation to Girard’s g-logic.

5.2 Investigations of extensions of Gédel’s T

Godel’s interpretation provides a consistency proof for arithmetic
modulo the assumption that closed terms of type zero have a unique
numerical value, which precludes a proof of 0 = 1. If one does not want
to rely on the insight that the computable functionals are a model of T,
one can try to prove the assumption by analyzing the computation of
terms of T.

Thus many investigations have been devoted to showing that terms of
T and some of its extensions can always be reduced to normal form. In
particular, for closed terms of type 0 this entails that they can be shown

to be equal to a numeral, that is, all closed terms of type 0 can be evalu-
ated.

MThe result as stated in Gddel’s source, Kreisel 1965, is not quite correct. See
Kreisel and Troelstra 1970 for a corrected version.
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As to the methods for proving normalization, they are principally of
two kinds: (a) by defining suitable computability predicates (Dragalin
1968, Tait 1967, 1971, Girard 1971, 1972, Luckhardt 1973, Vogel 1977)
and (b) by ordinal assignments to terms (Hinata 1967, Diller 1968*
Howard 1970, 1980, 1981, 1981a). The method of assigning ordinals
less than ¢y to terms of T can be used as another route to Gentzen’'s
theorem that the consistency of PA can be established in primitive recur-
sive arithmetic plus quantifier-free eg-induction. In Tait 1965 Gentzen’s
result is obtained via an assignment of infinite terms to functionals of
T; the infinite terms of type zero are shown, by means of quantifier-free
€o-induction, to have a unique numerical value. Infinite terms are also
used in Howard 1972.

Sanchis (7967) and Diller (1968) establish normalization of the type-
zero terms of T by means of bar induction (Diller also gave an ordinal
assignment, as noted above); Hanatani (7975) uses cut-elimination for
a system like HA®.

5.3 Metamathematical applications

Here we give some examples only. One of the first applications is in
Kreisel 1959. There a constructive interpretation of formulas of analysis
is given by combining the translation © with specific models for T. A
typical result is the following: if a formula A of analysis does not contain
Jor V, then A < (AP)* holds classically. Here (AP)* is obtained from
AP = 3avyAp by letting y range over the continuous functionals and z
over the recursive continuous functionals (see e.g. Troelstra 1973, 2.6.5).

Conservative extension results can be obtained from the axiomati-
zation of AP « A (IV in 3.3 above); thus e.g. H + IP’ + M’ + AC is
conservative over H for 3¥-formulas if H = I-HA®, WE-HA" or HA§.
Other examples are given in Troelstra 1973 (3.5.14, 3.6.6, 3.6.18 (iii)).

One of the best-known applications of © is to show closure under
Markov’s rule (Troelstra 1973, 3.8.3); recently, the more elegant and
more widely applicable® method of Friedman (7978) and Dragalin
(1980) has become available.

nDiller’s assignment is not optimal, that is to say, he uses ordinals beyond ¢g.

°It remains to be seen whether the new method of proof yields better results
in extracting effective bounds from classical proofs of Hg—statements. In this con-
nection see the discussion in Kreisel and Macintyre 1982. On the use of the no-
counterexample interpretation and the Dialectica interpretation for the extraction of
explicit bounds from classical proofs, see also Girard 1982 and Kreisel 1982.
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Examples of applications in the proof theory of classical systems are
Parsons’ use (1970) of the Dialectica interpretation for an analysis of
subsystems of arithmetic and Feferman’s use (1971 and 1977, 8.6.2) of
the interpretation in the study of subsystems of classical analysis by
means of T relativized to non-constructive functionals.

5.4 Related interpretations

Towards the end of Section 3.2 we mentioned the variant interpreta-
tion due to Diller and Nahm (1974). For this interpretation, one widens
the notion of “quantifier-free” by permitting bounded numerical quan-
tifiers Vz® < ¢ in addition to A, V, —, -, and then one associates with
each A of HA® a translation A™ of the form JzVyAa(z, y), where An
is quantifier-free in the wider sense. An interpretation result completely
similar to (I) in 3.2 can then be proved (see Troelstra 1973, 3.5.17).

The Diller-Nahm interpretation was extended to analysis in Diller
and Vogel 1975, and to systems with self-applicable operators in Beeson
1978.

Stein (1976, 1978, 1980) interpolated an infinite sequence of interpre-
tations between " and modified realizability, a functional interpretation
originally devised by Kreisel to show underivability of Markov’s princi-
ple (Kreisel 1959; see Troelstra 1973, 3.4). Moreover, all these inter-
pretations can be seen as special cases of a single interpretation ™ in a
language with “set-types” (see also Rath 1978, Diller 1979). For theo-
ries with decidable prime formulas, * is equivalent to 7.

Normalization and cut-elimination, , ”, modified realizability and
realizability interpretations all give explicit realizations for numerical ex-
istential statements proved in intuitionistic. arithmetic. It can be shown
that all these methods can be made to yield the same realizations (Mints
1974, 1975, 1979; Stein 1976, 1980, 1981)—a fact which is by no means
obvious, since the choice of terms for the Dialectica interpretation is not
always canonical (see the discussion in Section 3.2 above).

In conclusion, we mention a variant of the Dialectica interpretation of
a different nature, due to Shoenfield (1967). This variant is directly ap-
plicable to classical first-order arithmetic PA formalized using V, Vv, —.
To each A of the language of PA a formula A® of the form VadyA,(z, y)
is assigned, where dy now abbreviates =Vy—, with A, quantifier-free. A®
is said to be velid if, for some term sequence ¢, A,;(x, t) is derivable in (a
version of) Gddel’s T. Then A® is valid for each A provable in PA. This
reduction bypasses the “negative translation” of PA into HA {Gddel
1933¢). See also Troelstra 1973, 3.5.18.
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5.5 Concluding remarks

As the preceding survey will have made clear, Godel’s paper led to
many interesting results of a technical nature. But also, notwithstanding
the fact that Godel did not quite achieve his own aims (see 4.4), the work
connected with his paper has taught us several facts of philosophical
interest. For example, the issue of the interpretation of 4 — AA A made
us aware of the role of decidable equality and of the contrast between
intensionally and extensionally conceived functionals (see 3.2, 3.3 and
5.4).

The most important insight is perhaps that the use of logic can be

Uber eine bisher noch nicht beniitzte Erweiterung
des finiten Standpunktes
(1958)

P. Bernays hat wiederholt darauf hingewiesen,! dass angesichts der Tat-
sache der Unbeweisbarkeit der Widerspruchsfreiheit eines Systems mit
geringeren Beweismitteln als denen des Systems selbst eine Uberschreitung
des Rahmens der im Hilbertschen Sinn finiten Mathematik ndtig ist, um
die Widerspruchsfreiheit der klassischen Mathematik, ja sogar um die der
klassischen Zahlentheorie zu beweisen. Da die finite Mathematik als die
der anschaulichen Evidenz definiert ist,2 so bedeutet das (wie auch von
Bernays (1935, p. 62 und 69) explizit formuliert wurde), dass man fiir den
Widerspruchsfreiheitsbeweis der Zahlentheorie gewisse abstrakte Begriffe
braucht. Dabei sind unter abstrakten (oder nichtanschaulichen) Begriffen
solche zu verstehen, die wesentlich von zweiter oder héherer Stufe sind,
das heisst, die nicht Eigenschaften oder Relationen konkreter Objekte (z.
B. von Zeichenkombinationen) beinhalten, sondern sich auf Denkgebilde
(z. B. Beweise, sinnvolle Aussagen usw.) beziehen, wobei in den Beweisen
Einsichten iiber die letzteren gebraucht werden, die sich nicht aus den kom-
binatorischen (raumzeitlichen) Eigenschaften der sie darstellenden Zeichen-
kombinationen, sondern nur aus deren Sinn ergeben.

1Vgl. z. B.: Bernays 1941a, p. 144, 147; ferner: Hilbert und Bernays 1939, §5; und:
Bernays 1954, p. 10.

2Vgl. die Hilbertsche Formulierung in Hilbert 1926, p. 171-173.
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replaced by the use of higher-type functionals, for a very limited set of
types. The study of the functionals in T and its extensions has made it
clear that formal proofs and functionals are in many ways similar. Thus,
the work reported in 5.2 above has taught us, among other things, that
normalization of functionals is, essentially, the same as normalization of

proofs.
A. S. Troelstra?

PThis commentary owes much to discussions with my friend and colleague Justus
Diller. 1 gratefully acknowledge also the help and cxtensive comments from J. Daw-
son, G. Kreisel and especially S. Feferman.

On a hitherto unutilized extension
of the finitary standpoint

(1958)

P. Bernays has pointed out on several occasions® that, since the consis-
tency of a system cannot be proved using means of proof weaker than those
of the system itself, it is necessary to go beyond the framework of what is, in
Hilbert’s sense, finitary mathematics if one wants to prove the consistency
of classical mathematics, or even that of classical number theory. Conse-
quently, since finitary mathematics is defined as the mathematics in which
evidence rests on what is intuitive,® certain abstract notions are required
for the proof of the consistency of number theory (as was also explicitly
formulated by Bernays in his 1935, pages 62 and 69). Here, by abstract
{(or nonintuitive) notions we must understand those that are essentially of
second or higher order, that is, notions that do not involve properties or re-
lations of concrete objects (for example, of combinations of signs), but that
relate to mental constructs (for example, proofs, meaningful statements,
and so on); and in the proofs we make use of insights, into these mental
constructs, that spring not from the combinatorial (spatiotemporal) prop-
erties of the sign combinations representing the proofs, but only from their
meaning.

1See, for example, Bernays 1941a, pp. 144 and 147; see also Hilbert and Bernays
1959, §5, and Bernays 1954, p. 10.

2See Hilbert’s formulation in his 1926, pp. 171-173.
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Obwohl in Ermanglung eines prézisen Begriffs der anschaulichen, bezie-
hungsweise -abstrakten, Evidenz ein strenger Beweis fiir die Bernayssche
Feststellung nicht vorliegt, so kann doch iiber ihre Richtigkeit praktisch kein
Zweifel bestehen, insbesondere seit dem Gentzenschen Beweis fiir die For-
malisierbarkeit aller Rekur|sionen nach Ordinalzahlen < € in der Zahlen-
theorie. Denn die Giiltigkeit des Rekursionsschlusses fiir €y kann sicher
nicht unmittelbar anschaulich gemacht werden, wie das zum Beispiel bei w?
moglich ist. Das heisst genauer, man kann die verschiedenen strukturellen
Moglichkeiten, die fiir absteigende Folgen bestehen, nicht mehr iibersehen
und hat daher keine anschauliche Erkenntnis von der Notwendigkeit des
Abbrechens jeder solchen Folge. Insbesondere kann durch schrittweises
Ubergehen von kleineren zu grosseren Ordinalzahlen eine solche anschau-
liche Erkenntnis nicht realisiert werden, sondern bloss eine abstrakte
Erkenntnis mit Hilfe von Begriffen hoherer Stufe. Das letztere wird durch
den abstrakten Begriff der “Erreichbarkeit”® geleistet, welcher durch die
inhaltliche Beweisbarkeit der Giiltigkeit einer gewissen Schlussweise defi-
niert ist. Auch ist es im Rahmen der fiir uns anschaulichen Mathematik
nicht méglich, den Induktionsschluss nach einer hinreichend grossen Ordi-
nalzahl auf eine Kette anderer Einsichten zuriickzufithren. Vielmehr fithrt
jeder Versuch, das zu tun, zu Induktionen von im wesentlichen derselben
Ordnung. Ob die Notwendigkeit abstrakter Begriffe bloss durch die prak-
tische Unmoglichkeit, kombinatorisch allzu komplizierte Verhéltnisse an-
schaulich vorzustellen,? bedingt ist oder prinzipielle Griinde hat, | lisst sich
nicht ohne weiteres entscheiden. Im zweiten Fall miisste nach Prazisierung
der fraglichen Begriffe ein strenger Beweis fiir das Bestehen jener Not-
wendigkeit moglich sein.

3W. Ackermann erklart zwar in 1951, p. 407, dass “erreichbar” einen anschaulichen
Sinn habe, wenn Beweisbarkeit als formale Beweisbarkeit nach gewissen Regeln ver-
standen wird. Aber darauf ist zu erwidern, dass aus dieser anschaulichen Tatsache die
Giiltigkeit des Schlusses durch transfinite Induktion fiir eine vorgelegte Eigenschaft nur
mit Hilfe abstrakter Begriffe (oder mit Hilfe transfiniter Induktion in der Metamathe-
matik) folgt. Allerdings ist der Begriff “erreichbar”, zumindest fiir Induktionen bis «g,
durch schwichere abstrakte Begriffe ersetzbar (vgl. Hilbert und Bernays 1939).

4Man beachte, dass eine adiaquate beweistheoretische Charakterisierung einer durch
Abschen von dieser Schranke idealisierten anschaulichen Evidenz Schlussweisen enthal-
ten wird, die fur wns nicht anschaulich sind und die sehr wohl eine Reduktion des in-
duktiven Schlusses auf den einer wesentlich kleineren Ordnung gestatten konnten. Eine
andere Moglichkeit, den urspriinglichen finiten Standpunkt zu erweitern, fiir die dasselbe
gilt, besteht darin, dass man abstrakte Begriffe, die auf nichts anderes als auf finite Be-
griffe und Gegenstinde, und zwar in kombinatorisch finiter Weise, Bezug nehmen, mit
zur finiten Mathematik rechnet und diesen Prozess iteriert. Solche Begriffe sind zum
Beispiel diejenigen, welche in der Reflexion auf den Inhalt schon konstruierter finiter For-
malismen involviert sind. Ein | dieser Idee entsprechender Formalismus wurde von G.
Kreisel aufgestellt. Vgl. seinen Vortrag auf dem Internationalen Mathematikerkongress
in Edinburgh, 1958 [Kreisel 1960]. Man beachte, dass bei dieser Art der Erweiterung
des Finitismus das abstrakte Element in einer wesentlichen schwicheren Form auftritt
als bei der weiter unten besprochenen oder in der intuitionistischen Logik.
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In the absence of a precise notion of what it means to be evident, ei-
ther in the intuitive or in the abstract realm, we have no strict proof of
Bernays’ assertion; practically speaking, however, there can be no doubt
that it is correct, in particular after Gentzen proved that all recursions on
ordinals less than ¢y can be formalized in number theory. For, the validity
of inference by recursion up to ¢g surely cannot be made immediately in-
tuitive, as it can up to, say, w?. More precisely, we can no longer survey
the various structural possibilities that obtain for descending sequences,
and therefore we cannot intuitively recognize that every such sequence
will necessarily terminate. In particular, we cannot acquire such knowl-
edge intuitively by passing stepwise from smaller to larger ordinals; we
can only gain knowledge abstractly by means of notions of higher type.
This is achieved by means of the abstract notion of ‘accessibility’,* which
is defined by our being able to give an informally understood proof that a
certain kind of inference is valid. Moreover, within the framework of that
part of mathematics which is intuitive to us, inference by induction up to
a sufficiently large ordinal cannot be reduced to a chain of other insights.
Rather, every attempt to do so leads to inductions of essentially the same
order. It cannot be determined out of hand whether the need for abstract
notions is due merely to the practical impossibility of our intuitively imag-
ining states of affairs that are all too complex from the combinatorial point
of view* or whether there are theoretical reasons for it. In the latter case
it would have to be possible, once the notions in question have been made
precise, to give a strict proof that this need exists.

3To be sure, W. Ackermann tells us in his 1951, p. 407, that ‘accessible’ will be
intuitively meaningful if provability is understood as formal provability according to
certain rules. But to this one must reply that, from this intuitive fact, the validity
of inference by transfinite induction for a given property can be demonstrated only by
means of abstract notions (or by means. of transfinite induction in metamathematics).
The notion ‘accessible’ can, however, be replaced, at least for inductions up to €g, by
weaker abstract notions (see Hilbert and Bernays 1939).

“Note that, if we were to give an adequate proof-theoretic characterization of idealized
intuitive evidence while ignoring this limitation, we would use kinds of inference that, for
us, are not intuitive and that might very well allow us to reduce the inductive inference
to one of a substantially lower order. The same holds of another possible extension of
the original finitary standpoint; it consists in adjoining to finitary mathematics abstract
notions that relate, in a combinatorially finitary way, only to finitary notions and objects,
and then iterating this procedure. Among such notions are, for example, those that are
involved when we reflect on the content of finitary formalisms that have already been
constructed. A formalism embodying this idea was set up by G. Kreisel. See his 71960.
Note that, when finitism is extended in this way, the abstract element appears in an
essentially weaker form than in the extension discussed below or in intuitionistic logic.
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Jedenfalls lehrt die Bernayssche Bemerkung, zwei Bestandteile in der
finiten Einstellung unterscheiden, nimlich erstens das konstruktive Ele-
ment, welches darin besteht, dass von mathematischen Objekten nur in-
soweit die Rede sein darf, als man sie aufweisen oder durch Konstruk-
tion tatsachlich herstellen kann; zweitens das spezifisch finitistische Ele-
ment, welches dariiber hinaus fordert, dass die Objekte, iiber welche man
Aussagen macht, mit welchen die Konstruktionen ausgefithrt werden und
welche man durch sie erhélt, “anschaulich” sind, das heisst letzten Endes
raum-zeitliche Anordnungen von Elementen, deren Beschaffenheit abgese-
hen von Gleichheit und Verschiedenheit irrelevant ist. (Im Gegensatz dazu
sind jene Objekte in der intuitionistischen Logik sinnvolle Aussagen und
Beweise.)

Es ist die zweite Forderung, welche fallen gelassen werden muss. Dieser
Tatsache wurde bisher dadurch Rechnung getragen, dass man Teile der
intuitionistischen Logik und Ordinalzahltheorie zur finiten Mathematik ad-
jungierte. Im folgenden wird gezeigt, dass man statt dessen fiir den Wider-
spruchsfreiheitsbeweis der Zahlentheorie auch den Begriff der berechen-
baren Funktion endlichen Typs uber den natirlichen Zahlen und gewisse
sehr elementare Konstruktionsprinzipien fiir solche Funktionen verwen-
den kann. Dabei wird der Begriff “berechenbare Funktion vom Typus
t” folgendermassen erklirt: 1. Die berechenbaren Funktionen vom Ty-
pus 0 sind die natiirlichen Zahlen. 2. Wenn die Begriffe “berechenbare
Funktion vom Typus to”, “berechenbare Funktion vom Typus £,”, ...,
“berechenbare Funktion vom Typus ;" (wobei k > 1) bereits definiert sind,
50 wird eine berechenbare Funktion vom Typus (o, %1, .. %) definiert als
eine immer ausfithrbare (und als solche konstruktiv erkennbare) Operation,
welche jedem k-tupel | berechenbarer Funktionen der Typen ty,ts,...%
eine berechenbare Funktion vom Typus #y zuordnet. Dieser Begriff® ist
als unmittelbar verstandlich® zu betrachten, vorausgesetzt dass man die

5Man kann dariiber im Zweifel sein, ob wir eine gentigend deutliche Vorstellung vom
Inhalt dieses Begriffs haben, aber nicht dariiber, ob die weiter unten angegebenen Ax-
iome fiir ihn gelten. Derselbe scheinbar paradoxe Sachverhalt besteht auch fiir den der
intuitionistischen Logik zugrunde liegenden Begriff des inhaltlich richtigen Beweises. Wie
die nachfolgenden Uberlegungen und die intuitionistisch interpretierte Theorie der rekur-
siven Funktionen und Funktionale zeigen, sind diese beiden Begriffe innerhalb gewisser
Grenzen als Grundbegriffe durcheinander ersetzbar. Dabei ist zu beachten, dass, wenn
der Begriff der berechenbaren Funktion nicht implizit den Begriff des Beweises enthal-
ten soll, die Ausfiihrbarkeit der Operationen unmittelbar aus der Kette der Definitionen
ersichtlich sein muss, wie das fiir alle Funktionen des weiter unten angegebenen Systems
T der Fall ist.

SA. M. Turing hat bekanntlich mit Hilfe des Begriffs einer Rechenmaschine eine
Definition des Begriffs einer berechenbaren Funktion erster Stufe gegeben. Aber wenn
dieser Begriff nicht schon vorher verstandlich gewesen wére, hitte die Frage, ob die
Turingsche Definition adiquat ist, keinen Sinn.
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In any case Bernays’ remark teaches us to distinguish two components
in the finitary attitude; namely, first, the constructive element, which con-
sists in our being allowed to speak of mathematical objects only in so far
as we can exhibit them or actually produce them by means of a construc-
tion; second, the specifically finitistic element, which makes the further
demand that the objects about which we make statements, with which the
constructions are carried out and which we obtain by means of these con-
structions, are ‘intuitive’, that is, are in the last analysis spatiotemporal
arrangements of elements whose characteristics other than their identity or
nonidentity are irrelevant. (By contrast, in intuitionistic logic these objects
are meaningful statements and proofs.)

It is the second requirement that must be dropped. This fact has hitherto
been taken into account by our adjoining to finitary mathematics parts of
intuitionistic logic and the theory of ordinals. In what follows we shall
show that, for the consistency proof of number theory, we can use, instead,
the notion of computable function of finite type on the natural numbers
and certain rather elementary principles of construction for such functions.
Here the notion ‘computable function of type ¢’ is defined as follows:

(1) the computable functions of type 0 are the natural numbers;

(2) if the notions ‘computable function of type ty’, ‘computable function
of type 17, ..., ‘computable function of type t;’ (with & > 1) have already
been defined, then a computable function of type (tg,t1,-.. %) is defined
as an operation, always performable (and constructively recognizable as
such), that to every k-tuple of computable functions of types t1,...,%
assigns a computable function of type ty. This notion® is to be regarded
as immediately intelligible,® provided the notions ‘computable function of
type t;’ (1 =0,1,...,k) are already understood. If we then regard the type
t as a variable, we arrive at the notion, required for the consistency proof,
of a computable function of finite type ¢.

50ne may doubt whether we have a sufficiently clear idea of the content of this notion,
but not that the axioms given below hold for it. The same apparently paradoxical
situation also obtains for the notion, basic to intuitionistic logic, of a proof that is
informally understood to be correct. As the considerations presented below and the
intuitionistically interpreted theory of recursive functions and functionals show, these
two notions are, within certain limits, interchangeable as primitive notions. If the notion
of computable function is not to implicitly contain the notion of proof, we must see to
it that it is immediately apparent from the chain of definitions that the operations can
be performed, as is the case for all functions in the system T specified below.

6As is well known, A. M. Turing, using the notion of a computing machine, gave a
definition of the notion of computable function of the first order. But, had this notion
not already been intelligible, the question whether Turing’s definition is adequate would
be meaningless.
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Begriffe “berechenbare Funktion vom Typus ¢;,” (1 = 0,1, ...k) bereits ver-
standen hat. Indem man dann den Typus ¢ als Variable betrachtet, gelangt
man zu dem fiir den Widerspruchsfreiheitsbeweis benotigten Begriff einer
berechenbaren Funktion endlichen Typs t.

Als evidente Axiome sind, neben den Axiomen der Identitat (auch fur
Funktionen”), dem 3. und 4. Peanoschen Axiom und der Substitutions-
regel fir freie Variable, keine anderen notig als erstens solche, die es
gestatten, Funktionen durch Gleichsetzung mit einem aus Variablen und
vorher definierten Konstanten aufgebauten Term und durch einfache In-
duktion nach einer Zahlvariablen zu definieren, und zweitens den Schluss
der vollstindigen Induktion nach einer Zahlvariablen anzuwenden. Das
heisst die Axiome dieses Systems (es werde T genannt) sind formal fast
dieselben® wie die der primitiv rekursiven Zahlentheorie, nur dass | die Va-
riablen (ausser denen, auf die Induktion angewendet wird), sowie auch die
definierten Konstanten, einen beliebigen endlichen Typus iiber den natiir-
lichen Zahlen haben konnen. Der Einfachheit halber wird im folgenden
der zweiwertige Aussagenkalkill, angewendet auf Gleichungen; hinzugenom-
men, obwohl die Wahrheitsfunktionen durch zahlentheoretische Funktionen
ersetzbar sind. Gebundene Variable werden nicht zugelassen. Das Sys-
tem T ist von gleicher Beweisstirke wie ein System der rekursiven Zahlen-
theorie, in dem vollstandige Induktion fiir alle Ordinalzahlen < € (in der
gewohnlichen Darstellung) zugelassen wird.

Die Zuriickfilhrung der Widerspruchsfreiheit der klassischen Zahlentheo-
rie auf die des Systems T gelingt mit Hilfe der folgenden Interpretation der
Heytingschen Zahlentheorie, auf welche ja die klassische zuriickfithrbar ist:®

Es wird jeder Formel F' der intuitionistischen Zahlentheorie'® (deren
freie Variable in ihrer Gesamtheit mit z bezeichnet werden) eine Formel F”
der Gestalt (Jy)(2)A(y, z, x) zugeordnet, wobei y und z endliche Reihen von
Variablen irgendwelcher Typen sind, und A(y,z,z) ein quantorenfreier
Ausdruck mit keinen andern als den in z,y,z vorkommenden Variablen.
Die Variablen der Reihen x,y, z, deren Gliederzahl auch 0 sein kann, sind
samtlich untereinander verschieden. Mit xy wird die aus 2 und y in dieser
Reihenfolge zusammengesetzte Reihe bezeichnet.

"Identitéit zwischen Funktionen ist als intensionale odéer Definitionsgleichheit zu ver-
stehen.

8Bei der Definition durch Gleichsetzung mit einem Term tritt insofern ein Unterschied
auf, als man eine Funktion P hoéheren Typs auch durch [P(z1,z2,...2zn)}(y1,¥2,..-
ym) = E definieren kann. Aber dieser Unterschied fallt weg, falls mehrstellige Funktio-
nen in der von A. Church angegebenen Weise durch einstellige ersetzt werden.

9Vgl. Gédel 1933e.

10Die Zahlentheorie soll so formalisiert sein, dass keine Aussagen- oder Funktionsva-
riable vorkommen. Die Axiome des Aussagenkalkiils sind als Schemata fiir alle moglichen
Einsetzungen zu betrachten.
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Besides the axioms of identity (including those for functions”), Peano’s
third and fourth axioms, and the rule of substitution for free variables,
we need no other axioms [[for the notion of computable function] than the
following equally evident ones: (1) axioms that allow us to define functions
by setting them equal to a term constructed from variables and previously
defined constants, as well as by simple induction on a number variable;
(2) axioms that allow us to use inference by mathematical induction on
a number variable. That is, the axioms of this system (let it be T) are
formally almost the same® as those of primitive recursive number theory,
the only exception being that the variables (other than those on which
induction is carried out), as well as the defined constants, can be of any
finite type over the natural numbers. For the sake of simplicity, we shall,
in what follows, avail ourselves of the two-valued propositional calculus,
applied to equations, even though truth functions could be replaced by
number-theoretic ones. Bound variables are not admitted. The system T
is of the same proof-theoretic strength as a system of recursive number
theory in which induction is permitted up to any-ordinal less than ¢y (in
the usual representation).

The consistency of classical number theory can be reduced to that of
the system T by means of the following interpretation of Heyting’s number
theory, to which, of course, classical number theory is reducible:®

To each formula F' of intuitionistic number theory!® (z standing for all
of its free variables) we assign a formula F' of the form (y)(2)A(y, z, z),
where y and z are finite sequences of variables of any type and A(y, z, z)
is a quantifier-free expression containing no other variables than those oc-
curring in x, y and z. The variables of the (possibly empty) sequences z,
y and z are understood to be pairwise distinct. Let zy be the sequence
obtained when z is immediately followed by y.

“Identity between functions is to be understood as intensional or definitional equality.

8When we define a function by setting it equal to a term, a difference does occur,
since we can also define a function P of higher type by the stipulation
[P(z1, 22, 2n)l(y1, 92, s Ym) =
But this difference vanishes if we replace many-place functlons by one-place functions
in the way specified by A. Church.

9See Gadel 1933e.
10Number theory is assumed to be formalized so that no propositional or functional

variables occur. The axioms of the propositional calculus are to be regarded as schemas
in which all possible substitutions are permitted.
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Ferner werden folgende Bezeichnungen verwendet:

1. v, w sind endliche Reihen von Variablen irgendwelcher Typen; s, ¢
sind Zahlvariable; u ist eine Reihe von Zahlvariablen.

2. V ist eine Reihe von Variablen, deren Anzahl und Typen dadurch
bestimmt sind, dass jede von ihnen auf y als Argumentreihe angewendet
werden kann und dass die Reihe der so erhaltenen Werte (welche mit V(y)
bezeichnet wird) hinsichtlich der Anzahl und der Typen ihrer Glieder mit
der Reihe v ibereinstimmt.
| 3. Analog wird die Variablenreihe Y (bzw. Z, bzw. Z) hinsichtlich der
Anzahl und der Typen ihrer Glieder durch die Argumentreihe s (bzw. yw,
bzw. y) und durch die mit der Reihe der Werte gleichtypige Reihe y (bzw.
z, bzw. z) bestimmt.

Funktionen mit 0 Leerstellen und Werten vom Typus 7 werden mit Ob-
jekten vom Typus 7 identifiziert, eingliedrige Variablenreihen mit Varia-
blen.

Die Zuordnung von F’ zu F geschieht durch Induktion nach der An-
zahl k der in F' enthaltenen logischen Operatoren. (Die bei der Wahl der
Symbole fir die gebundenen Variablen zu beachtenden Bedingungen und
die heuristische Begrindung der Definitionen werden nach den Formeln

gegeben.)
I Flir k=0sei F' = F.
II. Es sei
F' = (Jy)(2)A(y, 2, %)
und

= (Fv)(w)B(v, w,u)

bereits definiert; dann ist per definitionem:

1. (FAG) = (3yw)(zw)[Aly, z,z) A B(v,w,u)].
(FVG) = (3yvt)(zw)[t =0A Aly, 2, :L') V.t =1AB{v,w,u)].
[(s)F] = (3Y)(s2)A(Y (), 2, z).

(

3

(3sy)(2) Aly, 2, 7).

= (IVZ)(yw)[A(y, Z(yw), z) D B(V(y), w,u)].
6. (-F) = (32)()~A(y, Z(y), 7).

s ist eine beliebige Zahlvariable. Vor Anwendung der Regeln 1-5 sind
notigenfalls die gebundenen Variablen der Formeln F/ und G’ so umzube-
nennen, dass sie simtlich untereinander und von den Variablen der Reihen
x, u sowie auch von s verschieden sind. Ferner sind die durch Anwendung
der Regeln 2, 3, 5, 6 neu eingefithrten gebundenen Variablen der Reihen
t, Y, V, Z, Z so zu wahlen, dass sie untereinander und von den in den
betreffenden Formeln schon vorkommenden Variablen verschieden sind.

Man beachte, dass 6. aus 5. folgt, falls -p durch p D .0 = 1 definiert
wird. Zu 5. gelangt man, indem man (fiir die auftretenden Spezialfille)
die Aussage (3x)H(z) D (Jy)R(y) (bzw. (y)R(y) D | (z)H(z)) mit der
Existenz von fiir alle Argumentreihen vom Typus der Variablenreihe z
definierten berechenbaren Funktionen identifiziert, welche jedem Beispiel

O W N
—

—

L

w

~—
J

il
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We also use the following notation:

(1) v and w are finite sequences of variables of any type; s and t are
number variables; u is a sequence of number variables;

(2) V is a sequence of variables whose number and types are determined
thus: each of these variables can take y as an argument sequence, and the
sequence of values thus obtained (let it be V (y)) agrees with the sequence
v in the number and types of iis terms;

(3) similarly, the sequence Y (or Z, or Z) is determined, as far as the
number and types of its terms are concerned, by the argument sequence
s (or yw, or y, respectively), as well as by the sequence y (or z, or z,
respectively) whose types are those of the sequence of values.

Zero-place functions whose values are of type 7 are identified with objects
of type 7, and one-term sequences of variables are identified with variables.

The assignment of F’ to F proceeds by induction on the number k of
logical operators contained in F. (The conditions to be observed in choos-
ing symbols for the bound variables, as well as the heuristic justification of
the definitions, will be given after the formulas.)

I. Fork=0,let IV =F.
II. Let
= () (2)Aly, z,2)

G’ = (Fv)(w)B(v, w,u)

be already defined; then we have by definition
1. (FAG) = (yv)(z2w)[A(y, z,z) A B(v,w,u
Fyvt)(zw)[t =0 A Ay, z,2) .V.

and

)
t=

2. (FVGY = 1A B(v,w,u)].
3. [(s)F]' = (AY)(s2)A(Y (s), 2, x).

5 [G9)F] = (Bs9)(2)Aly, 2, 7).

5. (F 2 G) = AVZ)(yw)[Aly, Z(yw), ) D B(V(y),w,u)].

6.  (=F) =(32)(y)-Aly, Z(y), ).

Here s is any number variable. Before applying Rules 1-5, we rename,
if necessary, the bound variables of formulas F’ and G’ so. that they will
all be distinct from one another and from the variables of the sequences x
and u, as well as from s. Further, the bound variables of the sequences ¢,
Y, V, Z and Z that are newly introduced when Rules 2, 3, 5 and 6 are
applied must be chosen distinct from one another and from the variables
that already occur in the formulas considered.

Note that 6 follows from 5, in case —p is defined as p .0 = 1. We arrive
at 5 as follows: we identify (for the special cases at hand) the proposition
(3z)H(z) D (Jy)R(y) (or (y)R(y) D (z)H{z)) with the existence of com-
putable functions (defined for all argument sequences of the same type as
the variable sequence x) that to each sequence making the antecedent true
assign a sequence making the consequent true (or to each sequence making
the consequent false assign a sequence making the antecedent false).

Obviously, we do not claim that Definitions 1-6 reproduce the meaning
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filr das Implicans (bzw. Gegenbeispiel fiir das Implicatum) ein Beispiel fiir
das Implicatum (bzw. Gegenbeispiel fiir das Implicans) zuordnen.

Selbstverstandlich wird nicht behauptet, dass die Definitionen 1-6 den
Sinn der von Brouwer und Heyting eingefiihrten logischen Partikel wieder-
geben. Wieweit sie diese ersetzen konnen, bedarf einer niheren Unter-
suchung. Man zeigt leicht, dass, wenn F im Heytingschen System Z der
Zahlentheorie beweisbar ist, Funktionen Q in T definiert werden kdnnen,
fiir welche A(Q(x), z,z) in T beweisbar ist. Es ist ndmlich leicht nachpriif-
bar, dass diese Behauptung fiir die Axiome von Z gilt und ihre Richtigkeit
sich bei Anwendung der Schlussregeln von Z von den Pramissen auf die
Konklusion ibertragt.

Die Verifikation wird besonders einfach, wenn man folgendes Axiomen-
system der intuitionistischen Logik zugrunde legt:'!

Axiome: Taut, Add, Perm, die zu diesen dualen Axiome flir A,
0=1.Dp (=p wird durch p 5.0 = 1 definiert).

Schlussregeln: Modus ponens, Einsetzungsregel fiir freie Zahlvariable,
Syll (mit zwei Pramissen), Sum, Exp, Imp, die Regeln iiber das Hinzufiigen
und Weglassen eines All- (bzw. Existenz-)Zeichens im Implicatum (bzw.
Implicans) einer bewiesenen Implikation.

Fir den Widerspruchsfreiheitsbeweis der klassischen Zahlentheorie
konnen die V und die 3 enthaltenden Axiome und Schlussregeln wegge-
lassen werden. Bei allen auf Sum folgenden Regeln stellt sich heraus, dass
die in T zu beweisende Aussage im wesentlichen dieselbe ist wie die auf
Grund der Primisse bereits bewiesene.

Es ist klar, dass man, von demselben Grundgedanken ausgehend, auch
viel stirkere Systeme als T konstruieren kann, zum Beispiel durch Zulas-
sung transfiniter Typen oder der von Brouwer fiir den Beweis des “Fan-
Theorems”!? benutzten Schlussweisc.

| Zusammenfassung

P. Bernays hat darauf hingewiesen, dass man, um die Widerspruchsfreiheit der klas-
sischen Zahlentheorie zu beweisen, den Hilbertschen finiten Standpunkt dadurch erwei-
tern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen
gewisse abstrakte Begriffe zuldsst. Die abstrakten Begriffe, die bisher fiir diesen Zweck
verwendet wurden, sind die der konstruktiven Ordinalzahltheorie und die der intuitioni-
stischen Logik. Es wird gezeigt, dass man statt dessen den Begriff einer berechenbaren
Funktion endlichen einfachen Typs iber den natiirlichen Zahlen benutzen kann, wobei
keine anderen Konstruktionsverfahren fir solche Funktionen nétig sind, als einfache
Rekursion nach einer Zahlvariablen und Einsetzung von Funktionen ineinander (mit
trivialen Funktionen als Ausgangspunkt).

11 Beziiglich der Bezeichnungen, vgl. Whitehead und Russell 1925, p. xii. Dieselben
Bezeichnungen werden auch fiir die den Formeln entsprechenden Schlussregeln ver-
wendet.

12vgl. Heyting 1956, p. 42.
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of the logical particles introduced by Brouwer and Heyting. Further inves-
tigation is needed to see how far these can be replaced by our definitions.
One can easily show that, if F' is provable in Heyting’s system 7. of num-
ber theory, then in T functions @@ can be defined for which A(Q(x),z,x)
is provable in T. For one can easily verify that this assertion holds for the
axioms of Z and that, when we apply any inference rule of Z, it holds for
the conclusion whenever it holds for the premises.

The verification is particularly simple if we adopt the following axiom
system for intuitionistic logic:'*

Azxioms: Taut, Add, Perm, the axioms dual to these for A, and
0=1.2p (—pis defined as p D.0 = 1).

Rules of inference: Modus ponens, the rule of substitution for free num-
ber variables, Syll (with two premises), Sum, Exp, Imp, and the rules for
inserting or deleting a universal quantifier in the consequent (or an exis-
tential quantifier in the antecedent) of a proved conditional.

For the consistency proof of classical number theory we can omit the
axioms and rules of inference containing V or 3. For all the rules following
Sum it turns out that the proposition to be proved in T is essentially the
same as the one that has already been proved on the basis of the premise.

It is clear that, starting from the same basic idea, one can also construct
systems that are much stronger than T, for example by admitting trans-
finite types or the sort of inference that Brouwer used in proving the ‘fan

theorem’.1?

Abstract

P. Bernays has pointed out that, in order to prove the consistency of classical num-
ber theory, it is necessary to extend Hilbert’s finitary standpoint by admitting certain
abstract concepts in addition to the combinatorial concepts referring to symbols. The
abstract concepts that so far have been used for this purpose are those of the construc-
tive theory of ordinals and those of intuitionistic logic. It is shown that the concept of
a computable function of finite simple type over the integers can be used instead, where
no other procedures of constructing such functions are necessary except simple recursion
by an integer variable and substitution of functions in each other (starting with trivial
functions).

1For the notation see Whitehead and Russell 1925, p. xii. We use the same notation
for the rules of inference that correspond to the formulas.

12See Heyting 1956, p. 42.
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Postscript to Spector 1962
(1962)

[Spector 1962 was published posthumously and edited by G. Kreisel.]

This important paper [Spector 1962] was written by Clifford Spector
during his stay at the Institute for Advanced Study in 1960-1961 under
a grant from the Office of Naval Research. The discussions P. Bernays
and I had with Spector (see footnote 1)! took place after the main result
(contained in §10 of the paper) had been established already. However,
it ought to be mentioned that during the time Spector first established
this result he was in close contact with Kreisel. It was Spector’s express
intention to give to Kreisel a good deal of credit for his work. Originally
a joint publication by Spector and Kreisel was envisaged. This plan was
dropped because Spector had taken over the elaboration by himself and
because the version of the proof which was to be published was due to
Spector. Also Spector alone, at that time, was working on an extension
of the result in the direction of stricter constructivity which he hoped to
include in his paper.

HFootnote 1 of Spector 1962 was written by Kreisel, as were all the footnotes in
that paper, and stated in part: “From paragraph 3 of the introduction below, and from
conversations with Spector, I know that he valued highly his discussions with P. Bernays
and K. Gédel on the subject of the present paper.”]
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What is Cantor’s continuum problem?
(1964)

[This article is a revised and expanded version of Gddel 1947. The
introductory note to both 1947 and 1964 is found on page 154, immediately
preceding 1947

1. The concept of cardinal number

Cantor’s. continuum problem is simply the question: How many points
are there on a straight line in Euclidean space? An equivalent question is:
How many different sets of integers do there exist?

This question, of course, could arise only after the concept of “number”
had been extended to infinite sets; hence it might be doubted if this exten-
sion can be effected in a uniquely determined manner and if, therefore, the
statement of the problem in the simple terms used above is justified. Closer
examination, however, shows that Cantor’s definition of infinite numbers
really has this character of uniqueness. For whatever “number” as applied
to infinite sets may mean, we certainly want it to have the property that
the number of objects belonging to some class does not change if, leaving
the objects the same, one changes in any way whatsoever their properties
or mutual relations (e.g., their colors or their distribution in space). From
this, however, it follows at once that two sets (at least two sets of change-
able objects of the space-time world) will have the same cardinal number
if their elements can be brought into a one-to-one correspondence, which
is Cantor’s definition of equality between numbers. For if there exists such
a correspondence for two sets A and B it is possible (at least theoretically)
to change the properties and relations of each element of A into those
of the corresponding element of B, whereby A is transformed into a set
completely indistinguishable from B, hence of the same cardinal number.
For example, assuming a square and a line segment both completely filled
with mass points (so that at each point of them exactly one mass point
is situated), it follows, owing to the | demonstrable fact that there exists
a one-to-one correspondence between the points of a square and of a line
segment and, therefore, also between the corresponding mass points, that
the mass points of the square can be so rearranged as exactly to fill out the
line segment, and vice versa. Such considerations, it is true, apply directly
only to physical objects, but a definition of the concept of “number” which
would depend on the kind of objects that are numbered could hardly be
considered to be satisfactory.

254
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So there is hardly any choice left but to accept Cantor’s definition of
equality between numbers, which can easily be extended to a definition of
“greater” and “less” for infinite numbers by stipulating that the cardinal
number M of a set A is to be called less than the cardinal number N
of a set B if M is different from N but equal to the cardinal number
of some subset of B. That a cardinal number having a certain property
exists is defined to mean that a set of such a cardinal number exists. On
the basis of these definitions, it becomes possible to prove that there exist
infinitely many different infinite cardinal numbers or “powers”, and that,
in particular, the number of subsets of a set is always greater than the
number of its elements; furthermore, it becomes possible to extend (again
without any arbitrariness) the arithmetical operations to infinite numbers
(including sums and products with any infinite number of terms or factors)
and to prove practically all ordinary rules of computation.

But, even after that, the problem of identifying the cardinal number of
an individual set, such as the linear continuum, would not be well-defined
if there did not exist some systematic representation of the infinite cardi-
nal numbers, comparable to the decimal notation of the integers. Such a
systematic representation, however, does exist, owing to the theorem that
for each cardinal number and each set of cardinal numbers' there exists
exactly one cardinal number immediately succeeding in magnitude and
that the cardinal number of every set occurs in the series thus obtained.?
This theorem makes it possible to denote the cardinal number immediately
succeeding the set of finite numbers by Rg (which is the power of the “de-
numerably infinite” sets), the next one by ¥y, etc.; the one immediately
succeeding all X; (where 4 is an integer) by R,,, the next one by R, etc.
The theory of ordinal numbers provides the means for extending this series
further and further.

LAs to the question of why there does not exist a set of all cardinal numbers, see
footnote 15.

2The axiom of choice is needed for the proof of this theorem (see Fraenkel and
Bar-Hillel 1958). But it may be said that this axiom, from almost every possible point
of view, is as well-founded today as the other axioms of set theory. It has been proved
consistent with the other axioms of set theory which are usually assumed, provided that
these other axioms are consistent (see my 1940). Moreover, it is possible to define in
terms of any system of objects satisfying the other axioms a system of objects satisfying
those axioms and the axiom of choice. Finally, the axiom of choice is just as evident as
the other set-theoretical axioms for the “pure” concept of set explained in footnote 14.
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| 2. The continuum problem, the continuum hypothesis,
and the partial results concerning its truth
obtained so far

So the analysis of the phrase “how many” unambiguously leads to a
definite meaning for the question stated in the second line of this paper:
The problem is to find out which one of the N’s is the number of points of a
straight line or (which is the same) of any other continuum (of any number
of dimensions) in a Euclidean space. Cantor, after having proved that
this number is greater than Ny, conjectured that it is N;. An equivalent
proposition is this: Any infinite subset of the continuum has the power
either of the set of integers or of the whole continuum. This is Cantor’s
continuum hypothesis.

But, although Cantor’s set theory now has had a development of more
than seventy years and the problem evidently is of great importance for
it, nothing has been proved so far about the question what the power of
the continuum is or whether its subsets satisfy the condition just stated,
except (1) that the power of the continuum is not a cardinal number of
a certain special kind, namely, not a limit of denumerably many smaller
cardinal numbers,® and (2) that the proposition just mentioned about the
subsets of the continuum is true for a certain infinitesimal fraction of these
subsets, the analytic* sets.> Not even an upper bound, however large,
can be assigned for the power of the continuum. Nor is the quality of
the cardinal number of the continuum known any better than its quantity.
It is undecided whether this number is regular or singular, accessible or
inaccessible, and (except for Kénig’s negative result) what its character of
cofinality (see footnote 4) is. The only thing that is known, in addition to
the results just mentioned, is a great number of consequences of, and some
propositions equivalent to, Cantor’s conjecture.®

This pronounced failure becomes still more striking if the problem is
considered in its connection with general questions of cardinal arithmetic.
It is easily proved that the power of the continuum is equal to 2%, So
the continuum problem turns out to be a question from the “multiplica-
tion table” of cardinal numbers, namely, the problem of evaluating a certain

3See Hausdorff 1914, p. 68, or Bachmann 1955, p. 167. The discoverer of this
theorem, J. Konig, asserted more than he had actually proved (see his 1905.)
4See the list of definitions on pp. 268-9.

5See Hausdorff 1935, p. 32. Even for complements of analytic sets the question is
undecided at present, and it can be proved only that they either have the power Rg or
N; or that of the continuum or are finite (see Kuratowsk: 1933, p. 246.)

8See Sierpiriski 1934 and 1956.
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infinite product (in fact the simplest non-trivial one that can be formed).
There is, however, not one infinite product (of factors > 1) for which so
much as an upper bound for its value can be assigned. All one knows
about the evaluation of infinite products are two lower bounds due to Can-
tor and Konig (the latter of which implies the aforementioned negative
theorem on the power of | the continuum}, and some theorems concerning
the reduction of products with different factors to exponentiations and of
exponentiations to exponentiations with smaller bases or exponents. These
theorems reduce’ the whole problem of computing infinite products to the
evaluation of Nﬁf‘““) and the performance of certain fundamental opera-
tions on ordinal numbers, such as determining the limit of a series of them.
All products and powers can easily be computed® if the “generalized con-
tinuum hypothesis” is assumed, i.e., if it is assumed that 2%« = R, for
every a, or, in other terms, that the number of subsets of a set of power R,
is Ny41. But, without making any undemonstrated assumption, it is not
even known whether or not m < n implies 2™ < 2™ (although it is trivial
that it implies 2™ < 27), nor even whether 2% < 281,

3. Restatement of the problem on the basis
of an analysis of the foundations of set theory
and results obtained along these lines

This scarcity of results, even as to the most fundamental questions in
this field, to some extent may be due to purely mathematical difficulties; it
seems, however (see Section 4), that there are also deeper reasons involved
and that a complete solution of these problems can be obtained only by
a more profound analysis (than mathematics is accustomed to giving) of
the meanings of the terms occurring in them (such as “set”, “one-to-one
correspondence”, etc.) and of the axioms underlying their use. Several
such analyses have already been proposed. Let us see then what they give
for our problem.

First of all there is Brouwer’s intuitionism, which is utterly destructive
in its results. The whole theory of the N’s greater than N; is rejected as
meaningless.” Cantor’s conjecture itself receives several different meanings,
all of which, though very interesting in themselves, are quite different from

"This reduction can be effected, owing to the results and methods of Tarski 1925.

8For regular numbers Ry, one obtains immediately:
RGN = pfe = 2% =R, ;.

9See Brouwer 1909.
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the original problem. They lead partly to affirmative, partly to negative
answers.'? Not everything in this field, however, has been sufficiently clar-
ified. The “semi-intuitionistic” standpoint along the lines of H. Poincaré
and H. Weyl'! would hardly preserve substantially more of set theory.

| However, this negative attitude toward Cantor’s set theory, and toward
classical mathematics, of which it is a natural generalization, is by no
means a necessary outcome of a closer examination of their foundations,
but only the result of a certain philosophical conception of the nature of
mathematics, which admits mathematical objects only to the extent to
which they are interpretable as our own constructions or, at least, can be
completely given in mathematical intuition. For someone who considers
mathematical objects to exist independently of our constructions and of
our having an intuition of them individually, and who requires only that
the general mathematical concepts must be sufficiently clear for us to be
able to recognize their soundness and the truth of the axioms concerning
them, there exists, I believe, a satisfactory foundation of Cantor’s set theory
in its whole original extent and meaning, namely, axiomatics of set theory
interpreted in the way sketched below.

It might seem at first that the set-theoretical paradoxes would doom to
failure such an undertaking, but closer examination shows that they cause
no trouble at all. They are a very serious problem, not for mathematics,
however, but rather for logic and epistemology. As far as sets occur in
mathematics (at least in the mathematics of today, including all of Can-
tor’s set theory), they are sets of integers, or of rational numbers (i.e., of
pairs of integers), or of real numbers (i.e., of sets of rational numbers), or of
functions of real numbers (i.e., of sets of pairs of real numbers), etc. When
theorems about all sets (or the existence of sets in general) are asserted,
they can always be interpreted without any difficulty to mean that they
hold for sets of integers as well as for sets of sets of integers, etc. (respec-
tively, that there either exist sets of integers, or sets of sets of integers,
or ... etc., which have the asserted property). This concept of set,'? how-

108ee Brouwer 1907, 1, 9; 111, 2.

1See Weyl 1932, 1If the procedure of construction of sets described there (p. 20)
is iterated a sufficiently large (transfinite) number of times, one gets exactly the real
numbers of the model for set theory mentioned in Section 4, in which the continuum
hypothesis is true. But this iteration is not possible within the limits of the semi-
intuitionistic standpoint.

1214 must be admitted that the spirit of the modern abstract disciplines of mathemat-
ics, in particular of the theory of categories, transcends this concept of set, as becomes
apparent, e.g., by the self-applicability of categories (see Mac Lane 1961). It does not
seem, however, that anything is lost from the mathematical content of the theory if cat-
egories of different levels are distinguished. If there existed mathematically interesting
proofs that would not go through under this interpretation, then the paradoxes of set
theory would become a serious problem for mathematics.
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ever, according to which a set is something obtainable from the integers (or
some other well-defined objects) by iterated application'® of the operation
“set of” 14 not something obtained by | dividing the totality of all existing
things into two categories, has never led to any antinomy whatsoever; that
is, the perfectly “naive” and uncritical working with this concept of set has
so far proved completely self-consistent.!®

But, furthermore, the axioms underlying the unrestricted use of this con-
cept of set or, at least, a subset of them which suffices for all mathematical
proofs devised up to now {except for theorems depending on the existence
of extremely large cardinal numbers, sce footnote 20), have been formu-
lated so precisely in axiomatic set theory!® that the question of whether
some given proposition follows from them can be transformed, by means
of mathematical logic, into a purely combinatorial problem concerning the
manipulation of symbols which even the most radical intuitionist must ac-
knowledge as meaningful. So Cantor’s continuum problem, no matter what
philosophical standpoint is taken, undeniably retains at least this meaning:
to find out whether an answer, and if so which answer, can be derived from
the axioms of set theory as formulated in the systems cited.

Of course, if it is interpreted in this way, there are (assuming the consis-
tency of the axioms) a priori three possibilities for Cantor’s conjecture: It
may be demonstrable, disprovable, or undecidable.’” The third alternative
(which is only a precise formulation of the foregoing conjecture, that the
difficulties of the problem are probably not purely mathematical) is the
most likely. To seek a proof for it is, at present, perhaps the most promis-
ing way of attacking the problem. One result along these lines has been

13This phrase is meant to include transfinite iteration, i.e., the totality of sets ob-
tained by finite iteration is considered to be itself a set and a basis for further applications
of the operation “set of”.

14The operation “set of 2’s” (where the variable “z” ranges over some given kind of
objects) cannot be defined satisfactorily (at least not in the present state of knowledge),
but can only be paraphrased by other expressions involving again the concept of set,
such as: “multitude of #’s”, “combination of any number of z’s”, “part of the totality of
2’s”, where a “multitude” (“combination”, “part”) is conceived of as something which
exists in itself no matter whether we can define it in a finite number of words (so that
random sets are not excluded).

131t follows at once from this explanation of the term “set” that a set of all sets
or other sets of a similar extension cannot exist, since every set obtained in this way
immediately gives rise to further applications of the operation “set of” and, therefore,
to the existence of larger sets.

16See, e.g., Bernays 1937, 1941, 1942, 1943, von Neumann 1925; cf. also von Neu-
mann 1928a and 1929, Gidel 1940, Bernays and Fraenkel 1958. By including very
strong axioms of infinity, much more elegant axiomatizations have recently become pos-
sible. (See Bernays 1961.)

Y7In case the axioms were inconsistent the last one of the four a priori possible alter-
natives for Cantor’s conjecture would occur, namely, it would then be both demonstrable
and disprovable by the axioms of set theory.
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obtained already, namely, that Cantor’s conjecture is not disprovable from
the axioms of set theory, provided that these axioms are consistent (see
Section 4).

It is to be noted, however, that on the basis of the point of view here
adopted, a proof of the undecidability of Cantor’s conjecture from the ac-
cepted axioms of set theory (in contradistinction, e.g., to the proof of the
transcendency of 7) would by no means solve the problem. For if the mean-
ings of the primitive terms of set theory as explained on page 262 and in
footnote 14 are accepted as sound, it follows that the set-theoretical con-
cepts and theorems describe some well-determined reality, in which Can-
tor’s conjecture | must be either true or false. Hence its undecidability from
the axioms being assumed today can only mean that these axioms do not
contain a complete description of that reality. Such a belief is by no means
chimerical, since it is possible to point out ways in which the decision of a
question, which is undecidable from the usual axioms, might nevertheless
be obtained.

First of all the axioms of set theory by no means form a system closed
in itself, but, quite on the contrary, the very concept of set'® on which
they are based suggests their extension by new axioms which assert the
existence of still further iterations of the operation “set of”. These axioms
can be formulated also as propositions asserting the existence of very great
cardinal numbers (i.e., of sets having these cardinal numbers). The simplest
of these strong “axioms of infinity” asserts the existence of inaccessible
numbers (in the weaker or stronger sense) > ¥g. The latter axiom, roughly
speaking, means nothing else but that the totality of sets obtainable by
use of the procedures of formation of sets expressed in the other axioms
forms again a set (and, therefore, a new basis for further applications of
these procedures).!® Other axioms of infinity have first been formulated
by P. Mahlo.?® These axioms show clearly, not only that the axiomatic

18Gimilarly the concept “property of set” (the second of the primitive terms of set the-
ory) suggests continued extensions of the axioms referring to it. Furthermore, concepts
of “property of property of set” etc. can be introduced. The new axioms thus obtained,
however, as to their consequences for propositions referring to limited domains of sets
(such as the continuum hypothesis) are contained (as far as they are known today) in
the axioms about sets.

198¢e Zermelo 1930.

20[Revised note of September 1966: See Mahlo 1911, pp. 190-200, and 1913, pp. 269-
276. From Mahlo’s presentation of the subject, however, it does not appear that the
numbers he defines actually exist. In recent years great progress has been made in the
area of axioms of infinity. In particular, some propositions have been formulated which,
if consistent, are extremely strong axioms of infinity of an entirely new kind (see Keisler
and Tarski 1964 and the material cited there). Dana Scott (1961) has proved that one
of them implies the existence of non-constructible sets. That these axioms are implied
by the general concept of set in the same sense as Mahlo’s has not been made clear
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system of set theory as used today is incomplete, but also that it can be
supplemented without arbitrariness by new axioms which only unfold the
content of the concept of set explained above.

It can be proved that these axioms also have consequences far outside
the domain of very great transfinite numbers, which is their immediate
subject matter: each of them, under the assumption of its consistency, can
be shown to increase the number of decidable propositions even in the field
of Diophantine equations. As for the continuum problem, there is little
hope of | solving it by means of those axioms of infinity which can be set
up on the basis of Mahlo’s principles (the aforementioned proof for the
undisprovability of the continuum hypothesis goes through for all of them
without any change). But there exist others based on different principles
(see footnote 20); also there may exist, besides the usual axioms, the ax-
ioms of infinity, and the axioms mentioned in footnote 18, other (hitherto
unknown) axioms of set theory which a more profound understanding of the
concepts underlying logic and mathematics would enable us to recognize
as implied by these concepts (see, e.g., footnote 23).

Secondly, however, even disregarding the intrinsic necessity of some new
axiom, and even in case it has no intrinsic necessity at all, a probable de-
cision about its truth is possible also in another way, namely, inductively
by studying its “success”. Success here means fruitfulness in consequences,
in particular in “verifiable” consequences, i.e., consequences demonstrable
without the new axiom, whose proofs with the help of the new axiom, how-
ever, are considerably simpler and easier to discover, and make it possible
to contract into one proof many different proofs. The axioms for the sys-
tem of real numbers, rejected by the intuitionists, have in this sense been
verified to some extent, owing to the fact that analytical number theory fre-
quently allows one to prove number-theoretical theorems which, in a more
cumbersome way, can subsequently be verified by elementary methods. A
much higher degree of verification than that, however, is conceivable. There
might exist axioms so abundant in their verifiable consequences, shedding
so much light upon a whole field, and yielding such powerful methods for
solving problems (and even solving them constructively, as far as that is
possible) that, no matter whether or not they are intrinsically necessary,
they would have to be accepted at least in the same sense as any well-
established physical theory.

vet (see Tarski 1962, p. 134). However, they are supported by strong arguments from
analogy, e.g., by the fact that they follow from the existence of generalizations of Stone’s
representation theorem to Boolean algebras with operations on infinitely many elements.
Mahlo’s axioms of infinity have been derived from a general principle about the totality
of sets which was first introduced by A. Levy (1960). It gives rise to a hierarchy of
different precise formulations. One, given by P. Bernays (1961), implies all of Mahlo’s
axioms.]
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4. Some observations about the question:
In what sense and in which direction may a solution
of the continuum problem be expected?

But are such considerations appropriate for the continuum problem?
Are there really any clear indications for its unsolvability by the accepted
axioms? I think there are at least two:

The first results from the fact that there are two quite differently defined
classes of objects both of which satisfy all axioms of set theory that have
been set up so far. One class consists of the sets definable in a certain
manner by properties of their elements;2! the other of the sets in the sense
of arbitrary multitudes, regardless of if, or how, they can be defined. Now,
before it has | been settled what objects are to be numbered, and on the
basis of what one-to-one correspondences, one can hardly expect to be able
to determine their number, except perhaps in the case of some fortunate
coincidence. If, however, one believes that it is meaningless to speak of sets
except in the sense of extensions of definable properties, then, too, he can
hardly expect more than a small fraction of the problems of set theory to be
solvable without making use of this, in his opinion essential, characteristic
of sets, namely, that they are extensions of definable properties. This char-
acteristic of sets, however, is neither formulated explicitly nor contained
implicitly in the accepted axioms of set theory. So from either point of
view, if in addition one takes into account what was said in Section 2, it
may be conjectured that the continuum problem cannot be solved on the
basis of the axioms set up so far, but, on the other hand, may be solvable
with the help of some new axiom which would state or imply something
about the definability of sets.??

The latter half of this conjecture has already been verified; namely, the
concept of definability mentioned in footnote 21 (which itself is definable
in axiomatic set theory) makes it possible to derive, in axiomatic set the-
ory, the generalized continuum hypothesis from the axiom that every set
is definable in this sense.?® Since this axiom (let us call it “A”) turns

21Namely, definable by certain procedures, “in terms of ordinal numbers” (i.e.,
roughly speaking, under the assumption that for each ordinal number a symbol de-
noting it is given). See my papers 1939a and 1940. The paradox of Richard, of course,
does not apply to this kind of definability, since the totality of ordinals is certainly not
denumerable.

22D. Hilbert’s program for a solution of the continuum problem (see his 1926), which,
however, has never been carried through, also was based on a consideration of all possible
definitions of real numbers.

230n the other hand, from an axiom in some sense opposite to this one, the negation
of Cantor’s conjecture could perhaps be derived. I am thinking of an axiom which
(similar to Hilbert’s completeness axiom in geometry) would state some maximum
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out to be demonstrably consistent with the other axioms, under the as-
sumption of the consistency of these other axioms, this result (regardless
of the philosophical position taken toward definability) shows the consis-
tency of the continuum hypothesis with the axioms of set theory, provided
that these axioms themselves are consistent.?* This proof in its structure
is similar to the consistency proof of non-Euclidean geometry by means of
a model within Euclidean geometry. Namely, it follows from the axioms of
set theory that the sets definable in the aforementioned sense form a model
of set theory in which the proposition A and, therefore, the generalized
continuum hypothesis is true.

A second argument in favor of the unsolvability of the continuum prob-
lem on the basis of the usual axioms can be based on certain facts (not
known at Cantor’s time) which seem to indicate that Cantor’s conjecture
will turn out | to be wrong,?® while, on the other hand, a disproof of it is
demonstrably impossible on the basis of the axioms being assumed today.

One such fact is the existence of certain properties of point sets (asserting
an extreme rareness of the sets concerned) for which one has succeeded in
proving the existence of non-denumerable sets having these properties, but
no way is apparent in which one could expect to prove the existence of
examples of the power of the continuum. Properties of this type (of subsets
of a straight line) are: (1) being of the first category on every perfect set,?8
(2) being carried into a zero set by every continuous one-to-one mapping
of the line onto itself.?” Another property of a similar nature is that of
being coverable by infinitely many intervals of any given lengths. But in
this case one has so far not even succeeded in proving the existence of
non-denumerable examples. From the continuum hypothesis, however, it
follows in all three cases that there exist, not only examples of the power
of the continuum,?® but even such as are carried into themselves (up to
denumerably many points) by every translation of the straight line.2?

Other highly implausible consequences of the continuum hypothesis are
that there exist: (1) subsets of a straight line of the power of the contin-
uum which are covered (up to denumerably many points) by every dense set

property of the system of all sets, whereas axiom A states a minimum property. Note that
only a maximum property would seem to harmonize with the concept of set explained
in footnote 14.

248ee my monograph 1940 and my paper 1939a. For a carrying through of the proof
in all details, my 1940 is to be consulted.

25Views tending in this direction have been expressed also by N. Luzin in his 1935,
pp. 129 fI. See also Sierpiriski 1935.

268ee Sierpiriski 1934a and Kuratowski 1933, pp. 269 ff.
27See Luzin and Sierpiriski 1918 and Sierpiriski 1934a.
28For the third case see Sierpiriski 1984, p. 39, Theorem 1.
29See Sierpiriski 1935a.
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of intervals;>® (2) infinite-dimensional subsets of Hilbert space which con-
tain no non-denumerable finite-dimensional subset (in the sense of Menger-
Urysohn);3!' (3) an infinite sequence A of decompositions of any set M of
the power of the continuum into continuum-many mutually exclusive sets

A}, such that, in whichever way a set A; is chosen for each i, IIO(M —AL)
=

is denumerable.3? (1) and (3) are very implausible even if “power of the
continuum” is replaced by “N;”.

One may say that many results of point-set theory obtained without us-
ing the continuum hypothesis also are highly unexpected and implausible.33
But, true as that may be, still the situation is different there, in that, in
most of those instances (such as, e.g., Peano’s curves) the appearance to
the contrary can be explained by a lack of agreement between our intuitive
geometrical concepts and the set-theoretical ones occurring in the theo-
rems. Also, it is very | suspicious that, as against the numerous plausible
propositions which imply the negation of the continuum hypothesis, not
one plausible proposition is known which would imply the continuum hy-
pothesis. 1 believe that adding up all that has been said one has good
reason for suspecting that the role of the continuum problem in set theory
will be to lead to the discovery of new axioms which will make it possible
to disprove Cantor’s conjecture.

Definitions of some of the technical terms

Definitions 4-15 refer to subsets of a straight line, but can be literally
transferred to subsets of Euclidean spaces of any number of dimensions if
“interval” is identified with “interior of a parallelepipedon”.

1. Icall the character of cofinality of a cardinal number m (abbreviated
by “cf(m)”) the smallest number n such that m is the sum of n
numbers < m.

2. A cardinal number m is regular if cf(m) = m, otherwise singular.

3. An infinite cardinal number m is inaccessible if it is regular and has
no immediate predecessor (i.e., if, although it is a limit of numbers
< m, it is not a limit of fewer than m such numbers); it is strongly
inaccessible if each product (and, therefore, also each sum) of fewer
than m numbers < m is < m. (See Sierpinski and Tarski 1930, Tarski
1938.)

30See Luzin 1914, p. 1259.
318ee Hurewicz 1932.

328ce Braun and Sierpiriski 1932, p. 1, proposition (Q). This proposition is equiva-
lent with the continuum hypothesis.

335ee, e.g., Blumenthal 1940.
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It follows from the generalized continuum hypothesis that these
two concepts are equivalent. Ny is evidently inaccessible, and also
strongly inaccessible. As for finite numbers, 0 and 2 and no others
are strongly inaccessible. A definition of inaccessibility, applicable to
finite numbers, is this: m is inaccessible if (1) any sum of fewer than m
numbers < m is < m, and (2) the number of numbers < m is m. This
definition, for transfinite numbers, agrees with that given above and,
for finite numbers, yields 0, 1, 2 as inaccessible. So inaccessibility and
strong inaccessibility turn out not to be equivalent for finite numbers.
This casts some doubt on their equivalence for transfinite numbers,
which follows from the generalized continuum hypothesis.

A set of intervals is dense if every interval has points in common
with some interval of the set. (The endpoints of an interval are not
considered as points of the interval.)

A zero set is a set which can be covered by infinite sets of intervals
with arbitrarily small lengths-sum.

A neighborhood of a point P is an interval containing P.

A subset A of B is dense in B if every neighborhood of any point of
B contains points of A.

A point P is in the exterior of A if it has a neighborhood containing
no point of A.

A subset A of B is nowhere dense in B if those points of B which are
in the exterior of A are dense in B, or (which is equivalent) if for no
interval I the intersection /A is dense in IB.

A subset A of B is of the first category in B if it is the sum of
denumerably many sets nowhere dense in B.

A set A is of the first category on B if the intersection AB is of the
first category in B.

A point P is called a limit point of a set A if any neighborhood of P
contains infinitely many points of A.

A set A is called closed if it contains all its limit points.

A set is perfect if it is closed and has no isolated point (i.e., no point
with a neighborhood containing no other point of the set).

Borel sets are defined as the smallest system of sets satisfying the
postulates:

(1) The closed sets are Borel sets.

(2) The complement of a Borel set is a Borel set.

(3) The sum of denumerably many Borel sets is a Borel set.

A set is analytic if it is the orthogonal projection of some Borel set
of a space of next higher dimension. (Every Borel set therefore is, of
course, analytic.)
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Supplement to the second edition

Since the publication of the preceding paper, a number of new results
have been obtained; I would like to mention those that are of special interest
in connection with the foregoing discussions.

1. A. Hajnal has proved®® that, if 2% # RN, could be derived from the
axioms of set theory, so could 2% = ¥,. This surprising result could greatly
facilitate the solution of the continuum problem, should Cantor’s contin-
uum hypothesis be demonstrable from the axioms of set theory, which,
however, probably is not the case.

2. Some new consequences of, and propositions equivalent with, Can-
tor’s hypothesis can be found in the new edition of W. Sierpifiski’s book.*®
In the first edition, it had been proved that the continuum hypothesis is
equivalent with the proposition that the Euclidean plane is the sum of de-
numerably many “generalized curves” (where a generalized curve is a point
set definable | by an equation y = f(z) in some Cartesian coordinate sys-
tem). In the second edition, it is pointed out®® that the Euclidean plane can
be proved to be the sum of fewer than continuum-many generalized curves
under the much weaker assumption that the power of the continuum is not
an inaccessible number. A proof of the converse of this theorem would give
some plausibility to the hypothesis 2% = the smallest inaccessible number
> Ng. However, great caution is called for with regard to this inference,35*
because the paradoxical appearance in this case (like in Peano’s “curves”) is
due (at least in part) to a transference of our geometrical intuition of curves
to something which has only some of the characteristics of curves. Note
that nothing of this kind is involved in the counterintuitive consequences
of the continuum hypothesis mentioned on page 267.

3. C. Kuratowski has formulated a strengthening of the continuum hypo-
thesis,>” whose consistency follows from the consistency proof mentioned
in Section 4. He then drew various consequences from this new hypothesis.

4. Very interesting new results about the axioms of infinity have been
obtained in recent years (see footnotes 20 and 16).

In opposition to the viewpoint advocated in Section 4 it has been sug-
gested?® that, in case Cantor’s continuum problem should turn out to be

34See his 1956.
358ee Sierpiriski 1956.

368ee his 1956, p. 207 or his 1951, p. 9. Related results are given by C. Kuratowski
(1951, p. 15) and R. Sikorski (1951).

38a[ Note added September 1966: It seems that this warning has since been vindicated
by Roy O. Davies (1963).]

37See his 1948.

38See Errera 1952.
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undecidable from the accepted axioms of set theory, the question of its
truth would lose its meaning, exactly as the question of the truth of Euclid’s
fifth postulate by the proof of the consistency of non-Euclidean geometry
became meaningless for the mathematician. I therefore would like to point
out that the situation in set theory is very different from that in geometry,
both from the mathematical and from the epistemological point of view.

In the case of the axiom of the existence of inaccessible numbers, e.g.,
{which can be proved to be undecidable from the von Neumann-Bernays
axioms of set theory provided that it is consistent with them) there is
a striking asymmetry, mathematically, between the system in which it is
asserted and the one in which it is negated.3®

Namely, the latter (but not the former) has a model which can be de-
fined and proved to be a model in the original (unextended) system. This
means that the former is an extension in a much stronger sensc. A closely
related fact is that the assertion (but not the negation) of the axiom im-
plies new theorems about integers (the individual instances of which can
be verified by computation). So the criterion of truth explained on page
264 is satisfied, to some extent, for the assertion, but not for the negation.
Briefly speaking, ouly the assertion | yields a “fruitful” extension, while the
negation is sterile outside its own very limited domain. The generalized
continuum hypothesis, too, can be shown to be sterile for number theory
and to be true in a model constructible in the original system, whereas for
some other assumption about the power of 2% this perhaps is not so. On
the other hand, neither one of those asymunetries applies to Euclid’s fifth
postulate. To be more precise, both it and its negation are extensions in
the weak sense.

As far as the epistemological situation is concerned, it is to be said that
by a proof of undecidability a question loses its meaning only if the system
of axioms under consideration is interpreted as a hypothetico-deductive
system, 1.e., if the meanings of the primitive terms are left undetermined.
In geometry, e.g., the question as to whether Euclid’s fifth postulate is true
retains its meaning if the primitive terms are taken in a definite sense, i.e.,
as referring to the behavior of rigid bodies, rays of light, etc. The situation
in set theory is similar; the difference is only that, in geometry, the meaning
usually adopted today refers to physics rather than to mathematical intu-
ition and that, therefore, a decision falls outside the range of mathematics.
On the other hand, the objects of transfinite set theory, conceived in the
manner explained on page 262 and in footnote 14, clearly do not belong to
the physical world, and even their indirect connection with physical experi-
ence is very loose (owing primarily to the fact that set-theoretical concepts
play only a minor role in the physical theories of today).

39The same asyminctry. also occurs on the lowest levels of set theory, where the
consistency of the axioms in question is less subject to being doubted by skeptics.
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But, despite their remoteness from sense experience, we do have some-
thing like a perception also of the objects of set theory, as is seen from the
fact that the axioms force themselves upon us as being true. I don’t see any
reason why we should have less confidence in this kind of perception, i.e., in
mathematical intuition, than in sense perception, which induces us to build
up physical theories and to expect that future sense perceptions will agree
with them, and, moreover, to believe that a question not decidable now
has meaning and may be decided in the future. The set-theoretical para-
doxes are hardly any more troublesome for mathematics than deceptions
of the senses are for physics. That new mathematical intuitions leading to
a decision of such problems as Cantor’s continuum hypothesis are perfectly
possible was pointed out earlier (pages 264-265).

It should be noted that mathematical intuition need not be conceived
of as a faculty giving an immediate knowledge of the objects concerned.
Rather it seems that, as in the case of physical experience, we form our
ideas also of those objects on the basis of something else which is imme-
diately given. Only this something else here is not, or not primarily, the
sensations. That something besides the sensations actually is immediately
given follows (independently of mathematics) from the fact that even our
ideas referring to physical objects contain constituents qualitatively differ-
ent from sensations or mere combinations of sensations, e.g., the idea of
object itself, whereas, on the other hand, by our thinking we cannot create
any qualitatively new elements, but only | reproduce and combine those
that are given. Evidently the “given” underlying mathematics is closely
related to the abstract elements contained in our empirical ideas.?® Tt by
no means follows, however, that the data of this second kind, because they
cannot be associated with actions of certain things upon our sense organs,
are something purely subjective, as Kant asserted. Rather they, too, may
represent an aspect of objective reality, but, as opposed to the sensations,
their presence in us may be due to another kind of relationship between
ourselves and reality.

However, the question of the objective existence of the objects of math-
ematical intuition (which, incidentally, is an exact replica of the question
of the objective existence of the outer world) is not decisive for the prob-
lem under discussion here. The mere psychological fact of the existence of
an intuition which is sufficiently clear to produce the axioms of set theory
and an open series of extensions of them suffices to give meaning to the
question of the truth or falsity of propositions like Cantor’s continuum hy-
pothesis. What, however, perhaps more than anything else, justifies the

40Note that there is a close relationship between the concept of set explained in
footnote 14 and the categories of pure understanding in Kant’s sense. Namely, the
function of both is “synthesis”, i.e., the generating of unities out of manifolds (e.g., in
Kant, of the idea of one object out of its various aspects).
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acceptance of this criterion of truth in set theory is the fact that contin-
ued appeals to mathematical intuition are necessary not ouly for obtaining
unambiguous answers to the questions of transfinite set theory, but also
for the solution of the problems of finitary number theory*! (of the type
of Goldbach’s conjecture),*? where the meaningfulness and unambiguity
of the concepts entering into them can hardly be doubted. This follows
from the fact that for every axiomatic system there are infinitely many
undecidable propositions of this type.

It was pointed out earlier (page 265) that, besides mathematical intu-
ition, there exists another (though only probable) criterion of the truth of
mathematical axioms, namely their fruitfuiness in mathematics and, one
may add, possibly also in physics. This criterion, however, though it may
become decisive in the future, cannot yet be applied to the specifically
set-theoretical axioms (such as those referring to great cardinal numbers),
because very little is known about their consequences in other fields. The
simplest case of an application of the criterion under discussion arises when
some set-theoretical axiom has number-theoretical consequences verifiable
by computation up to any given integer. On the basis of what is known
today, however, it is not possible to make the truth of any set-theoretical
axiom reasonably probable in this manner.

| Postscript

[Revised postscript of September 1966: Shortly after the completion
of the manuscript of the second edition [1964] of this paper the ques-
tion of whether Cantor’s continuum hypothesis is decidable from the von
Neumann-Bernays axioms of set theory (the axiom of choice included) was
settled in the negative by Paul J. Cohen. A sketch of the proof has ap-
peared in his 1963 and 1964. 1t turns out that for all X, defined by the
usual devices and not excluded by Konig’s theorem (see page 260 above)
the equality 2% = X, is consistent and an extension in the weak sense (i.e.,
it implies no new number-theoretical theorem). Whether, for a satisfac-
tory concept of “standard definition”, this is true for all definable X, not
excluded by Konig’s theorem is an open question. An affirmative answer
would require the solution of the difficult problem of making the concept of
standard definition, or some wider concept, precise. Cohen’s work, which

41Unless one is satisfied with inductive (probable) decisions, such as verifying the

theorem up to very great numbers, or more indirect inductive procedures (see pp. 265,
272).

421.e., universal propositions about integers which can be decided in each individual
instance.
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no doubt is the greatest advance in the foundations of set theory since
its axiomatization, has been used to settle several other important inde-
pendence questions. In particular, it seems to follow that the axioms of
infinity mentioned in footnote 20, to the extent to which they have so far
been precisely formulated, are not sufficient to answer the question of the
truth or falsehood of Cantor’s continuum hypothesis.]



On an extension of finitary mathematics which

has not yet been used”
(1972)

[The introductory note to 1972, as well as to related items, is found on
page 217, immediately preceding 1958.]

Abstract

P. Bernays has pointed out that, even in order to prove only the consistency of
classical number theory, it is necessary to extend Hilbert’s finitary standpoint. He
suggested admitting certain abstract concepts in addition to the combinatorial concepts
referring to symbols. The abstract concepts that so far have been used for this purpose
are those of the constructive theory of ordinals and those of intuitionistic logic. It
is shown that a certain concept of computable function of finite simple type over the
natural numbers can be used instead, where no other procedures of constructing such
functions are necessary except primitive recursion by a number variable and definition
of a function by an equality with a term containing only variables and/or previously
introduced functions beginning with the function +1.

P. Bernays has pointed out'® on several occasions that, in view of the fact
that the consistency of a formal system cannot be proved by any deduc-
tion procedures available in the system itself, it is necessary to go beyond
the framework of finitary mathematics in Hilbert’s sense in order to prove
the consistency of classical mathematics or even of classical number the-

1See: Bernays 1941a, pp. 144, 147, 150, 152; Hilbert and Bernays 19389, pp. 347-349,
357-360; Bernays 1954, p. 9; cf. also Bernays 1935, pp. 62, 69.

2The present paper is not a literal translation of the German original published
in Dialectica (1958). In revising the translation by Leo F. Boron, I have rephrased
many passages. But the meaning has nowhere been substantially changed. Some minor
inaccuracies have been corrected and a number of notes have been added, to which the
letters (a)-(n) refer. I wish to express my best thanks to Professor Dana Scott for
supervising the typing of this and the subsequent paper [1972a] while I was ill, and to
Professor Paul Bernays for reading the proof sheets and calling my attention to some
oversights in the manuscript.
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ory. Since finitary mathematics is defined? as the mathematics of concrete
wntuition, this seems to imply that abstract concepts are needed for the
proof of consistency of number theory.® An extension of finitism by such
concepts was explicitly suggested by Bernays in his 7935, page 69. By ab-
stract concepts, in this context, are meant concepts which are essentially
of the second or higher level, i.e., which do not have as their content prop-
erties or relations of concrete objects (such as combinations of symbols), but

2See Hilbert’s explanation in his 1926, pp. 170-173.P

b« Concrete intuition”, “concretely intuitive” are used as translations of “Anschau-
ung”, “anschaulich”. The simple terms “concrete” or “intuitive” are also used in this
sense in the present paper. What Hilbert means by “Anschauung” is substantially
Kant’s space-time intuition confined, however, to configurations of a finite number of
discrete objects. Note that it is Hilbert’s insistence on concrete knowledge that makes
finitary mathematics so surprisingly weak and excludes many things that are just as in-
controvertibly evident to everybody as finitary number theory. E.g., while any primitive
recursive definition is finitary, the general principle of primitive recursive definition is
not a finitary proposition, because it contains the abstract concept of function. There is
nothing in the term “finitary” which would suggest a restriction to concrete knowledge.
Only Hilbert’s special interpretation of it introduces this restriction.

€ Accessibility and some closely related concepts (combined with intuitionistic logic)
are those that have been used most of all in consistency proofs (see: 1. Gentzen 1936,
pp- 555, 558; 2. Lorenzen 1951, p. 99, in particular his “induction of the second kind”;
3. Schiitte 1954, p. 31; 4. Kreisel 1965, p. 137, 1967, p. 246, and 1968, p. 351, §12;
5. Takeuti 1957, 1960, 1967.) These concepts create the deceptive impression of being
based on a concrete intuition of certain infinite procedures, such as “counting beyond
w” or “running through” the ordinals smaller than an ordinal a. We do have such an
intuition, but it does not reach very far in the series of ordinals, certainly no farther
than finitism. In order to make the concept of accessibility fruitful, abstract conceptions
are always necessary, e.g., insights about infinitely many possible insights in Gentzen’s
original definition, which is somewhat different from that given above (see his 1936, p.
555, line 7). A closer approximation to Hilbert’s finitism can be achieved by using the

concept of free choice sequences instead of “accessibility”.d

dThis is really an abstract principle about schemes of ramification, which, however,
by Brouwer and Heyting is stated and proved only for the case that their elements
are integers (although it is not clear that this fact is substantially used in the proof).
C. Spector in his 1962 has shown that the abstract principle implies the consistency
of classical analysis, while Brouwer’s principle yields only the consistency of a certain
subsystem of it. Unfortunately, however, no satisfactory constructivistic proof is known
for either one of the two principles (except that, according to G. Kreisel (1965, p. 143),
the weaker principle can be proved relatively consistent with the other accepted axioms
of intuitionism). It was G. Kreisel who first suggested using this principle for consistency
proofs.

Perhaps the most promising extension of the system T is that obtained by introducing
higher-type computable functions of constructive ordinals.
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rather of thought structures or thought contents (e.g., proofs, meaningful
propositions, and so on), where in the proofs of propositions about these
mental objects insights are needed which are not derived from a reflection
upon the combinatorial (space-time) properties of the symbols representing
them, but rather from a reflection upon the meanings involved.®

Due to the lack of a precise definition of either concrete or abstract ev-
idence there exists, today, no rigorous proof for the insufficiency (even for
the consistency proof of number theory) of finitary mathematics. However,
this surprising fact has been made abundantly clear through the exami-
nation of induction by €y used in Gentzen’s consistency proof of number
theory. The situation may roughly be described as follows: Recursion for
€ could be proved finitarily if the consistency of number theory could. On
the other hand the validity of this recursion can certainly not be made
immediately evident, as is possible for example in the case of w?. That is
to say, one cannot grasp at one glance the various structural possibilities
which exist for decreasing sequences, and there exists, therefore, no imme-
diate concrete knowledge of the termination of every such sequence. But
furthermore such concrete knowledge (in Hilbert’s sense) cannot be realized
either by a stepwise transition from smaller to larger ordinal numbers, be-
cause the concretely evident steps, such as a — a2, are so small that they
would have to be repeated €q times in order to reach ¢p. The same is true of
chains of other concretely evident inferences which one may try to use, e.g.,
Hilbert’s w-rule to the extent to which it is concretely evident. What can
be accomplished is only an ebstract knowledge based on concepts of higher
level, e.g., on “accessibility”. This concept can be defined by the fact that
the validity of induction is constructively demonstrable for the ordinal in
question.> Whether the necessity of abstract concepts for the proof of in-
duction from a certain point on in the series of constructive ordinals is due
solely to the impossibility of grasping intuitively the complicated (though

3W. Ackermann in his 1951, p. 407, says that “accessible” has a concrete meaning if
demonstrability is understood as formal provability according to certain rules. However,
it is to be noted that from this concrete fact the validity of the rule of transfinite
induction applied to a given property follows only with the help of abstract concepts,
or with the help of transfinite induction in metamathematics. But it is true that the
concept of “accessible”, at least for induction up to €p, can be replaced by weaker
abstract concepts (see Hilbert and Bernays 1939, p. 363f.); see footnote c.

©An example is the concept “p implies ¢” in the sense of: “From a convincing proof
of p a convincing proof of ¢ can be obtained”.
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only finitely complicated) combinational relations involved,* or arises for
some essential reason, cannot be decided off hand.

In the second case it must be possible, after making the concepts in
question precise, to give a rigorous proof for the existence of that necessity.

At any rate Bernays’ observations in his 1935, footnote 1, teach us to
distinguish two component parts in the concept of finitary mathematics,
namely: first, the constructivistic element, which consists in admitting ref-
erence to mathematical objects or facts only in the sense that they can
be exhibited, or obtained by construction or proof; second, the specifically
finitistic element, which requires in addition that the objects and facts con-
sidered should be given in concrete mathematical intuition. This, as far
as the objects are concerned, means that they must be finite space-time
configurations of elements whose nature is irrelevant except for equality
or difference. (In contrast to this, the objects in intuitionistic logic are
meaningful propositions and proofs.)

It is the second requirement which must be dropped. Until now this
fact was taken into account by adjoining to finitary mathematics parts of
intuitionistic logic and of the constructivistic theory of ordinal numbers.
It will be shown in the sequel that, instead, one can use, for the proof of
consistency of number theory, a certain concept of a computable function
of finite type over the natural numbers and some very elementary axioms
and principles of construction for such functions.

The concept “computable function of type t” is defined as follows:
1. The computable functions of type 0 are the natural numbers. 2. If the

4Note that an adequate proof-theoretic characterization of concrete intuition, in case
this faculty is idealized by abstracting from the practical limitation, will include induc-
tion procedures which for us are not concretely intuitive and which could very well yield
a proof of the inductive inference for ¢y or larger ordinals. Another possibility of ex-
tending the original finitary viewpoint for which the same comment holds consists in
considering as finitary any abstract arguments which only reflect (in a combinatorially
finitary manner) on the content of finitary formalisms constructed before, and iterate
this reflection transfinitely, using only ordinals constructed in previous stages of this
process. A formalism based on this idea was given by G. Kreisel at the International
Congress of Mathematicians in Edinburgh, 1958 (Kreisel 1960).f Note that, if finitism
is extended in this manner, the abstract element appears in an essentially weaker form
than in any other extension mentioned in the present paper.

fAn unobjectionable version is given in Kreisel 1965, pp. 168-173, 177-178. Theorem
3.43 on page 172 of these lectures states that €g is the limit of this process. Kreisel wants
to conclude from this fact that ep is the exact limit of idealized concrete intuition. But
his arguments would have to be elaborated further in order to be fully convincing. Note
that Kreigel’s hierarchy can be extended far beyond ey by considering as one step any
sequence of steps that has been shown to be admissible (e.g., any sequence of ¢ steps).
It then provides a means for making the much used concept of accessibility (see footnote
¢ above) constructive in a much stricter sense by resolving the general impredicative
concept of intuitionistic proof into constructed levels of formal proofs.
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concepts “computable function of type t,”, “computable function of type
t1”, ..., “computable function of type ¢;” (where k > 1), have already
been defined, then a computable function of type (to,t1,... 1) is defined
to be a well-defined mathematical procedure which can be applied to any
k-tuple of computable functions of types £1,¢s,...,%, and yields a com-
putable function of type £y as result; and for which, moreover, this general
fact is constructively evident. The phrase “well-defined mathematical pro-
cedure” is to be accepted as having a clear meaning without any further
explanation.® The functions occurring in this hierarchy are called “com-
putable functions of finite type over the natural numbers.”®

51t is well-known that A. M. Turing has given an elaborate definition of the concept
of a mechanically computable function of natural numbers. This definition most cer-
tainly was not superfluous. However, if the term “mechanically computable” had not
had a clear, although unanalyzed, meaning before, the question as to whether Turing’s
definition is adequate would be meaningless, while it undoubtedly has an affirmative
answer.8

80ne may doubt that, on the basis of the definition given, we have a sufficiently clear
idea of the content of this concept, but not that the axioms of the system T given in
the sequel are valid for it. The same apparently paradoxical situation also exists for the
concept of an intuitionistically correct proof, which is the basis of intuitionistic logic in
Heyting’s interpretation. As the subsequent discussion will show, these two concepts can
replace each other in building up intuitionistic logic within number theory. Of course, if
this replacement is to have any epistemological significance, the concept of computable
function used and the insight that these functions satisfy the axioms of T given below
must not implicitly involve intuitionistic logic or the concept of proof as used by Heyting.
This condition is satisfied for the concept of “computable of finite type” given in the
text and footnote h.

81t is easily seen that Turing’s functions (where functions as arguments or values of
higher-type functions are to be identified with the code numbers of their machines) and
certain subclasses of them also satisfy the axioms and rules of the system T given below.
As to the meaning of this fact, see footnote h.

b An elaboration of this idea would lead to the following:

1. A narrower concept of proof, which may be called “reductive proof” and which,
roughly speaking, is defined by the fact that, up to certain trivial supplementations,
the chain of definitions of the concepts occurring in the theorem together with certain
axioms about the primitive terms forms by itself a proof, i.e., an unbroken chain of
immediate evidences. In special applications (as, e.g., in our case) this concept of proof
can be made precise by specifying the supplementations, the axioms, and the evidences
to be used.

Note that in this context a definition is to be considered as a theorem stating the
existence and unicity of an object satisfying certain conditions and that, in our case,
it is convenient that a statement regarding the type character of the function defined
should form part of its definition.

2. A more special concept of “computable of type t”, obtained by replacing in
the definition given above the concept of “constructively evident or demonstrable”
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As far as axioms and rules of inference for this concept are concerned,
no others are needed except the following: (1) axioms for the two-valued
propositional calculus applied to equations between terms of equal type,
(2) the axioms of equality,” ie.,z =z and z = y.D.t(z) = t(y) for vari-
ables z,y and terms ¢ of any type, (3) the third and fourth Peano axioms,
e, z+1#0,z2+1=y+1.D.2 =y, (4) the rule of substitution of terms
of equal type for free variables (bound variables do not occur in the sys-
tem), (5) rules which permit the definition of a function by an equality with
a term constructed from variables and previously defined functions or by
primitive recursion with respect to a number variable, (6) the usual version
of the inference of complete induction with respect to a number variable.

"Equality of functions is to be understood as intensional equality. It means that
the two functions have the same procedure of computation, i.e., (by our definition of
“computable function”) that they are identical. This is always decidable for two given
functions, which justifies the application of the two-valued propositional calculus.

(occurring in it both explicitly, and implicitly through implications of the form: If
z, ¥, ... have certain types, then ...) by “reductively provable”. Note that, because
“reductively provable” is a decidable property, the implications occurring may also be
interpreted as truth-value functions.

3. The fact that, if the axioms, rules, and primitive concepts of T (note, e.g., that
each type is a primitive concept of T) are, by means of the definitions 1, 2, just given,
replaced by really primitive concepts and insights (or, at least, by something closer to
real primitives), thus obtaining a system T', only the (in comparison to Heyting's) in-
comparably narrower concept of reductive proof need be used in the propositions and
proofs of T, and that, moreover, because these proofs are uniquely determined by the
theorems, quantifications over “any proof” can be avoided. Note that it is not claimed
that the proofs in T/ are reductive. This is true only in certain cases, in particular for
the proofs of the axioms of T and of the individual cases of the rules of T (nontrivially
for those of groups (4) and (5), trivially for the others). What is claimed is only that
no other concept of proof than that of reductive proof occurs in the propositions and
proofs of T/, except, of course, insofar as any theorem P in intuitionism means: A proof
of P has been given. Substantially the same method for avoiding the use of Heyting’s
logic or of the general concept of proof should be applicable also if T is interpreted in
terms of Turing functions (see note (g)).

Item 3 shows that the interpretation of intuitionistic logic, in terms of computable
functions, in no way presupposes Heyting’s and that, moreover, it is constructive and
evident in a higher degree than Heyting’s. For it is exactly the elimination of such vast
generalities as “any proof” which makes for greater evidence and constructivity.

The higher degree of constructivity also appears in other facts, e.g., that Markov’s
principle ~(z)¢(x) O (3z)~¢(x) (see Kleene 1960, page 157, footnote) is trivially prov-
able for any primitive recursive ¢ and, in a more general setting, for any decidable
property ¢ of any objects z. This, incidentally, gives an interest to this interpretation of
intuitionistic logic (no matter whether in terms of computable functions of higher types
or of Turing functions) even if Heyting’s logic is presupposed.
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Note that the axioms and rules of this system, which will be called T, are
formally almost the same as those of primitive recursive number theory,
only that the constants and variables (except those to which induction is
applied) can have any finite type over the natural numbers.> The system
T has the same deductive power as a system of recursive number theory in

8The only other difference consists in the fact that a function P of higher type can also
be defined by a term equation of the form: [P(z1,22,...,2n)] (¥1.¥2,.-..Ym) = . where
t is a term containing no variables except x1,...,%n, ¥1,...,ym. This is a combination
of two “abstractions”, i.e., applications of the A-operator. Formally, this difference
vanishes if functions of several arguments are replaced by functions of one argument by

A. Church’s method.

iFor a precise description of T the following should be added:

The primitive symbols of T are: 0, +1, =, variables and defined constants of any
finite type, “application” of functions to arguments of suitable types (denoted by .(.,.)).
and propositional connectives. Terms are built solely out of constants, variables, and
application. Meaningful formulae are truth-value functions of equations between terms
of equal type.

Regarding the axioms of T note the following:

1. The version of complete induction used in the consistency proof is this:

A0, 2), A(s, F(s,z)) D A(s+ 1,z)  A(s,x)
where z is a finite sequence of variables of arbitrary types and F a sequence of previously
defined functions of suitable types (as to the notation used here, see p. 278 below).

2. For the proofs that the Axioms 1 and 4 of H and the deduction Rule 6 of H hold
in the interpretation ’ defined below, the following principle of disjunctive definition is
needed:

A function f may be defined by stipulating

AS f(z)=t, —AD f(z)=ts,
where t1,t2 are terms and A is a truth-value function of equations between number
terms, both containing only previously defined functions and no variables except those
of the sequence z.

3. Both the version of complete induction mentioned under 1 and the disjunctive
definitions mentioned under 2 can be derived in T, the latter by means of disjunctive
functions H defined recursively thus:

HQO,f,.9)=f H(mn+1,f9)=g

However, it seems preferable first to formulate axioms from which the consistency
proof is immediate, and then reduce them to simpler ones: What adds considerably to
the simplicity of the consistency proof also is the fact that we avoid extensional equality,
which is an incomparably more intricate concept than logical identity.

4. If no attention is paid to the complexity of the consistency proof, the whole calcu-
lus of propositions in T can be dispensed with. For, 1. as applied to number equations
it can be replaced by certain purely arithmetical devices, 2. as applied to equations of
higher type it can be altogether omitted if (a) the second equality axiom (group (2))
is formulated as a rule of inference (which, incidentally, is used only for substituting
the definiens and definiendum for each other) and (b) a disjunctive rule of inference is
introduced which says that, if A follows both from t = 0 and N(¢) = 0 (where N is
defined by: N(0) = 1, N(z + 1) = 0) by means of the other axioms and rules, except
the rule of substitution for variables of ¢; then A may be asserted.

5. It is a curious fact that axiom group (3) is superfluous due to the recursive defin-
ability of a function § by: §(0) =0, é{(z + 1) = z, and due to the definability of —p by
p D.1=0. For it follows immediately that: x+1 =y+1.D.6(z+1) = §(y+1).D.z =y
and z+1=0.2.8(x+1)=6(0).D.2=0.D.1=0; on the other hand —{1 = 0) by
definition of —.
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which complete induction is permitted for all ordinal numbers less than ;.

The reduction of the consistency of classical number theory to that of
the system T is achieved by means of the following interpretation of intu-
itionistic number theory, to which classical number theory is reducible:®

With every formula F of the system H of intuitionistic number theory'®
a formula F” of the form (Jy)(2)A(y, z,z) is associated, where z is the
sequence of free variables of F', y and z are finite sequences of variables of
finite types, and A(y, z,z) is a formula of T containing exactly the vari-
ables occurring in z,y, z. The variables of any one of the three sequences,
z,y, % (each of which may also be empty), are always mutually distinct
and distinct from those of the other two sequences. We denote by zy the
sequence compounded of 2 and y in this order.X

Furthermore, the following notation is used in the formulas 1 to 6 below.

1. v, w are finite sequences of variables which may be of any types; s,1,
are number variables; u is a finite sequence of number variables.

2. V is a finite sequence of variables whose number and types are deter-
mined by the fact that each of them can be applied to y as an argument
sequence, and that the sequence of terms thus obtained (which is denoted
by V(y)) agrees with the sequence v as regards the number and the types
of its members. For the empty sequence A we stipulate z(A) = z and
A(z) = A, so that y(v) is well-determined also in case y or v is empty.

3. The sequence of variables Y (or Z, or Z, respectively) is determined
in the same manner, as regards the number and the types of its members,

9See Godel 1933e.

10H is supposed to be a system containing no propositional or function variables, but
only number variables. The axioms and deduction rules of logic (given on p. 280 below)
are to be considered as schemata for all possible substitutions of formulas of the system
in place of the propositional variables.)

JFor a complete description of the system H used in this paper the following should
be added: Number-theoretic functions are defined only by primitive recursion and by
setting the values of a function equal to those of a term composed of variables and
previously introduced functions. Formulas are what is obtained from equations between
terms by (iterated) application of propositional connectives and quantifiers. “Sequenzen”
in Gentzen’s sense, or the descriptive operator vz, are not used. Complete induction is
formulated as a rule of inference. The azioms of equality are: © =z and z = y. D
.t(z) = t(y) for any term t(x). Outside of the axioms mentioned in footnote 10 and
in this footnote, only the third and fourth Peano azxioms are assumed. Evidently the
systems T and H overlap.

kFrom here on the reader is asked to pay attention to the fact that the letters and for-
mulas occurring in the subsequent discussions are not, but rather denote, combinations
of symbols of T or H; or like “(3z)” or “z(y)”, they denote operations to be performed
on combinations of symbols yielding other such combinations. This relation of deno-
tation can easily be made perfectly precise. In particular note that in expressions like
“A(a, B,v)” the brackets denote an operation of substitution; i.e., “A(a, B,7)” is to be

regarded as an abbreviation of “Subst (Az’;’f/)’\ Hence A(y, z,z) = A.
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by the sequence s (or yw, or y, respectively) and by the sequence y (or z,
or z, respectively).

One-member sequences of variables are identified with variables. If x is
the empty sequence, (3z)A4A = (z)A = A by definition.

The correspondence of F’ to F is defined by induction on the number
k of logical operators contained in F'. The precautions to be taken in the
choice of the symbols for the bound variables and the heuristic grounds for
point 5 of the definition are given below the following formulas.

I. Let F/ = F for k =0.

II. Suppose

F' = (3y)(2)Aly, 2, )
G’ = (Jv)(w)B(v, w,u)

and

have already been defined; then, per definitionem, we set:

1. (FAG) = 3y)(2w)[Aly, z,z) A B(v,w, u)].

2. (FVG) = Fyvt)(zw)[t=0A A(y,2z,z) . V . t =1 A B(v,w,u)].

3. [(s)F] = (3Y)(s2)A(Y (s), 2,2).

4. [Es)F] = (3sy)(2)Aly, 2, ),
where s is a number variable contained in z.

5. (F > G)' = (3V2)(yw)[Aly, Z(yw),z) > BV (y),w,u),
which, by the definition of negation given on page 280 below,
implies: .

6. (~F) = (32)(y)-A, Z(y), ).

Before using Rules 1-6 the bound variables in the formulas ¥’ and G’
are, if necessary, to be renamed so that they are all mutually distinct and
different from the variables in the sequences xz,u. Furthermore, the bound
variables of the sequences t,Y,V, Z, Z, which are newly introduced by the
application of the Rules 2, 3, 5, 6, are to be so chosen that they are mutually
distinct and different from the variables already occurring in the formulas
concerned.

The right-hand side of 5 is obtained by stepwise transforming the formula
F’' 5 G’ according to the rule that propositions of the form (Iz)(...) D
Fy)(...) (or (x)(...) D (z)(...), respectively), where x, y may be sequences
of variables of any types, are replaced by propositions stating that there
exist computable functions which assign to each example for the implicans
(or counterexample for the implicatum, respectively) an example for the
implicatum (or a counterexample for the implicans, respectively), taking
account of the fact that ~B D -A.=.4 > B!

]

IThe complexity of the definition of (F' V G)’ is necessary in order to ensure the
decidability of V and, thereby, the validity of the inference p D r.q Drkpvg. Dr.
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Of course it is not claimed that the Definitions 1-6 express the meaning
of the logical particles introduced by Brouwer and Heyting. The question to
what extent they can replace them requires closer investigation. It is easily
shown that, if F' is provable in H, then the proposition F' is constructively
provable in T; to be more precise, if F' = (3y)(z)A(y, z,z), then a finite
(possibly empty) sequence Q of functional constants can be defined in T
such that A(Q(z),z,x) is provable in T. The proof consists in verifying
that the assertion holds for the axioms of H, and that, if it holds for the
premises of a given rule of inference of H, it also holds for the conclusion.

The verification becomes quite simple and straightforward if the folow-
ing axiom system of intuitionistic logic is used:

Azioms: (1) p D.pAp, (2) pAq.D p, (3) pAg.D.qAp, (4), (5), (6), the
axioms for V which are dual to these, (7) 0 = 1.2 p.™ Negation is defined
by -p.=: pD.0=1.

Deduction rules: (1) Modus ponens, (2) substitution of terms for free
variables, 3) p D q, ¢ DrtpDr, () pAg.DrkpD.qg > r and vice
versa, (5) p D g F p D (z)g and vice versa, provided p does not contain x
as a free variable, (6) pDr,gDrFpVe.Dr, () pD gk (3z)p.D q and
vice versa, provided ¢ does not contain x as a free variable.

It turns out that in the deduction rules 4, 5, and 7 the proposition to be
proved in T is substantially the same as that already proved on the basis
of the premise.™ For the consistency proof of classical number theory the
axioms and deduction rules containing V or 3 can be omitted.

It is clear that, starting with the same basic ideas, much stronger systems
than T can be constructed, for example, by admitting transfinite types
or the methods of deduction used by Brouwer for the proof of the “fan

theorem” .1

YiSee Heyting 1956, p. 42, and footnote d.

For quantifier-free F and G, (F V G)' may be defined like (F A G)’. This has the
consequence that FY = F for all quantifier-free F.

M Axiom 7 may be omitted without jeopardizing the interpretability of classical in
intuitionistic number theory (see Johansson 1936). 0 = 1. D -p follows from the
definition of — and the other axioms and rules.

“Note moreover the following: The proof of the assertion is trivial for all axioms of
H and for the deduction rule 2. For the deduction rules 1 and 3 it follows easily from
the fact that what the formula A(Q(z), z, z) (corresponding to (p D q)’) says is exactly
that and how functions Q for q' can be derived from functions Q for p'. As far as
complete induction is concerned, note that the conclusion of this inference specialized
to the integer n is obtained from the premises by n-fold application of substitution and
modus ponens.

Note also that the deduction theorem can easily be proved for the interpretation ’.
Moreover, as Spector has observed (1962, p. 10), the system T enlarged by intuitionistic
logic with quantifiers for functions of any finite type (i.e., his system X2 — {F}) can be
interpreted in T in exactly the same way as intuitionistic number theory. The proof is
carried out in detail in §9, pp. 12-15, of Spector’s paper.



Introductory note to 1972a

The item to which this note serves as introduction consists of three
remarks (indicated in the following as Remarks 1, 2 and 3) on the un-
decidability results, and was found appended to the galley proofs for
1972. As explained in the introductory note to the latter, Godel ap-
parently worked on 1972 off and on during the period 1965-1972. We
do not know at what point he considered adding these three remarks,
but internal evidence suggests that it was later in the period rather than
earlier. The remarks deal with preoccupations that Godel had with both
the generality and significance of his incompleteness results ever since
the publication of his famous 1931 paper.

In brief, Remark 1 is concerned with improvements in the statement
of the second incompleteness theorem which increase its scope. This
remark already appeared (in slightly variant form) as a footnote that
Godel wrote in 1966 to accompany the translation of his 1932b in van
Heijenoort 1967. Remark 2 promotes ideas concerning the need for ax-
ioms of infinity in order to overcome incompleteness, idcas first suggested
in footnote 48a of 1931 and expressed more fully in the 1964 supplement
to 1947. Finally, Remark 3 was presented as a footnote to Godel’s 1964
postscript to his 1934 lectures (on the occasion of their reproduction in
Davis 1965). Godel was there at pains both to emphasize the generality
of his incompleteness results, in consequence of Turing’s analysis of the
concept of “mechanical procedure”, and to reject the idea propounded
by Turing and Post that these results establish “bounds for the powers
of human reason”. Another version of this same remark was commu-
nicated to Hao Wang and appeared on pages 325-326 of Wang 1974
(completed, according to its introduction, in 1972.)

One may speculate that Godel thought 1972 would be one of his last
publications and that it provided a final opportunity to stress certain
fundamental points and themes that he felt had been insufficiently ap-
preciated. In addition, though he makes no explicit reference to 1972
in these remarks, there is a more than casual connection. For, by the
use in 1958 and 1972 of a new abstract concept (constructive function
of finite type) to establish the consistency of elementary number theory,
Godel illustrated his dictum in Remark 3 that incompleteness is to be
overcome by the development of human understanding through the use
of “more and more abstract terms”.

Despite their brevity, these three remarks broach a wealth of mat-
ters that must be addressed at length if they are to be dealt with at all
adequately. The introductory notes which follow thus discuss each of
them separately. The first has been written by me, the second jointly
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with Robert M. Solovay, and the third by Judson C. Webb. In view of
the length of these notes, the reader is advised to study Godel’s remarks
first.

Solomon Feferman

Remark 1

As explained above, this remark, entitled “The best and most general
version of the unprovability of consistency in the same system”,* essen-
tially reproduces a footnote which first appeared with the translation
of 1932b in 1967. Godel excuses its reproduction anew, in 1972, by the
statement that “perhaps it has not received sufficient notice”.

The remark itself begins with the assertion that the consistency of a
system S containing elementary number theory Z (directly or by trans-
lation), may be provable in S; indeed, the consistency of very strong S
may even be provable in a system of primitive recursive number the-
ory. On the face of it, this assertion seems to contradict Godel’s own
theorem on the unprovability of consistency in (primitive) recursive con-
sistent extensions of arithmetic (1981, 1932b). However, by 1966 there
were several examples in the literature of systems justifying Godel’s ap-
parently contrary statement here. Those examples demonstrated that
the applicability of Godel’s theorem on the underivability in a consistent
system S of the consistency statement Cong depends essentially on how
S is presented. That is, they showed that, for suitable S, another presen-
tation S* of S could be given, with the same set of theorems, for which
S* F Cong«. In Takeut: 1955 this was done by changing the set of rules
generating the theorems, in Feferman 1960 by changing the description
of the set of axioms, and in Kreisel 1965 by changing the description
of the set of proofs.? Of these, the example by Takeuti is perhaps the
most natural, since it deals with systems that have established signif-
icance in the literature, namely Gentzen-style sequential systems with or

a2This remark, dated 18 May 1966, was added as a footnote to 1932b in van
Heijenoort 1967, p. 616. Godel erroneously refers to it as appearing in the translation
of 1981 rather than 1932b.

bThis glosses over some essential points of difference as to just what is demon-
strated by the examples of Takeuti and Feferman. In the case of the former, only a
weak form of the consistency of §* is demonstrated in S*, namely a formula Cong.
which expresses the non-provability of O = 1; the general form, which expresses that
for each A not both A and —A are provable, is not provable in the system S* used by
Takeuti. The example provided by Feferman 1960 is not on its face effective, though
S* happens to be presented by a formula which binumerates (numeralwise defines)
in S the same set of axioms as S.

Note also that the word ‘presentation’ in the text is not used in any specific
technical sense.
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without the so-called cut rule (a form of modus ponens, or detachment,
appropriate to Gentzen-style systems). The cut-elimination theorem for
suitable such S shows that the cut rule is dispensable; the system S*
is then S without the cut rule. So presented, S* can prove its own
consistency. The examples due to Feferman and Kreisel have only more
limited technical significance.? Godel was undoubtedly familiar with all
these examples, but we do not know whether he had any of them specif-
ically in mind when he referred here to the possibility of a system’s
proving its own consistency.

While Godel had sketched a proof of the underivability of consistency
in 1931, a detailed proof was first given in Hilbert and Bernays 1939
(pages 285-328) for a system Z of elementary number theory (and a
related system Z,,). The work there was broken into two parts. First,
three “derivability conditions” D1-3 were set down on the arithmetical
formula Provg(z) expressing in S that z is the Gédel number of a for-
mula provable from S, and it was shown that, for the sentence Cong
expressing the consistency of S and defined by

Cong = V.C[j—n[PI‘OVS (z) A PI’OVS(neg(‘T))]a

we have S I/ Cong whenever S is consistent and satisfies those conditions
(1bid., pages 285-288). Second, the derivability conditions were verified
for Z and Z,,.°

The first derivability condition, D1, states that if B follows from A
in § then S F Provs("A") — Provs("B7).! Condition D2 expresses a
special case of closure of the provable formulas under a rule of numerical
substitution. Finally, the third condition, D3, expresses a form of the
adequacy of S for primitive recursive arithmetic, namely that for each
primitive recursive function f (and corresponding function symbol in S5)
we can prove in S the formalization of

if f(m) =0 then S+ f(m)=0,

where m is the numeral for m. Here S must contain primitive recursive
arithmetic, either directly or by translation. The derivation of Gédel’s
second incompleteness theorem for consistent S also requires that the

°In the weak sense explained in footnote b.
dHowever, Jeroslow (1975) has shown that Feferman’s result applies in a natural
way to a class of non-effective systems called “experimental logics”.

€ Hilbert and Bernays 1939, pp. 289-328. According to G. Kreisel, this procedure
followed a plan Godel outlined to Bernays on a transatlantic voyage to the U.S.A. in
1935.

fWe use TA7 for the numeral in S corresponding to the Gédel number of A.
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relation Proofs(z,y), which holds when y is the number of a proof
in S of the formula with number z, be primitive recursive, and that
Provg(z) = 3y Proofs(z,y).

By the work of Hilbert and Bernays, at least one of the derivability
conditions D1-3 must fail for each of the three examples above of (pre-
sentations of} systems which prove their own consistency. The obvious
candidate in the case of Takeuti’s cut-free system is D1. However, it was
later shown by Jeroslow (1973) that the derivability condition D1 is ac-
tually dispensable, in other words that D2 and D3 suffice for Godel’s
second incompleteness theorem. Moreover, of these it is D3 which is
crucial, since D2 can generally be trivially verified; indeed, all three ex-
amples above fail to satisfy D3. It happens that the examples due to
Kreisel and Takeuti both also fail to satisfy D1, while that of Feferman
does satisfy D1.

The general result stated informally by Goédel in Remark 1 is that a
certain instance of what is now called the II9-reflection principle for S
(denoted I19-RPg in the following) is underivable in S, provided only
that (i) S contains primitive recursive arithmetic (PRA) and is provably
closed under the rules of the equational calculus and (ii) that I19-RPg
is correct for S. Here IIY statements are those of the form Vx f(z) = 0,
where f is primitive recursive, and II9-RPg is the scheme

(IY-RPs) Provs("A™") — A, for A in II%.

This scheme is correct for S if, whenever S+ Vz f(z) = 0 with f prim-
itive recursive, then for each natural number m, f(m) = 0. Actually,
Godel takes a slightly variant form I19-RP’ of this principle, one which
expresses that every equation proved in S using only the rules of the
equational calculus is correct for each numerical instance. It is this form
that Godel calls the “outer consistency” of 5.8 Thus Godel’s result can
be restated as:

(x) If S contains PRA and is outer consistent, then an instance of the
outer consistency of S is not provable in S.

Godel does not indicate a proof of (*) here, but such a proof can
be reconstructed following standard lines for his second incompleteness
theorem, with a small but essential technical change at one point. First,
assume again that S has a primitive recursive presentation. Then there
is a primitive recursive relation Proofg(n,m) which holds just in case
m is the number of a proof in S of the formula with number n. If we let p

&This has not become established terminology.
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be the characteristic function of this relation, then from the assumption
that PRA is contained in S we have

(1) Proof(n,m) implies S + p(n,m) = 1, and
—Proof(n,m) implies S F p(n, m) = 0.

Let Provs(z) be the formula Jy p(x,y) = 1. Then
(2) S+ A implies S+ Provg("4™).

In the usual line of argument for the second incompleteness theorem,
a sentence Gy is formed (by diagonalization) in such a way that

(3) S+ [Go « —Provs("Go )]

Then one shows (first part of the first incompleteness theorem) that if
S is consistent, then S ¥ Gy. By formalizing this argument one obtains
S + (Cong — Gyp), whence S I/ Cong. In the first part, one proceeds
by assuming S F Gp and applies (2) to conclude S + [Provs("Go")];
then from S+ [Go — —Provs("Go")] and S F Gy we conclude that S is
inconsistent. In formalizing this, one must apply first D3 and then D1.
For the new argument here the main technical point is that, with-
out change in the basic diagonal technique used to obtain (3), one can
construct a sentence G and a primitive recursive term ¢ such that

(4) (i) G is Yy[p(t,y) = 0], and
(il) SFt="G.

(In Kreisel and Takeuti 1974 such statements are called literal Gidel
sentences. The first published use of statements of this kind appears
to have been in Jeroslow 1973.) Now, by analogy with the standard
argument, one first shows the following:

(5) If S is outer consistent, then S I/ G.

The proof of (5) proceeds simply, as follows: If $ - G and n is the
number of G, then for some m, p(n,m) = 1. Also, S + Vy[p(t,y) = 0],
so Sk p(t,m) = 0 and by (4)(ii), S+ p(n, m) = 0. Hence if S is outer
consistent we have p(n,m) = 0, in contradiction to p(n,m) = 1. Now,
by formalizing this argument for (5), one obtains:

(6) For a certain instance A of TI}-RPg, S+ A — G.

Hence, under the hypotheses of (%), S I/ A. The use of literal Gddel
sentences thus permits one to deal entirely with assumptions about
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derivability via the equational calculus in S, in place of conditions D1
and D3.

For the usual systems, as Godel points out, outer consistency is equiv-
alent to consistency; the argument, which is quite simple, goes back to
Hilbert.” Moreover, the formal equivalence of Cong with IT9-RP% (and
at the same time with II9-RPg) is provable in a system satisfying the
Hilbert—Bernays (or similar) derivability conditions.!

In fact, as Godel stresses, the question of establishing outer consis-
tency (by finitary means) is the central one for Hilbert’s program (as
formulated, for example, in Hilbert 1926). Hilbert had divided the
statements of a language into ¢deal ones and real ones. By the lat-
ter he meant the purely universal statements, each numerical instance
of which was subject to a finitary check. Hilbert’s program aimed to
show that for various systems S encompassing mathematical practice
the “ideal” statements can be eliminated from derivations of the “real”
statements, in other words, that the reflection principle holds for the lat-
ter class of statements. Thus the program requires the outer consistency
of S, for which, as Hilbert observed, it would be sufficient to establish
the ordinary consistency of S, at least for the usual systems S. But
Godel’s second incompleteness theorem showed that for these systems
one cannot hope to prove the consistency of S within S. What Godel
accomplishes in the present remark is to show, even more generally, that
one cannot hope to prove the outer consistency of S within 5, if indeed
outer consistency holds for S. Thus, with respect to Hilbert’s program,
Godel can fairly claim to have established “the best and most general
version” of his second incompleteness theorem.

However, Godel ignores generalizations of his incompleteness theo-
rems to other situations, for example to various non-constructive systems
in Rosser 1937, Mostowski 1952, and elsewhere. Nor does he concern
himself with generalizations of the reflection principles, such as were
dealt with in Feferman 1962 and in Kreisel and Levy 1968 and which
have a variety of important applications outside of Hilbert’s program.
Moreover, systems encompassing ordinary mathematical practice must
include modus ponens (or the cut rule), so in this respect the kind of
generalization obtained by Goédel is of marginal interest. This is not
to deny that cut-free systems have been of fundamental importance in
proof theory (see, for example, Takeuti 1975) or that they provide a use-
ful context in which to illustrate various technical aspects of the use of
self-referential statements, as shown for example in Kreisel and Tokeut:

hGee, for example, page 474 of the translation of Hilbert 1928 in van Heijenoort
1967.

iFor details, see Kreisel and Levy 1968, p. 105, or Smoryriski 1977, p. 846.
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1974. But for the usual systems and the various non-constructive ex-
tensions that have been considered, it is both much more natural and of
greater generality to follow the lead of Lib 1955, in which quite elegant
abstract derivability conditions (modifying those of Hilbert and Bernays)
proved to be the appropriate means for settling the status of various self-
referential statements and reflection principles in such systems. Ldb’s
results have been put in an even more general logical context through
the work of Solovay (1976) on the completeness of certain modal logics
under the provability interpretation of the necessity operatorJ Still, to
study the question of applicability of Lob’s derivability conditions, one
must consider how formal systems may be presented within themselves.
Here, as Kreisel has often stressed (see for example his 1965, page 154),
dealing with the question of what constitutes a canonical presentation
of a formal system becomes the central concern. One solution has been
provided in Feferman 1982.

One final technical point concerns incompleteness theorems for sys-
tems (much) weaker than arithmetic, for example those such as PRA
which are quantifier-free. Godel points out that his “most general” ver-
sion of the second incompleteness theorem can be extended to apply to
such systems. For the technical tools needed to deal with related ver-
sions of the theorem, see Jeroslow 1973.

Solomon Feferman

Remark 2

This remark begins with what Gdédel terms “another version of the
first undecidability theorem”, which concerns the degree of complexity
(or “complication”, in Godel’s words) of axioms needed to settle prob-
lems of “Goldbach type” of high complexity. Godel had also referred
to problems of this type in 1964, and he explained there (in footnote
42) that by such he meant “universal propositions about integers which
can be decided in each individual instance” X Most generally, then, such
propositions are statements of the form VzR(z) with R general recur-
sive (or effectively decidable, by Church’s thesis). It is shown in re-
cursion theory that every such statement is equivalent to one of the
same form with R primitive recursive, and by definition these comprise
the class of 11 statements. In fact, it is known through the work of

iSee also Boolos 1979.

kSee p. 269 above. Goldbach’s own statement, dating from his 1742 letter to
Euler, is the still unsettled conjecture that every even integer is the sum of two
primes. (For Goldbach and Euler, 1 was a prime.)
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Matiyasevich that every I1Y statement is equivalent to one of the form
Vi .. . Veu[p(za, ..., 20) # q(21,...,2,)], where p and ¢ are polynomi-
als with integer coefficients and n < 13.!

(Godel here takes the degree of complexity d(A) of a formula A (in a
given language) to be the number of basic symbols occurring in it. In

other words, if, for a given basic stock of symbols s1,..., s, the for-
mula is written as a concatenation A = s;, ...s;,, then d(A) is defined
to be k. For S a finite set of (distinct) formulas A;,. .., A,, considered as

a system of non-logical axioms, the degree d(S) is defined to be
d(Ay) +---+d(A,;) + (n—1). The theorem stated informally by Godel
is that in order to solve all problems A of Goldbach type of a “certain”
degree k, one needs a system of axioms S with degree d(S) > k, “up to
a minor correction”. It is not clear what kind of minor correction Godel
intended here, so we do not know just how he would have stated this
as a precise result. After examining this question more closely, the au-
thors have arrived at some results of the same character as Godel’s, but
not quite as strong as what would be suggested by a first reading of his
assertion; we have not, however, been able to establish the latter itself.
These various statements and their status are explained as follows.

Let £ be a language with a finite stock sy, ..., s, of basic symbols,
including logical symbols such as ‘=", ‘A’, ‘¥’ a constant symbol ‘¢, the
successor symbol ¢’ a means for systematically forming variable symbols
‘v, for 1 =0,1,2,... from the basic symbols,™ the equality symbol ‘=",
and parentheses ‘(’, ‘). £ should also contain symbols, either directly
or by definition, for a certain number of primitive recursive functions

fo,---, f;, where fo and f; are + and -, respectively. It is assumed
that we have a consistent finite axiom system Sy in £ which contains
(or proves) defining equations for fy,..., f;, and enough of the axiom

system of primitive recursive arithmetic for these functions in order to
carry out Godel’s first incompleteness theorem. In particular, Sy should
be consistent and complete for %9 sentences (and hence correct for II}
sentences). For the assertion of Godel’s being examined here, only those
systems S are considered which are consistent and contain Sy. Then the
following theorem can be proved:

1See Davis, Matiyasevich and Robinson 1976. Matiyasevich later showed that
one could take n < 9; see his 1977.
’

N QOne obvious way to do this is to identify v; with v 0 ...’ where ‘v’ is a new

i
basic symbol; this makes d(v;) = i + 2. However, there are somewhat more efficient
ways of building v; from basic symbols, so that d(v;) = log, i + O(log, log, 1); we
shall assume that such an encoding is being used in the discussion that follows.
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(x) There are positive integers c1,c2 such that for all k > ¢; and k; =
(k — c2)/c1, no finite consistent extension S of Sy with d(S) < k&
proves all true I1{ statements A having d(A4) < k.

The proof of (*) rests on an examination of Gdédel’s construction
in his 1931 (for the first incompleteness theorem) of a true IIY state-
ment Gg which is not provable from S for any finite consistent S ex-
tending Sg. Gg can be regarded as a statement which expresses that
Conj(S) — G5 is not logically provable, where Conj(S) = A1 A--- A A,
for S = {A;,...,A,}. This construction is uniform in S; that is, for a
suitable ITY formula B(vy) with at most vy free, we have G'g equivalent
to B("Conj{S)"), where "Conj(S5)" is the numeral in L for a Gidel num-
ber of Conj(5). Using this, it may be shown that Gg can be chosen with
d(Gg) < ¢1d(S) + cg, where ¢; is a constant depending on the efficiency
of the Godel numbering of expressions. It turns out that one can take
c1 = [logy m] + 1, where m is the number of basic symbols in £.” For
the usual logical systems m is between 8 and 16, hence ¢; = 4. But a
first reading of Godel’s assertion under consideration would put ¢; = 1
in (x); call that assertion (}). (If (1) holds, Godel’s “minor correction”
would simply be cg.)

The remainder of Godel’s remark does not depend essentially on
whether one can obtain (1) or not, but only that we at least have (x).
For Godel’s way of measuring complexity, the crucial thing is that the
degree of complexity of axiom systems needed to establish true I sen-
tences A increases roughly in direct proportion ¢; to the complexity of
A, where c; is small.

We now pass from these technical questions to Godel’s discussion of
their significance. This shifts, in effect, to systems of set theory. The
reason is that all of present-day mathematics can be formalized in a rel-
atively simple finite system S; of set theory (for example, the Bernays—
Godel system of sets and classes). According to Gadel, it follows from
the result (1), or (x), that in order to solve problems of Goldbach type
which can be formulated in a few pages, the axioms of 57 “will have to be
supplemented by a great number of new ones or by axioms of great com-
plication.” Naturally, one would be led to accept as axioms only those
statements that are recognized to be evident, though not necessarily
immediately so for the intended interpretation (that being, in the case
of BG, sets in the cumulative hierarchy together with arbitrary classes
of sets). Thus Gddel says that one may be led to doubt “whether evident

1Godel’s own numbering of expressions in 1981 is rather inefficient and gives a
comparatively large value for ¢;. The proof that ¢; = [log, m] 4+ 1 suffices relies
particularly on the more efficient coding of variables mentioned in footnote m.
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axioms in such great numbers (or of such great complexity) can exist at
all, and therefore the theorem mentioned might be taken as an indica-
tion for the existence of mathematical yes or no questions undecidable
for the human mind.”

In response to such doubts, Goédel points out “the fact that there do
exist unexplored series of axioms which are analytic in the sense that
they only explicate the content of the concepts occuring in them”. As his
main example, he cites the axioms of infinity in set theory, “which assert
the existence of sets of greater and greater cardinality or of higher and
higher transfinite types” and “which only explicate the content of the
general concept of set.” Here Godel repeats ideas broached in 1947 and
more fully in its revised version 1964.° There he said that the axioms for
set theory “can be supplemented without arbitrariness by new axioms
which only unfold the concept of set ...” (1964, page 264). Moreover,
the axioms of set theory are recognized to be correct by a faculty of
mathematical intuition, which Godel says is analogous to that of sense
perception of physical objects: “... we do have something like a percep-
tion also of the objects of set theory, as is seen from the fact that the
axioms force themselves upon us as being true” (1964, page 271). He
goes on to note there that “mathematical intuition need not be conceived
of as a faculty giving an immediate knowledge of the objects concerned.”
In 196/ that point is elaborated by reference to Kantian philosophy. But
at the end of the present remark, Gédel puts the matter in a way that
is supported by the working experience of set theorists who have been
led to accept axioms of infinity, namely: “These principles show that
ever more (and ever more complicated) axioms appear during the de-
velopment of mathematics. For, in order only to understand the axioms
of infinity, one must first have developed set theory to a considerable
extent.” The implicit but unstated conclusion of all this is that such
axioms of increasing complexity can be used to settle more and more
complicated problems of “Goldbach type”. In other words, despite re-
sults such as (*) (or even (1), if true) “mathematical yes or no questions
undecidable for the human mind” need not exist, in principle.

There is one essential difference of aim in the discussions of 1964 and
of the present remark, concerning the possible utility of axioms of infin-
ity. In 1964, Godel thought that such axioms could be used to decide
CH, whereas here he aims to use them to solve number-theoretic prob-
lems. The study of the so-called axioms of infinity goes back to Hausdorff
(1908), followed by several publications by Mahlo (1911, 1912, 1913).
After that, there was only scattered work in the subject until the late

°See particularly 1964, pp. 264-265 and 271-272. Gdodel first touched on axioms
of infinity in footnote 48a of his 1981 and in 1932b.
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1950s, when it began to undergo intensive development that continues
to this day. Contrary to Godel’s views, there is no universal agreement
among those who have studied set theory deeply as to the acceptability
of these statements as axioms. For very favorable views, see Reinhardt
1974 or Kanamori and Magidor 1978 (the latter also being a very use-
ful survey paper); for a completely opposite (negative) view, see Cohen
1971. While it is certainly true that one must do considerable work in
the subject in order to understand these statements and thus (perhaps)
be led to accept them, it is not the case that the complexity (in Godel’s
sense) of the additional axioms has grown enormously, since new and
stronger axioms simply displace old ones. Thus a few pages suffice to
formulate the strongest such statements that have been considered, and
the complexity of the additional axioms is still relatively low. It is true
that, for each new axiom of infinity A which has been considered and
which goes beyond a previously accepted S, A “solves” the above Gg,
simply because S + A establishes the existence of a model for S and
thus proves the consistency of S (a statement equivalent to Gg). On the
other hand, Godel’s hope in 1964 that use of axioms of infinity might
settle CH has simply not been realized. As Martin explains in his report
on Cantor’s continuum problem, CH has been shown to be undecidable
relative to any remotely plausible extension of the usual axioms ZFC of
set theory by axioms of infinity (Martin 1976, page 86).P The situation
has not changed at the time of this writing.

Axioms of infinity are offered by Godel as an example of further ax-
ioms that might help solve previously unsettled problems. In 1964, page
265, he suggested that there might be “other (hitherto unknown) ax-
ioms of set theory which a more profound understanding of the con-
cepts underlying logic and mathematics would enable us to recognize
as implied by these concepts”. But his indication (1964, footnote 23)
of the nature of such (as stating some kind of “maximum property”)
is rather vague. Since then a number of other specific axioms have
in fact been proposed, some of which have been studied intensively by
set theorists—in particular, the so-called “axiom of determinacy” (see,
for example, Martin 1976). With respect to the present discussion,
all these share with the axioms of infinity the following characteristics:
(i) though they have received some degree of acceptance among set theo-
rists, none of these axioms is widely accepted by the general community
of mathematicians, (ii) their complexity is relatively low, (iii) they serve

PThe “axiom of constructibility” V = L does prove GCH, as we know from Gédel
1938-1940, but is incompatible with strong axioms of infinity. It is also seen to be
intuitively false in the intended interpretation, since it says that all sets are definable
in a certain way. See the introductory note to 1988-1940 in this volume.
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to establish previously undecided propositions Gg, and (iv) they do not
settle CH.

While the two authors of this note disagree about the foundational
status of all such proposed new axioms, they agree that—contrary to
Godel’s view expressed here—there are simple “mathematical yes or no
problems” which will probably never be settled by the human mind be-
cause they are beyond all remotely feasible computational power and
provide absolutely no conceptual foothold. For example, we can ask the

following question: Is it true that if w is the sequence of the first 222100
terms in the binary expression of 7—-3, then the last term of w is 07

To conclude, it is our view that whatever technical interest there may
be in such measures of complexity as those offered here by Gédel (and
related ones by Kolmogorov and Chaitin?), they are irrelevant to the
experience of working mathematicians. It is not the complexity of the
azxioms needed for solving problems which is at issue in practice, but
rather the complexity of the proofs required, and here there is no simple
relationship between results and proofs. Relatively complicated prob-
lems can have relatively simple proofs once the right key is found, while
relatively simple problems may require amassing an enormous amount
of {conceptually) complicated machinery in order finally to settle them.
Moreover, complexity is a shifting matter in the eyes of mathematicians:
As mathematics develops, previously complicated notions and results
are assimilated and become everyday tools for the attack on yet more
difficult problems. A realistic mathematical theory of this common psy-
chological experience has yet to be provided.

Solomon Feferman and Robert M. Solovay

Remark 3

Godel’s 1964 Postscriptum to 1934 began by stressing that the “pre-
cise and unquestionably adequate definition of the general concept of for-
mal system” made possible by Turing’s work allows his incompleteness
theorems to be “proved rigorously for every consistent formal system
containing a certain amount of finitary number theory” (Gédel in Davis
1965, page 71 = Gadel 1986, page 369). He insisted, however, that such
generalized undecidability results “do not establish any bounds for the
powers of human reason, but rather for the potentialities of pure formal-
ism in mathematics” (1986, page 370). Gddel was no doubt responding

a8ee Chaitin 1974.
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here to the claim in Post 1936 that the generality of the incompleteness
and undecidability theorems for “all symbolic logics and all methods of
solvability” required that Church’s thesis be seen as “a natural law”, for
“to mask this identification under a definition hides the fact that a fun-
damental discovery in the limitations of the mathematicizing power of
Homo sapiens has been made and blinds us to the need of its continual
verification” (Post in Davis 1965, page 291). But on reflection Godel
realized that, insofar as they tried to show that “mental procedures can-
not go beyond mechanical procedures” effectively, Turing’s arguments
for his “unquestionably adequate definition” of computability would im-
ply the same kind of limitation on human reason as claimed by Post,
and so he wrote this Remark 3 of 1972a on Turing’s “philosophical er-
ror” as a footnote elaborating his disclaimer quoted above. Our problem
is to understand how Gddel could enjoy the generality conferred on his
results by Turing’s work, despite the error of its ways. Since this clearly
involves not only his interpretation of Turing’s work but also of Church’s
thesis generally, a brief review of Gddel’s role in the emergence of this
thesis may help to put some aspects of our problem in perspective.

In 1934 Godel claimed that the primitive recursive functions used in
his arithmetization of syntax can all be “computed by a finite proce-
dure”. In a footnote he said that the converse “seems to be true” if
we allow “recursions of other forms”. Herbrand (1937) admitted arbi-
trary recursion equations (axioms of Group C) into his formalism for
arithmetic, provided that, “considered intuitionistically, they make the
actual computation of the f;(zy,...,z,) possible for every given set of
numbers, and it is possible to prove intuitionistically that we obtain a
well-determined result” (Herbrand in van Heijenoort 1967, page 624).
By this he meant that the computation be carried out informally in
“ordinary language” and shown constructively to terminate. He also
claimed that it was impossible to “describe outright” all these f;, since
otherwise f,(z)+ 1 would be an “intuitionistically defined function” not
in the list generated by such a description. He concluded that Godel’s in-
completeness theorems did not hold for his arithmetic, for “to carry out
Godel’s argument, we have to number all objects occurring in proofs”
(ibid., page 627); but to number the objects of his formalism one would
have to focus on “a definite group of schemata” for his recursions, and
since the diagonal function f,(z)+1 “cannot be among these functions”
(ébid.), it could not have any Godel number. This raised the question
of the generality of his recursions as well as that of Godel’s theorem
itself. In a letter to Godel he formulated a general but precise notion of
recursion equations and called “recursive” those functions which are the
unique solutions of such equations.

Godel then realized, after rejecting as “thoroughly unsatisfactory”
Church’s proposal to identify effectiveness with A-definability, that
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Herbrand’s definition could be modified in the direction of effectiveness,
and he proposed to call “general recursive” those functions whose values
could be deduced from his equations by two explicitly stated rules. This
made his aforementioned footnote suggesting that ‘finite computabil-
ity’ could be identified with a wide enough class of recursions sound
like Church’s thesis after all. But Gddel had qualified this as only a
“heuristic principle”, and later wrote to Davis that he was not propos-
ing Church’s thesis, but rather

(GT) The functions “computed by a finite procedure” are those
definable by “recursions of the most general kind”,

explaining that in 1934 he was “not at all convinced that my concept
of recursion comprises all possible recursions” (Godel in Davis 1982,
page 8) and that the equivalence of his concept, based on Herbrand’s
equations, with Kleene’s, based on minimalization, “is not quite triv-
ial” (ibid.). Indeed, if the proof of the general recursiveness of all the
p-recursive functions by Kleene 1936 were trivial, Godel would presum-
ably not have been in such doubt about the generality of his recursions.
In fact, this result is behind the “kind of miracle” that Godel (1946 ) saw
in the closure of recursiveness under diagonalization, which allowed it to
provide an “absolute definition” for the “epistemological notion” of com-
putability: given any recursive sequence of general recursive functions,
Kleene defined by minimalization a new diagonal function ¢,(z) + 1,
which is nevertheless still general recursive by Kleene’s result. On the
other hand, Kleene’s normal form theorem shows by explicit arithmetiza-
tion of the Herbrand—Godel formalism that all the general recursive func-
tions will have Godel numbers, and hence refutes Herbrand’s claim that
the diagonalization of any “definite group of schemata” for his recursions
must yield a new recursive function with no Gédel number. Adding to
this Kleene’s general result on “the undecidability, in general, which sys-
tems of equations define recursive functions” (Kleene 1936 = Davis 1965,
page 248), we cannot but wonder why Kleene’s analysis did not elimi-
nate all Godel’s qualms about replacing the right side of (GT) by general
recursiveness.” Certainly it showed that one could not reasonably expect

'Davis (1982) remarks that Kleene’s' normal form theorem “must have gone a
considerable distance towards convincing Godel that his ‘concept of recursion’ indeed
‘comprises all possible recursions’” (p. 11). I have tried to spell out here why Kleene’s
results should perhaps have done so, but in fact we have no direct evidence that they
did. Kleene’s paper would even seem to be the plausible source for Gddel’s remark in
1946 about the “miracle” of diagonalization, but it may well be that he never really
looked at it until after he read and was convinced by Turing’s very different analysis
of computability.
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to diagonalize out of this class by any “finite procedure”: For (i) clearly
effective diagonalizations miraculously do not lead outside this class, and
(ii) those which do are clearly not effective, since they would depend on
knowing effectively which sets of Herbrand’s equations lead to his “well-
determined result”, by Gdodel’s result.® In fact, Kleene shows that in any
of “certain formal logics” the arithmetization of infinitely many true
claims of this form will be unprovable, bringing out the importance of
formally undecidable sentences in justifying (ii). It would thus seem that
Kleene’s analysis should not only have convinced Godel that his recur-
sions were wide enough to comprise the “finite procedures”, but also pro-
vided him with answers to Herbrand’s argument against the generality of
his incompleteness theorems. In translating classical into intuitionistic
arithmetic, Godel (1933¢) had used the system of Herbrand 1931 to rep-
resent the former, where his formulation spoke of “the denumerable set
of function signs f;” introduced by Herbrand’s Group C of axioms.® But
in 1934, where he formulated the “conditions that a formal system must
satisfy” for his incompleteness theorems to apply by asking that it be so
Godel numbered that its axioms and relation of immediate consequence
be primitive recursive, he was conspicuously silent about Herbrand’s
claim that his functions themselves could not be numbered. Why then,
in view of his own explanation for not having advanced Church’s thesis
in 1934, did Godel never cite Kleene 1936, either as having helped to
persuade him of it or to settle his score with Herbrand?

The answer to the latter question seems to be that Godel was never
able to satisfy himself with any answer to Herbrand. Indeed, in his 1965
elaboration of footnote 34 of 71934 he still claimed that the equivalence
of Herbrand’s notion of a constructively provable recursive function with
general recursiveness was “a largely epistemological question which has
not yet been answered”. The question was whether or not the concept of
a computable function depends on that of an intuitionistic or materially
correct proof." Godel evidently thought that Turing’s analysis showed

$Since Herbrand had already stressed in an unsigned note that “all the functions
introduced must actually be calculable for all values of their arguments by means of
operations described wholly beforehand” (1971, p. 273), it seems fair to say that the
concept of general recursiveness was already his (cf. van Heijenoort 1982). The real
importance of actually writing down such rules as Godel did was that it allowed the
arithmetization of the entire theory of recursive functions: only then could Kleene’s
plan to “treat the defining equations formally, as sequences of symbols” (1936, p.
729 = Davis 1965, p. 239) lead to substantial results.

*As is pointed out in the introductory note to 1933e, in volume I of these Works,
Godel’s use of these axioms plays no special role in his proofs.

“One should consult the introductory note to 1958 and 1972, where the consid-
erable amount of trouble and hard thinking this issue caused Godel are analyzed at
length.
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the notion of “mechanical computability” to be independent of such a
proof concept, and went on to stress in his Postscriptum to 1934, as we
have seen, that Turing’s analysis also provided an unquestionably ade-
quate definition of a formal system. For the “essence” of such a system,
says Godel, is to completely replace reasoning by “mechanical operations
on formulas”, and Turing had shown this to be “equivalent” to a Turing
machine (1965, page 72). But Godel never uses the word “effective”
to describe the explicanda of Turing’s analysis, and says explicitly that
general recursiveness can take its place in (GT) only “if ‘finite proce-
dure’ is understood to mean ‘mechanical procedure’” (ibid., page 73).
So it is unclear whether any analysis ever convinced him that any of
these equivalent mathematical concepts comprised the “effective” func-
tions. He stressed that Turing’s analysis is independent of “the question
of whether there exist finite non-mechanical procedures ... such as in-
volve the use of abstract terms on the basis of their meaning” (ibid.),
referring to his own 1958 where his abstract concept of a “computable
function of type ¢” is used to prove the consistency of arithmetic. Yet he
also emphasized, as we have seen, that the undecidability results made
possible by Turing placed no limitation on human reason, but only on
pure formalism—a point he tries to explain in his Remark 3 of 1972a
on Turing’s “philosophical error” of assuming that a human computer
would be capable of only finitely many distinguishable mental states. To
understand how Godel could allow an analysis based on such an error
to stand as “unquestionably adequate” to establish the generality of his
theorems, we turn to Turing’s work.

In a personal communication to the author, Feferman has plausi-
bly conjectured that the basic new feature of Turing’s machines which
convinced Godel of their adequacy for defining a general concept of
“mechanical procedure” was the determinzstic character of their com-
putations, since this automatically ensured the consistency of Turing’s
definition of computability. In Church’s A-calculus the calculation of a
normal form for a term representing a function may take many different
courses, and the Church—Rosser theorem on the uniqueness of exist-
ing normal forms, which ensures the consistency of Church’s definition,
was indeed, as Feferman (198{a) points out, “exceptionally difficult”
to follow—to0 say nothing of the ontological obscurity surrounding the
A-calculus. This may also explain why Kleene 1936 failed to completely
persuade Godel.Y While this feature alone of Turing’s analysis may

VSee Kleene 1943, where the analogous problems of consistency for various for-
malisms for recursive functions not mentioned in 1936 are discussed fully. In particu-
lar, Kleene points out that the consistency proof for one formalism of partial recursive
functions “seems to require the type of argument used in the Church-Rosser consis-
tency proof for A-conversion.”
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explain why Godel found it more convincing than Church’s and Kleene’s,
we have to look more closely at Turing’s arguments to see how Godel
might have acquiesced in its advantages despite their error.

In Turing 1987 (reproduced in Davis 1965, pages 116-149), Turing’s
arguments for the thesis that his machines could compute any function
“calculable by finite means” are divided into three types. Type I presents
his analysis of the operations an ideal “human computer” could perform
and depends on the assumption, questioned by Gédel, that he is capable
of only finitely many “states of mind”. Type II shows that the entire
deductive apparatus of the predicate calculus can be simulated by one of
his machines. Type III is a “modification” of the type I argument that
replaces the problematic notion of a state of mind by “a more phys-
ical and definite counterpart of it” (Turing in Davis 1965, page 139),
namely, a “note of instructions” enabling his computer “to break off
from his work” and later resume it. Since each such note “must enable
him to carry out one step and write the next note” (ibid.), it follows
that each stage of his computation is “completely determined” by such
notes. Turing argues that, since the instantaneous “state of the system”
comprised of a note of instructions and tape symbols can be represented
by single expressions, the entire computation of his computer could be
formalized in the predicate calculus, and therefore, by the type II ar-
gument, carried out by one of his machines. Thus Feferman suggests
that Godel rejected only Turing’s type I argument, while accepting his
“more physical” type ITI argument. Indeed, Wang (1974, page 326)
reports that in discussions with Godel about this remark, Gédel admit-
ted the validity of Turing’s argument under two additional assumptions:
(1) “There is no mind separate from matter,” and (2) “The brain func-
tions basically like a digital computer,” or (2') “The physical laws, in
their observable consequences, have a finite limit of precision”. Although
Godel accepted both (2) and (2'), he rejected (1) as “a prejudice of
our time” which would eventually be scientifically refuted, possibly by
showing that “there aren’t enough nerve cells to perform the observable
operations of the mind” (ibid.). Godel believed that Turing’s argument
depended on some form of physicalism, and indeed Turing says of the
elementary operations of his human computer that “every such oper-
ation consists of some change of the physical system consisting of the
computer and his tape” (Turing in Davis 1965, page 136). But since
there is no doubt that such “observable” mental operations as reading
symbols can be performed by one’s nerve cells, it is not yet clear what
is lost in Turing’s physicalist analysis of computability, or even that it
really depends on assumption (1). Moreover, since the physicalist claim
just quoted occurs in the type I argument, it is clear that in analyzing
Godel’s critique of Turing we cannot simply ask which of the three types
of argument he may have found valid or invalid. Indeed, a closer look at
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Turing’s paper will show, I believe, that he basically presented just one
argument, one which is still plausible without any physicalist premises,
but also one that Godel could accept only under his own interpretation
on the conclusion of Turing’s argument, that is, on Turing’s thesis. Let
us examine this more closely.

For Turing the question of what can be done “effectively” concerns
memory: though it can only scan one symbol at a time, by altering its
state “the machine can effectively remember some of the symbols which
it has ‘seen’ (scanned) previously” (ibid., page 117). The restriction to
a finite number of states thus limits its memory, and Turing justifies its
comparison with a human computer by reference to “the fact that the
human memory is necessarily limited” (ibid.). How else is one to repre-
sent this limitation except in terms of the number of states? Since Godel
accepted such a limitation on the brain, it seems that he may have en-
visaged, as did Leibniz, some kind of purely mental memory, “separate”
from that of the brain. But this would still not undermine Turing’s type
1 argument, for it does not deny the existence of an infinity of mental
states, much less assume (1), but argues rather that “if we admitted
an infinity of states of mind, some of them will be ‘arbitrarily close’
and will be confused” (ibid., page 136). Turing’s point is that only an
effectively distinguishable set of states could be used to “effectively re-
member” symbols, and hence to effectively compute. Godel admits that
this set is finite even for the mind in its current stage of development,
but envisaged the possibility of “systematic methods” for so actualizing
the development of our understanding of abstract terms that it would
“converge” to infinity."

¥That Turing’s finiteness hypothesis is perfectly compatible with a “dynamic”
view of mind, however, emerges clearly when we consider the suggestion that it was
Turing’s type III argument that convinced Gddel (that “mechanically computable”
functions are Turing-computable). This argument actually contains a sketch for a
rather different but still direct formulation of the computability idea, indeed the very
one simultaneously and independently worked out in Post 1936. (See Hodges 1983
for some interesting remarks on this.) Here the “memorial” role of states, that they
depend on previous states and scanned symbols, is played by instructions so num-
bered that they can refer to each other. The equivalence of Turing’s computability
and Post’s is thus essentially contained in Turing’s type III argument itself: it can
be regarded as essentially a sketch for a proof that his machines could simulate any
of Post’s finite 1-processes. Turing’s restriction of his human computer to finitely
many states is thus equivalent to Post’s restriction of his “worker”, who executes the
same atomic operations, to finitely many instructions. Post (1941) saw his restric-
tion as evident from the fact that “the system of symbolizations ... is essentially to
be a human product and each symbolization a human way of describing the original
mathematical state” (p. 427). He emphasized the dualism between “the static outer
symbol-space” and our “dynamic mental world” which nevertheless has “its obvious
limitations”, ones that are fully emphasized by Turing’s “finite number of mental
states” hypothesis (p. 431).
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But does it follow, as Gédel claimed, that from the convergence to
infinity of the number and precision of our abstract terms the number
of distinguishable states of mind must so converge? Turing might say: If
we admit an infinity of abstract terms some of them will be “confused”
with each other. Goédel would say: Not if each of them is understood
“precisely”. This assumption, that coming to understand such a term
precisely always creates a distinct new mental state for using it, not
only depends on the special significance Godel attaches to “abstract”
terms, but also shows that he has in mind a notion of “state” different
from Turing’s. This seems clear from the superficial similarity of Gédel’s
argument to the familiar fallacious one that, since the mind can in prin-
ciple “think” of any natural number, it must be capable of an infinity
of distinct states and hence not be a Turing machine. This rests on the
false assumption that we need to be in distinct single states to think of
distinct numbers: Since “thinking of a number” in general involves sym-
bolic calculation, it is best analyzed precisely as Turing does as a process
of passing through a finite sequence of states, each carrying a bounded
record of the history of the calculation. Indeed, in a penetrating analysis
of Turing’s arguments, Gandy replaces his finiteness condition on states
by a “principle of local causation” excluding any instantaneous action at
a distance in the causal relations between successive states, and conjec-
tures that Goédel’s “non-mechanical intelligence would, so to speak, see
the state x as a Gestalt, and by abstract thought make global determi-
nations which could not be got at by local methods” (Gandy 1980, page
146). By Turing’s own lights, Godel’s intelligence would have an essen-
tially omniscient memory. But, as Gandy’s formulation reminds us, it
is the abstractness of the terms more precisely understood by Gédel’s
developing mind that is supposed to make its states different from those
relevant to Turing’s human computer and which also distinguishes his
argument from the familiar fallacious one for an infinity of mental states.
When we note, furthermore, that it is the complexity of abstract terms
that distinguishes them from concrete ones by Godel’s lights, his argu-
ment can be seen as more than a mere formulation of the possibility that
we might in the unforseeable future develop an “infinite mind” *

We see this in fact from Godel’s Remark 2 of 1972a on “another ver-
sion” of his first theorem, where he takes it as showing that to solve
even relatively simple problems we shall need ever new axioms of “great
complication”. His favorite examples are the stronger axioms of infinity

XThis phrase was used by Godel in 1944 to criticize the attempt by Ramsey
(1926) to reduce classes to infinitely long propositions. What else could an infinite
truth-function be, asks Godel, but another infinite structure more complicated than
classes, “endowed in addition with a hypothetical meaning, which can be understood
only by an infinite mind”? (1944, p. 142).
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which are “evident” even though “ever more complicated” because they
assert the existence of increasingly abstract and complicated objects. In-
deed, Godel’s argument against Turing must hinge on this assumption
about abstract terms: that by understanding them more precisely we
become capable of states which are themselves more and more compli-
cated. In fact, immediately after his claim quoted above that we could
effectively distinguish only finitely many of a supposed infinity of states,
Turing had admitted that this restriction “is not one which seriously
affects computation, since the use of more complicated states of mind
can be avoided by writing more symbols on the tape” (Davis 1965, page
136). So even in Turing’s own mind the issue was more the complexity
of the states than their actual infinity, and indeed his construction of the
universal machine comprised the most striking confirmation of this kind
of ‘compensation’ for the lack of complicated states. Here the ‘cybernet-
ical aspect’ of the enumeration theorems comes to the fore: to simulate
machines with arbitrarily more and more states which are more and
more complicated, the universal machine, with its fixed finite number of
states, has only to be given their Gédel number on its tape, and then,
as Turing later put it, “the complexity of the machine to be imitated is
concentrated in the tape and does not appear in the universal machine
proper in any way” (Hodges 1983, page 320). Godel was presumably not
convinced, the universal machine notwithstanding, that all the states
entered by a human computer using “finite non-mechanical procedures”
could always be compensated for in Turing’s purely symbolic manner,
for in such states it just might exploit the meanings of ever more abstract
concepts of proof and infinity to grasp infinitely complicated combinato-
rial relations. It is really this kind of possibility more than any conver-
gence to an infinity of states that could undermine Turing’s arguments,
but, far from having disregarded. it completely, it seems that Turing him-
self must have initially thought such an objection plausible; yet once he
discovered the universal machine he saw that it could indeed compen-
sate symbolically for a surprisingly wide class of increasingly complicated
machine states.Y Otherwise he would never have claimed that “a man

YThe critique of Turing’s analysis of computability in Kreisel 1972 is closely re-
lated to Godel’s, with whom Kreisel agrees that “Turing’s error” of assuming that
a human computer can enter only finitely many distinguishable states “does not
invalidate his analysis of mechanical instructions” (p. 318). His second error, “not
unrelated” to “the petitio principi concerning the finiteness of our thinking” already
opposed by Cantor, is “assuming that the basic relations between (finite) codes of
mental states must themselves be mechanical” (p. 319). That is, the succession of
mental states in human computation cannot be described by “rudimentary” func-
tions as can those of Turing machines. This suggests to Kreisel that “the sequence of
steps needed to execute an h-effective definition” cannot be reproduced by such ma-
chines. In the case of number-theoretic functions, “we can say loosely that the human
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provided with paper, pencil, and rubber, and subject to strict discipline,
is in effect a universal machine” (Turing 1970, page 9).

That Turing’s mechanical model of the human computer is by no
means unduly simple is brought out by another version of Gédel’s the-
orem due to Kleene: In every consistent formal system F' in which the
universal machine U can be described, there are infinitely many ex-
pressible facts about U’s halting behavior which cannot be proved in I
Since F may have as axioms, for example, any effectively specifiable set
of strong axioms of infinity, it would seem that U/ must be rather com-
plicated after all, despite the seeming simplicity of its states. That this
point was not lost on Godel is clear from a letter he wrote Arthur Burks,
who had queried him about von Neumann’s notion of an automaton so
complex that its behavior was “asymptotically [?] infinitely longer to
describe” than the automaton itself. Godel replied (as quoted in von
Neumann 1966, page 56) that

what von Neumann perhaps had in mind appears more clearly
from the universal Turing machine. There it might be said
that the complete description of its behavior is infinite be-
cause, in view of the non-existence of a decision procedure
predicting its behavior, the complete description could be
given only by an enumeration of all instances ... The univer-
sal Turing machine, where the ratio of the two complexities
is infinity, might then be considered to be a limiting case
of other finite mechanisms. This immediately leads to von
Neumann’s conjecture.

He added, however, that this presupposes “the finitistic way of think-
ing” about descriptions, so he was presumably still not willing to concede
that U poses an absolutely unsolvable decision problem, even by finite
non-mechanical procedures. But his Remark 3 of 1972a admits that

computations are more ‘complicated’ or, better, more abstract than the objects on
which they operate—our thoughts may be more complicated than the objects thought
about” (4bid., p. 320). This is the same connection between abstractness and com-
plexity that we find in Godel’s argument. Kreisel errs, however, when he claims “in
the case of (Turing) machines whose states are finite spatio-temporal configurations
it is quite clear how to code states by natural numbers” (p. 319), as if only their
“finite spatio-temporal” character had allowed Turing to code them. But his coding
of machine states depends only on the fact that they are finite in number and has
nothing to do with such properties. We agree with Kreisel that the coding of purely
mental states should be “a more delicate matter”. But the only property of such
states he uses is that a human computer may think about proofs in Heyting’s formal
arithmetic, and his examples of prima facie non-mechanical rules depending on such
states have turned out to be Turing-computable. Still, Kreisel’s discussion does en-
gage more explicitly than Godel’s argument the problem Turing himself saw at issue
in this hypothesis, namely, the ‘complexity’ of states, and this is its virtue.
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our development of such procedures is still eons away from being able to
“actually carry out” the computations needed to predict the behavior of
Turing’s model of the human computer.

Finally, we note that the interpretation of Gédel’s argument against
Turing as depending on the complexity of the states entered by a hu-
man computer using “finite non-mechanical procedures” does not con-
flict with his claim that the adequacy of the latter’s analysis of “mechan-
ical procedure” has nothing to do with the existence of such procedures.
Still, this claim does imply a certain interpretation of his own of Tur-
ing’s work, namely, that all Turing was really analyzing was the concept
of “mechanical procedure”, but that in his arguments for the adequacy
of his analysis he overstepped himself by dragging in the mental life of
a human computer. As Wang’s authorized formulation of Godel’s view
puts it, “we had not perceived the sharp concept of mechanical proce-
dures sharply before Turing, who brought us to the right perspective”
(1974, page 85). This sounds plausible enough until we look at what Tur-
ing actually said. As we saw, Turing offers (in Section 9 of his paper)
three “types of argument” for the thesis that his machines can compute
the decimal expansion of any real number which is “calculable by finite
means”. Goédel took issue with his type 1 argument, though I believe
that none of them can hold by his lights (see footnote w above). Per-
haps in reflecting on this argument in 1972, Goédel forgot that “the word
‘computer’ here meant only what that word meant in 1936: a person
doing calculations” (Hodges 1983, page 105). Where then did he find
Turing’s “analysis” of mechanical operations shorn of human aspect?
Really, nowhere: as Turing himself says, his type I argument is “only an
elaboration of the ideas” presented in Section 1 of his paper, and his type
IIT argument “may be regarded as a modification of I or as a corollary of
II”. In fact, Turing has one basic argument, which is presented in Sec-
tion 1 and discussed above, and whose central premise is “the fact that
the human memory is necessarily limited”. Turing refers to this “fact”
as the “justification” of his definition of the computable real numbers
in terms of his machines. The heart of his argument was a novel ab-
stract logical analysis of what it means to “effectively remember” things
relevant to computation, such as symbols or how many times one has
executed a subroutine: to do so one must be able to change from one dis-
tinguishable state to another, whether you are human or a machine. We
presume indeed that “states of mind” may also carry memories beyond
the wildest dreams of machines, but the only ones relevant to effective
computation are those you are put into by symbols and processes arising
in the course of the computation. But our memory is just as “necessarily
limited” as a machine’s—in either case, to a finite number of recognizable
state changes. We saw, however, that a crucial problem does surface in
Turing’s “elaboration” of this limitation, namely, the apparent need to
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represent “more complicated” states as their number increases. Here a
prima facie difference between a human computer and a Turing machine
presented itself to Turing as soon as he wrote down the definition of the
latter: for then Turing himself could number his machines like Godel
and define a universal partial function which was obviously effective for
him, whereas it could not have been obvious from his definition that one
of his machines could compute it. Perhaps he could compute it only be-
cause he entered more complicated states enabling himself to simulate
machines with ever more complicated states. In any case, his discov-
ery of the universal machine, compensating for an internal memory of
bounded complexity by an external one of unbounded size, is really his
main contribution to science, having already made possible a better grip
on a basic concept which we are still far from seeing “sharply”, namely,
that of ‘complexity’.

We now try to focus the questions raised by Godel’s view of the sig-
nificance of Turing’s analysis and his own results. The mere existence of
undecidable sentences in formalisms like Principia mathematica, while
interesting, would not of itself force one to reexamine the scope of for-
malization in mathematics. There would simply be axioms one had
overlooked. The full force of the results of Godel and Church is only
made explicit in Rosser’s 1936 extension:

(T) The set of unprovable sentences of any adequate formalism
is not r.e.

Godel saw this as no limitation on human reason but only “pure formal-
ism in mathematics” —in opposition to Post, who regarded Church’s the-
sis as a hypothesis about the significance of (T), namely, that it implied
that the decision problem for any formalism containing such sentences
was absolutely unsolvable by any effective method. Godel had been sure
only of (GT) until Turing discovered the first completely deterministic,
and hence obviously consistent, formulation of computability. But even
when Turing computability proved equivalent to both A-definability and
general recursiveness (and the latter to u-recursiveness), he still insisted
that the latter comprised the “most general recursions” of (GT) only if
“finite procedure” was interpreted as “mechanical procedure”—but not
if it referred to what a human computer could “effect”. For this, one
needed, according to Godel, the assumption that such a computer was
a completely physical system, an assumption he could not accept. He
saw clearly that Turing’s analysis, if allowed to stand for humanly effec-
tive processes generally, would imply that human minds are not more
effective than machines in dealing with (T). Hence he looked for “sys-
tematic methods” for developing our use of abstract notions of infinity
and proof to the point of being able to handle such problems in construc-
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tive but non-mechanical ways. But his example of looking for stronger
axioms of infinity, while it may well actualize and sharpen our ability to
use abstract concepts, is not necessarily a process that would actually
increase the number of our distinguishable mental states. It might be
argued that when such axioms “force themselves on us as being true”,
we enter meaning-using states which, in some as yet undefined sense,
are more complex than those of any machine; but this would seem to
depend on Godel’s Platonism. His other example of “the process of sys-
tematically constructing” all the recursive ordinals suggests that he may
have contemplated the study of Turing’s ordinal logics in search of non-
mechanical but effective ways of overcoming (T). Clearly he was under
no illusions about the prospects that either approach could lead to the
construction of a sufficiently “well-defined procedure” to refute Turing’s
analysis. I conclude that Godel saw the difficulty of interpreting (T)
in a way that both preserved the generality of his incompleteness theo-
rems and avoided a mechanistic hypothesis to the effect that humanly
effective processes are mechanizable. The degree of this difficulty can
perhaps be seen by how far into the future of human development he
felt he had to look for a way out of it.

Judson C. Webb*

2] would like to thank Solomon Feferman for innumerable and invaluable sugges-
tions, which have helped me find my way through Godel’s thought.




Some remarks on the undecidability results
(1972a)

1. The best and most general version of the unprovability of consistency
in the same system.® Under the sole hypothesis that Z (number theory) is
recursively one-to-one translatable into S, with demonstrability preserved
in this direction, the consistency (in the sense of non-demonstrability of
both a proposition and its negation), even of very strong systems S, may
be provable in S, and even in primitive recursive number theory. However,
what can be shown to be unprovable in S is the fact that the rules of
the equational calculus applied to equations demonstrable in S between
primitive recursive terms yield only correct numerical equations (provided
that S possesses the property which is asserted to be unprovable). Note
that it is necessary to prove this “outer” consistency of S (which for the
usual systems is trivially equivalent with consistency) in order to “justify”
the transfinite axioms of a system S in the sense of Hilbert’s program:
(“Rules of the equational calculus” in the foregoing means the two rules of
substituting primitive recursive terms for variables and of substituting one
such term for another one to which it has been proved equal.)

This theorem remains valid for much weaker systems than 7. With
insignificant changes in the wording it even holds for any recursive trans-
lation of the primitive recursive equations into S.

2. Another version of the first undecidability theorem. The situation
may be characterized by the following theorem: In order to solve all prob-
lems of Goldbach type of a certain degree of complication k one needs a
system of axioms whose degree of complication, up to a minor correction,
is > k (where the degree of complication is measured by the number of
symbols necessary to formulate the problem {or the system of axioms),
of course with inclusion of the symbols occurring in the definitions of the
non-primitive. terms-used). Now all of present day mathematics. can be
derived from a handful of rather simple axioms about a very few primitive
terms. Therefore, even if only those problems are to be solvable which can
be formulated in a few pages, the few simple axioms being used today will
have to be supplemented by a great number of new ones or by axioms of
great complication. It may be doubted whether evident axioms in such
great numbers (or of such great complexity) can exist at all, and therefore
the theorem mentioned might be taken as an indication for the existence
of mathematical yes or no questions undecidable for the human mind. But

1This has already been published as a remark to footnote 1 of the translation (1967,
p. 616) of my 1931, but perhaps it has not received sufficient notice.

305



306 Gadel 1972a

what weighs against this interpretation is the fact that there do exist un-
explored series of axioms which are analytic in the sense that they only
explicate the content of the concepts occurring in them, e.g., the axioms
of infinity in set theory, which assert the existence of sets of greater and
greater cardinality or of higher and higher transfinite types and which only
explicate the content of the general concept of set. These principles show
that ever more (and ever more complicated) axioms appear during the de-
velopment of mathematics. For, in order only to understand the axioms of
infinity, one must first have developed set theory to a considerable extent.

3. A philosophical error in Turing’s work.? Turing in his 1937, page
250 (1965, page 136), gives an argument which is supposed to show that
mental procedures cannot go beyond mechanical procedures. However,
this argument is inconclusive. What Turing disregards completely is the
fact that mand, in its use, is not static, but constantly developing, i.e.,
that we understand abstract terms more and more precisely as we go on
using them, and that more and more abstract terms enter the sphere of
our understanding. There may exist systematic methods of actualizing
this development, which could form part of the procedure. Therefore, al-
though at each stage the number and precision of the abstract terms at
our disposal may be finite, both (and, therefore, also Turing’s number of
distinguishable states of mind) may converge toward infinity in the course
of the application of the procedure. Note that something like this indeed
seems to happen in the process of forming stronger and stronger axioms of
infinity in set theory. This process, however, today is far from being sufhi-
ciently understood to form a well-defined procedure. It must be admitted
that the construction of a well-defined procedure which could actually be
carried out (and would yield a non-recursive number-theoretic function)
would require a substantial advance in our understanding of the basic con-
cepts of mathematics. Another example illustrating the situation is the
process of systematically constructing, by their distinguished sequences
a, — a, all recursive ordinals a of the second number-class.

2This remark may be regarded as a footnote to the word “mathematics” on page 73,
line 3, of my 1964 postscript to Gédel 1965.



Introductory note to 197/

“In this test, however, the infinitely small has completely failed.”?
The test was the foundation of the differential and integral calculus; the
author was Abraham Fraenkel {1928, page 116); the view expressed was
the canonical one at the time.

But infinitesimals refused to go away; by a rather circuitous route
they have re-emerged as a part of a viable foundation for mathematical
analysis. This was achieved by Abraham Robinson, using the construc-
tion of non-standard models by logical means that had originally been
introduced by Skolem (1933a, 1934). In Robinson’s own words (1966,

page vii):

In the fall of 1960 it occurred to me that the concepts and meth-
ods of contemporary Mathematical Logic are capable of providing
a suitable framework for the development of the Differential and
Integral Calculus by means of infinitely small and infinitely large
numbers. I first reported my ideas in a seminar talk at Princeton
University (November 1960) ....

The influence of Skolem’s work was explicitly acknowledged by Robin-
son. But whereas Skolem’s aim had been deeply negative, namely to
show the limitation of axiomatic foundations, Robinson was able to turn
the non-standard method to positive advantage by providing a new, effi-
cient and rigorous technique for the use of infinitesimals in mathematical
analysis.

There had been previous attempts in the same direction since Leibniz’
time, but none achieved satisfactory levels of rigor.” Robinson succeeded
by bringing modern logical notions and results to bear on the problem;
by these means one can explain exactly which properties transfer from
the standard structure of reals to the non-standard structure with in-
finitely large and infinitely small numbers. The non-standard extension
he constructed is, first of all, an elementary extension in the sense of
model theory and, secondly, one rich in points in the sense that any (in-
ternal) family of sets with the finite intersection property has a common
point (that is, a point belonging to all the sets of the family).

The first of these properties is called the transfer principle, and it

2“Bei dieser Probe hat aber das Unendlichkleine restlos versagt.”

bThe history of attempts at a theory of infinitesimals from Leibniz to Robinson
cannot be dealt with in this brief note; for some reviews of it, see Robinson 1966 and
Laugwitz 1978.
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guarantees that a non-standard extension has the same “algebra’ as the
reals. The second property is called the concurrence principle or sait-
uration; it is a very important uniformity principle, which lies behind
many mathematical arguments, and has the form of a transition from a
statement with quantifier structure V3 (to express the “local” property
of finite intersection) to one of the form 3V (to express the “global”, or
uniform, property). This is a principle which is at the heart of many
finiteness, ecompactness and uniform-boundedness arguments.

Godel forcefully expressed his views on the importance of Robinson’s
work in some remarks following a talk by’ Robinson at the Institute for
Advanced Study in March 1973.. Gédel’s statement-on that occasion was
reproduced in Robinson 1974, page x, with Godel’s permission, and has
been extracted here as Godel 1974. In these remarks Godel noted that
non-standard analysis “frequently simplifies substantially the proofs”,
that it is not a “fad of mathematical logicians”, and further that “there
are good reasons to believe that non-standard analysis, in some version
or other, will be the analysis of the future”.

Godel further remarked that it is “a great oddity” that the “natural
step after the reals, namely the introduction of infinitesimals, has simply
been omitted”. He linked this to another “oddity” of modern mathe-
matics, “namely the fact that such problems as Fermat’s, which can be
written down in ten symbols of elementary arithmetic, are still unsolved
300 years after they have been posed”. He saw a reason for this failure
in the enormous concentration on the development of abstract mathe-
matics, while work on concrete numerical problems was neglected.

At first sight one may indeed wonder why “the next quite natural
step” after the reals was not taken sooner. From any one of several
points of view, the status of the non-standard system of (hyper)reals
may be considered to be on a par with that of the standard system of
real numbers; the case for that was put as follows in Robinson 1966
(page 282):

Whatever our outlook and in spite of Leibniz’ position, it appears
to us today that the infinitely small and infinitely large numbers
of a non-standard model of Analysis are neither more nor less
real than, for example, the standard irrational numbers. This
is obvious if we introduce such numbers- axiomatically; while in
the genetic approach both standard irrational numbers and non-
standard numbers are introduced by certain infinitary processes.
This remark is equally true if we approach the problem from the
point of view of the empirical scientist. For all measurements are
recorded in terms of integers or rational numbers, and if our the-
oretical framework goes beyond these then there is no compelling
reason why we should stay within an Archimedean number system.
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Godel’s remarks suggest that he would not have disagreed with this
statement of Robinson’s. But their views would probably have diverged
on the question of the ontological status of the. “new” numbers. For,
Robinson—who on several occasions expressed a strong formalist con-
viction (see also his 1965 and 1975)—goes on to say in 1966: “From a
formalist point of view we may look at our theory syntactically and may
consider that what we have done is to introduce new deductive proce-
dures rather than new mathematical entities.”

In contrast, Gédel’s remarks here and his general Platonist position
would lead him to hold that there is no ontological difference between
the integers, the rationals, the standard irrationals, and the infinitesi-
mals: by a series of “quite natural steps” we may become familiar with
and gain insight into what already exists.

Beyond these obvious points of agreement and disagreement, Godel’s
remarks contain some provocative statements and phrases, which de-
serve to be singled out for special comment.

“The next quite natural step”: The use of the definite article suggests
that adding infinitesimals results in a wnique extended number system.
This is not so in Robinson’s non-standard analysis. One may enforce
uniqueness by somewhat arbitrary restrictions, for example, by requir-
ing the extension to be R;-saturated and of power ¥y, but few will be
satisfied by such a move. In fact arguments can be made that non-
uniqueness is not a feature to be criticized but an opportunity to be
exploited; see Fenstad 1985.

“A great oddity in the history of mathematics”: Could the “next
step” really have been taken earlier? It seems to me that the success
of Robinson’s non-standard analysis presupposes in an essential way an
understanding of the notions of elementary extension and concurrence.
This is why Skolem’s work was such an important influence; perhaps
Robinson should have acknowledged at the same time the importance
of the works of A. Maltsev (1936 and 1941), in which compactness ar-
guments (giving concurrence) are used for the first time.

The reals and the infinitesimals were used in the early development
of the integral and differential calculus and in its applications to the
physical sciences. The reals were then tamed in the latter part of the
last century (by Weierstrass, Dedekind and Cantor). Infinitesimals were
more troublesome and were at first banned (“restlos versagt”). An in-
sight in mathematical logic was necessary for their taming; so, contrary
to Godel, it seems that the next step really had to wait its time.

“Another oddity”: The intended meaning of Godel’s remarks is prob-
lematic; for example, the recent (partial) success on the Fermat prob-
lem due to G. Faltings (1983) proceeds via an “enormous develop-
ment of abstract mathematics”. Perhaps Godel meant to hint at some
incompleteness phenomenon and the necessity of new axioms to solve
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concrete problems of mathematics. Such examples are known; but one
should not forget that, when presented axiomatically, Robinson’s non-
standard analysis is a conservative extension of the standard theory
(Kreisel 1969).

“The analysis of the future”: Here one can add the following point
of view in support of Godel’s “good reasons”. If we take seriously the
idea that the informally understood geometric line can support point
sets richer than the standard reals and that one non-standard extension
is but one way of “constructing” points in this extended continuum,
then we have in hand a framework for a geometric analysis of physical
phenomena on many, even infinitesimal, scales, including physical phe-
nomena that are too singular to fit in a direct way into the standard
frame. In such a geometric analysis, infinitesimals appear not merely
as a convenience in “simplifying proofs” but as an essential notion in
the very description of the phenomena in question. There is a growing
body of new results in the Robinson non-standard analysis exploiting
this point of view; see Cutland 1983 and Albeverio et alii 1986 for some
representative samples.

Jens Erik Fenstad




[ Remark on non-standard analysis ]
(1974 )

I would like to point out a fact that was not explicitly mentioned by
Professor Robinson, but seems quite important to me; namely that non-
standard analysis frequently simplifies substantially the proofs, not only
of elementary theorems, but also of deep results. This is true, e.g., also
for the proof of the existence of invariant subspaces for compact operators,
disregarding the improvement of the result; and it is true in an even higher
degree in other cases. This state of affairs should prevent a rather common
misinterpretation of non-standard analysis, namely the idea that it is some
kind of extravagance or fad of mathematical logicians. Nothing could be
farther from the truth. Rather, there are good reasons to believe that
non-standard analysis, in some version or other, will be the analysis of the
future.

One reason is the just mentioned simplification of proofs, since simpli-
fication facilitates discovery. Another, even more convincing reason, is the
following: Arithmetic starts with the integers and proceeds by successively
enlarging the number system by rational and negative numbers, irrational
numbers, etc. But the next quite natural step after the reals, namely the
introduction of infinitesimals, has simply been omitted. I think in coming
centuries it will be considered a great oddity in the history of mathematics
that the first exact theory of infinitesimals was developed 300 years after
the invention of the differential calculus. I am inclined to believe that this
oddity has something to do with another oddity relating to the same span
of time, namely the fact that such problems as Fermat’s, which can be
written down in ten symbols of elementary arithmetic, are still unsolved
300 years after they have been posed. Perhaps the omission mentioned is
largely responsible for the fact that, compared to the enormous develop-
ment of abstract mathematics, the solution of concrete numerical problems
was left far behind.
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Textual notes

All of Godel’s articles printed here were previously published, except
for 1972 and 1972a. The copy-text of each work, i.e., the version printed
in this volume, is the first published version of the text, except in the
case of 1940 where the 1970 printing has been used. The articles 1972
and 1972a occur as galley proofs in Gdédel’s Nachlass. The copy-text of
various papers has been emended to incorporate his later alterations, and
these are indicated either in the textual notes below or by single square
brackets [ ] in the text. Likewise, editorial additions or corrections are
indicated either by textual notes or by double square brackets [ ] in the
text. (Minor editorial changes in punctuation have not been recorded in
the textual notes.) In these notes, the pairs of numbers on the left indicate
page and line number in the present volume.

All articles in this volume were written in English except for 1958, which
is printed here in German and in an English translation; see the textual
notes under 1958 for a discussion of the translation. Abbreviations in
English (such as Cont. Hyp., Cor., def., langu., prop. funct., math., resp.,
Th.) and in Latin {(such as ad inf.) have been silently expanded throughout,
except for p. and pp. in footnotes and for standard abbreviations (such as
cf., e.g., etc., i.e.).

Gddel’s occasional British spelling has been changed to American spelling
in those papers where British spelling occurs, namely 1940, 1949a and 1972.

The original pagination for all previously published texts is indicated
by a page number in the margin, with a vertical bar in the text indicating
where the page begins. The first page number is always omitted.

Godel 1938

An offprint of this article in Gédel’s Nachlass has the following correc-
tion.

Original Replaced by
26, 5-6  Axiom IIT3* i.e., replacing Axiom III3* by
Axiom ITI3
Godel 1939
Original Replaced by
27, 19 is a set is the set

313



314 Teztual notes

Godel 1939a

Godel noted corrections in the use of « in 1939a when he published 1947,
and these have been incorporated in the text; see the textual notes below
to 1947 The two lines following Theorem 4 were mistakenly set in italics
in the original printing, and are now set in roman.

Original Replaced by
29, 9ff @ i
29, 28 follows This follows
32,14 it follows there follows

Gédel 1940

The copy-text is the 1970 printing of 1940, which includes notes that
Godel added in 1951 and in 1965. To improve the readability of proofs,
a comma or semi-colon has been introduced from time to time. Likewise,
commas are inserted between different members of an ordered pair. Axiom,
definition, lemma and theorem have been capitalized whenever they had a

number in 1940.

Original Replaced by
35,24 (z)(y)(32) (2)(y)(32)(u)
38,8 (o)) (2)(3y)(u)
39, 16 the axiom FE Axiom FE
39, 16 by a * by *
45, 31 only fits to only applies to
48, 13 function (zy,...,Zy) function ¢(zy,...,xy,)
49, 19 zSy)] zSy)
53,4-5  hence a set hence D(F I z) is a set
56, 32 by 6.51, by 6.51, we have
60, 20 D(F) is an ordinal Now D(F) is an ordinal
62,30  P{(v,0) P(v,0)
62,31  P(y,0) P(y,0)
62,32  P'(v,0) P(7,0)
63, 19-20 X is X is
64,23 a+1<a? at+1<a?
65, 4 Dfn 8.42 Dfn
67, 28 closure closure
68, 27 fundamental operations Sfundamental operations
71, 21 occuring occurring
75, 15 £[Cno, (A)), £[enog(A)] for k =1,2,3,
76, 27 notions, operations notions and operations
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76, 28 notions, operations notions and operations
76, 29 argument arguments
77,5 cf. introduction p. 1. cf. page 1.
77, 28 meX ueZ
79, 14 =.Ted =.Tey
79, 16 =.~T€eq =.~Tcd
79, 39 4]. = A4]. =
80, 7 Cno( A) Cno(A)
81, 20 applies applied
82, 17 z e D(A) r e D(A)
84, 6 AYZ (A X
84,10  Comp(X) Comp(X)
84,11  Comp,(X) Comp,; (X)
88, 17 different, since different. For
89, 3 m is Furthermore, m is
89, 17 F§ - Flw, F¢' - Fhw,
89, 37 m2. m?. Now
91, 26 F'G'ae F'G'a F'G'ae F'G'S
93, 20 aem, by (2), Ody Now a € m, by (2); Od‘y
94, 11 UE€z Souez
94, 11 UEZ Then v € z
95, 13 hypothesis 11 hypothesis I
95, 19 symmetry reasons symmetry
95,22-23 acxem-n. aem-1n. So
95, 27 symmetry reasons symmetry
96, 19 TEr Now z er
96, 24-25 F'n = J's(8,7) n=J%(0,7)
96,25  F9 = J(6,7) ' = J5(8,7)
100,42 X,Y Z, 7
Gadel 1944

The first change below was made in 1972b, a reprinting of 1944, and
footnote 50 was then omitted (but is retained here).

Original Replaced by
122, 43-44 latest book latest book, An inquiry into
meaning and truth.
126, 16 XI and XII xl and xli
135, 12 arbitrary arbitrarily

Godel’s Nachlass contains four annotated offprints of 1944, catalogued
there as items 040265-040268, and designated herein by the letters A-D,
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respectively. In addition, there is a single annotated page from a fifth off-
print, Nachlass item 040269, designated here by the letter E; its annotations
refer not to 1944 itself, but to Bernays’ review of it (Bernays 1946). The
annotations are variously in English, German, and Gabelsberger shorthand.

In the list below, annotations to 1944 are cited by the page and line in
this volume to which they refer. Where an annotation alters the printed
text by insertion, deletion, or replacement of material, the original textual
passage is reproduced, followed by a slash, the letter designation for the
offprint bearing the annotation, a colon, and the text as altered. Other
types of annotations are described within editorial brackets following the
letter designation and colon. German annotations are followed by an En-
glish translation enclosed within parentheses; in the German text itself,
words transcribed from shorthand are set in slanted roman type.

119, 6 the/D: the most general

120, 7 thorough-going/C: thoroughgoing
120, 21 rule/C: rules

120, 23 symbols/C: symbols,

120, 33 ideas/A: ideas,

121, 37 An/D: Another
122, fn 7 D: [At the end of the footnote Godel wrote
in the margin “in the follfowing] paper”]

124, 11 assuming/D: assuming either 1.
124, 12 or/D: or 2.
124, 15 primarily given/D: arrived at first in the construction

of language starting with the primitive terms of the
language oder [(or)] initially

124, 30 “simplicity” /D: “simplicity”, or perhaps one should rather
say “nonselfreflexivity” [This insertion is preceded and
followed by a question mark.]

125, 9 appear/C: appear in v[on] Neum[ann's] syst[em] of
ax[[ioms]

125, 10 replace/D: replace only

125, 20 terms/D: terms or terms denoting special classes or concepts

125, 23 principles/D: principles concerning the solution of the
paradoxes which were

125, 24 principles/C: principles nec[essary] for avoiding the
paradoxes

125, 33-35  C: [Quotation marks to be deleted and the
passage enclosed to be italicized.]

125, fn 11 dealt with/D: dealt with in axiomatic set [theory]

126, 3 quantifications/D: quantifications or classes

126, 21 axiom/D: axiom (or rather with the decision to restrict
oneself to such functions)



126, fn 15
127, 2

127, 4
127, 15-16

127, 18

127, 18
127, 18
127, 20
127, fn 18
128, 13-15

128, fn 23

128, fn 23

128, fn 23
129, 3-4
129, 5
129, 8
129, 9
129, 14

129, 23
130, 4
130, 5-7
130, 7

130, 10

131, 28
132, 18
133, 28
136, 17
136, 24-25
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refer/D: refer and which is assumed when they are used

nothing to do/C: [These words are underlined and Godel
has written in the right margin “? Zermelo hat jedenfalls
etwas damit zu tun” (? In any case, Zermelo has
something to do with that).]

the/C: the merits [of the]

axiom of reducibility /D: axioms of reducibility
and of infinity

defining outside/C: defining definitions not representable
(expressible) in

defining/D: defining the real nu[mber]s mentioned

outside/C: in

involve/D: involve the same or

such classes u/C: such classes

for translating ... contain it, ... fiction.
2 /D: for its use, 23(translating ... contain it)
... fiction.

Oune ... impossible/D: E.g. a rule for translating this
latter conception of notions is, it is true, impossible
for all notions,

maintaining ... notions/D: maintaining this conception
for all abstract notions

or in fact/D: or

rules ... containing/D: rules of use for

thing/D: concept

following/D: following tentative

There/D: This definition is impossible because there

classes or propositions/D: classes of a given type or
propositions containing some entity a

would/C: would likewise

properties/D: properties of a given type

the ... propositions/C: [This clause to be italicized.]

There is no doubt/A: [These words are underlined and
“falsch” (false) is written in the right margin.]

contain themselves/A: [These words are underlined and
“falsch” (false) is written in the right margin, followed
slightly below by “wegen (x) bedeutet nicht wie die
Konjunktion” (since (z) does not mean the same as
the conjunction.)]

element/A: elements

in/D: in some

, or combinations of such,/C: [This matter deleted.]

function/D: function of integers

this ... consistency of/A: it can be shown that
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136, 25 of Cantor’s/A: Cantor’s

136, 26 of the generalized/A: the generalized

136, 27 set/D: infinite set [The preceding word, ‘arbitrary’,
is enclosed in brackets (to indicate deletion?)]

136, 28 subsets)/A: subsets) hold in the system of sets of
all transf[inite] order[s] & that there these
prop[ositions] are compatible

136, 31-32  the former is, ... quite/A: the former, ... is quite

137, 8 clearly/D: in some sense [to which Gédel added the
footnote: propositions prior to their constituents
(Wir erkennen zuerst Zahlen und dann erst verstehen
wir Sdtze.) (First we recognize numbers and only then
do we understand propositions.)]

137, 36 concept/D: well-defined concept

137, 36-37 for any ... arguments/D: of any object as argument

139, 24 140/C: 141

139, fn 47  reduced to/A: [These words are underlined and “falsch”
(false) is written in the right margin.]

140, 33 axioms/D: true axioms

In addition to the foregoing annotations, there are a number of more
general remarks not tied to specific textual passages. They are grouped

here according to the reprint on which they appear.

Reprint B:

The title page is covered with pencilled notes, mostly in shorthand, as

follows:

At the top: Die Stellen wo konstruktiv vorkommt sind hier angestrichen.
(The places where ‘constructive’ occurs are marked herein.) [And in
this reprint, all occurrences of the words ‘construct’, ‘constructive’,
‘constructions’ and ‘constructivistic’ are indeed underlined.]

Next below: Meine ph. Meinungen ausgesprochen auf: p. 127-128, 131,
135, 137, 138-139, 140, 150-151, 152. (My philosophical views ex-
pressed on pages 127-128, 131, 135, 137, 138-139, 140, 150-151, 152.)

Above the title: 4’ p. 134 unten weniger wichtig: selbst in der konstruk-
tierbaren Mathematik kann ein Begriff angewendet werden auf etwas

daraus definiert.

4" p. 136 FEin gewisses vic. circle principle gilt fiir Konstruktionen.
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(4, page 134 below, less important: even in constructive mathematics
a notion can be applied to something defined by means of it.

4" page 136, a certain vicious-circle principle holds for constructions.)

Below the title (as an index):

1. Sense perc und Theorie in der Mathematik p. 127-8
(Sense perception and theory in mathematics)

2. Die beiden verschiedenen Interpretationen von Df
(Kants “analytisch” kann so interpretiert werden) p. 131
(The two different interpretations of definition
(Kant’s “analytic” can be so interpreted))

3. Log[ical] intuition self contradictory p. 131
4. Vicious Circle principle false p. 135
5. Classes and some real objects p. 137
6. Man kann von ihnen allen sprechen und das vic.
circle princ. anwenden. p. 137-140

(One can speak of all of them and apply the
vicious-circle principle.)

7. Church typenfrei Th. p. 150
(Church’s type-free theory)

8. Th. der natiirlichen Zahlen nachweislich nicht
analytisch im Kantschen Sinn. p. 150
(The theory of the natural numbers [is]
demonstrably not analytic in Kant’s sense.)

9. Princ. Math. analytisch im allgemeinen Sinn p. 151
(Principia mathematica [[is] analytic in the
general sense)

10. Unser unvollkommenes Verstidndnis der

Grundbegriffe ist der Grund daf} die Logik
bisher unfruchtbar. p. 152
(Our incomplete understanding of the
fundamental notions is the reason that logic has
so far not been fruitful.)

On a loose slip of paper inserted between pages 132-133 of this reprint,
Godel wrote: “bis p. 131 gelesen (wegen ph Inhalt und ob es gut ist)
14./X1.68” (Read to page 131 (on account of its philosophical content and
whether it is good) 14 November 1968).

In the left margin of page 140, opposite the underlined words “where it
does not apply in the second form either”, Gidel wrote “miifle das Ganze
lesen” (would have to read all of it).
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Reprint C:

The following remarks are written at the top of page 125:

“p. 140-141 Das vic. circ. pr. IT for mere pluralities” sehr plausibel aus
das eingeschrdnkte Aussonderungsax. implied by the conc. of set as plur.
(iiber die anderen Ax. wird nichts gesagt) Unterschied zwischen 2 Men-
genbegriffe wird deutlich gemacht. (“pages 140-141: The vicious-circle
principle II for mere pluralities” [follows] very plausibly from [the fact
that] the restricted separation axiom [is] implied by the concept of set
as plurality (nothing is said about the other axioms). [The] difference
between two notions of set is made clear.)

p. 132 Zermelo kann als “elaboration” der Idee von limited size betra-
chtet werden. ([The work of] Zermelo can be regarded as [an] “elabo-
ration” of the idea of limited size.)

Reprint D:

The following notes appear on the title page:
gelesen bis p. 135 oben (read to top of page 135)
p. 136 “constructive” definiert (page 136: ‘constructive’ defined)
The top of page 125 bears the notation:
Bedeutung des terms “constructivistic” (meaning of the term “construc-
tivistic”)
A Joose sheet was inserted between pages 130-131 of this reprint. The

column on the left half of the sheet contains the following fragmentary
remarks:

Nach [[(according to) an] antireal[istic] kind of constrfuctivism]; i.e.,
the starting point and means of the constr[uction] are to be exclu-
sively sensual & material (e.g. symbols, their perc[eptual] prop[erties]
& relfations] and the actual or imagined handling of them), not the
element[ary] operations and int[uitions] of a new & irreducible entity
called mind. The meaning of the term in question therefore is not ...

I.e., the first alternative of footnote 23 applies while the second leaves
room for irred[ucible] abstr[act] elements.

The column on the right half of the same sheet contains these comments:
Warum nichts von Weyl? (Why nothing by Weyl?)

Warum kein Index? (Sachregister) Macht jedes Buch doppelt so wert-
voll. (Why no (subject) index? [It] makes every book twice as valuable.)
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p. 211 FuBnote (footnote): strictly antirealistic (i.e., nominalistic)

The extension of this concept is equal to that of predicativity in a rather
narrow sense, but admitting quantification in the deffinitions], & there-
fore ...

On the back of the inserted sheet is the additional remark:

since even Hilbert’s much more restricted “Finitism” does not start with
symbols as such objects, but rather with [illegible word inserted above
the line] a priori intuition of an idealized space & time [In this passage,
the words “more restricted” are somewhat illegible; further down the
page Godel wrote “the much narrower Finitism of Hilbert himself”.]

The following appears at the bottom of page 135:

Das stimmt nicht (rekursive Df. sind Df. auferhalb des Systems, die als
solche nicht im System sind).

(That is not correct (recursive definitions are definitions outside the
system, which as such are not in the system).)

In the right margin near the bottom of page 137, is the remark:

welche die einzige interessante Mathematik sind” (which are the only
interesting mathematics).

In the left margin of the middle of page 140 is the annotation:
? Brouwers selfreflex. und meine Beispiele oben

(? Brouwer’s selfreflexivity and my examples above)

Reprint E:

This single page bears the heading “Bernays Rev. meiner Arbeit iiber
Russell” (Bernays’ review of my paper on Russell), and contains the fol-
lowing remarks:

1.) Misverstiandnis meiner Interpret. der Typentheorie fiir concepts an
zwei Stellen (Misunderstanding, in two places, of my interpretation
of type theory for concepts)

2.} “The whole of math.” mufl vorausgesetzt werden. (“The whole of
mathematics” must be presupposed.)

3.) Vermége des meaning kann man alle math. Sitze auf a = a re-
duzieren. (By virtue of meaning, one can reduce all mathematical
propositions to a = a.)

4.) Das Probl. der Beschreibung ist durch “Sinn” und “Bedeutung” in
befriedigender Weise gelost. (The problem of description is solved
in a satisfactory way by “sense” and “denotation”.)
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5.) Das Extens. axiom gilt nicht fiir Begriffe. (The axiom of extension-
ality does not hold for concepts.)

6.) Das Meiste, woran L[eibniz] dachte, ist bereits in der heutigen math.
Logik enthalten.
? und er deutet an: Man kann aus seinen Worten ersehen, dafi was
er sagt Unsinn ist? (5 Jahre nétig um es zu entwickeln zu einem
powerf. inst. of reas.)

(Most of what Leibniz thought of is already contained in today’s
mathematical logic.

? and he suggests: one can see from his words that what he says
is nonsense? (5 years [will be] necessary in order to develop it into
a powerful instrument of reason.) [The referents for ‘he’, in the
passage enclosed within question marks, are unclear.]

Toward the bottom of the page Godel wrote “Andere Rev. zitiert in vol.
XTI von J.S.L., p. 75”. (Other reviews cited in volume XI, page 75, of the
Journal of symbolic logic.)

Gédel 1946

Items marked with a single asterisk were changed to the new version in
the Davis 1965 printing, while those marked with a pair of asterisks were
changed to the new version in the Klibansky 1968 reprinting.

Original Replaced by
x150, 21  different and by different. By
%151, 11  proposition propositions
%151, 12 non constructivistic non-constructive
*151, 14  infinity and it infinity. It
x151, 20  set set-theoretic
x151, 29  “mathematical definability” mathematical definability
x151, 31 it and again it. Again
x151, 37 e.g. ie.
x151, 39  “definability in terms definability in terms
of ordinals” of ordinals
x151, 43  property, i.e. by property, by
*xx151, 43 property, by property: By
*xx152, 7  sets, namely sets. Namely
*x152, 11 assumed) and for assumed). For
x152, 20  question question of
152, 29 which who
x%x152, 40 Of course, you will You may
*%152, 42 sets as described sets as conceived
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*%152, 44 give nothing give, or are to give, nothing

*xx153, 3 any other any others

*xx153, b But, irrespective In conclusion I would like
to say that, irrespective

*x%153, 5-6 this concept of the concept of definability

definability suggested in this lecture

*x1563, 7 I think it has it has

*%153, 7T-8 are questions are two questions

xx153, 11-12 It can be proved that It follows from the axiom
of replacement that

*x153, 13 can be at all defined can at all be defined

Gédel 1947

In 1947, footnote 23, Gddel made corrections to 1939¢ in the following
sentence, which is omitted here since these corrections are now incorporated
in the text of 1939a printed in the present volume: “I take this opportunity
to correct a mistake in the notation and a misprint which occurred in the
latter paper: in the lines 25 to 29 of page 221, 4 to 6 and 10 of page 222,
11 to 19 of page 223, the letter o should be replaced (in all places where
it occurs) by p. Also, in Theorem 6 on page 222 the symbol ‘=’ should
be inserted between ¢, (x) and ¢z(z').” See also the textual notes under
Gddel 1964 below.

Original Replaced by
177,22  the partila results the partial results
178, 14  confinality cofinality
178,39  or continuum or that of the continuum
180, 27  suffice suffices
186, 25  confinality cofinality
Gédel 1949
Godel used ch, sh and tg for cosh, sinh and tanh, respectively.
Original Replaced by
195, 1 +z +xg
196, 38 so-called so called
197, 3 w=p-u-9 u=p-u-q
197, 3 and 9 and ¢
197, 9 w=0c"u-9 W =0 u-q
197, 9 and ¢ and ¢

197,42  transformation transformations
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Gédel 1949a

Godel’s additions to the 1955 German translation of 1949a have been
inserted in square brackets in the text.

Original Replaced by
203, 13-14 destroy destroys
203, 14 distinguish distinguishes
204, 1-2 notion the mean motion the mean
204, 46 my paper forthcoming in my forthcoming
205, 24 passed according past according
206, 18 that, whether that whether
207, 1 exists), exists)

Godel 1952

Throughout this article “Newtonean” has been changed to “Newtonian”,
“Hamiltonean” to “Hamiltonian”, and “Lagrangean” to “Lagrangian”.

Original Replaced by
212, 12 assymmetry asymmetry
214, 2 connect connects
Godel 1958

Since in 1972 above we produce a rather free translation of 1958, as
revised by Godel, here Stefan Bauer-Mengelberg and Jean van Heijenoort
have endeavored to give as literal a translation as possible. They have es-
chewed paraphrases and have rendered one word by one word (for example,
Anschauung by intuition, and anschaulich by intuitive).

In footnote 1 Godel refers to page 2 of Bernays 1954. He was apparently
using an offprint with its own pagination, beginning with page 1. The
proper reference is to page 10, the second page of the article.

There is reason to believe that the “Zusammenfassung” was written by
Godel, but no positive evidence has been found. The “Abstract”, repro-
duced here from Dialectica, was probably translated from the “Zusammen-
fassung” by an editor of Dialectica rather than by Godel, but here again
no direct evidence exists.

Original Replaced by
251, 32 integral integer
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Gédel 1964

During September 1966 Godel prepared two typed sheets of changes to
1964 in anticipation of a third edition of 1947 (the paper 1964 constituting
the second edition); he added a third sheet in October 1967. These sheets
were found in his Nachlass and are incorporated in our text of 1964. The
major changes in the text are dated and enclosed there in square brackets,
while the minor changes are indicated below by a single asterisk. On the
other hand, a pair of asterisks below indicate errors introduced inadver-
tently in the printing of 1964 but not found in 1947. The term “euclidean”
has been changed throughout to “Euclidean” to agree with the usage in
1947.

Two of the major changes introduced on those sheets replaced passages
in 1964. The first of them substituted a new version of footnote 20, found
in our text, for the version in 1964 as given here:

“20Gee Mahlo 1911, pp. 190-200, and 1913, pp. 269-276. From Mahlo’s
presentation of the subject, however, it does not appear that the numbers
he defines actually exist. In recent years considerable progress has been
made as to the axioms of infinity. In particular, some have been formulated
that are based on principles entirely different from those of Mahlo, and
Dana Scott has proved that one of them implies the negation of proposition
A (mentioned on p. 266). So the consistency proof for the continuum
hypothesis explained on p. 266 does not go through if this axiom is added.
However, that these axioms are implied by the general concept of set in the
same sense as Mahlo’s has not been made clear yet. See Tarski 1962, Scott
1961, Hanf and Scott 1961. Mahlo’s axioms have been derived by Azriel
Levy from a general principle about the system of all sets. See his 1960.
See also Bernays 1961, where almost all set-theoretical axioms are derived
from Levy’s principle.”

The second major change consisted of substituting a new version of the
postscript, printed in our text, for the version in 1964 as given below:

“Shortly after the completion of the manuscript of this paper the ques-
tion of whether Cantor’s continuum hypothesis is provable from the von
Neumann-Bernays axioms of set theory (the axiom of choice included) was
settled in the negative by Paul J. Cohen. A sketch of the proof will appear
shortly in the Proceedings of the National Academy of Sciences. It turns
out that for a wide range of X, the equality 2% = X, is consistent and an
extension in the weak sense (that is, it implies no new number-theoretical
theorems). Whether for a suitable concept of “standard” definition there
exist definable X; not excluded by Konig’s theorem (see p. 260 above) for
which this is not so is still an open question (of course, it must be assumed
that the existence of the R, in question is either demonstrable or has been
postulated).”

Finally, there is omitted from footnote 24 of 1964 the same sentence (of
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corrections to 71999a) that was omitted from footnote 23 of 1947. See the
textual notes above to 1947.

Original Replaced by
256, 26 confinality cofinality
*%256, 31-32 So the continum So the continuum
*%2b6, 36 definitions pp. definitions on pp.
256, 39 or continuum or or that of the continuum or
%259, 9 for theorems about for theorems depending on
%261, 8 continum problem continuum problem
262, fn 21 in terms of ordinal numbers in terms of ordinal numbers
264, 25 confinality cofinality
*267, 20 Cantor’s The generalized
¥267, 23 the continuum 2Ra

Godel 1972

Original Replaced by
271, 27 proofsheets proof sheets
273, 28 ordinals, is ordinals is
275, 29 higher type functions higher-type functions
278, 30 Number theoretic Number-theoretic
278, 36 Outside the Outside of the
279, fn 1 insure ensure
280, 29 F QG Fand G

Godel 1972a

In Godel’s galley proofs, from which 1972a is printed, he replaced, at
305, 2, “weaker hypotheses” in his earlier version of Remark 1 (1967, 616)
by “sole hypothesis”.

306, 2
306, 27

Original
this
non recursive

Replaced by

the
non-recursive
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