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1 Machine Musicianship

Machine Musicianship is both an exploration of the theoretical foun-
dations of analyzing, performing, and composing music with com-
puters, and a tutorial in writing software to pursue those goals. The
theoretical foundations are derived from the fields of music theory,
computer music, music cognition, and artificial intelligence. The in-
tended audience includes practitioners in those fields, as well as
composers and interested performers.

The training of musicians begins by teaching basic musical con-
cepts, a collection of knowledge commonly known as musicianship.
These concepts underlie the musical skills of listening, performance,
and composition. Computer programs designed to implement any of
these skills—that is, to make sense of what is heard, perform music
expressively, or compose convincing pieces—can similarly benefit
from a musician’s fundamental level of musicianship.

To be sure, there are many worthy computer music programs
that have no basic musical knowledge at all. The usual technique
is to implement thoroughly that part of musicianship required
for the task at hand. Notation programs must know how many beats
belong in a bar; sequencers must be able to transpose enharmoni-
cally. In this text we will explore how a more systematic foundation
of musical knowledge can further extend such programs’ range of
use as well as improve their communication with human musi-
cians.

Consider a simple example of this level of functionality: music
sequencers can transpose enharmonically, but they cannot execute
acommand such as “transpose the selected measures to the subdom-
inant.” The reason for this limitation is that typical programs have
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no access to a description of the music in terms of relative harmonic
function. Such an extension would be quite straightforward for cur-
rent sequencers—and there may even be some that do it—though T
have not seen any. Even better would be a sequencer that could trans-
pose to the subdominant without the user having to inform the pro-
gram as to which tonal center is current. That facility is more
computationally demanding, but still well within the reach of estab-
lished algorithms. Examples such as these can be generated at will
and doubtless have occurred to anyone who has used music software
in any depth. The point is that such programs can become more use-
ful simply by better accommodating the practices of fundamental
musicianship.

This book explores the technology of implementing musical con-
cepts in computer programs and how resulting applications can be
used to accomplish tasks ranging from the solution of simple musical
problems through live performance of interactive music composi-
tions to the design and implementation of musically responsive in-
stallations and web sites. These concepts are programmed using both
C++ and Max, a graphic programming environment developed by
Miller Puckette and David Zicarelli (Dobrian 1997). Some experience
with one or both of these is assumed if readers wish to extend the
example programs on their own. The accompanying CD-ROM in-
cludes working versions of the examples, as well as source code and
a hypertext document showing how the code leads to the programs’
musical functionality.

Machine Musicianship is not intended as a programming tutorial,
however. The processes described in these pages constitute a com-
putational approach to music analysis, composition, and perfor-
mance that may engage practitioners in those fields whether they
are programmers or nol. | present the practical examples with pro-
gramming information in order to help those who wish to write
their own, but they can also be used as stand-alone applications by
those who do not. Tt is my hope that interested musicians may even
profit from simply reading the text without any use of a computer
at all.



Machine Musicianship 3

1.1 The Motivation for Machine Musicianship

Designing computer programs that will recognize and reason about
human musical concepts enables the creation of applications for per-
formance, education, and production that resonate with and rein-
force the basic nature of human musicianship. Access to functions
such as phrase boundary recognition makes possible operations that
simply cannot be accomplished without such capabilities. The real-
ization of norms for the expressive shaping of a phrase by a machine
performer, for example, can only be applied once a phrase has been
identified as a phrase in the first place. Further, realizing these con-
cepts algorithmically allows us to augment human musicianship
with processes and representations that only a computer could im-
plement. A complete record of the program’s “listening experience”
is immediately available and can be used both to evaluate the algo-
rithm’s performance and to direct further analysis.

Beyond the pedagogical and practical value, [ believe that there
are compelling musical reasons to emulate human musicianship
with computers. Readers may determine for themselves on the ba-
sis of extensive existing repertoire whether or not computer music
programs have contributed to enduring compositions. Those who
dismiss machine musicianship tend to argue that algorithmic
composition programs (as one example) are more interesting techno-
logically than they are musically. Another prominent source of dis-
satisfaction with the enterprise derives from a belief that the
development of increasingly musical programs forms a real and
growing threat to the livelihood of human musicians.

The need for better musicianship in music processing is relatively
self-evident when contrasted with the aesthetic and ethical questions
surrounding the use of automated composition and performance pro-
grams. Computers in music have made possible new kinds of cre-
ation at the same time that they have caused upheaval in the social
and cultural practice of music making. Music programs are cheap,
easy to use, and tireless. These attributes make it attractive to use
them for many tasks that previously were performed by human
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musicians. None of these properties, however, have anything to do
with the nature of the music being performed. In other words, a large
part of the motivation for making music with computers is that com-
puters are less troublesome to employ than people. This situation
has had a dramatic effect on the economic prospects for musicians
almost as profound as the proliferation of television and sound re-
cording equipment since the 1940s. One can condemn this trend in a
hand-wringing Luddite reflex, but the situation is unlikely to change
except in the direction of ever greater reliance on machines.

There are other reasons to use computers in music, however, that
have everything to do with the nature of the music performed. My
own interest in computer music generally, and interactive music sys-
tems in particular, stems from the new compositional domains they
open up. Composers have used algorithms in the creation of music
for centuries. The speed with which such algorithms can now be
executed by digital computers, however, eases their use during the
performance itself. Once they are part of a performance, they can
change their behavior as a function of the musical context going on
around them. For me, this versatility represents the essence of inter-
action and an intriguing expansion of the craft of composition.

An equally important motivation for me, however, is the fact that
interactive systems require the participation of humans making mu-
sic to work. If interactive music systems are sufficiently engaging as
partners, they may encourage people to make music at whatever level
they can. 1 believe that it is critical to the vitality and viability of
music in our culture that significant numbers of people continue (or
begin) to engage in active music making, rather than simply ab-
sorbing reproduced music bombarding them from loudspeakers on
every side.

Tod Machover stresses a similar point:

Traditional instruments are hard to play. It takes a long time fo [ac-
quire] physical skills which aren’t necessarily the essential qualities
of making music. It takes years just to get good tone guality on a
violin or to play in tune. If we could find g way to allow people to
spend the same amount of concentration and effort on listening and
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thinking and evaluating the difference between things and thinking
about how to communicate musical ideas to somebody else, how to
make music with somebody else, it would be a great advantage. Not
only would the general level of musical creativity go up, but you'd
have a much more aware, educated, sensitive, listening, and partici-
patory public. {1999)

We are at an inflection point in the technology of our culture as
the trajectories of television and computer usage cross. Already more
computers than television sets are sold each year in the United
States. Televisions themselves are due to become digital within a
matter of years and households are already becoming wired to re-
ceive a much higher bandwidth of information than they currently
get from a telephone connection. None of this comes as a revelation
anymore and has been thoroughly discussed elsewhere. The interest-
ing question for this discussion is whether people using the new
computer/televisions will simply look at these devices or be moved
to interact with them. [ believe that if computers interact with people
in a musically meaningful way, that experience will bolster and ex-
tend the musicianship already fostered by traditional forms of music
education. Ultimately, the goal must be to enrich and expand human
musical culture. Certainly, music will continue to be produced in
any case, but without the ferment of an actively engaged audience
it will lapse into yet another form of consumerism.

Philippe Manoury makes this assessment of the relationship be-
tween music and its society:

Tam convinced that a certain culture is beinglost. Musicis increasingly
playing therole of a diversion and that scares me. I don’t have anything
against music as adiversion, but Thave the impression that our sociely,
faced with numerous problems and no resolutions in sight, considers
diversion as an antidote to those problems. . .. The more society stag-
nates, themore it distributes this antidote of diversion, in which music
plays an important role. There is an overconsumption of the music of
diversion and people don’t see that music can also be the fruit of a
reflection and an internal process, something they recognize more eas-
ily in literature. {Derrien 1995, 19-20 [my trans.J)
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Although it is tempting to believe that one’s own approach to mu-
sic-making will lead to a more engaged society and more fully devel-
oped art form, [ make no claims of special aesthetic or social virtue
inherent to interactive music. However, as computer music is so of-
ten accused of leading us to a day when machines will listen only
to machines, I feel compelled to observe that many of us are moti-
vated by a much different vision of the computer’s potential connec-
tion to the community of human musicians.

1.2 Algorithmic Composition

The formalization of processes for generating music has a long and
distinguished history in Western art music. From Guido d’Arezzo’s
chant generation method through the isorhythmic motet to serial

i3}

techniques and Xenakis’ “formalized music,” interest in processes
that produce music has waxed and waned through several centuries
of composition (Loy 1989). Such algorithms move the compositional
act to a meta-level where the evolution of the music’s character is
controlled over time by the manipulation of a limited number of pa-
rameters. Computers can now execute these processes so quickly that
they can be realized on stage as part of an ongoing performance (Cha-
dabe 1989). Interactive systems change the values of compositional
parameters using information from a variety of inputs, including live
performance data from multiple members of an ensemble.

Because these systems derive control parameters from a real-time
analysis of performance, they can generate material based on impro-
vised input as easily as they can on interpretations of notated music.
They become a kind of ligature connecting improvisation to notated
composition, just as the same processes used to govern the response
to notated music can be employed to generate new improvisations
in performance. This possibility expands the domain of composition.
By delegating some of the creative responsibility to the performers
and some to a compuler program, the composer pushes composition
up (to a meta-level captured in the processes executed by the com-
puter) and out (to the human performers improvising within the logic
of the work).
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An interesting effect of this delegation is that the composer must
give very detailed instructions to the computer at the same time that
she gives up such precise direction of the human improviser. The
resulting music requires a new kind of performance skill as much as
it enables a new kind of composition. The human player working
with an interactive system mustlearn how to perform with it much as
he would learn to play with another human. The very real differences
between computer performers and human performers mean, how-
ever, that the human also acquires a new degree of freedom in invok-
ing and directing real-time algorithms through different styles of
performance. An interactive composition changes and matures as the
human and computer performances increasingly intertwine.

Another possihility, of course, is that the composer will take to
the stage to perform with the system herself (figure 1.1). One of the
notable characteristics of the field is the resurgence of the composer/

Figure 1.1 Mari Kimura improvising
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improviser, those musicians who design interactive systems and
then improvise with them and/or other players in performance (e.g.,
Richard Teitelbaum, George Lewis, Chris Chafe, Mari Kimura, David
Wessel, Ed Campion, Laetitia Sonami, and many others).

There is very seldom something new under the composition sun.
Algorithmic thought is certainly not new, having been in evidence
in Western music composition from the beginnings of its notation.
Using processes in performance that change theirbehavior according
to an analysis of other players’s music, however, was never possible
before the advent of computers and interactive music systems. Such
systems therefore engender a realm of composition that was un-
known only a few decades ago. | believe that this music, however,
should not be described as being “in its infancy™ or passing through
an “experimental” phase. Doing so belittles the very real aesthetic
credibility many of these works have achieved and gives composers
an excuse to present works that still belong in the studio.

The musical values evinced in interactive compositions are ulti-
mately the same as those underlying a string quartet. By transferring
musical knowledge to a computer program and compositional re-
sponsibility to performers onstage, on the other hand, the composer
of interactive works explores the creative potentials of the new tech-
nology at the same time that he establishes an engaging and fruitful
context for the collaboration of humans and computers.

1.3 Algorithmic Analysis

There is a certain paradox at the heart of the transfer of musical
knowledge to a machine. We must labor mightily to make a computer
program perform the analysis required of a freshman music student.
Once the work is done, however, the program can make analyses
more reliably and certainly much more quickly than the freshman.
The computer can deliver complete descriptions of each chord in a
dictation within milliseconds of its performance, for example.

The purely quantitative difference of a very great acceleration pro-
duces a qualitative difference in the kinds of tasks a machine musi-
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cian can reasonably be asked to perform. We would not set a novice
musician in front of an ensemble with no idea of the piece of music
to be played, its key, tempo, character, or form, and expect that
apprentice player to follow what was going on very well, let alone
contribute to the performance in more than a perfunctory way.
Interactive systems whose knowledge of music theory does not go
much beyond that of our hypothetical novice are often put into just
such situations, however. Because these systems always do what
they do correctly and very quickly, a little musical knowledge goes
a long way.

The formalization of musical concepts is proceeding apace
through research in several fields, including music theory, music
cognition, and artificial intelligence. So much work has been done
in recent years that it would be inconceivable to document it all in
one volume. The work reviewed in this text, then, is delimited by
the requirement that the algorithms discussed be able to work in real
time as part of a musical performance involving human players. Even
with that restriction, this text in no way forms a comprehensive over-
view of the field.

There is a particularly interesting convergence between the fields
of music cognition and interactive composition: as music cognition
research becomes increasingly concerned with processes that could
account for musical competence in a real musical environment, it
gives rise to algorithms that can be adapted and used by composers
and improvisers in performance. Whether or not it was a concern of
the great variety of developers whose algorithms are described in
these pages, all of these programs also pass the minimum threshold
of psychological plausibility: they are all capable of execution in real
time using only the information that becomes available as it is pre-
sented in sequence.

Certainly, some aspects of musicianship do not require such de-
manding performance in time; analysis is usually carried out over a
period of days, not milliseconds, with an open score that allows the
analyst to consult the music in any desired sequence. Many excellent
systems of algorithmic analysis model this situation, and a suspen-
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sion of the real-time requirement often allows them to produce better
results than their performance-oriented counterparts. To maintain a
more manageable scope, however, some such systems will be consid-
ered only to the extent that they can be adapted to real-time use.
Figure 1.2 illustrates some of the main processes extant in the liter-
ature that can be applied to real-time analysis of musical input. Space
from left to right in the figure corresponds roughly to movement from
low- to high-level processes in the algorithms. The arrows approxi-
mate the flow of information between stages: pitch input is for-
warded to root and key identifiers, for example, while segmentation

pitch structures

| root salience J

pitch tracking J\

| chord identificationl

I key induction I

INPUTS

. ition
auditory I style recogni

I segmentation J

MIDI

pattern processing

quantization I

beat tracking |

| meter induction |

time structures

Figure 1.2 Machine musicianship processes
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and style recognition rely in turn on the output of those lower-level
analyses. This list is not exhaustive, but every element in it is mani-
fested by one or more published algorithms.

My interest in this field is twofold: (1) to implement certain pub-
lished processes so that they can be executed in performance; and
(2) to design control structures within which these components can
be combined to produce a more complete account of musical context
and to make the cooperating components work better. This figure
sketches only those processes related to analysis; there are similar
collections that pertain to algorithmic composition and to the genera-
tion of expressive performance.

In their article “On the Thresholds of Knowledge,” Douglas Lenat
and Edward Feigenbaum propose the Empirical Inquiry Hypothesis:
“The most profitable way to investigate Al [artificial intelligence] is
to embody our hypotheses in programs, and gather data by running
the programs. The surprises usually suggest revisions that start the
cycle over again. Progress depends on these experiments being able
to falsify our hypotheses. Falsification is the most common and yet
most crucial of surprises. In particular, these programs must be capa-
ble of behavior not expected by the experimenter” (Lenat and Feigen-
baum 1992, 187).

The Empirical Inquiry Hypothesis—clearly related to Sir Karl
Popper’s observations on the nature of science (1992)—suggests that
machine musicianship programs should be built to exhibit behav-
iors that observers can recognize as correct or incorrect. Many, if not
most interactive music systems are written to function in an environ-
ment of new music performance and improvisation. Their output
can certainly be evaluated by their makers and those familiar with
the idiom. My previous book, Interactive Music Systems (Rowe
1993) and several sections of this one deal with just such examples.
A still broader class of musicians can evaluate the performance
of algorithms that process standard works, however, and in accor-
dance with the Empirical Inquiry Hypothesis many examples in
this text will treat the mainstream classical and jazz repertoires
as well,
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I should make clear that this is not a psychology text, though the
techniques | describe could be used to implement music cognition
models or experiments. Psychological theories must address the
question of how the processes they propose are realized in humans.
My measure of success. however, is not whether these programs
match empirical data from research with human subjects, but
whether they output structures that make musical sense. [ will gauge
their performance in those terms by comparing their output with the
answers expected from students studying introductory texts in music
theory. The software may produce an acceptable answer by using
processes similar to those of humans, or by using others that are
wildly different. All else being equal, I would prefer that the machine
processes resemble the human ones. Whether or not they do is a side
effect, however. Ultimately I am concerned with machine musician-
ship and not a strict emulation of human music cognition.

1.4 Structure of the Text

The programming examples in Machine Musicianship are written us-
ing two languages: C++ and Max. C++ is an object-oriented pro-
gramming language that is widely available, well documented, and
firmly established as one of the main vehicles for developing com-
puter music applications. As examples are described in the text, |
will develop a library of C++ objects that can be used as the basis
for the reader’s custom programs. This book is not an introduction
to C++ programming. As examples are introduced [ will summarize
a few features of object orientation that are particularly valuable in
developing a library for machine musicianship. Beyond that, any
computer store will have a shelf full of introductory C++ books to
which the reader is referred.

The fact that [ will be illustrating concepts with C++ programs
does not mean, however, that one must be or become a programmer
to follow the text. C++ programs are a compact and complete way
of notating algorithms. The algorithms themselves are the topic of
interest here and will be explained in the text as they are imple-
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mented in code. All of the applications described are included on
the accompanying CD-ROM, but only a very small portion of the as-
sociated source code is printed in the text. Non-programmers ap-
proaching Machine Musicianship can then read the theory of the
algorithms in question and run the associated applications to test
their operation. Programmers can run the applications and modify
the source, recorded in its entirety on the CD-ROM, to produce their
own variations. G++ fragments in the text are concentrated at the
end of each chapter so that non-programmers can skip over the code
if they wish.

Max is a graphic programming language developed by Miller Puck-
ette and David Zicarelli. There are a number of compelling reasons
to include it as a development language here. First of all, Max has
spawned a user community that is the most active and prolific group
of interactive music designers working in the world today. There is
no good reason to port Max patches to another language when there
are probably more readers who know Max than know C++. In fact,
[ will demonstrate how C++ code is translated into a Max external
to suggest how the Max community might make use of the C++ ap-
plications introduced here. Another good reason to use Max is the
library of objects that has already been written for it and for MSP, a
set of digital signal processing extensions. Programmers can quickly
write powerful applications by building on the work of others.

Following this introduction, chapter 2 focuses on symbolic repre-
sentations and algorithms directed toward the processing of pitch
material. Issues such as root salience, chord identification, and
key induction are addressed there. Chapter 3 continues with sub-
symbolic processes, notably neural networks, and expands the field
of application to include rhythm. Chapter 4 moves to higher-level
musical constructs including segments and patterns and discusses
systems whose input consists of a digital audio stream. Chapter 5
begins to look at compositional techniques, including score follow-
ing and algorithmic digital signal processing. In chapter 6 processes
for the automatic application of expressive performance techniques
are reviewed.
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In the remaining chapters [ look in detail at some distinctive inter-
active systems that have been used in performances or installations.
The particular techniques of interactive improvisation are the nu-
cleus of chapter 7, leading to a discussion of how such machine per-
formers can collaborate with an ensemble of other players. Chapter
8 looks at extensions of interactive environments to include other
media, most prominently graphics, in live performance situations.
Chapter 9 presents several interactive installations, where the in-
herent ability of such systems to deal with unpredictable input
contributes to responsive environments exhibiting a variety of be-
haviors. A presentation of research directions form the conclusion
in chapter 10.

1.5 Machine Musicianship Library

The CD-ROM enclosed in this book contains a library of C+ + objects
that can be used to build interactive programs. The source code of
the examples, also listed on the CD-ROM, provides a set of templates
for users to follow in writing their own applications. The library in-
cludes the files listed in table 1.1.

Many more files are included with their associated projects: the
library is a repository of base classes from which specializations are
built for almost every program in the book. In object-oriented pro-
gramming, a base class is a generalized encapsulation of data and
processes concerned with a particular subset of some application
area. Specializations refine those general classes into derived classes
that address the details of some specific application. All of the analy-
sis processes depicted in figure 1.2, for example, have examples de-
tailed in the text and included on the CD-ROM that are made from
a combination of base classes, derived classes, and custom code.

Max programs are referenced as stand-alone applications, but are
not included in the Machine Musicianship library as the necessary
objects already form the heart of Max itself. One fully developed exam-
ple is ported from the C+ + environment into Max as a Max external,
and many of the other C++ examples could similarly produce useful



Table 1.1 Machine Musicianship Library

Machine Musicianship 15

Clock.cp timing routines

Event.cp representation of a group of notes
EventBlock.cp representation of a group of events
File.cp file handling

Listener.cp analysis of incoming MIDI events
ListenProps.cp analysis processes

Mac.cp macintosh 1/0

MMerrors.cp arror reporting

Note.cp representation of notes
OMSInPort.cp OMS input routines
OMSOutPort.cp OMS output routines
OMSSystem.cp OMS communication
Scheduler.cp scheduling facilities

Segment.cp representation of segments
Utilities.cp miscellaneous

Max objects. Taking programs in the other direction, from Max to
C+ +, should be facilitated by the Machine Musicianship base classes.

The danger in producing a set of classes like this, particularly
when it includes such entries as Note, Event, and EventBlock,
is that it can be taken as a general representation of music. My inten-
tion is precisely the opposite—I do not believe that there is a simple
and general way to represent all of the aspects of music we might
want to process. The representations suggested by the Machine Musi-
cianship library emerged from the particular collection of applica-
tions described in this book. Other tasks will demand other
representations, or at the very least, modifications of these. Rather
than a proposal for a generalized solution, the classes described here
should be seen as an example of how programmers might design their
own. After getting our feet wet with an initial application, in fact, I
will discuss the issues of representation design more thoroughly in
chapter 2.



This Page Intentionally Left Blank



2 Symbolic Processes

The general orientation of this text is toward integration. It is a com-
mon and useful simplification to consider musical parameters inde-
pendently—pitch analysis is conducted without consideration of
rhythm and vice versa. Such separations are a device to focus musi-
cal discussion. The consideration of algorithms may similarly be fo-
cused by the separation of symbolic from sub-symbolic processes.
Symbolic processes are those based on representations of objects and
relationships and manipulations of those representations according
to some set of rules. Sub-symbolic processes learn to map a collection
of input parameters to a sel of output classifications. Once trained,
such processes can identify similar patterns in novel input without
reference to a system of symbols and rules.

Ultimately Twill be concerned with integrating all of these parame-
ters and processes, much as we attend to pitch and rhythm using
several strategies simultaneously when we listen. The need to begin
somewhere, however, leads to the same simplifications just outlined.
In this chapter [ introduce several techniques necessary for algorith-
mic analysis and composition generally, and others required for the
treatment of pitch in particular. The general techniques include C++
classes for representing musical events and handling Musical Instru-
ment Digital Interface (MIDI) input and output. Pitch-specific pro-
cesses include chord classification, the calculation of root salience,
and key induction. Moreover, this chapter is restricted to symbolic
processes—those that are best characterized as a system of represen-
tations and rules. The algorithms introduced in this chapter, then,
are symbolic pitch processors.

I believe that it is easiest to grasp the function and significance of
programming constructs when they are presented in the context of
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building an actual application. For that reason we will begin immedi-
ately with writing a program and start to explain the classes involved
along the way. Readers who prefer to begin by learning all of the base
classes involved will find them and an explanation of their function
on the CD-ROM.

T conclude the chapter with programming detail about several of the
base C+ + classes found in the Machine Musicianship library. These
classes include MIDI input/output routines and low-level representa-
tions of music. MIDI I/0 classes are purely for bookkeeping and tend
to become outdated quickly. Representation of the information en-
coded in a musical score, on the other hand, is a central issue for the
algorithmic processing of music. There is no generally accepted formal
representation of music (certainly not MIDI) and T will not propose
one here. Rather, I will demonstrate the impact of particular represen-
tational choices on the implementation of specific applications and
briefly discuss the general issues that emerge as they arise.

2.1 Chord Theory

The study of chords is a basic part of music theory, particularly jazz
theory. For the jazz pianist. generating chords from a description of
their type is one of the most fundamental skills required. Similarly,
students of tonal harmony learn how to identify the types of chords
from notation or dictation. At a very elementary level, these skills
are taught with reference to pitch information alone, that is, without
considering the rhythmic placement of the chord.

Restricting the analysis to pitch significantly simplifies the pro-
cess. We must always remember what we are doing when we engage
in such reduction, however. Though the resulting program may work
well within its restricted domain, the context could become so im-
poverished that the developed algorithm would be incapable of func-
tioning meaningfully with real music. Human music students are
quickly confronted with the function of chords in a rhythmic context
to ground the abstract discussion of pitch in the reality of the mate-
rial. Nonetheless, in modeling a highly restricted representation of
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a problem we may learn much about what is necessary to produce
a desired behavior, and what is not. In the course of this chapter |
first implement a completely context-independent chord classifier
and then gradually introduce elements of context dependence to
show how they improve performance.

211 Triad Classifier

Let us begin our exploration of chord identification by writing a triad
(three-note chord) classifier. We make these simplifying restrictions:
first, only unique pitch classes of a chord are considered; and second,
there are no references made to the rthythm or any other kind of infor-
mation derived from the surrounding context.

How many three-note chords are there? If all chord members are
reduced to pitch classes and no pitch class may be repeated, as we
have stipulated, there exist 220 distinct three-note chords. Let us de-
fine a normal order for triads as a << b << ¢, where a. b, and c are the
three unique pitch classes of the chord. Pitch classes are numbered
from 0 to 11 with 0 corresponding to the pitch class C and rising
chromatically to 11, corresponding to the pitch class B.

Table 2.1 shows all of the normal order three-note sets that form
major, minor, augmented, or diminished triads.

Allen Forte defines a different normal order for pitch-class (pc) sets
in his seminal text, The Structure of Atonal Music (1973). To estab-
lish a normal order in Forte's system, a pc set is evaluated through
all of its circular permutations. For example, the pc set [0 1 2] would
have two other circular permutations, formed by rotating the item at
the beginning of the set to the end: [1 2 0] and [2 0 1]. If the original
set is in ascending order, circular permutations can be made to main-
tain that property by adding 12 to the first element before it is rotated
to the end of the list. The permutations of [0 1 2], then, become
[1212] and [2 12 13]. Ascending order is necessary for finding the
permutation that is in normal order: “the normal order is that per-
mutation with the least difference determined by subtracting the
first integer from the last” (Forte 1973, 4). In the prior example, then,
[0 1 2] is the normal order because 2-0 is less than 12-1 and 13-2.



Table 2.1 Classifications of Four Basic Triad Types

PITCH NOTE

CLASSES NAMES ROOT TYPE INTERVALS
038 G B A P major 38
047 GCEG 0 major 47
059 CFA 1 major 59
149 C$EA ? majar 38
158 Db F A 0 major 47
1610 Db Gk Bb 1 major 59
2510 D F B ? major 38
269 DFsA 0 major 47
2711 DGB 1 major 59
3611 DéFE B 2 major 38
3710 Er G Bb 0 major 47
48 11 E Gt B 0 majar 147
037 CEBEG 0 minor 37
049 GEA ? minor 49
058 CFA 1 minor 58
148 G+EGH 0 minor a7
1510 Db F Bk ? minor 19
168 GCiFsA 1 minor 58
259 DFA 0 minor 37
2611 [ FB ? minor 19
2710 DG Bk 1 minor 58
3610 Ex Gb Bb 0 minor 37
3a DEGEB 2 minor 58
47 11 EGB 0 minor 37
048 GCEGH na angmented 18
159 DEFA na augmented 48
2610 D F& At na augmented 18
37T E-GB na augmented 18
036 G B Gh 0 diminished 36
039 GCEA ? diminished 39
069 CHA 1 diminshed 69
147 C+EG 0 diminishad 36
1410 C$EAY 2 diminished 39
1710 Db G Bk 1 diminished 69
258 DFAb 0 diminished 36
2511 DFEB 2 diminished 39
2811 DGsB 1 diminished 69
369 D¥F¥ A 0 diminished 36
4710 EG B 0 diminishad 36
5811 F Ab Ch 0 diminished 36
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A further rule determines the best normal order for two sets that
have the same difference between the first and last integers: “If the
least difference of the first and last integers is the same for any two
permutations, select the permutation with the least difference be-
tween first and second integers. If this is the same, select the permu-
tation with the least difference between the first and third integers,
and so on, until the difference between the first and the next to last
integers has been checked. If the differences are the same each time,
select one ordering arbitrarily as the normal order” (Forte 1973, 4).

Forte's ordering scheme is not entirely algorithmic due to the last
instruction of the second rule. but as such cases are very rare, it can
certainly be implemented in a functional computer program. The ad-
vantage of Forte’s classification is that it yields a great reduction in
the number of unique pitch-class sets. There are 220 three-note
chords delimited only by the requirement that no pc be repeated.
This number is reduced to 55 when three-note chords are repre-
sented as a set of two intervals rather than three pitch-classes, as |
will establish momentarily. Forte’s normal ordering yields a list of
only 12 three-note pitch-class sets. For a table-lookup algorithm
(such as the triad identifier) smaller set lists mean smaller and more
manageable tables.

Forte defines pc sets to be equivalent if they are related by transpo-
sition or inversion followed by transposition. This equivalence rela-
tion means that his set names cannot be easily adapted to the
classification of tonal music. For example, the major triad and minor
triad are inversions of each other and so are represented by one name.
Inversion here means intervallic inversion: if we duplicate the inter-
vals of a C major triad going down from C instead of up we get C-
Ab-F, an F minor triad. Since we are interested in tonal distinctions
we will continue with a larger classification table. Note, however,
that the mechanism introduced here for chord identification could
be adapted quite directly to a real-time Forte set recognizer.

Whether using the Forte set list or table 2.1, we can easily write
a program that looks for certain pitch class sets and outputs the cor-
responding label. If we adopt the set list from table 2.1, the same
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identification can be accomplished even more simply. The last col-
umn, showing intervallic relationships of the other members to the
lowest pitch class, demonstrates regularity that makes it easier to
work with two intervals than with three pcs. For example, to find an
augmented chord we need only identify intervals of four and eight
semitones above the lowest pitch. Now we are looking for one kind
of augmented triad instead of four.

There are no inversions of augmented chords—the intervals are
always the same no matter which pitch is lowest. Correspondingly, |
have listed the augmented chords as having no root. Another strategy
would be to identify the lowest pitch class of an augmented set as the
root. Because we have reduced notes to pitch classes and eliminated
duplications, however, the lowest pitch class might not correspond
to the lowest note in the chord. We have thus encountered the first
limiting consequence of our contextual simplifications.

With the other triad types (major, minor, and diminished], notice
that inversions do change the intervallic relationships. Major triads
represented intervalically have three forms, corresponding to the
three possible placements of the root. Root position major triads have
the interval set [4 7], first inversion triads [3 8], and second inversion
triads [5 9]. Therefore we need to calculate the two intervals above
the lowest pitch class.

To make an intervallic representation, we first order the pitches
as before, with a << b < c. The interval a-b will then vary between 1
and 10 semitones because the interval between the lowest note and
the middle one must always be at least one semitone and not more
than a minor seventh, allowing the third member to be higher than
the middle. Similarly, the interval a-c will vary between 2 and 11
semitones above the lowest pitch class. Considered from the inter-
vallic perspective, there are only 55 distinct combinations of two
intervals above the lowest pitch class—a reduction of 75% from the
number of chords considered as pitch class triplets. A table similar
to table 2.1 can now be constructed to classify intervalically repre-
sented three-note chords and to pinpoint which of the three members
is the rool. Table 2.2 shows all 55 possibilities.



Table 2.2 Classifications of All Three-Note Chords
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Of these 55, 10 correspond to the primary triad classifications of
Western tonal music: three groups form major triads ([3 81, [4 7], and
[59]), threegroups form minortriads([3 7],[4 9],and [5 8]), three groups
form diminished triads ([3 6], [3 9], and [6 9]) and one group forms
augmented triads ([4 8]). Another 21 can be labeled seventh chords
(major, dominant, minor, minor-major, half diminished, diminished)
insomeinversion with one member missing,yieldingatotal of 31iden-
tifiers. As we continue inthis vein, the classifications forthe remaining
24 sets become more problematic. For example, | have defined the set
[2 A]to be a dominant 9th chord with the lowest pitch class identified
astheroot. Figure 2.1 shows the notation of such a dominant 9th chord
with the missing pitches shown as white noteheads.

Certainly a 9th chord with only three pitches is a very incomplete
9th chord. If one is given only these three pitch classes, on the other
hand, there are two choices: one can call it an “unknown” chord,
or try to come up with a plausible label. While the dominant 9th
interpretation is a plausible label for this set of three pitch classes
and will often be the most appropriate, alternate identifications are
plausible as well and will sometimes be better. For example, the
chord may be a dominant 9th, but with a different root. Consider the
chord in figure 2.2.

This interpretation of the three pitch classes C, Bb, and D, again
identifies the chord as a dominant 9th, but now shows Bb as the root.

T

Figure 2.1 Dominant 9th interpretation of [2 A] set
L)
\E ; i

Figure 2.2 Alternative dominant 9th interpretation of [2 A] set
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Figure 2.3 Dominant b13 interpretation of [2 A] set

In other words, the root of the set is ambiguous. Moreover, the type
is also ambiguous. Figure 2.3 shows the three pitch classes in a domi-
nant seventh chord plus a flat thirteenth with D as the root. Though
less likely than the other two, this interpretation is also correct in
some situations.

Because this collection of pitch classes is ambiguous with respect
to both type and root, it is clear that these attributes cannot be
uniquely determined from pitch class alone. The only way to decide
between rival interpretations is to appeal to the surrounding context.
A context-dependent identifier might consider the prevailing key, for
example, or voice-leading from and to chords immediately sur-
rounding the one to be identified. Even a consideration of the voicing
of notes within the chord, though not involving the surrounding con-
text, would require more information than we have allowed our-
selves thus far.

Though analysis of the context can be useful for correct chord iden-
tification, it also introduces complexity that may affect the speed and
consistency of computation. A context-independent identifier will
work faster and always produce the same result for the same collec-
tion of pitch classes. Moreover, assigning a label based only on pitch
classes is not insensitive to compositional norms. Table 2.2, for ex-
ample, assumes a context of Western tertian harmony that appears
regularly in some kinds of jazz and classical music, but does not hold
in other styles that do not follow those conventions. Table 2.2, then,
is not style-insensitive, but rather encodes a set of assumptions about
the contexts in which it will be used. I begin with a table-based ap-
proach for its simplicity, and because the technique is commonly
used in commercial chord identifiers, which constitute a kind of
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baseline competence. Before proceeding with methods that do make
computational use of the surrounding context, let us see how well
this simple table lookup approach can do.

Figure 2.4 shows a small code fragment from a C+ + program that
performs table-lookup triad identification. (T use triad as a shorthand
for three-note chord—most of these pe-sets are not triads in any con-
ventional sense.) At the end of the chapter | describe some of the
underlying programming constructs in more detail. For the moment
Lwill use code to illustrate how the program works, both because it
shows exactly what happens, and because the code constitutes a
high-level notation of the steps of an algorithm. Non-programmers
should concentrate on the comments following the double-slash
marks (//). These are not part of the program but text explanations
of the immediately following code.

An integral part of the process involves a data structure (an array)
representing the twelve pitch classes. The first thing the algorithm
does is initialize all twelve elements in the array to zero. In the sec-
ond step, elements in the array corresponding to pitch classes in the
triad are set to one. MIDI defines middle C to be note number 60.
Other note numbers are generated by adding or subtracting semi-tone
distances from middle C: the Ct above middle C is note number 61,
the B below 59, etc. The modulo operator (notated by the symbol
“%”) divides a number by the argument and returns any remainder.
In this case, each MIDI pitch is divided by twelve and the remainder
is used as the address into the pitch class array.

Pitch class C in MIDI has the note number 60, as well as integer
multiples of 12 above and below 60 (36, 48, 72, 84, etc.). Therefore all
notes with a pitch class of C taken modulo 12 will have the address
(remainder) zero, all notes with a pitch class of C§/Db will have the
address (remainder) one, and so on. Once the pitch class of a triad
member is computed, the array element at that location is set to one.
Multiple occurrences of the same pitch class in a chord are effec-
tively eliminated—the array position will still be equal to one no
matter how many times the pitch class is repeated. Table 2.3 shows
the pcs array representing a G major triad: the array members at
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void Chord::Calculate(Event* event)

register int 1i;

// 1. initialize pitch class array to zero
for (1=0; i<12; i++)

pcs[i]l = 0;

// 2. put a one in the corresponding pcs slot for each pitch
for (i=0; i<event->chordSize; i++)

pcs [event->notes [i]->pitch%12] = 1;

// 3. count the total number of pitch classes
int numPcs = 0;
for (i=0; 1<12; i++)

nunmPcs += pcs[il;

CallChordFinder (numPcs) ; // 4. find chord type and root

DrawChordType () ; // 5. output onto the screen

Figure 2.4 Triad identification

Table 2.3 C-Major Triad Pitch-Class Array

ADDRESS 0 1 2 3 4 5 6 7 8 9 10 1
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[ &==———=Triad ldentiier=F"rn——H

Make Triad Ab Cb G : Ab minor/major 7th

Figure 2.5 Triad identifier application

addresses 0 (corresponding to the pitch class C), 4 (E), and 7 (G) are
set to one while the others are set to zero.

The third step of the triad identification algorithm counts the num-
ber of distinct pitch classes in the chord simply by adding all of the
array elements set to one. Another routine, CallChordFinder (),
is invoked with the number of distinct pitch classes as an argument.
CallChordFinder () computes the two intervals above the first ele-
ment in the pcs array that is set to one. These two intervals form an
address into a table that contains the type and root for every three-
note chord. The identification table consists of the 55 type/root pairs
shown in table 2.1. Finally the pitch classes found together with the
root and type from the table are printed on the interface (figure 2.5).

The CD-ROM contains the triad application and all of the source
code necessary to compile it. This example program generates ran-
dom three-note chords when the Make Triad button is clicked or
the space bar is depressed. Next we will build a version that rec-
ognizes chords played on a MIDI keyboard. Before doing so, let us
consider some of the problems surrounding music representation
generally, and the MIDI standard in particular.

2.1.2 Representations

The issue of music representation is a complex and unsettled one.
Several books (Selfridge-Field 1997a; Marsden and Pople 1992; De
Poli, Piccialli, and Roads 1991; Howell, West, and Cross 1991) and
journal issues (Computer Music Journal 17[1-2]) have been devoted
to the question. Carol Krumhansl considers representation from the
standpoint of music cognition:
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We come now to the central question about internal representations
in music: What kind of information about the musical stimulus is
internalized, in what form(s} is it stored, and how is it interpreted
and recognized? With regard to visual perception, Kosslyn and Pom-
erantz (1977) warned against thinking of visual representations as
pictures in the head. Similarly, Iwould warn against thinking of per-
ceived or imagined music as auditory tapes in the head which record
sound-pressure variations continuously over fime. Visual represen-
tations are organized at early levels of processing into objects, prop-
erties of objects, and spatial relations between objects; music is
organized al early levels of processing into events, properties of
events, and temporal relations between events. {(Krumhansl 1992,
200-201)

For machines, the difference between untreated audio (closest to
Krumhansl’s “tapes in the head”) and more abstract representations
is critical. The most common form of audio input is a lightly struc-
tured stream of digital pulse-code-modulation (PCM) samples, such
as AES-EBU or SP/DIF signals (Watkinson 1994). The most common
abstract representation is MIDL Devices called pitch-to-MIDI con-
verters attempt to convert an audio stream into a series of MIDI mes-
sages. MIDI synthesizers perform the reverse by changing MIDI
messages into audio output. Pitch-to-MIDI converters lose a lot of
information because they must represent the sound with only two
parameters: pitch and velocity (i.e., loudness at the attack). Worse,
even this restricted form of representation is often inaccurate: it is
difficult to reliably report the fundamental pitch and loudness of a
quickly changing audio signal in real time.

In the case of a MIDI stream controlling a synthesizer, information
is not so much lost as it is incomplete. MIDI messages say nothing
about the timbre of a sound to be produced beyond the selection of
a program number. The complete specification of an audio output
stream, then, is distributed between the MIDI messages and the pro-
gram resident in the synthesizer.

Moreover, MIDI represents music as a collection of notes that go
on and off with a certain velocity, roughly equivalent to loudness.
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As such it is much more a representation of the physical gestures
performed on a musical keyboard than it is a representation of the
music itself. The activity MIDI represents is really just a step beyond
typing—the only difference is that we usually do not record how
hard a typewriter key is struck. Beyond limiting what the representa-
tion can say about the music, this orientation also effectively restricts
input to those parameters that most resemble keyboard playing.
Changes in bowing a viola, for example, are simply ignored.

David Huron describes MIDI as a representation of performance
activity information (PAl), because it most directly models the physi-
cal gestures of a keyboard player (1992). He labels transduction from
PAIl to sound synthesis information (SSI) registration in an analogy
to organ registration. Essentially this is the conversion that takes
place when a MIDI stream is interpreted by a synthesizer and sound
is produced as a result.

I will not continue with a rant about MIDI here. There are fine
reviews of the issues involved (Loy 1985; Moore 1988), and [ have
discussed several aspects of the problem myself (Rowe 1993). More-
over, most of the applications in this book are based on the MIDI
standard, warts and all. In general, | will approach representation
with the goal of providing a minimal description, and fortunately
MIDT is very minimal. Trying to develop a comprehensive reprasen-
tation that can mean all things to all projects often leads to a concoc-
tion that serves no one: “Most systems are extensible, but all become
cumbersome when they begin to seem like centipedes—with too lit-
tle core to support a large array of extensions and too few links be-
tween extensions to provide an integrated logical foundation for
understanding the music as music. Each new addition takes the rep-
resentation further from the object it attempts to simulate and taxes
programming effort as well” (Selfridge-Field 1997b, 5).

Roger Dannenberg makes this observation regarding the possibility
of a general music representation: “As an art form, music is distin-
guished by the presence of many relationships that can be treated
mathematically, including rhythm and harmony. There are also
many non-mathematical elements such as tension, expectancy, and
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emotion. Music can contain symbolic or structural relationships ex-
isting within and between the dimensions of pitch, time, timbre, har-
mony, tempo, thythm, phrasing, and articulation. A further source
ofcomplexity is that ‘music’ can mean printed notation, performance
(instrument control) information, or resulting sounds. Finally, music
evolves with every new composition. There can be no ‘true’ represen-
tation just as there can be no closed definition of music” (Dannenberg
1993, 20).

I do not believe that a general music representation exists, nor that
the particular collection of objects included in the Machine Musi-
cianship library approximates one. The representation classes in-
cluded there emerged from the particular set of applications I
describe in this text. Other applications will demand other represen-
tations. “The essential point is that in order to represent something,
its properties must be interpreted according to some proposed utility.
Or more simply expressed, one cannot meaningfully discuss the de-
sign of representation schemes without some knowledge of how such
a representation is going to be used” (Huron 1992, 10).

David Huron has written extensively on representations (1997)
and implemented his analysis ideas in a software environment called
the Humdrum Toolkit. Humdrum is a collection of music analysis
software that relies on a common representational protocol, called
kern. Information following the kern protocol can be manipulated
and transformed by a variety of tools that perform such tasks as key
induction, information measurement, and pattern matching. Of par-
ticular interest for the current discussion is the fact that Humdrum
adheres to no single representation, but rather describes a format
within which many different representational styles can be realized:
“Humdrum avoids trying to represent everything within a single
scheme. Instead, it encourages the user to break up the representa-
tional problem into independent manageable schemes, which are
then coordinated. Each specific reprasentation scheme will establish
its own limits. While several representation schemes are predefined
in Humdrum, users are free to develop their own schemes, tailored
to their specific needs” (Huron 1997, 376).
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The analysis algorithms of Humdrum are mostly written in awk,
and the Toolkit as a whole is closely tied to the structure of the UNIX
operating system. In keeping with the UNIX philosophy, for exam-
ple, analyses with Humdrum are normally accomplished by linking
together processes from the Toolkit, rather than by running one
stand-alone application with different scores as input. And as is the
case with UNIX, a collection of processes designed to work together
can be used to realize a greal variely of analyses, including many
never specifically foreseen by the author of the tools.

Although Humdrum facilitates exploratory investigations, Hum-
drum is best used when the user has a clear problem or guestion
in mind. For example, Humdrum allows users fo pose and answer
questions such as the following:

» In Bartok, are dissonances more common in strong metric posi-
tions than in weak metric positions?

= What passages of the original Salve Regina antiphon are preserved
in the settings by Tomas Luis de Victoria?

= In Urdu folk songs, how common is the so-called “melodic
arch”—where phrases tend to ascend and then descend in pitch?

» Which of the Brandenburg Concertos contains the B-A-C-H motif?
= What are the most common fret-board patterns in guitar riffs by
Jimi Hendrix?

(Huron 1994, 7)

Interestingly, Miller Puckette conceives of Max in terms of a collec-
tion of connectable processes in the spirit of UNIX as well: “Max
occupies a niche in the ecology of music-making tools which is simi-
lar to that which a shell (‘sh’, etc.) occupies in UNIX. Tt's probably
possible to write a Bourne Shell program to find the nth prime. |
wouldn't do it that way—1I'd use C. T wouldn’t use Max to do it ei-
ther—I'd write a C extern. (To tell the truth, ifI knew that1 < n < 25,
I'd just use a table.) Either Max or the shell might be a very suitable
environment for invoking this program, though. Max or ‘sh’ are good
ways for fitting things together” (Puckette 1993, 8).
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There are several compelling proposals for a successor to MIDI,
directed either toward synthesizer control (Wright and Freed 1997)
or sound description more generally (Wright et al. 1998). Some such
systems have an explicit mechanism for converting from MIDI into
the new reprasentation, and vice versa. Therefore, we may hope that
minimal representations may easily be ported to a more powerful
and modern format when available. Moreover, there is a strong
branch of current research that begins not with a quasi-structured
representation like MIDI at all, but rather with a raw audio input
stream. We will review some of this work in section 4.3. In many
cases, such systems are able to derive information from the audio
that at least duplicates the level of MIDI and often surpasses it. This
is not always the case, however, as [ have already mentioned the
difficulties of converting pitch-to-MIDI in real time. But to the extent
that analyses of audio inputs can be made to replicate the informa-
tion MIDI conveys, we again might continue to use algorithms devel-
oped for MIDI even when a more powerful input source replaces it.

In this section | introduce the software interface necessary to input
MIDT messages. We then will use that interface to build a MIDI chord
recognizer based on the triad classifier described in section 2.1.1.

2.1.3 MIDI Chord Recognizer

To receive and transmit MIDI events using the serial port of a com-
puter, a device driver and a set of system calls are needed. When a
device driver is involved, there is almost always a hardware depen-
dency built in to the software, and this unfortunately is the case with
MIDI drivers. On the Macintosh the situation is even worse because
there are competing standards for the same function. Apple long ago
abandoned its leadership in this area when development of the
Apple MIDI Manager was discontinued. The MIDI I/O package T will
describe here, then, is the Open MIDI System (OMS) distributed by
Opcode, Inc. OMS is widely used, readily available, and well docu-
mented. It has been implemented under both Windows and the
MacOS, which means that software written using it can be ported
between the two operating systems relatively easily.
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typedef struct {
long time;
unsigned char status;
unsigned char datal;
unsigned char data2;

} MIDIEvent;

Figure 2.6 MIDIEvent struct

There are three OMS classes defined in the Machine Musicianship
library. The first is OMSSystem, which provides the initial layer of
communication with OMS. Any application using MIDI will need to
include the OMSSystem class. This is accomplished simply by add-
ing the OMSSystem. cp file to the project and allocating an instance
of the class (see the CD-ROM for an example). To receive MIDI input
or transmit MIDI output we need to allocate an input or output port,
respectively, using the classes OMSInPort and OMSOutPort. The
OMSInPort class provides buffering for MIDIEvents, a structure
whose definition is shown in figure 2.6.

A MIDIEvent packages a MIDI channel voice message into a group
of bytes. Channel voice messages always have a status byte and one
or two data bytes. These are recorded in the corresponding fields of
the MIDIEvent. In addition, a MIDIEvent records a timestamp that
is set to the time in milliseconds at which the MIDIEvent arrived
at the device driver. The buffer of the input port, then, is an array of
these structures.

OMSInPort fills the buffer in the interrupt routine called by OMS
and empties it in the main event loop of an application. The Machine
Musicianship library assumes that the buffer will be read by an ob-
ject of another class called Listener (described at the end of this
chapter). The interaction between OMSSystem, OMSInPort, and
Listener can be examined in the MIDI I/0O application on the CD-
ROM. In this simple example, incoming MIDI note messages serve
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Figure 2.7 MIDI input application

only to draw or erase a line on the screen. The result is a little bar
graph of incoming MIDI activity (figure 2.7). Simple though it is, such
an application can be very useful in making sure that MIDI is being
transmitted properly through the serial port and operating system to
the application level.

With the addition of MIDI input, we can now modify the triad
identifier of section 2.1.1 to analyze chords arriving from a MIDI de-
vice, such as a keyboard or sequencer, as well as those generated
randomly by the program itself. The triad program discussed in sec-
tion 2.1.1 is aimed at a very specific kind of harmony: the triadic
chord construction usually found in beginning jazz piano texts. Even
in that narrow context, the triad identifier treats a very limited range
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of possibilities. Bill Dobbins’s fazz Piano Harmony, for example,
concentrates initially not on three-note but on four-note chords: “1
chose to begin with four-note chords for two very practical reasons.
First, four notes are a sufficient number to express a wide variety of
harmonies, especially when the possible four-note chords are later
combined with different bass notes. Second, four notes are a small
enough number that any well motivated pianist can soon become
fairly facile at working creatively with chords of this density, even
in an improvising situation” (Dobbins 1994, 9).

To program the knowledge of chords possessed by a novice jazz
pianist, then, we need to be able to identify and generate at least four-
note chords, and preferably more. How many chords are there? Using
the same restrictions governing the triads (no repeated notes, all
notes considerad as pitch classes) we find the totals to be those listed
in table 2.4.

With three pitch classes (pes), there are 55 distinct chords when
considered intervalically, as we know from the discussion in section

Table 2.4 Chord Counts

NUMBER OF INTERVAL

PCs CHORDS REPRESENTATION

1 12 1

2 66 1

3 220 95

4 495 165

5 792 330

6 824 462

7 792 462

g 495 330

9 220 165
10 66 95

e
—

12 11

—_
[a=
el
el
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2.1. Similarly, there exist 165 four-note chords. Note that the greatest
variety is for six- and seven-note chords, which have 462 intervallic
possibilities. Above seven notes the possibilities decrease again,
since the increasing number of pitch classes reduces the number of
possible intervals between them. Just as there is only one chord with
one pitch class (the unison), there is only one twelve-note chord (the
chord of all pitch classes). The symmetry continues from both ends
towards the middle, peaking at 462 varieties for sextads and septads.

The MIDI chord application generates an identification of the root
and type ofany collection of pitches, not only three-note chords. The
basic algorithm remains the same, however. Chords, reduced to pitch
classes and then to intervals above the first pc in the array, are used
as an address to look up stored roots and types in a table. The applica-
tion and all of its associated source code is found on the CD-ROM.

The first test of the program is to examine its analysis of the four-
note chords listed in Dobbins’s Jazz Piano Harmony (Dobbins 1994,
13). All the five basic seventh chords are correctly identified in all
inversions. These include major sevenths, dominant sevenths, minor
sevenths, half-diminished sevenths, and diminished sevenths. The
basic seventh chords exhaust 17 of the possible 165 chords (not 4*5
or 20 because the diminished seventh has the same set of intervals
regardless of inversion).

Later examples in the Dobbins text show seven common altered
seventh chords: the major seventh 45, the major seventh 5, the domi-
nant seventh 45, the dominant seventh b5, the dominant seventh sus-
pended fourth, the minor/major seventh, and the diminished/major
seventh (1994, 54). Of these, the identifier again consistently labels
every chord in every inversion. There are two deviations from the
text identifications: the chord Dobbins labels a dominant seventh
with a suspended fourth I call a dominant eleventh, and the chord
he labels a diminished major seventh I call a dominant with a flat
ninth. Only the surrounding context or the voicing of the chord itself
could lend weight to one interpretation over the other, and these are
both sources of information that the application currently ignores.
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Adapting it to conform completely to the text would simply require
changing a few entries in the table.

These altered seventh chords represent another 26 of the possible
165 chords (not 4*7 or 28 because the dominant seventh with a flat
fifth has only two inversions). We have tested, then, 43 of the 165
in all or about a quarter of the possibilities. Certainly we could con-
tinue with a test of all 165 but [ think the point is clear: such a chord
identifier can quickly and consistently label all possible four-note
constructions. However, by restricting the chord representation to
pitch classes, and performing the analysis without reference to the
surrounding context, some chords must be arbitrarily identified, and
those identifications will as a consequence be incorrect in some
situations.

To implement a complete chord identifier, then, one could simply
build tables for all 2048 possible chords. Even if one were willing to
invest the effort, however, it is not clear what many of the multi-
note identifications should be. [fwe continue to reckon chord names
following the conventions of triadic harmony, we start to encounter
some very exotic identifications after six or seven pitch classes. A
chord with seven pitch classes could include some form of the root,
third, fifth, seventh, ninth, eleventh, and thirteenth. Jazz Piano Har-
mony contains no chords with members above the thirteenth, for ex-
ample. The reason is obvious enough: after the thirteenth the next
third up takes us to the root again, two octaves above its first appear-
ance, and the succession of thirds begins again. A chord with eight
distinct pitch classes, then, becomes difficult to analyze in this sys-
tem without declaring chords to have a minor and major third, per-
fect and sharp fifth, or other such concoctions.

The MIDI chord application on the CD-ROM therefore does not use
tables for all possible chords. Rather, it encodes the most common
and important identifications in the tables and uses another process
to reduce more complex chords that the tables do not contain. The
reduction is carried oul by repeatedly finding the most dissonant
member and removing it until the chord is reduced to one found in
the tables.
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Figure 2.8 Overloaded chord

The algorithm for finding the most dissonant tone (KickOut-
Member) supposes that the chord member with the smallest interval
classes relative to the other members of the chord will be the most
dissonant. In other words, a chord member with predominantly mi-
nor and major second relationships to the other chord members will
be heard as more dissonant than another chord member having
primarily major and minor third relationships. Distance is calcu-
lated between interval classes rather than intervals, meaning that
any interval larger than a tritone is considered in its inverted form.
Therefore a major seventh will also be counted as a minor sec-
ond, reinforcing the idea that smaller interval classes are the more
dissonant.

Consider figure 2.8. The lowest note of the chord, C, has the follow-
ing intervallic relationships: augmented second (3 half-steps), major
third (4), perfect fourth (5), and minor second (1). Because interval
classes are measured rather than intervals, the interval C-G is con-
sidered a perfect fourth (inverted perfect fifth) and the interval C-B
is considered a minor second. If we add together all of these intervals,
the total interval distance of the C relative to the chord is 13. Re-
peating the procedure for every note in the chord, we arrive at these
totals: C(13), D#(12), E(13), G(16), and B(14). The note with the small-
est total is D4 Eliminating this note from the chord, we arrive at a C
major seventh.

With the addition of MIDI input, the chord identifier interface ap-
pears as shown in figure 2.9. The pulldown menu comes courtesy of
OMS and allows the user to select one of the possible MIDI input
devices as that which is read by the program. Now a chord may be
input to the application either by clicking on the Make Chord button,
as before, or by playing a chord on a MIDI keyboard. The program
spells the members of the chord followed by a colon, the name of
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Figure 2.9 MIDI chord identifier
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Figure 2.10 Problematic reduction

the root, and the chord type. Chord members that were eliminated
by KickOutMember () are listed below in parentheses. The chord
shown in figure 2.9 is a B-dominant eleventh chord with a missing
fifth. The pitch class thrown out by KickOutMember () was a C natu-
ral, in this case a good choice for elimination.

The KickOutMember () algorithm is not an ideal solution, how-
ever, and often throws out members that are best retained. In figure
2.10, for example, the process kicks out the F located a major ninth
above the root (with a score of 9), instead of the Fi, which is the
sharp ninth (with a score of 10). One way to deal with particularly
egregious errors caused by KickOutMember () is to simply add a
new table entry for any chord that is being incorrectly reduced. The
algorithm works well enough to fashion a reliable chord identifier
in any case and is not even invoked until the chord has reached a
fairly exotic state.
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random 128
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Figure 2.11 Chord reading from IAC bus

We may use the OMS input port to route chords from a keyboard
to the chord identifier. One may also generate chords in some other
application and send them to the program through one of the OMS
inter-application communication (IAC) busses. Shown in figure 2.11
is a Max patch that randomly generates major triads. Every two sec-
onds (the interval specified in the metro object) the patch generates a
random number that becomes the root of a triad. The plus objects add
amajor third (+4) and a perfect fifth (+7) above that root. (The modulo
[%] objects and number boxes are only there for us to see which pitch
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classes result from the operation). All three pitch numbers are then
routed to makenote objects and sent to noteout. When noteout is
set to transmit to TAC Bus #1, and the chord identifier is directed to
read from that same bus, the chord application receives MIDI messages
from and identifies every triad banged out by the Max patch.

Of course an even better way to integrate the chord identification
process with Max would be to encode the identifier as a Max exter-
nal. Then it could be used as simply another Max object within the
environment as a whole. Section 4.4 demonstrates how such C++
applications can be recast as Max externals.

2.1.4 Chord Spelling

In figures 2.9 and 2.10, notice that the members of the chord are
spelled correctly by the application: e.g., the major third above B in
figure 2.9 is spelled D4 and not Eb. This makes the output of the pro-
gram much easier to read and verify, and also mimics the training
of human musicians learning the same skill. The distinction is not
available from the MIDI representation: as far as MIDI is concerned,
there is one pitch number 63, The standard is unable to distinguish
between 63 as a Dt and 63 as an Eb,

The member function of the Chord class that correctly spells
chords is SpellChord (). The routine first prints the name of the
chord’s root. | have adopted the convention that every root with
an accidental will be spelled in its flat form (Db, Eb, Gb, Ab, and Bb).
Maintaining this regularity makes the rest of the job easier, but we
will consider other ways to approach root naming momentarily.
A NameClasses array of character strings is maintained by the
Chord class and used to produce the correct letter names for mem-
bers of the analyzed chord. When the root name is produced, its in-
dex in NameClaszes is stored. If we then need to generate the name
of the third, for example, we take the NameClass two places above
the name of the root.

SpellcChord () looks for and names successive thirds stacked
above the root. To spell the third, for example, the algorithm assumes
that a given chord will have a minor third or a major third, but not
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both. It first looks for a major third by checking the pcs array for a
positive entry four semitones above the root. If one is found, that
place in the pes array is sel to zero. This ensures that the same pitch
will later not be spelled as something else. [t is difficult to imagine
for what other interval a major third might be mistaken, but a minor
third could be taken for a sharp ninth, for example, were it not erased
from the array.

It turns out that the spelling of stacked thirds can be largely, but
not wholly, determined by simple rules keyed to whether the root
and/or upper member are on “black keys,” i.e., must be spelled with
an accidental (Db, Eb, Gb, Ab, and Bb). For a minor third, all members
landing on a black key should have a flat appended to the name. This
covers Bb—Db, C-Fb, Eb—Gh, F—Ab, and G-Bb. If the third does not fall
on a black key but the root does, the minor third name should also
have a flat appended to it (as in Di—F}). Finally, if the root is Gb, the
minor third needs two flats after the letter name (BW¥). Such root-
specific rules are clumsy but necessary, and these three rules pro-
duce correctly spelled minor thirds in every case.

Remember that this only works if we assume that roots falling on
an accidental will always be spelled in their flatted form. Considered
in isolation, it is better to spell the triad G+—Bl—Db as Fi—A—Ch, since
A 1s easier to read than Bbk. Moreover, the choice between a Gh and F4
minor chord should be made based on the surrounding chords and,
ultimately. the key in which the sonority is embedded. David Tem-
perley proposes a more principled way of dealing with the spelling
of both chord members and their roots (Temperley 1997) as imple-
mented in the Serioso Music Analyzer (Temperley and Sleator 1999).

Before passing to a consideration of Serioso, let us consider an-
other attribute of the spelling process that is perhaps more valuable
than the spelling itself: SpellChord () comes up with the same
identification of a chord’s type as does the table entry, but by an
independent process. Though the chord identifier as it stands looks
in precompiled tables to determine the type, it could also build the
type definition algorithmically as it spells the chord. Sequentially
extracting thirds stacked above a defined root is a clear and quite
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reliable way of computing a chord’s type from the standard tertian
tradition. This is interesting to notice because it means that the only
real contribution of the chord tables is the identification of the root.
If the root is known, the chord type can be determined automatically.
Therefore the identification capability of SpellChord() can be ap-
pended to processes that only locate a root (such as Temperley’s) to
add a classification of type.

The Serioso system makes a distinction between a “neutral pitch
class” (NPC) and a “tonal pitch class” (TPC). NPCs are undifferenti-
ated pitch classes (such as the numbering system used in MIDI) in
which no difference between enharmonic spellings such C¢ and Db is
recognized. TPCs, on the other hand, do preserve these enharmonic
differences (Temperley 1997, 43). Serioso takes pitch numbers and
their metric placement as input and outputs a series of named “chord
spans” in which both harmonic roots and all of the input pitches are
spelled as tonal pitch classes.

Both the conversion to TPCs and identification of chord roots de-
pends on a concept called the “line of fifths.” Pitches, or chord roots,
are organized along a line on which neighboring pitches are a perfect
fifth apart. The line of fifths is similar to the circle of fifths except
that it extends infinitely in either direction (figure 2.12).

Serioso changes the problem of correctly spelling NPCs to one of
finding the smallest distance along the line of fifths. For example,
the interval 60—63 (in MIDI pitch numbers) could be spelled C—D#
or C—Eb. The tonal pitch classes C and D4 are nine places apart along
the line of fifths while the TPCs C and Eb are removed by only three
places. Serioso, then, would clearly prefer to spell the interval C—Eb,
following the smaller distance.

Let us implement chord spelling using the line of fifths idea. The
algorithm here is my own version and is greatly simplified from the

Db Ab Eb Bb F c G D A E B F# C#

Figure 2.12 Line of fifths
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much more complete program found on Temperley and Sleator’s
website (http://bobo.link.cs.cmu.edu/music-analysis/). It is based
on the observation that enharmonically equivalent TPCs are always
12 spaces apart on the line of fifths. Therefore the nearest TPC for
any pitch class will always be less than 12 steps away from any other.
For the moment we will only spell chords relative to themselves, as
the SpellChord () process does. The routine NpcToTpc () takes an
anchor TPC and returns the TPC corresponding to the inputPC argu-
ment that is closest to the anchor (figure 2.13).

We can define the root from the identification table to be the an-
chor TPC of a chord. Since we are only spelling the chord rela-

int Chord: :NpcToTpc (int anchor, int, inputPC)
{
/* find TPC closest to root on the line of fifths */

int tpcCandidate = FindMinimumDistance (anchor, PcToTpc {inputPC)) ;

if (abs(anchor-tpcCandidate) < 12) // if distance is less than 12
return tpcCandidate; // use this TPC
if (anchor-tpcCandidate > 0) // otherwise go up or down 12

while ((anchor-tpcCandidate) > 12)

tpcCandidate += 12; // until distance is < 12
else
while (abs{anchor-tpcCandidate) > 12)
tpcCandidate -= 12;
return tpcCandidate; // return nearest TPC

Figure 2.13 NpcToTpc () function
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tive to itself, the convention of spelling black key roots in their
flat form can be maintained. Then it is simply a matter of calling
NpcToTpe () for every member of the chord above the root to find
the TPC spelling. The Line0fFifths application on the CD-ROM
does exactly that.

There are two problems with LineOfFifths, one related to my
implementation of the idea and one arising from the method itself:
for jazz chords, the correct spelling of chord members is determined
not only by proximity on the line of fifths, but by the alterations made
to extensions in a stack of thirds. A C chord with a sharp ninth, for
example, should be spelled with a D¢, not an Eb, to indicate an altered
ninth. Because Eb is closer to C than is Dt on the line of fifths, how-
ever, the NpeToTpe () function will always return the TPC for Eb At
least for jazz chords, it seems that the TPC idea shows more promise
for the spelling of roots in a chord progression than it does for spell-
ing individual chord members.

The problem arising from my simple implementation has to do
with the fact that TPCs should not be calculated without reference
to the context. A tritone, for example, will be equidistant along the
line of fifths whether it is spelled C-F} or C-Gh. Temperley writes
“it seems that the current event should be labeled to maximize its
closeness to all previous events, with more-recent events being
weighted more than less-recent ones. In the current model, a ‘center
of gravity’ is taken, reflecting the average position of all prior events
on the line of fifths (weighted for recency); the new event is then
spelled so as to maximize its closeness to that center of gravity”
(1997, 44). With this step, we leave the realm of context indepen-
dence. Now, the spelling of pitch classes depends not only on rela-
tionships within the current event, but on the context established by
all the material leading up to it.

2.2 Context Sensitivity
Serioso not only labels pitch classes but identifies and spells the

roots ofharmonic areas as well, As indicated earlier, this too depends
on the line of fifths: “Before beginning the process of harmonic analy-
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sis, the algorithm chooses a TPC label for each pitch event; in so
doing, it maps each event onto a point on the line of fifths. This is
the TPC level of the algorithm. The algorithm then proceeds to the
harmonic level, where it divides the piece into segments labeled with
roots. Al this stage, too, it maps roots onto the line of fifths, at-
tempting to choose roots so that the roots of nearby segments are
close together on the line” (Temperley 1997, 45).

The full Serioso model is stated in a group of five preference rules.
Preference rules, as established in the Generative Theory of Tonal
Mausic (Lerdahl and Jackendoff 1983), indicate which of a number of
legal structures will correspond most closely to the experience of
human observers. There are two that concern line of fifths distance,
called the pitch variance and harmonic variance rules. The full set
is listed in figure 2.14 (this is the version published by Temperley
and Sleator in 1999, which is somewhat different from the one pub-
lished by Temperley in 1997).

2,21 Virtual Pitch

The Compatibility Rule is similar to a tradition of proposals for find-
ing the most salient pitch in a collection. Salience refers to the per-
ceptual prominence of one member among a group of elements: for
example, the root of a major triad has a unigque and prominent role
relative to the other pitches of the chord. As we know from acoustics,
any pitched sound is composed of a number of frequencies that are
related as integer multiples of the fundamental. The auditory system
is so strongly tuned to this phenomenon that the brain will supply
the fundamental to a set of integrally related frequencies that are
missing the lowest member: we “hear” the missing fundamental as
the pitch of the set even if it is not physically present. Figure 2.15
shows the harmonic series above the fundamental G,.

Because the perceptual system supplies a missing fundamental,
virtual pitch theory looks for certain intervals within a collection of
pitches and uses them as evidence for a heard fundamental that may
or may not be part of the collection. In figure 2.15 we see intervals
of a perfect fourth, major third, and minor third between the third,
fourth, and fifth harmonics. Virtual pitch theory takes these intervals
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Compatibility Rule-prefer roots that result in certain pitch-
root relationships. The following relationships are
preferred, in this order: 1, 5, 3, b3, b7, b5, b9,

ornamental.

Ornamental Dissonance Rule—in labeling events as ornamental,
prefer events that are (1) closely followed by another event

a half-step or whole-step away, and (2) metrically weak.

Harmonic Variance Rule—prefer roots such that roots of nearby

chord spans are close together on the line of fifths.

Pitch Variance Rule—prefer spellings for pitch events such

that nearby events are close together on the line of fifths.
Strong-Beat Rule—prefer to start chord spans on strong beats.
Figure 2.14 Serioso preference rules
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Figure 2.15 Harmonic series
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(at the pitch locations of the figure) as evidence that the fundamental
is C, since this is the pitch that the ear would supply. (For an influen-
tial version of this theory, see Terhardt et al. [1982]).

Richard Parncutt has continued the tradition with a series of publi-
cations (1988; 1989), and he extended the model to account for the
contextual effects of voicing and tonality (1997). The virtual pitch
component of the model uses a concept of root-support intervals.
These intervals are derived from the first members of the harmonic
series when repeated pitch classes are eliminated and appear in de-
creasing order of importance: the perfect unison, perfect fifth, major
third, minor seventh, and major second. Note in figure 2.15 that the
first pitches of the series are C, G, E, Bk, and D when repetitions are
omitted.

The vector of weights attached to root-support intervals is: w =
[10,0,1,0,3,0,0,5,0,0,2,0]. Tocalculate a chord root, the vector
w is multiplied by a vector representing the notes of a chord where
alindicates the presence ofa pitch class and a 0 indicates its absence
(like the pcs array in the Chord application). A pitch class vector
representing a C major triad, for example, would be [ 1, 0,0, 0,1, 0,
0,1, 0,0,0,0]. Multiplying a C major triad by the vector w yields
18:1 X104+ 0X0+0X1T+0X0+1TX3+0X0+0xX0+
1TX5+0X0+0X0+0xX2+0XD0

Note that this result is obtained by lining up the root-support
weight vector so that the unison weight (10) is multiplied by the
pitch class C. Because we want to compute the effect of all possible
alignments, the next step is to rotate the weight vector such that the
unison weight is aligned with G4, then D), and so on. The calculated
salience of the chord multiplied by the rotated weight vector is then
stored with the pitch class of each potential root in turn. For exam-
ple, a root position C major triad contains the pitch classes C, E. and
G. After multiplying the chord by the root-support weights for all
rotations of the set, the root saliencies calculated are:

G ( D D4 E F F G Ar A B B
18 0 3 3 10 6 2 10 3 7 1 0
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We have already gone through the calculation that assigns a sa-
lience of 18 to the root C. The others are found when the weight
vector is rotated to align with the corresponding candidate root’s
pitch class. The root | gets a salience of 10, for example, because the
vector w has been rotated to the position {0, 0,2,0,10,0,1,0, 3,0,
0.5 }aligning the unison root-support interval against the pitch class
E), yielding1 X 0+ 0xX0+0xX2+0xXx0+1xX10+0x0+
0X1T+1X0+0X3+0X0+0X0+0X5=10.

The saliencies are then normalized to make the average salience
for all twelve roots equal to ten. Normalizing the above collection
yields:

G Gt D Di E F F4 G Ab A Bb B
34 0 6 6 19 11 4 19 6 13 2 0

Virtual pitch theory is interesting in that it assigns root energy. as
it were, to pitch classes that are not present in the sounding chord.
In the case of a C major triad, Ct and B, the pitch classes one hall-
step away from the actual root, are the only ones to receive no weight
at all. Even the pitch class a tritone away from the root (Ff) receives
some activation—more, in fact, than the minor seventh (B}).

The calculation thus far takes no account of voicing or tonal con-
text and therefore roughly corresponds to the algorithm published
by Parncutt in (1988). The version we are concerned with here, how-
ever, also regards voicing: in particular, it looks for the lowest note
of the chord and gives it additional weight. Parncutt justifies the
amendment in part by appealing to jazz chord theory: “In jazz, it is
standard practice to notate D-F-=A—Cas Dm7 (not /D) and F-A-C-
Das F6 (not Dm7/F), implying that the root depends upon which note
is voiced in the bass™ (1997, 181). The model therefore adds a value
of 20 to the lowest note of the chord. Adding the voicing adjustment
to our ongoing C major triad (root position) analysis, we arrive at:

G Gt D Di E F F4 G Ab A Bb B
54 0 6 6 19 " 4 19 6 13 2 0
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The final step in Parncutt’s algorithm is to add weights represent-
ing the influence of a tonal context on the perception of the chord.
These weights are derived from the pc-stability profiles published
by Krumhansl and Kessler (1982). These profiles were determined
through experimentation with human subjects using the “probe-tone
technique,” which has become established as one of the central ex-
perimental paradigms of music cognition.

The technique arose from the observation that certain pilches
sound as though they finish an incomplete scale while others are less
stable. The series of tones C-D-E-F-G-A-B will sound complete when
followed by C, for example, but less so when followed by non-tonic
pitches of the C major scale, and still less complete when followed
by pitches that are not in the C major scale at all. “This, then, sug-
gested that a way to quantify the hierarchy of stability in tonal con-
texts would be to sound incomplete scale contexts with all possible
tones of the chromatic scale (which we call *probe tones’), and ask
listeners to give a numerical rating of the degree to which each of
the tones completed the scale” (Krumhansl 1990, 21).

The Krumhansl and Kessler stability profiles, then, came from the
numerical ratings assigned by human subjects to certain pitches with
respect to a given scale. Parncutt normalizes the profiles for this algo-
rithm in two steps: (1) a constant is subtracted such that the mini-
mum value of a profile becomes zero; and (2) the pc-weights are then
multiplied by a constant to make the average of all profiles equal to
10. The resulting normalized values are shown in table 2.5.

Parncutt applies the stability profiles as follows: “To account for
the effect of prevailing tonality on the root, the pc-salience profile of

Table 2.5 Normalized PC-Stability Profiles

0 1 2 3 4 5 6 7 8 9 10 11

major 33 0 10 1 17 15 2 24 1 11 0 5
minor 28 3 ] 21 3 9 2 17 12 3 8 6
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a chord is rotated around the pc-cycle until its first element corre-
sponds to the prevailing tonic, and then added to the stability pro-
file of the prevailing tonality. The resultant profile is the predicted
goodness-of-fit tone profile of the chord in context. The peak of the
rasultant profile is the predicted root of the chord in context™ (1997,
189). To complete the example of our root-position C major triad,
the final set of saliencies after addition of the stability profile for C
major (assuming, therefore, that the chord is the tonic of the key] is:

G Gt D Di E F F4 G Ab A Bl B

87 0 16 7 36 26 6 43 7 24 2 5

Figure 2.16 lists the C++ code of a Parncutt-style root calculator.
After some initialization, the algorithm converts the notes of the
chord to pitch classes and stores them in a pes array, just as the triad
and chord identifiers did. At the same time, the variable lowVoice
keeps track of which pitch class was at the bottom of the chord. The
double loop (after the comment “*for all pes and all rotations
of the weight set”) adds the product of all possible rotations of
the root-support weights multiplied by the pcs array to a set of sums
for each pitch class. The variable bigSum is simultaneously updated
to record the total salience distributed across all twelve pcs. A nor-
malization factor is computed by dividing 120 (10 * the number of
pitch classes) by bigSum. The sums are multiplied by the normaliza-
tion factor and the resulting saliencies are saved. Voicing and key
context adjustments to the saliencies are then made if the user has
chosen to activate those effects.

Figure 2.17 shows the interface to the Virtual Pitch application
found on the CD-ROM. The input is a C major triad in root position.
Both the voicing and tonal context buttons are on, so the saliencies
calculated for the chord are equal to those shown in the final calcula-
tion of our previously developed example. Chords can be generated
randomly using the Make Chord button (or the space bar) or they
can be played in from a MIDI keyboard. Turning the voicing and
context buttons on or off will recalculate the most recent chord with



void Parncutt::Calculate(Event *event)
{

register int i;

int sum[12];

int lowVoice = 128; // set lowest note equal to high pitch

for (i=0; i<12; i++) {
pcsi] = 0; // initialize pitch class array to zero

sum{i] = 0; // initialize weight sums to zero

i

// put a one in the corresponding pcs[] slot for each pitch

// and store lowest absolute pitch in lowVoice

for (i=0; i<event->ChordSize(); i++) {
int pitch = event->Notes (i)~->Pitch();
pcs[pitch%l12] = 1;
lowVoice = min(lowVoice, pitch);
}
lowVoice %= 12; // convert lowVoice to pitch class
inﬁ bigsum = 0; // the sum of all weights

// for all pcs and all rotation of the weight set
for (i=0; 1<12; i++)
for (int j=0; 3<12; j++) {
int product = pcs[j] * intervalWeights[((12-i)+3)%12);

sum[i] += product; // save salience sum for pc

Figure 2.16 Virtual pitch Calculate routine
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bigsum += product; // add in to total sum

// compute normalization so that the average is 10

float normalize = 120.0 / (float)bigsum;

// normalize all pitch class saliencies
for (i=0; i<12; i++)

saliencies([i] = round((float)sum{i] * normalize);

// add voicing weight if voicing is on

if (voicingOn) saliencies[lowVoice]l += 20;

// add in Krumhansl profile if key context is on
if (contextOn)
for (i=0; 1i<12; 1++)
if (profileMode == ParncuttMac::kMajor)
saliencies[ (i+currentKey)%12] += majorProfile[i];
else

saliencies[ (i+currentKey)%12] += minorProfilel[i];

Display();

Figure 2.16 Continued
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Figure 2.17 Virtual pitch application interface

or without the voicing or context effects so that the user can see the
impact of these rules on the calculation.

Figure 2.18 shows the roots output by the Parncutt algorithm for
chords in the first eight bars of the Largo con Gran Espressione of
Beethoven’s E} Major Piano Sonata, op. 7 (the slow movement is in
C major, not Eb). There are four possible context combinations:
(1) no context, (2) voicing active, (3) tonality active, and (4) voicing
and tonality active. For each chord, the root shown in figure 2.18 is
the one calculated with both the voicing and tonal contexts active.
Most of the analyses are relatively stable no matter which rules are
on: of the 15 chords shown, 12 (80%) give the same root in either
all of the combinations or in three out of four combinations. In the
cases where one of the four does not agree, it is usually because
the voicing effect without considering tonal context has elevated the
lowest pitch class to the highest score.

The remaining three chords are interesting as an illustration of the
various rules’ contribution to the analysis. The first, marked “X” in
figure 2.18, consists only of the two pitch classes D and F# The most
salient pitch is found to be either D (when voicing is off) or F¢ (when
it is on). Let the strength of the salience rating be the percentage of
the highest rating relative to the sum of the two highest ratings. When
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Figure 2.18 Beethoven virtual pitch analysis

there is no voicing and no context, for example, chord X indicates
D as the most salient pitch with a strength of 56%. Activating voicing
alone shifts the root to F4, with a strength of 56.9%. F# is also the
root when both voicing and context are active, but with a strength
of only 52%. In any case, we can see from the strength analysis that
the most salient pitch is ambiguous since it has only a small amount
of weight above that of its closest rival. The root position C major
triad that opens the movement, by way of contrast, indicates a root
with a strength of 67% (when both the voicing and tonal contexts
are active).

The chord marked “Y” in figure 2.18 would normally be classified
as a dominant seventh chord in third inversion with a suspension
in the upper voice. The Parncutt algorithm describes it as a G chord
when voicing and tonal context are not considered, an F chord when
voicing is on (either with or without context), and a C chord when
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seen in tonal context but without voicing. The complete model, then,
calls chord Y an I' chord, but with a strength of only 50.8%. Though
it is recognized as ambiguous, the ambiguity is between interpreta-
tions of F'and C, not the dominant G. The difficulty for the algorithm
comes from the suspension, particularly since it is the tonic pitch
that is suspended. Whenever the tonic pitch of the key is present, it
will tend to have a large activation due to the contribution of the
Krumhansl and Kessler stability profile. Note that Parncutt an-
nounces the intention to add a consideration of voice-leading to the
context-sensitivity of the model, which presumably would treat the
suspension of the C, but this extension was not implemented in
the version described (1997).

The last ambiguous chord, marked “Z” in figure 2.18, illustrates
the same difficulty. Traditional music theory would regard it as a
double suspension above a D minor chord in first inversion. The Par-
ncutt algorithm analyzes it as an A, F, or C chord according to the
rules that are active. The full model (with voicing and context) calls
it an F chord with a strength of 55%. None of the cases finds chord
7 to have a root of D.

The Parncutt root salience algorithm is an important contribution
to machine recognition of harmony. For our purposes, it is also par-
ticularly interesting because it functions well in real time. How may
we incorporate it in an analysis system for use in live performance?
There are two areas of extension [ wish to address here: (1) determi-
nation of chord type, and (2) interaction with key induction. Use of
the Parncutt algorithm in performance has a third limitation as
well—it assumes that all members of a chord will be presented si-
multaneously (which accounts for the mislabeling of chord X in fig-
ure 2.18). Any kind of arpeggiation must be reconciled elsewhere
before a chord can be presented to the algorithm for analysis. Other
harmonic analysis systems (Winograd 1968; Maxwell 1992) have the
same requirement: “The most important limitation is that they are
unable to handle cases where the notes of a chord are not stated fully
and simultaneously, such as arpeggiations, incomplete chords, and
unaccompanied melodies” (Temperley 1999, 10). Because that kind
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of reconciliation falls under the general heading of segmentation, this
third extension will be discussed in chapter 4.

2.2.2 Determination of Chord Type
Though the models presented by Temperley and Parncutt represent
sophisticated techniques for identifying the root of a chord, they say
nothing about the type of the chord lying above the root. In other
words, though we may learn that a chord is based on the pitch-class
C, we will not know whether it is in a major or minor mode. | sug-
gested in section 2.2 that the chord spelling algorithm described
there could be used to determine the type of a chord from a given
root. Accordingly, we will now add type identification to the Parn-
cutt root analysis.

Jazz theory, following Rameau’s scale-step theory, tends to regard
the root of a chord as the lowest note in a series of stacked thirds.

Musicians commonly identify each chord with a capital lefter de-
scribing the pitch that serves as its root . . . beside each letter of each
chord or its roman numeral are arabic numbers describing addi-
tional elements or tensions that supplement the basic triad. Artists
name them in terms of their numerical positions in a stack of thirds
built up from the chord’s root, either diatonically {in the initial key)
or with chromatic alterations. Reflecting the conventions of the past
several decades, chords typically include selective mixtures of the
pitches of a major or minor triad (the first, third, and fifth degrees
of its related scale). the triad’s diatonic upper extensions or tensions
(its seventh, ninth, eleventh and thirteenth degrees), and the friad’s
altered extensions (its flatted-ninth, raised-ninth, raised-eleventh,
and flatted-thirteenth degrees). {Berliner 1994, 74)

The table-lookup chord identification method described in section
2.2 includes a rather extensive mechanism for spelling the contents
of a pitch-class array as a series of stacked thirds above a root. The
Chord application works by table lookup unless there are too many
pitch classes in the chord, in which case it throws out pitch classes
until it has reduced the input to a size that fits the tables. The spelling
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processes then identify the intervals above the root according to a
stacked-thirds model. In fact, since the spelling algorithm arrives at
the same classification of the chord intervals as do the tables, the only
contribution that comes from the tables alone is the determination of
the root. Accordingly we may substitute the Parncutt algorithm to
choose the root of a chord and apply the spelling processes to name
the intervals above it.

The process is very simple: we first calculate the address of the
pitch class that is a major third above the computed root. Then we
look in the pes array to see if that pitch class is present. If it is, the
mode of the chord is declared to be major. If it is not, we look for
the minor third. If the minor third is present (and we know that the
major third is not), we declare the chord to be minor. If neither one
is there, we arbitrarily call it major.

The next step looks for variants of the fifth above the root, again
in order of importance to the type definition. In other words, if both
a perfect and sharp fifth were present in the pcs array, we would
rather use the perfect fifth to calculate the chord type. Whenever an
interval is classified, the corresponding pitch class is removed from
the pcs array to prevent identifying the same interval as something
else later on. With each interval identification, the classification of
the type is further refined.

For example, these are the possibilities if the step analyzing the
fifth finds a flatted fifth: if the current designation is major, it is re-
fined to major+ilats; if the current designation is minor, it is re-
fined to diminished. The code also addresses the case in which no
designation is current by calling the chord flat5. This situation will
not arise in the version on the CD-ROM as FindThird {} subroutine
always calls a chord major unless only a minor third is found. The
designation of flat5 demonstrates how other strategies could be im-
plemented: one might prefer to think of a chord as minor when a flat
fifth is found and there was no third, for example.

For the moment, however, we are only interested in the distinction
between major and minor modes. To add a simple classification of
mode to the Parncutt algorithm, then, we look for intervals of a third
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above the root and generate a classification accordingly. The output
of the process is set to (root*2 + chordMode). This vields 24 output
values, ranging from 0 to 23, Even values represent major chords and
odd values are minor. Now let us look at how roots combined with
mode can assist in a determination of tonality.

2.3 Key Induction

Knowing the root and type of a chord is useful information for jazz
analysis and improvisation, but becomes much more powerful when
processed in the context of functional harmony. To move from raw
identification to harmonic analysis, we must be able to relate a
chord’s root and type to a prevailing tonic. Identifying the tonic of
a set of chords is the task of key induction.

2.3.1 Interaction with Key Induction

One limitation of the Parncutt algorithm with respect to real-time
applications is that it requires the input of a key and mode in order
to apply the Krumhansl and Kessler stability profiles. We would pre-
fer, in an interactive situation, that the program determine the pre-
vailing tonality for itself. To achieve this functionality, we must
perform a process analogous to calculating root salience on a higher
structural level. Root salience finds the pitch that is most central to
the harmonic function of a collection of notes. Key induction finds
the pitch that is most central to the harmonic function of a collection
of roots.

For the purposes of the current discussion, we will use a simple
key induction process that I developed to supply part of the har-
monic analysis performed by my program, Cypher (Rowe 1993).
There exist other and certainly better methods but my focus here is
not so much on that process as it is on the interaction between root
finding and key induction, regardless of the specific algorithm used.
The Cypher key finder applies weights associated with 24 major and
minor chord roots to a set of 24 major and minor key theories. A C
major chord, for example, will reinforce theories for which that
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chord is functionally important (C major, F major, etc.) and penalize
theories to which the chord is alien (C minor, B major, etc.). At any
given point the key theory with the highest score is taken to be the
tonality of the musical context at that moment.

It appears straightforward to send the output of a key induction
process Lo the Parncutt root finder and thereby activate the tonal con-
text rule. However, the circularity of this method becomes clear
when one considers that the output of the root finder will itself be
the input to the key induction process. In Music and Schema Theory,
Marc Leman outlines the problem from a more general perspective:

The context-sensitive semantics in music has particular properties
implying an interaction between three elements: (i) the object, (ii) the
context in which the object appears, and (iii) the schema or structure

that controls its perception. In this perspective one may wonder how
both

= the meaning of a tone [or chord) can be determined by its context,
while
= the context itself is determined by the constituent tones (chord).

In other words, what is determined by the context is itself part of
that context, and as such, also contributes to the emergence of that
context. (Leman 1995, 4}

With this observation, Leman points to a phenomenon that be-
comes a very concrete problem in designing the flow of control be-
tween chord and key analysis processes: How does one calculate
chord roots with respect to a tonal center while simultaneously com-
puting a tonal center from the incoming chord roots?

Let us first try the most obvious strategy: incoming chords are sent
to the root finder and interpreted without tonal context. When a
chord root and mode have been calculated, these are sent as inputs
to the key finder. The output from the key finder is then sent back
to the root algorithm, setting the key and mode of the tonal context
and turning on the context sensitivity. Subsequent chords continue
to be analyzed with that key and mode until the key finder switches



Chapter 2 62

input output

> root
finder ;
Q tonal

center

Figure 2.19 Key induction feedback

Table 2.6 Output of Key Induction Process

C ¢ Ci ¢¢ D d E- e E e F f F# ## G g A a A a B b B b

C 4 2 2 1

G 6 2 1 2 1 5

G 8 4 2 2 9

C 12 1 4 2 10

C 16 6 4 11

D 16 4 13 2 1

F+ 9 1 8 2 2
F 10 4 2 2 2
C 14 6 2 3 2 1
G 16 2 1 6 7

C 20 8 3 8

F 21 12 2 2 2
C 25 14 2 3 2 1
G 27 2 1 14 7

d 28 3 4 14 6 1

C 32 16 2 7 1

C 36 18 4 8 1

interpretations. Whenever the key finder computes new values, these
are used to reset the context variables of the Parncutt algorithm and
the process continues (figure 2.19).

Table 2.6 lists the output of an application combining key induc-
tion with the Parncutt chord identification analysis described earlier.
The input was a live performance of the first eight bars of the Largo
from Beethoven’s Piano Sonata in Eb, op. 7 (see figure 2.18). Time
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advances as we descend through the figure from top to bottom. The
leftmost column shows the root and mode of each incoming chord
as it was determined by the Parncutt algorithm plus mode classifica-
tion. The letter represents the root and the case represents the mode,
where upper case letters are major chords and lower case letters are
minor (e.g., G is C major and ¢ is C minor). The remaining columns
show the amount of key salience attributed to each potential tonal
center. These are labeled across the top with the same case conven-
tion as that used for the chords, yvielding 24 columns (two for each
of the twelve pitch classes, one for major and one for minor). With
some hesitation at the outset, the key is correctly identified as C ma-
jor and that identification remains stable through the entire fragment
(the key theory with the most points in any row is shaded).

With this particular example the process works quite well. Al-
though the passage is somewhat ambiguous (the D and Fgmajor
chords in measures 3—4 do not belong in C major), the winning key
theory is correct in all cases but one: the second G-major chord in
measure 2 propels the key of G major to the leading position for ex-
actly one chord.

The C+ + code for the key finder algorithm is listed in figure 2.20.
We find the current chord classification by querying the input event.
Chords are identified by an integer ranging from 0 to 23, where the
root pc is found by dividing the value by two, and the mode (major
or minor) by taking the value modulo two. The modulo operation is
performed to select the correct weight set: minorWeights are used
if the input chord is minor, and majorWeights if it is major. Once
a weight set is chosen, the weights for that chord relative to each of
the 24 key theories are added to the running key scores. The resulting
key scores are sorted and the key with the most weight is selected
as the current tonic. Finally, the key and mode are fed back to the
Parncutt algorithm and its key context sensitivity is switched on.

The Cypher key-finding weight set was developed by hand through
a process of trial and error in which tonal music was played to the
system and the calculated key theories saved in a trace file. The traces
were examined to find chord progressions that led to incorrect key



voild Key::Calculate(class Event* event)

register int i;
// get root classification from NoTable
int chord = event->»FeatureValue(PSpelllistener: :kRoot);

if (chord < 0) return;

// use weights corresponding to input chord mode {(major or minor)

int* weights = (chord%2)?minorWeights:majorWeights;

// start adding weights at the location set by the chord

for (i=0; 1i<24; i++) {

int rotate = (chord+i)%24; // rotate through all 24 weights
keys{rotatel += weights(i]; // add weights

if (keys[rotate] < 0) keysirotate] = 0; else

if (keys[rotate] > 60) keys{rotate] = 60;

orderedKeys[1i] .key = rotate; // save values for sort

orderedKeys[i] .weight = keys[rotate];

// sort routine
bool swaps = true;
while (swaps) {
swaps = false;
for (i=0; 1<24-1; i++)
if (orderedKeys[i] .weight < orderedKeys[i+1l].weight) {

SortRecord tmp = orderedKeys|[i];

Figure 2.20 Key finder listing
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orderedKeys[1] = orderedKeys[i+1];

orderedKeys [1+1] = tmp;

swaps = true;

// weight of the first sorted record in max
int maxWeight = orderedKeys[0].weight;
int newKey = 0;

// look to see if more than one entry has maximum weight

for (i=0; orderedKeys[i] .weight == maxWeight; i++)
if (orderedKeys[i].key == value) {// if vyes
newKey = value; // and last key was one of them
break; // keep it
} else

// otherwise arbitrarily choose last

newKey = orderedKeys[1i] .key;

value = newKey;

Root* r = (Root*)listener->Feature(PSpelllistener: :kRoot);
r->SetKey(value/2); // set tonic in root finder
r->SetMode (value%2) ; // set mode in root finder
r->ContextOnOff (true) ; // turn on key sensitivity

if (file) WriteKeys(chord); // write weights to output file

Figure 2.20 Continued
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identifications and the weights were then adjusted accordingly. [ter-
ating this process led to the realization that negative weights were
often more important than the positive ones; that is, it is critical for
chords that lie outside a particular tonality to quickly reduce the
weight given to their corresponding theories. Only with such strong
negative influences was it possible to make the process recognize
modulations quickly enough.

The process traced here works well enough on the Beethoven ex-
ample but does not account for many other structural aspects of to-
nality in Western music. For example, it does not follow the
contribution of scales to the establishment of a tonal center. Let us
turn now to a more recent proposal that does address these effects.

2.3.2 Parallel Processing Model

The Krumhansl and Schmuckler key induction algorithm uses the
Krumhansl and Kessler pitch-class stability profiles (1982) to esti-
mate the key of a collection of pitch classes. Briefly, the process com-
pares histograms from the target passage and the stability profiles,
and predicts that the key associated with the best-matching profile
will be heard as the tonal center of the passage. As Krumhansl has
documented (1990), the technique does a good job of predicting tonal
centers from excerpts as short as four notes.

The algorithm correlates pc distributions without regard to the or-
der of their presentation. David Butler points out that order can be
decisive for key perceptions, however, in that the same collection of
pitches can indicate two different tonal centers depending on their
sequence of presentation (1989). Similarly, “it is easy to create pas-
sages with the same root progressions that imply different keys
(C-Dm-G7 implies C major, C-D7-G implies G major)” (Temperley
1997, 63). Neither pitch distributions nor chord progressions alone,
then, would seem to comprise all of the information used in key
recognition.

In their 1996 article, “A Parallel-Processing Key-Finding Model,”
Piet Vos and Erwin Van Geenen propose a symbolic algorithm in
which “scale-specific information and chord-specific information
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are processed simultaneously and . . . key cues from both streams of
information additively contribute to key inference” (1996, 187). The
input to the model (abbreviated PPM for parallel-processing model)
consists of notes reduced to pitch classes with attached durations.
The duration of a pitch class is used to calculate its contribution to
particular scalar or chordal interpretations.

Vos and Van Geenen consider key finding an instance of inductive
reasoning “‘in the sense that a structural regularity in a sequence of
events (a key in the present case) has to be inferred from a few events
(tones)” (1996, 187). Because key finding is inductive, the accuracy
of the model depends on its fidelity to the psychological states of
human listeners. That is, the key found by the model should match
the key experienced by a human listener when hearing the same in-
putl. For this reason, Vos and Van Geenen are interested in devel-
oping “a computational model of key finding that is able to process
tonal music in order to infer its key in a psychologically and music-
theoretically plausible way” (1996, 186—187).

Two primary mechanisms from which psychological plausibility
arises are the primacy factor and memory constraints. In many kinds
of human induction, the first few items of a series of elements have
a privileged position with respect to establishing the inference
(Brown, Butler, and Riess Jones 1994; Marslen-Wilson and Tyler
1984). This emphasis on early members of the series is referred to
as the primacy factor. Memory constraints comprise the other charac-
teristic consistent with human psychology, as the effects of short-
term memory on induction tasks like key-finding have been widely
discussed (Craik and Lockhart 1972; Butler and Ward 1988).

Let us review the functioning of the algorithm. When a pitch event
is submitted, the scale processing component adds the duration of
the input to the scale score of each of the 24 keys to which the pc
belongs. Durations are expressed in 64ths of a whole note. Thus, one
eighth note is given a value of 8, Table 2.7 shows the addition to the
scale totals of all 24 keys when a pitch class of 0 (C) with a dura-
tion of an eighth note is input to the model. Notice that the pitch
class 0 refers not only to all occurrences of G, but also to enharmonic
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Table 2.7 Point Contributions of C Pitch Class to 24 Scales

SCALES POINTS

G Major
G minor
G# Major
G4 minor
D Major
D minor
Eb Major
Eb minor
E Major
E minor
F Major
F minor
F4 Major
F¢ minor
G Major
G minor
Ab Major
Ab minar
A Major
A minor
B: Major
Bb minor
B Major
B minor

L= i oo B = o B = o B o S en S © o = o B « o i an S an B« o i = = T« c R an S = o Ji o o i« o i on i « o i = o T o o J = o]

equivalents such as Bf That explains why pc 0 contributes to
the scale theory of C¢ major, for example, since the scale of C major
includes Bt

All three minor scale forms (natural, harmonic, and melodic) are
used to calculate the association of a pitch class with a minor key.
Because this conjunction is in effect, there are only three intervals
that are not included in the minor scale for any particular tonic: the
minor second, major third and tritone. Accordingly, in table 2.7, the
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only minor scales that do not get points for a pitch class of C are B
minor (relative to which, C is the minor second), Ab minor (relative
to which, C is the major third), and F§ minor (relative to which, C is
the tritone). Every pc, then, contributes to 16 different scale theories:
seven major scales and nine minor.

Each of the 24 keys has a melodic (scalar) score associated with it
that is updated by the process just described, and there are additional
calculations due to primacy effects that we will review momentarily.
Hach key also maintains a harmonic score derived from an analysis
of the membership of incoming pecs in certain functional chords
within the key. The functions tracked by the algorithm are the tonic,
subdominant, and dominant seventh chords of each key. As in the
case of the scale analysis, a weight equal to the duration of the note
is added to the score of each of the functional chords to which a
pitch class belongs. When a pc belongs to two chord functions, the
activation is divided between the two scores. Table 2.8 shows the
contribution made by the pitch class 0 (C) to three possible key inter-
pretations. Keep in mind that these are not the only key theories
affected.

The total contribution of the incoming pitch class is the same in
rach case: 8 points, or the duration of an eighth note, equal to 8 64ths.
Notice the difference in distribution, however, among the three
cases. Because pitch class C is a member of both the tonic and sub-
dominant triads in C major, the activation is split between those two
scores. In F major, the pitch class C is a member of the tonic triad

Table 2.8 Point Contributions of C Pitch Class to 3 Key Theories

C MAJOR F MAJOR A MAJOR
Tonic 4 4 8
Subdominant 4 0 0
Dominant? 0 4 0
Total g g 8
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and dominant seventh, so those two scores are each augmented by
half of the activation. In Al major, C is a member of only the tonic
triad, and all of the weight goes to that score.

The Vos and Van Geenen model is parallel in that both the scalar
and chordal analyses are conducted for all incoming pitch classes.
When the maximum scale and chord weights of all 24 possible keys
are associated with the same key theory, that key is held to be the
prevailing tonality. If the chord and scale analyses produce different
leaders, the key is ambiguous.

Primacy effects complicate the algorithm considerably, but [ will
not describe them in full here as they are outlined by Vos and Van
Geenen (1996) and can be seen at work in the source code for the
PPM application on the CD-ROM. T will, however, describe a few
primacy effects to clarify their function. The first effect changes the
contribution of an initial pc to the scale and chord theories: “The
first input is initially assumed to be the key's root by assigning a
weight equaling the duration of the first input to the scalar- and
chord-scores of the keys whose root matches the input’s pc” [Vos
and Van Geenen 1996, 191). Since the normal procedure is to add
the pc’s duration to the scale or chord score, the effect of this primacy
rule is to double the contribution of the first pitch class.

The doubling effect entails a special treatment of the very first in-
put to the system. The other effects cover a primacy span of several
of the first inputs. Vos and Van Geenen set the primacy span equal
to the first five events. One of these effects will remove any accumu-
lated scale weight from a key if a pc arrives that is not a member of
the key’s scale. For example, if the scale weight for Cminor is 8 and
an E-natural pitch class arrives (one of the three pcs that does not
belong to any version of the C-minor scale), the scale weight does
not simply stay at 8 (as it would outside the primacy span) but is
reset to zero.

Figure 2.21 lists the code for the scale processing component of
the PPM application. Most of it is implemented with the conditional
if (ScaleHas({PC)) UpdateScale{duration}:; which simply
adds the duration of the input to the scale score if the pc is in the
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int TKey::ScaleProcess (int PC, long duration)
{
if (ScaleHas(PC)) {
if (vos->NumInputs() == 0) // if this is first input
if (PC == tonicPC) // and the pc is the tonic of the key

duration *= 2; // double the duration weight

UpdateScale (duration) ; // add the duration to the scale weight
} else // else pc is not in this key's scale
if (vos~->NumInputs{) < vos->PrimacySpan{())} {
melodicScore = 0; // if in primacy span, zero scale score
if (hasInitialWeight) {( // 1f this key got initial chord weight
tonicChord -= vos->InitialWeight(); // remove it

hasInitialWeight = false;

}

return melodicScore; // return score for this scale

Figure 2.21 Listing of TKey : : ScaleProcess ()

scale of the key. Everything else in ScaleProcess () isthere to deal
with primacy effects. If we are handling the first input to the model,
for example, we check to see whether the pc is the same as the tonic
pitch class of the key under consideration. If it is, we double the
duration weight used to updatce the scale. If the pitch class coming
in is not in the key’s scale while the primacy span is still active, we
zero out any accumulated melodic score and remove the additional
weight from the tonicChord score as well.

Figure 2.22 shows the score of the opening of Schubert’s song
Gretchen am Spinnrade, D. 118. The excerpt is interesting for its
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Figure 2.22 Gretchen am Spinnrade
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Step Scalar Chordal Key
Profile Profile Inference

1 F,f (16)

2 F, £ (24)

3 F(56) F(48) F(104)

5 F(72) F(56) F(128)

6 F(104) d(l1ie)

10 F(184) d(196)

11 F(192) d(204)

12 F(216) F(220) F(436)

13 F(232) F(236) F(468)

14 F(240) F(244) F(484)

15 c,d(264) c(260) c(524)

16 c,d(272) c{268) c(540)

23 c,d(400) c(396) c(796)

Figure 2.23 PPM analysis of Grefchen am Spinnrade

tonal complexity, as Claude Palisca notes: “The piano part suggests
not only the whirr of the spinning wheel by a constant sixteenth-
note figure in the right hand and the motion of the treadle by the
repeated rhythmic pattern in the left hand, but also the agitation of
Gretchen’s thoughts, her peace gone, as she thinks of her beloved in
Goethe’s epic poem Faust. The restlessness is also reflected in the
harmony, in the tension between D minor and C major and sugges-
tions of C minor in the opening stanza” (1996, 399).

Figure 2.23 lists the output of the PPM for the soprano line alone.
An analysis of the soprano without the accompaniment is an unfair
test, since the piano establishes so much of the harmonic context of
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the work. It is interesting to see what the PPM makes of it, however,
as a guide to devising strategies for combining it with concurrent
analyses.

The model begins with a scale theory of F' (major or minor) because
of the initial weight accorded to the first pitch class heard. The
chordal profile agrees once the second member of an F major triad
arrives with the A in m. 3 (simultaneously eliminating F minor as a
scalar candidate). F major is the best answer for the soprano alone—
it is the additional context in the piano accompaniment that tells us
we are in D minor. What is interesting is that the PPM, following
the soprano alone, becomes confused between F major and D) minor
as soon as the primacy span has passed with step 6 (the downbeat
of m. 4).

The reason for this confusion is that beyond the primacy span, the
tonic, subdominant, and dominant seventh scores for each key are
added together to determine the chordal profile, while within the
primacy span only contributions from the tonic triad are considered.
The repeated A pcs in the first three bars of the soprano line contrib-
ute to the chordal profile of F major as part of the tonic triad, but to
the profile of D minor as part of both the tonic and dominant. Once
the dominant score is considered, and particularly when the large
weight stemming from the long A at the beginning of bar 4 is added
in, the D minor chordal profile runs ahead. The PPM continues to
find the key ambiguous until step 12, the arrival of the soprano C
on the downbeat of m. 7. Since C contributes to both the tonic and
dominant chord scores of F major, but not to the harmonic weight
of D minor, F major is established as the unambiguous tonal center
once again.

The B natural on the downbeat of m. 8 (step 15) throws us quite
suddenly into a confirmed C minor. As Palisca notes, the score dem-
onstrates a D minor/C major ambiguity throughout this first section.
We only know that it is C major from the accompaniment, so the
PPM’s estimate of C minor is quite well taken. The only reason the
PPM does not consider C major, in fact, is the Bb of the soprano in
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m. 3. As the Bb falls within the primacy span and outside the C major
scale, all of the scalar points C major had garnered to that point are
erased. Through these bars we can see the value of the parallel tracks
in the PPM: D minor has a melodic weight equal to that of C minor,
but is not output as the most salient tonality because it is not con-
firmed by the harmonic analysis.

The Parallel Processing Model is very well suited to real-time ap-
plications because it is efficient and causal. A recent extension to
the algorithm (not implemented in my version) uses dominant-tonic
leaps at the outset of a melody to further focus the identification of
key (Vos 1999). The scope of the PPM’s application, however, is lim-
ited by two characteristics: first, it relies on quantized durations to
calculate the salience scores; and second, it only works with mono-
phonic music.

The PPM adds weights to the scalar and harmonic scores that are
calculated as integer multiples of 64th note durations. For example,
as we have seen, an eighth note will generate a score of 8, since the
duration of one eighth note is equal to the duration of eight 64th
notes. This is troublesome for real-time processing because, first, we
must wait until the release of a note to calculate its effect. That means
that any interaction based on key input cannot take place at the at-
tack, but only after a delay equal to the duration of the input. Since
key is a relatively high-level percept, processing based on it can often
generate a response quickly enough to be musically convincing even
after such a delay. We are forced to accept it in any case if we wish
to use the algorithm.

We then must face the other complication, which requires that we
also run a real-time quantizer, without which we will have no quan-
tized durations available. The function of the algorithm, however,
does not depend on quantization as such because it is quite sensitive
to the relative values of the durations, no matter what the notated
values might be. In other words, if we were to multiply or divide all
durations in a melody by two, the algorithm would produce precisely
the same results. We can use this observation to develop a method
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for calculating weights based on the relative durations of the input.
Suppose the first actual duration of a performed event is 500 millisec-
onds. We can compute a constant divisor that will set the millisecond
value to eight: float div = 500/8. Hight is chosen because it is a
common duration value in PPM, but any other value could be substi-
tuted. Now this and all subsequent inputs can be divided by the con-
stant and truncated to an integer to derive a normalized PPM weight.
Though no longer expressed in milliseconds, the relative duration
lengths are preserved.

The PPM does a good job on the Schubert excerpt even when con-
sidering the soprano alone. It seems clear, however, that an even bet-
ter analysis could be performed if the piano part were treated as well.
We cannot realize this aspiration with the PPM as it stands, however,
because it is designed to handle only monophonic input. The mono-
phonic restriction is not a particular problem for real-time pro-
cessing. then, but rather a limitation on the range of inputs to which
this algorithm can be applied.

How might we couple it with other processes to widen its scope?
One strategy would be to invoke the PPM whenever the input is de-
termined to be monophonic, and use some other technique for
chords. In fact we could use this possibility to our advantage in com-
bination with the Parncutt algorithm of the previous section. We
noted there that the virtual pitch process assumes that chords will
be presented simultaneously. Arpeggiation causes each chord mem-
ber to be considered independently, which means essentially that
each individual pitch will be found to be its own root, thus skewing
the key finding process. We could instead use the virtual pitch
method to compute chord roots that are fed to the harmonic analysis
track of the PPM, and use the scalar component as it is. | have not
constructed such a program, but T hope the examples already devel-
oped give an idea of how it could be realized by reusing the compo-
nents already at hand. For the remainder of this chapter T will address
the C++ programming that underlies these components in greater
detail. Those readers who wish to concentrate on the musical issues
may prefer to move ahead to chapter 3.
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2.4 C++ and Object Orientation

C++ is an object-oriented computer language. Texts discussing ob-
ject orientation generally are widely available, and Stephen Pope's
collection, The Well-Tempered Object is a good introduction to its
musical use in particular (1991). A key concept of object orientation
is the bhase class—a general encapsulation of data and methods that
can be specialized for particular applications. The Machine Musi-
cianship library is primarily a collection of base classes that can be
used directly, or specialized as the building blocks of interactive mu-
sic applications.

2.4.1 The Note Class

One of the most fundamental base classes is the Not e class. The Note
class is basically an encoding of the MIDI representation of a note
with some additional timing information. That is, a Note is held to
consist of a pitch number and an onset velocity, or loudness (follow-
ing the MIDI standard in which velocities are represented in seven
bits and range between 0 and 127). Both pitch and velocity are en-
coded as integers, however, which means that the Note class does
not require that their values stay within seven bits. Some programs
may require more precision, and that additional storage is already
allocated in the class (figure 2.24).

The Note class makes two additions to the MIDI standard: first,
each Note has associated with it a duration in milliseconds. MIDI
separates the attack and release of a note into two separate mes-
sages: Note On and Note Off. It does not record either the onset
or release time of a note. The Note class maintains the duration
of each note, allowing a release time to be calculated at the time
of attack. The other addition to the MIDI specification is a pointer
to a surrounding Event—another class that is made up of a col-
lection of Notes. An Event maintains the onset time of the
enclosed Notes, as we see next. All Notes In an Event attack at
the same time. Because durations are encoded in the Notes and
not the Event, however, each note in a chord can be released
individually.



class Note ({

protected:

class Event* event;
int pitch;
int velocity;
long duration;

public:

Yz

Note(class Event *event);
Note(const Note& rhs);

Note& operator={const Note&

// access to data members

class Event* Event (void)
int Pitch (void)
int Velocity (void)
long Duration(veid)

/7

//

7/

/7

const

const

const

const

// modification of data members
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surrounding event
MIDI pitch number
MIDI velocity

duration in msec

constructor

copy constructor

{ return event; }
{ return pitch; }
{ return velocity; }

{ return duration; }

void SetPitch (int newPitch) { pitch = newPitch;
void SetVelocity(int newVel) { velocity = newVel;
void SetDuration(int newDur) { duration = newbur;

Figure 2.24 Note class

}

}

}



Symbolic Processes 79

lduration
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]duration
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|

Notes

|duration
Event onset

Figure 2.25 Event /Note attack and releases

Figure 2.25 provides a graphic illustration of the organization of
attacks and releases in an Event /Note combination. The onset of
the Event gives a common attack time to all member Notes. The
release of each Note is independent and calculated by adding the
duration field of the Note object to the onset time of the Event. This
is of course only one of several ways to organize temporal relations
between Notes and Events. The right configuration for any particu-
lar application will depend on how these constructs are used. If one
wanted block-style chords that always attacked and released to-
gether, the duration field could be migrated up to the Event level to
provide a single release time for all member Notes.

One advantage of proposing these representations in C+ + is that
they can easily be modified by the reader. All data members of the
Note class are declared as protected variables, for example, which
means that user classes derived from Note will have access to them.
If they were declared to be private, derived classes would not have
direct access to the data members. To make an Event /Note config-
uration in which duration was encoded at the Event level, for exam-
ple, one could simply delete the duration member and its associated
functions from the Note class and add them to Events. (In that case
the new classes would not be derived but simply user-modified ver-
sions of the originals).
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2.4.2 The Event Class

The Event class consists of a collection of Notes and a number of
facilities for manipulation of the collection as a whole. An Event
could be thought of as the representation of a chord, since it en-
capsulates a number of Notes. Recall, however, that even single
Notes are wrapped in an Event in this scheme. In the middle of the
Event definition is a pointer to an array of Notes, the size of which
is determined during the construction of the Event. The variable
chordsize indicates how many notes are actually present.

An Event has two ways of representing its onset time: the time
field records the number of milliseconds elapsed since the applica-
tion’s clock started ticking. The offset field contains the number
of milliseconds elapsed since the previous Event—it is the inter-
onset-interval (IOI) between the current Event and the one before
it. The Event class is listed in its entirety in figure 2.26.

The Event class allows us to deal with chords as a single entity.
One Event can contain from one to maxNotes of Notes. Such capa-
bility takes us further away from the MIDI standard, which has no
facilities for indicating the time at which notes are to occur, or have
occurred. Consequently, there is no way in MIDI itself to indicate
that a group of notes are meant to sound together as a chord. Such
timing information is added by MIDI sequencers, and this addition
is in fact one of their main functions. On the CD-ROM is a program
that will read standard MIDI files and capture their timing and note
information using the Event and Note classes.

Carol Krumhansl suggests a representation for music that is quite
close to the Event class: “For purposes of discussion, laet us adopt
the following formalism for musical events: Eventy,, (pitch, dura-
tion, loudness, timbre). The subscript notation is used to indicate
that musical events are indexed in time. This mathematical conven-
tion is adopted as a way of specifying a value (time) for each event
with respect to which it is ordered relative to other events” (1992,
201). The time index is analogous to what we record in the time field
of an Event. Pitch, duration, and loudness are also available from a
MIDI stream and are recorded within an Event’s constituent Notes.



class Event {

protected:
Event* prev;
Eventx* next;
enum { kMaxFeatures = 32 };
const int maxNotes; // max number of notes in this Event
long time; // the absolute time of the event
long offset; // I0I between this and prev
int numChans; // how many output channels
int whichChans[16]; // which channels they are
int bendStart; // pitchbend at the attack
long eventDuration; // averaged duration of event
int chordSize; // how many notes actually present
class Note** notes; // array of Note pointers
int featurevVals [kMaxFeatures];

class EventBlock* eventBlock;

class Segment* segment;

public:
Event (void) ;
Event (class EventBlock* block);
Event (const Event& rhs);
Event& operator={(const Event& rhs);

~Event (void) ;

Figure 2.26 Event class



void

CalculateEventDuration(void) ;

// access to data members

Event*
Event*
ink
long
long
int
int

iE
int
long

it
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Next (void) const { return next; }
Prev(void) const { return prev; }
MaxNotes (void) const { return maxNotes; }
Time (void) const { return time; }
IOI (void) const { return offset; }
NumChans (void) const { return numChans; }
WhichChans (int w) const {

((w>=16) || (w<0)) return 0; else return whichChans[w];}
BendStart (void) const { return bendStart; }
EventDuration(void) const { return eventDuration; }
ChordSize(void) const { return chordSize; }

class Note* Notes(int n) const {

int

if ((n>=0) &&

FeatureValue(int id)

class Segment* Segment (void)

// modification of data members

void
void
void
void

void

void

SetNext (Event* newNext)

SetPrev (Event* newPrev)

SetTime (long newTime)

SetIOT (long newIOI)

CopyChans (int numChans,

SetChans (int nc, ...)

Figure 2.26 Continued

(n<maxNotes) )

return notes[n]; }

const { return featurevals[id];}

const { return segment;

{ next =

{ prev =

{ time =

{ offset =

i

newNext; }
newPrev; }
newTime; }
newIOI; }

int* whichChans) ;
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void SetBendStart (int newBendStart)
{ bendStart = newBendStart; }
void SetChordSize (int newChordSize)

{ chordSize = newChordSize; }

void SetFeaturevValue (int id, int value)
{ featurevals[id] = value; }
void SetSegment (class Segment* g)
{ segment = s; }
bool IsBefore(Event* other);
bool IsAfter (Event* other);
bool IsConcurrent (Event* other) ;
bool Overlaps (Event* other) ;
int NumEventsTo (Event* other) ;

¥

Figure 2.26 Continued

There is no field for timbre, however, because the MIDI messages
from which Events are constructed bear no timbral information.

Krumhansl continues her proposal by noting the special status of
time within the framework: “the unidirectional aspect of time (prog-
ressing forward) is reflected in the fact that, although possible, it is
difficult to recognize a melody played backwards, whereas other
transformations such as transposition in pitch range, change of
tempo, change of dynamics, and change of instrument, leave the mel-
ody recognizable” (1992, 202). The importance of time ordering
is reflected in the Event class by the two fields used to represent
its passage (time and offset) as well as by the Boolean functions
used to locate one Event relative to another (IsBefore, IsAfter,
IsConcurrent, and Overlaps).
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class EventBlock {

protected:
Event** alls;
Event* head;
Event* tail;
const int numkEvents;
public:

EventBlock(int size=128);

~EventBlock {void) ;

inline Event* Member (int m) const { return all[m]; }
inline Event* Head (void) const { return head; }
inline Event* Tail (void) const { return tail; }
inline int NumEvents (void) const { return numEvents; }

}i

Figure 2.27 EventBlock class

Figure 2.27 lists the definition of the EventBlock class. An
EventBlock contains numEvents Events (the default value of
numEvents is set arbitrarily to 128). The array all is initialized to
hold the Events. Then all of the Events in the block are connected
into a doubly linked circular list. Now the Prev () and Next ()
member functions of the Event class can be used with the Events
in the block to access their neighbors. When the end of the block is
reached, a Next () call will wrap around back to the beginning.
Figure 2.28 illustrates the relationships between an EventBlock,
its constituent Events, and the Note objects the Events contain.

Note, Event, and EventBlock form a group of hierarchically re-
lated classes that represent music as transmitted through MIDI mes-
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EventBlock
Event Event

prev

Notes ——————— Notes

L ] N
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next

Figure 2.28 Note/Event/EventBlock

sages with the addition of several forms of timing information.
Another base class, the Listener, organizes incoming MIDI mes-
sages into Notes and Events and supervises their analysis.

2.4.3 The Listener Class

The Listener class pulls the elements we have discussed thus far
together in working applications. Whenever new MIDI messages ar-
rive, the OMSInPort class calls Listener to process the input. The
Listener function Hear () packages raw MIDI messages as Events.
Recall that Events extend the MIDI standard by grouping notes into
chords and saving their durations. Figure 2.29 lists the code for
Hear ().

Hear () is primarily a straightforward filling-in of the values of an
Event. The most involved aspect of it concerns determining which
MIDI events belong together in a single Event object (that is, which
MIDI events form part of a chord) and what their duration is. A re-
lated problem involves deciding when the rest of the program should
be made aware that a new Event has been formed. The conditional

if (((localTime-lastAttack)>100L) || (chordSize>=e->MaxNotes()))

determines when a new Event should begin. The first part of the
conditional says that when 100 milliseconds have elapsed since the
onset of the last Event, any new input should form the onset of a
new Event. The second part of the conditional ensures that when
an Event has been filled with the maximum number of notes, any
additional inputs cause the allocation of a new Event.



void Listener: :Hear (MIDIEvent *m)

long localTime = m->time; // get time event arrived
Note* n;
Event* e;

imk address;

if (((m->status&kCommandMask)==kNoteOn) && Velocity(m)) {
e = Incoming; // note on

int chordSize = e->ChordSize();

// if IOI is over 100 ms or prev is full, start new event

if (((localTime-lastAttack)>100L) || (chordSize>=e->MaxNotes()))
Incoming = Incoming->Next () ;
e = Incoming;
scheduler->ScheduleTask (Now+50L,0,2,0, NotifyInput, this);
e->SetTime (localTime) ; // record onset time
if (lastAttack > 0) // record IOI

e->8etIOI(localTime - lastAttack);

else
e->SetTOI(0);
e->SetChans (1, Channel{(m)); // record input channel
n = e->Notes(0); // initialize note pointer
e->SetChordSize(l); // first note

lastAttack = localTime;
} else {

n = e->Notes (chordSize); // chord member

Figure 2.29 Code listing for Hear ()
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e->SetChordSize (chordSize+l); // increment chordSize count

address = Pitch{(m)%kNumPitches;

notesOn[address] = 1; // record that note is on
n->SetPitch(address); // record pitch
n->SetVelocity(Velocity(m)); // record velocity
n->SetDuration(-1); // provisional duration
durations{address] = n;

} else { // note off

address = Pitch(m)%kNumPitches;
notesOnladdress] = 0; // record that note went off
if (durations[address])
n = durations[address]; // get back note pointer
else
return;
// calculate real duration
long realDur = localTime - n->Event()->Time();
if (realDur < 20L) realDur = 20L;
n->SetDuration(realDur) ;
n->Event () ->CalculateEventDuration () ;

durations[address] = NULL;

Figure 2.29 Continued
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Even when a new Event has been created, however, the line
gcheduler->3cheduleTask (Now+50L, 0, 2, 0, NotifyInput) ;

will delay notification of its formation to the rest of the program
for 50 milliseconds. The reason for the delay is to allow additional
chord members to arrive, These two durations—100 milliseconds
to form a new Ewvent, 50 milliseconds to notify the rest of the
system—are critical to the performance of a real-lime analysis
system. It might seem that the lapse between onset and notifica-
tion should be the same as the duration within which new chord
members may arrive. This makes the analysis unacceptably sluggish
for performance situations, however, since there would always be
a 100-millisecond delay between what the player does and when
the program responds. That is why these durations are different:
the time lapse before notification determines the responsiveness
of the system, and the duration within which chord members
can arrive affects how accurately the program will group together
pitches that were meant to be played as a chord.

A similar pragmatism affects how note durations are calculated.
At onset time, all notes in a chord are given a duration of —1, to serve
as an indicator to the rest of the system that the note has no real
duration yet assigned. When the notes of the chord are released, the
real duration of each note is determined and used to overwrite the
—1 marker. The Event function CalculateEventDuration()
computes the duration of the Event as a whole by taking the average
of all its constituent Note durations. Because duration is not known
at the time of attack, any listening processes that are sensitive to du-
ration and that are executed at the attack time must use some surro-
gate—the duration of the most recent complete Event, for example,
or the moving average of the durations over a recent collection of

Events.
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2.4.4 The ListenProp Class
When the Listener signals that new input has arrived, the con-
structed Event is sent to a collection of ListenProps determined
by the application. ListenProps analyze musical features of
Events. They are so called because they construct a property list of
feature classifications.

The ListenProp (figure 2.30) is a base class that maintains the
three basic items of information needed for an analysis process in
this system: an identification number, a value, and a resolution.

class ListenProp {

protected:
ik Sl 5 // identifier of analysis type
int value; // calculated feature classification
int resolution; // number of possible values

public:

ListenProp(int id, int value, int resolution)

id(id), value(value), resolution(resolution) {}

virtual void Calculate(class Event* event) = 0;

// data member access functions

inline int PropID(void) const { return id; }
inline int Value(void) const { return value; }
inline int Resolution(void) const { return resolution; }

Y

Figure 2.30 ListenProp class
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The ID number identifies which of the possible analysis types a
ListenProp object represents. The value is the quantitative classi-
fication of a musical feature resulting from a class’s analysis. The
resolution records how many possible classification values may be
output from a given ListenProp. An Event object contains a
featureVals array that lists the classifications calculated for that
Event by some number of ListenProp objects. In other words, the
featureVals ofan Event are copies of the values calculated by all
active ListenProps.

Notice the declaration of the virtual void function calculate ().
A virtual function is one that can be replaced by another definition
in derived classes. Calculate (} is a pure virtual function because
there is no default code for it in the base class. Since ListenProp
contains a pure virtual function, it is an abstract class that cannot be
used to instantiate objects. Derived classes that use ListenProp as
abase and do define the functionality of Calculate (), on the other
hand, can be used to instantiate objects. The Chord class used in
the triad identifier, for example, is a derived ListenProp. The
Calculate () function of the class was listed in figure 2.4. The MIDI
chord identifier and PPM calculator were also derived from the
ListenProp class.

The advantage of replacing a virtual function with specific defini-
tions in a derived class is that the derived classes can all be handled
according to the characteristics of the base class. We will write a great
variety of analysis processes during the course of this study, but as
long as they are written as descendants of the ListenProp class,
higher-level routines can access them all through a common interface
and continue to function unchanged no matter which collection of
analyzers is currently active. The higher-level class that primarily
takes advantage of the uniform interface to ListenProps is the
Listener. The Listener function Levell_Znalysis () (shown
in the listing on the CD-ROM) illustrates how ListenProps are
called.

In this chapter we have established a number of base classes for
the representation and processing of music. The object-orientation
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of the analysis routines and their control processes allows us to com-
bine various algorithms and put them into communication with one
another, Techniques of chord identification, root salience computa-
tion, and key induction were all implemented within the same basic
framework. In the remaining chapters the utility of such compound
analysis techniques is further explored. We have in many published
algorithms proven techniques for limited domains—the PPM is one
example of a process that works well, but only for monophonic in-
puts. With an integrated and consistent control structure, we can eas-
ily augment it with other processes that address the limitation. The
problem then becomes one of coordinating concurrent processes and
managing the parallel and sometimes conflicting streams of informa-
tion they produce.



This Page Intentionally Left Blank



3 Suh-symhbolic Processes

The techniques developed in chapter 2 all used some kind of sym-
bolic processing. That is, symbols representing features of the musi-
cal context were manipulated by algorithms that made inferences
about their relationships based on knowledge of the objects they rep-
resent in real music. The Vos and Van Geenen Parallel Processing
Model, for example, uses knowledge about scales and chord func-
tions to update saliency ratings for 24 possible major and minor to-
nalities. Rules of the sort found in ScaleProcess () (see figure 2.21)
determine how the knowledge is applied.

Sub-symbolic processes are those that use regularities learned
from prior inputs as a way to characterize and predict subsequent
inputs. Two main properties distinguish sub-symbolic processes
from symbolic ones, as these terms are generally used: first, sub-
symbolic processes learn their behavior from exposure to material;
and second, this learning engenders models that do not rely on a
fixed set of rules. Probably the best-known sub-symbolic processes
used for music are neural networks.

3.1 Neural Networks

Neural networks are a class of algorithms that learn relations between
inputs and outputs. Their structure is derived from a schematic
model of the neurons of the brain. Brain neurons consist of dendrites,
a soma or cell body, and an axon. Dendrites carry activation to the
soma which then transmits activation through the axon to other cell
bodies as a function of its inputs. Neural network simulations simi-
larly employ some number of input and output nodes. In the most
common configuration, each input node is connected to every output
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output layer

hidden layer

input layer

Figure 3.1 Schematic of typical neural network

node, or, alternatively, to every node in a middle layer called the
hidden layer. If the hidden layer is present, each of these nodes is
then connected to every output node. The proliferation of connec-
tions arising from such a topology gives rise to the term connection-
ism, another common appellation for neural network research.
Figure 3.1 illustrates the structure of a typical neural network.

The network as [ have drawn it here is feedforward—that is, nodes
are connected only to the nodes in the next layer up. Such networks
are the most straightforward to analyze and implement, but are not
the only possibility. Other architectures use various forms of feed-
back or resonance between layers, and in fact we will explore one
such model in more detail when we take up sequential neural net-
works. For the moment, consider this sketch as descriptive of feed-
forward models.

Placed on each connection in a neural network is a weight. Activa-
tion traveling from one node to another across a connection is multi-
plied by the weight before reaching its destination. All activations
reaching a node (after multiplication by the weights) are summed
together. The activation sum is input to a nonlinear transfer function
that determines the output of a node relative to its total activation.
The simplest transfer function is a threshold: if the total activation
exceeds the threshold, the node becomes active (e.g., is set to 1.0).
If not, the node remains inactive (is set to 0.0). “Note that the non-
linearity of the function fis crucial in endowing the network with
real computational (i.e., decision-making) power. The nonlinearity
allows quantitative changes in the inputs to produce qualitative
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changes in the output (i.e., the output can switch from off to on in-
stead of simply changing in direct proportion to the input)” (Dolson
1991, 4).

Initially the connection weights are set to random values. One of
the great attractions of neural networks is that they are able to learn
weight sets that will reliably associate input patterns with output
patterns. To accomplish this, a training set of input examples with
correct answers (configurations of output activations) attached is pre-
sented to the network. Over the course of a training session, the con-
nection weights are gradually adjusted by the neural network itself
until they converge on a set that correctly relates outputs with the
corresponding inputs of the training set. If the training set captures
the regularities of a wider class of inputs, the trained network will
then be able to correctly classify inputs not found in the training set
as well. Such a process is an example of supervised learning, in
which a teacher (the training set) is used to guide the network in
acquiring the necessary knowledge (connection weights).

The adjustment of the weights is accomplished through a learning
rule. An example is the delta rule: first, an error is computed by sub-
tracting the output of a node from the desired output encoded in the
training set. The delta rule uses the error to calculate a new link
weight as shown in figure 3.2.

One of the simplest neural network types is the ADALINE, devel-
oped in 1963 by Bernard Widrow (1963). An ADALINE has some
number of input nodes and one output node. The output can be ei-
ther +1 or —1, which means that an ADALINE is a simple classifier
that can sort input sets into one of two classes. Since the possible
outputs are +1 and —1, and the desired outputs in the training set
will be restricted to these two values as well, the error can be

error = desiredOutput - output;

newWeight = weight + (learningRate*error*inputValue);

Figure 3.2 Delta rule
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either —2 (when the desiredOutput is —1 but the calculated output
is +1), zero (when the desiredOutput and calculated output agree),
or +2 (when the desiredOutput is +1 but the calculated output
is —1).

The learning rate is a constant that specifies the percentage of
change that can be made to a weight on each pass. Suppose that the
learning rate is initialized to .25, meaning that each training pass can
effect a 25% change to the weight. The learningRate * error, then,
will be either —0.5, 0, or +0.5. The input determines the magnitude
and sign of this term: as the absolute value of the input approaches
one, the learning change will be greater. Finally the change is added
to the existing weight and the weight on the link is updated. Subse-
quent learning passes will continually invoke the delta rule on the
weights until all the training examples are correctly classified.

In addition to the learning rule, the behavior of a node in a neural
network is determined by its transfer function. In the ADALINE the
transfer function is a simple thresholding process: if the sum of the
inputs is less than one, the node outputs a value of —1, otherwise it
outputs a value of +1 (figure 3.3).

Backpropagation is a term describing a form of supervised learning
in which errors are propagated back through the network (from the
outputs to the inputs), changing the connection weights as they go.
A common transfer function for backpropagation neural networks,
the type that we will implement first, is the sigmoid function (figure
3.4). The sigmoid is an S-shaped curve that yields values between
0.0 and 1.0 no matter how high or low the sum of the inputs may be.

—-1.0ifx<0
1.0 otherwise

fo=1{

Figure 3.3 ADALINE transfer function

1.0

f@= 1.O+e™™

Figure 3.4 Sigmoid transfer function
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It fulfills the requirements of backpropagation learning: the transfer
function must be nonlinear, defined for all input values, and differ-
entiable (Rogers 1997).

The preceding description is clearly a minimal account of neural
networks, but is all that the scope of this book accommodates. Many
excellent texts provide a comprehensive introduction to their design
and use (Rumelhart and McClelland 1986; Rogers 1997), and others
detail the application of neural networks to several areas of musical
modeling (Dolson 1991; Todd and Loy 1991; Leman 1992; Griffith
and Todd 1999; and Bharucha 1999). Beyond these texts, the internet
is an excellent resource for information, code, and neural network
simulators. Our first neural network, in fact, will be developed from
a program called QuickProp that I first found from an internet search.
We will program a complete backpropagation neural network based
on a C++ port of the (QuickProp code to establish exactly how such
an algorithm works and how it can be trained to work with musical
materials.

Another common approach is to work with an established Artifi-
clal Neural Network (ANN) simulator. With a simulator, the user
specifies the topology of the network, some learning characteristics,
and a training set. The output of a simulator depends on the applica-
tion; the most useful ones for our purposes are those that output a
computer program (C code or other) to perform the calculations of
the trained net. An internet search for neural networks will turn up
several ANN simulator resources.

A final observation concerns the suitability of ANNs for real-time
applications. Neural networks are justly famous for their computa-
tional demands, and the training process of an ANN can be quite
lengthy, depending on the topology of the network and the size of
the training set. Once a network is trained, however, its classification
work is quite fast, certainly fast enough to be used as part of a real-
time analysis environment. Indeed, many examples of this method
can be found: a group at Waseda University in Japan reports training
a neural network to recognize grasping gestures applied to a custom
input device. Once trained. the net can find new occurrences of the
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gestures in real time and use its recognition to control the algorithmic
generation of MIDI output (Sawada, Onoe, and Hashimoto 1997). Our
strategy here, then, will be to develop performance networks that
have already undergone a training phase before being used onstage.

3.1.1 Neural Network Key Induction

The CD-ROM lists a number of neural network—based analysis appli-
cations. These are all built on the Network class, a base class in-
cluded with the Machine Musicianship library. The Network class
has methods for constructing, training, and running a neural net-
work, and supports two types of units, one with a symmetrical sig-
moid output varying between —1.0 and +1.0 and the other an
asymmelrical output that varies between 0.0 and +1.0. We will use
the asymmetrical units in these examples. The Network constructor
is called with a specification of the desired number of input, hidden,
and output nodes.

Let us construct a neural network with twelve input nodes. These
nodes will be used to represent the root of an event, or if the event
has only one note, its pitch class. Similarly. the output layer of the
network will contain twelve nodes for the pitch classes of the twelve
possible tonics. Now, there are two remaining issues: the design of
a training sel and the ultimate topology of the network. In this train-
ing set, we will define a set of chords that together indicate a particu-
larmajor key. I, IV, and V (tonic, subdominant, and dominant) chords
are commonly used to establish a sense of key. An ear-training in-
structor, for example, will play a chord sequence such as [-IV-1-V-1
to establish a sense of key for his students. Let us write a training
set that associates the tonic, subdominant, and dominant chords with
the key of the tonic input. An input of C, F, and G chords, then, will
be associated in the training sel with an output of C major.

The ability of the network to learn the training set helps determine
its topology. Hidden nodes, for example, can increase the range of
patterns that networks are able to learn. Let us allocate a network
with an equal number of input, hidden, and output nodes, fully con-
nected (the source code of the MajorNel application on the CD-ROM
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;C C# D D¥ E F F# G G# A A# B
1.0 0.0 0.0 0.00.01.00.01.0 0.0 0.0 0.0 0.0 ; input values

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ; output values

Figure 3.5 C-major training set

demonstrates how such an allocation is made). Next we need to input
the training set and train the network.

The training set is maintained in a text file with the following for-
mat: a line of twelve floating point values that are fed to the input
nodes is followed by a line of twelve more values that represent the
outputs the network should learn to associate with the given inputs.
Since we are looking for a simple association of I, IV, and V with the
tonic, we can use twelve patterns such as the one shown in figure
3.5 for C major. (Note that anything after a semicolon in the training
file is considered a comment).

The interface presents the user with two buttons, one that is used
to train the network and another to test it. The training button
launches the function call: network -> Train (100); which causes
the trainer to go through the backpropagation process on the network
one hundred times (each pass is called an epoch). The effects of each
pass are cumulative, which means that each push of the training but-
ton will further improve the performance of the network on the train-
ing set. Statistics on the progress of the learning are displayed on the
interface every ten epochs, as shown in figure 3.6. In the figure we
see that the trainer had run for 1095 epochs, after which the network
correctly classifies the input {C, F, G} as indicative of C major.

A second text file is used to record test patterns. For tests, we need
only supply values for the input nodes—the network will compute
output values based on the weights learned. If learning has gone well,
we can at least read the input values from the training set and expect
to see the answers that were originally associated with them output
(as is verified in the test shown in figure 3.6). The real test comes when
the training set captures enough regularity to cause the network to
correctly identify patterns that were not in the set. For example, let
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O

o #=|

Epoch 1095: 0 Bits Wrong. Totsl Error = 0000137

1.00 0.00 0.00 ©0.00 0O.00 ©0.00 O0.00 O0.00 0.00 0.00 O0.00 O0.00
o O 0O o0 O o o O O 0 O O

C C# D D# E F F# G G# A A# B

o O O O O O O O O O O O

1.00 0.00 0.00 0.00 0.00 41.00 0.00 1.00 0.00 D.00 O0.00 @0 .00

Figure 3.6 Neural network interface

;¢ C# D D# E F F# G G# A A% B

1.0 0.01.00.0121.01.0 0.0 1.0 0.0 1.0 0.0 1.0 ; input values

Figure 3.7 Network test

us present our newly trained network with the input pattern shown
in figure 3.7.

In this example, we present the network with the seven pitches of
the C-major scale, rather than just the tonic, subdominant, and domi-
nant. What key does the network think this represents? In fact the
network outputs C as the most likely tonic of this input set (as shown
in figure 3.8), although with a much lower score than is produced by
running it with the original C major training example (0.37 instead
of 1.0). It is interesting, however, that no other candidate achieves a
significant score; even though the C major output score is low, the net-
work has still clearly identified C as the tonic of the input set.

Using an input that differs from the training set, we have obtained
an identification that is nonetheless consistent with it. Other studies
with neural networks have explored their ability to complete partial
patterns after training. If a network is trained to recognize a C-major
scale, for example, presentation of an input with some members
missing will still cause the network to recognize C major.
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O===——"—=—————Not 8
Epoch 2095: 0 Bits Wrong, Total Error = 0000135

0.37 0.00 0.00 0.00 0.01 0.04 Q.00 0.00 0.00 0.00 0.00 0.00
o O 0 0O O O O O O O O O

C c# D D# E F F# G G# A A¥ B

o O O 0O O o O O O O O O

1.06 0.00 41.00 0.00 41.00 1.00 O0.00 1.00 0.00 41.00 O0.00 1.00

Figure 3.8 C-major scale test

The MajorNet application on the CD-ROM implements the net-
work discussed so far; the reader can experiment with other training
and test sets by editing the files trainset.dat and testset.dat.

3.1.2 Sequential Neural Networks

The neural network application just developed can readily be used
as a classification module within a real-time analysis system. Train-
ing a neural network can be quite time-consuming, though this one
learns relatively quickly. Once the network is trained, however, the
treatment of input is very fast, certainly fast enough to be used in
performance.

As it stands, the model is designed to receive all the input at once:
if given the tonic, subdominant, and dominant roots, or all pitches
of the scale simultaneously, it outputs a matching key estimation.
We have stipulated, however, that the processes eligible for machine
musicianship must be able to work with information as it is pre-
sented in sequence. Fortunately there exists a substantial literature
on the adaptation of neural networks to work just so. One version is
described by Jamshed Bharucha:

As a piece of music unfolds, patterns can be composited over time
by the accumulation of activation, creating a temporal composite
memory. Suppose, for example, that the features of interest are pitch
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classes. When a musical sequence begins, the pattern of pitch classes
that are sounded at time t, constitute a vector, po, in 12-dimensional
pitch-class space. If at a later time, t,, another pattern of pitch classes
is sounded, represented by vector p,, a composite, ¢,, covering a pe-
riod of time ending at t,, can be formed as follows: ¢; = s,po + p1,
where s, (0 = s, = 1) is the persistence of p, at t,. (Bharucha 1999,
420)

The temporal composite memory demonstrates one of two com-
mon modifications made to neural networks that equips them to
handle sequential patterns. The addition of p, with p,, after multipli-
cation by a persistence factor s, introduces a resonance to the input
units by which prior inputs continue to exert an influence that de-
cays over time. Figure 3.9 displays this resonance on the input units
at the bottom of the figure as a feedback path from each input unit
to itself.

The other modification is similar and is shown in figure 3.9 as feed-
back from the output nodes at the top of the figure to the input nodes
at the bottom. (Only the leftmost nodes of figure 3.9 are fully con-
nected to simplify the graphic—the reader should consider that all
nodes are similarly connected to every other one at the next level
up). As the temporal composite memory multiplies prior inputs by
a persistence factor, a similar decay mechanism is applied to activa-
tion coming back around from the output to the input. The complete

output feedback

8 8 8 input feedback

Figure 3.9 Sequential neural network
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activation applied to an input node in such a model, then, is i, +
i,, * decay; + 0,4 * decay, where i, is the input at time n, decay; is
the input decay factor, o, is the output at time n, and decay, is the
output decay factor.

I will refer to networks with some version of this architecture as
sequential neural networks. Because such networks are no longer
strictly feedforward, “the backpropagation learning algorithm is no
longer valid in this situation, but many investigators have obtained
successful results by employing it anyway” (Dolson 1991, 10). Jordan
has published one of the most influential models using backpropaga-
tion on sequential networks (1986), and such architectures are some-
times called Jordan networks as a result.

Many musical applications of sequential neural networks are ex-
tant, including several that are designed specifically for harmonic
recognition. Bharucha’s MUSACT developed expectancies of chord
prograssions in a tonal context using a network with decaying input
activations (1987). “After repeated exposure to [chord] sequences,
the net learns to expect (i.e., produce as output) the schematic distri-
bution of chords for each successive event in a sequence. This net
will not learn individual sequences, but will learn to match the con-
ditional probability distributions of the sequence set to which it is
exposed. In other words, each output vector approaches a probability
vector representing the schematically expected distribution of
chords following the sequence context up to that point” (Bharucha
and Todd 1989). Here the authors refer to Bharucha’s distinction be-
tween schematic and veridical expectancies: schematic expectancies
are those arising from the sequential regularities of a corpus or style
while veridical expectancies emerge from familiarity with a particu-
lar work.

The net described by Scarborough, Miller, and Jones (1991) models
simple connections between pitches and certain chords, and be-
tween chords and certain keys. In other words. the network is not
fully connected: the pitch class C is only linked to the major chord
root nodes C, F, and A}, for example. They use feedback on the input
nodes as well as a derivation of activation strength from duration:
“The amount of activation provided by an input note is proportional
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to the note’s duration: i.e., a half-note has more influence than a
quarter-note. Second, once a note stops, the activation of the corre-
sponding pitch node does not stop immediately but rather decays
with time” (Scarborough et al. 1991, 55). The assignment of activa-
tion strength to an input as a function of duration is similar to the
technique used in Vos and Van Geenen’s Parallel Processing Model
(section 2.3.2).

Peter Todd describes a sequential neural network used in an algo-
rithmic composition application (1991). His architecture includes
both input feedback and feedback of the prior output to the context
nodes before the following step. Because he was training the net to
reproduce specific melodic sequences, he also used a group of “plan
nodes” that were clamped to fixed values during the learning of each
training melody. The plan nodes eliminate Todd’s architecture for
improvisational purposes because they provide a priori indication
of what the network should expect. However, many other aspects of
Todd’s model do work well for us, and I will review here those fea-
tures of his approach that are most profitable.

We begin with the technique of pitch representation in the input
and output nodes. The nodes of a network could represent pitch in
either a localist or distributed way. In a localist representation, each
node is assigned to a particular pitch class individually. For exam-
ple, anetwork designed to deal with four distinct pitch classes would
have four input nodes and four output nodes, one for each pitch
class. (This is the technique we used in the MajorNet application
described in the previous section.)

In a distributed representation we could encode the same number
of pitch classes with only two nodes: in this case, we regard each
node as one bit in a binary representation of the four possible inputs.
In the localist representation the set of possible inputs would be
{0001, 0010, 0100, 1000} while in the distributed representation the
set would be {00, 01, 10, 11}

The distributed representation has the advantage of using fewer
nodes. The disadvantage is that it introduces similarities among the
members of the set that do not correspond to relationships between
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the pitch classes being represented. As far as the network is con-
cerned, the combinations 01 and 11 are more similar than 00 and 11,
for example, because 01 and 11 differ in only one position while 00
and 11 differ in two. L will substitute these values in a similar exam-
ple provided by Todd that explains the problem:

This difference would have an effect while training the network. For
example, using the values just given, if [01] is produced us output
instead of [11], this would be a lesser mistake (since they are more
similar) than producing [00] for [11]. As it learned. the network’s
knowledge of musical structure would begin to reflect this (prob-
ably) erroneous difference. Thus this distributed coding imposes a
similarity-measure on the network’s outputs that we probably do not
wanl—there is no a priori reason to designate [01] and [11] as more
similar than f00] and {11]. The localist pitch representation, which
does no! impose this differential similarity on the oulputs, works
better. {1991, 179)

Let us allocate a neural network with 12 input, hidden, and output
nodes, as before. The nodes encode the twelve pitch classes in a lo-
calist representation. The network is now sequential because de-
cayed inputs and outputs of the previous step are added to the input
before each pass through the network, as illustrated in figure 3.9.

The sequential neural network object is virtually identical to the
one described in section 3.1. The main difference is in the operation
of the Forwardpass () method (figure 3.10), which makes use of
the two data members inputDecay and outputDecay. Because the
decay constants are variables, we may easily experiment with differ-
ent settings to watch their effect on learning. We may even change
the architecture of the network by setting one or both of them to zero:
if both are zero, this network is identical to the one in section 3.1,
since no activation is fed back. Similarly, either the input or output
feedback paths may be individually eliminated by setting the corre-
sponding decay parameter to zero.

Once the network has been established. the next step is to develop
a training sel of examples from which the network can learn. For the
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void Network::ForwardPass (float* input)

register int 1i;

for (i=0; i<nInputs; i++) {
// input + decayed prior input
Nodes[i+1l] = input[i] + (Nodes[i+l1l] * inputDecay):;
// add in decayed prior output
Nodes{i+1l] += (Nodes[firstOutput+i] * outputDecay):;
if (Nodes{i+l] > inputLimit)

Nodeg [1+1] = inputLimit; // limit to maximum activation

// For each unit, collect incoming activation and pass through sigmoid
for (int unit=firstHidden; unit<nUnits; unit++) {

float sum = 0.0;

for (i=0; i<nConnectiomns[unit]; i++)
sum += (Nodes|[Connections[unit][i]] * Weights({unit] [i]);
Nodes [unit] = Activation(sum);
}
DrawNodes () ;

Figure 3.10 ForwardPass function
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purposes of the current discussion we will train a network to recog-
nize some elementary progressions of Western tonal harmony with
the idea that recognizing these progressions may allow the network
to induce the tonality of musical material as it arrives. Because now
we are interested in the succession of chord roots as much as we are
in the roots themselves, a training set must be devised that will in-
duce the network to learn the sequences relevant to the establish-
ment of a key.

Figure 3.11 lists the set used to train the network to recognize
a [-IV-V-I progression in C. There are four input/output pairs
that make up the set for this tonal center. The full training set
includes [-IV-V-I progressions for all twelve possible tonic pitch
classes, yielding a collection of 48 examples. In each pair, the up-
per line is the set of values given to the twelve input nodes, and
the line below it the desired values at the twelve output nodes, as
before.

;C C# D D# E F F# G G# A A# B

.0 0.00.00.00.00.00.00.00.00.00.00.0; C activates itself

.0 0.00.00.00.01.00.00.00.00.00.00.0; F after C activates F

.5 0.0 0.00.00.01.00.00.00.00.00.00.0; strongly, C somewhat

.0 0.00.00.00.00.00.01.00.00.00.00.0; G after F-C reinforces

.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 ; only them (not G)

.0 0.00.00.00.00.00.00.00.00.00.00.0; C after C-F-G

.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.00.00.00.0; strongly indicates C

Figure 3.11 Simple dominant to tonic training set
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The design of the training set captures some low-level characteris-
tics of tonic/dominant relationships in tonal music. When the first
chord of a progression arrives (i.e., no other context is established),
it is taken as relatively weak evidence that the root of the chord is
the tonic of the key. We can see the assertion expressed in the first
two lines of the training set, in which the inputs show only the pitch
class C set to one and every other node set to zero. The associated
output should produce an activation of 0.5 for C and zero for the rest.
The second pair represents a progression from a C chord to an F
chord. Because this could be a [-IV progression in C, the C tonality
interpretation is maintained with an activation of 0.5. The progres-
sion could also represent V-1 in I, however, and in this set of exam-
ples we want to demonstrate to the network that dominant-to-tonic
progressions are particularly important. Therefore we set the desired
output to weight the key of F heavily and the key of C somewhat.
The third line establishes that a G after an F=C progression should
continue to activate those two theories, but not G itself. Finally, when
the I-IV-V-I progression is completed with a return to C, the key of
C should be firmly established as the tonality.

Table 3.1 shows the output of the sequential neural network when
fed chord roots from the Parncutt algorithm during a performance of
the Beethoven Largo shown in figure 2.18. Though the training set
does not include an explicit example of I-V-1, the network correctly
identifies C major as the key through the initial I-V-V-I progression
and maintains that classification through the entire passage. More-
over, the key of Cis held through the repeated G chords in measures
1-2, avoiding the error committed by my handmade weights in
table 2.6.

As intable 2.6, the chord roots progress down the leftmost column
and the activation present in each of the twelve tonal centers is
shown across the grid from left to right. Note that in this example
there is no consideration of mode, either in the chord interpretations
or in the key possibilities. It is interesting to observe the rival keys
entertained by the network during the analysis, such as G in bars 2—
3 and F in bars 5-6. Apparently it has learned to consider the F-C
progression in measure 6 as a possible modulation to F, though this
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Tahle 3.1 Sequential Net Beethoven Analysis
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interpretation wanes when the potential dominant is followed by a
G chord in measure 7.

This simple example shows that a sequential neural network can
successfully be trained and used in a real-time analysis structure with
other concurrent components, but little more. Much remains to be
done with more complete training sets (including modulations) and
a greater diversity of chord and tonality types. That such a restricted
training regime can already vield a network able to follow relatively
straightforward types of tonal harmony encourages the pursuit.

That the function, and therefore the recognition of a tonal center
in Western music is style-dependent presents an acute problem for
key induction. There are several versions of the very definition of
tonality that change with the type of music being studied and the
theoretical outlook of the analyst (Vos 1999). Wallace Berry offers an
interesting version in his book, Structural Functions in Music:
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Tonality may be thus broadly conceived as a formal system in which
pitch content is perceived as functionally related to a specific pitch-
class or pitch-class-complex of resolution, often preestablished and
preconditioned, as a basis for structure at some understood level of
perception. The foregoing definition of tonality is applicable not just
to the “tonal period” in which the most familiar conventions of tonal
function are practiced {roughly the eighteenth and the nineteenth
centuries), but through earlier modality and more recent! freer tonal
applications as well. (1976, 27).

The comprehensive nature of Berry’s proposal is appealing, but
difficult to envision algorithmically. Sub-symbolic systems are par-
ticularly attractive for their ability to learn rules of correspondence
on their own. In this case, if the analyst is able to prepare training
examples that indicate a “pitch-class of resolution” for a given suc-
cession of pitch events, a network can learn to make such associa-
tions without the formulation of a wild proliferation of style- and
period-dependent rule sets.

3.2 Time Structures

To this point we have built symbolic and sub-symbolic processes for
the real-time analysis of pitch structures. While music often can be
dismantled into harmonic and rhythmic components, we clearly do
nol experience music as an assemblage of independent parts. Even
the analyst who makes such divisions recognizes them as a proce-
dural simplification: “It is important to realize that when [Leonard]
Meyer analyzes thythm he is not simply considering one aspect of
music and ignoring the others. [nstead he is using rhythmic accentu-
ation as a means of clarifying and notating his response to the music
as a whole” (Cook 1987, 77).

Though their outputs ultimately must be combined, the decompo-
sition of analysis into parallel independent systems echoes the orga-
nization found in the brain itself: “There is convincing physiological
evidence that the subsystems underlying the attribution of various
characteristics of sound become separate very early in the processing
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system. . .. Such evidence would lead us to hypothesize that auditory
grouping is not carried out by a single mechanism but rather by a
number of mechanisms, which at some stage act independently of
each other” (Deutsch 1999a, 301).

The initial independence of subsystems requires that at some later
point their contributions be synthesized. The gradual coordination
of information seems to correspond to the emergence of higher-level
percepts: “Investigations into mechanisms of visual shape percep-
tion have led to a distinction between early processes, in which many
low-level abstractions are carried out in parallel, and later processes,
in which questions are asked of these low-level abstractions based on
hypotheses concerning the scene to be analyzed. . . . The distinction
between abstractions that are formed passively from “bottom up”
and those that occur from “top down” is important in music also™
(Deutsch 1999b, 349).

We will maintain the analytical separation of pitch and time for
the moment because such decomposition makes it easier to design
and discuss processes appropriate to the corresponding dimension.
It is worth noting at this point, however, that the ultimate goal is to
integrate them into larger structures that consider both simulta-
neously. The work with key induction is a good example: clearly an
important cue to our understanding of harmony is the relationship
of pitch materials to an ongoing metric hierarchy. If we can similarly
coordinate the pitch analysis processes with others that follow rhyth-
mic development, we may reasonably expect the system’s perfor-
mance to correspond more closely to our own.

With this larger perspective in mind, let us proceed to the imple-
mentation of temporal analyses. When considering pitch, we moved
progressively up a hierarchy extending from individual chord roots
and types to large-scale keys and modes. Now consider a hierarchy
of temporal structures ranging from a simple pulse up to a meter in
which some pulses are periodically recognized as being more impor-
tant than others. Conceptually, this hierarchy extends in both direc-
tions, down to subdivisions of the pulse and up to phrase groupings
in which collections of strong beats form yet larger periodic units.
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For the moment we will consider the middle levels of the rhythmic
hierarchy: the formation of a regular pulse, and the differentiation
of those pulses into the strong and weak beats of a meter.

3.2.1 Quantization

Standard notation of Western music assumes a temporal grid of bars,
beats, and subdivisions of beats. This notation reflects an essentially
automatic cognitive process in human listeners whereby a pulse is
extracted from a regular sequence of musical events. The phenome-
non of pulse is manifested in the tapping of a foot in time to the
music, for example, or in the beat of a conductor’s baton. Rhythm
perception builds on the foundation of pulse to form hierarchies in
which some pulses (beats) are more important than others. Meter is
the notational device used to indicate such hierarchies: a meter of
4/4, for example, represents the occurrence of a strong pulse once
every four beats.

Waestern rhythmic notation, then, isa hierarchical system that mul-
tiplies and divides simple pulse durations by small integer values.
Multiplication of beats produces measures; division of beats pro-
duces subdivisions. Within a measure some beats are stronger than
others, and within a beat some subdivisions are stronger than others.
This economy of notation is directly related to the cognition of musi-
cal time—we experience music with even minimal temporal regular-
ities as conforming to a metrical grid.

The correspondence of notation and perception does not extend
to the duration of events as they occur in performance, however:

In performed music there are large deviations from the time intervals
as they appear in the score {Clarke 1987). Quantization is the process
by which the time inftervals in the score are recovered from the dura-
tions in a performed temporal sequence; to put it in another way, it
is the process by which performed time intervals are factorized into
abstract integer duraftions representing the noles in the score and
local tempo factors. These tempo factors are aggregates of intended
timing deviations like rubato and unintended timing deviations like
noise of the motor system. {Desain 1993, 240)
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The “noise of the motor system” refers to the fact that humans
are physically incapable of producing movements that are exactly
equally spaced in time. This deficiency is of no greal consequence
while we listen to music because the variations are small, and our
perceptual system effectively filters out the discrepancies, anyway.
It does mean, however, that a computer looking at a series of human
finger motions (e.g., from a performance on a piano keyboard) will
not see a sequence of numbers that can be directly measured as a
series of simple integer multiples of an underlying pulse.

The inaccuracies caused by muscle jitter are a small but significant
obstacle to quantizing performance information. They become much
more formidable, however, when added to the purposeful deviations
introduced by musicians in the expressive performance of a work of
music. As we shall see in chapter 6, players use a number of temporal
manipulations to impart cues about the structure and content of a
composition in performance. We as listeners are able to distinguish
the structural and expressive factors activating the resulting percept
from the underlying meter. The problem of quantization is to perform
the algorithmic analog in a machine musician: separate structural
rhythms from expressive variations. ldeally we would like to pre-
serve and use both, but for the moment we will concern ourselves
with deriving a series of integrally related time points from undiffer-
entiated performance data.

Commercial sequencers perform quantization by rounding tempo-
ral measurements to the nearest quantized grid point. The grid used
is computed from a global tempo setting and a specification of the
smallest permissible duration. Both of these values are entered by
the user. In many systems, the user must also indicate whether
“tuplet” (i.e., triplet, quintuplet, etc.) divisions of the beat may be
mixed with simple power-of-two divisions. Anyone who has used a
sequencer knows that this method yields results that require a lot of
editing for any but the most simple of rhythmic styles. In any event,
such a technique is useless in a real-time situation because there is
no pre-existing grid. The only way to get one would be to require the
musicians to play along with a metronome, something that would
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defeat the entire purpose of playing with an interactive system.
Clearly we need to use a different technique.

The Connectionist Quantizer developed by Peter Desain and Henk-
jan Honing gradually modifies time points in a list of events to bring
them into simpler temporal relationships. It is connectionist in that
it consists of “a large number of simple elements. each of which has
its own activation level. These cells are interconnected in a complex
network, with the connections serving to excite or inhibit other ele-
ments” (Desain and Honing 1989, 151). The model differs from the
backpropagation networks we implemented earlier, however, in that
it does not learn. The convergence between cells that it performs is
already coded into the system. We can consider the quantizer as a
constraint propagation network in which neighboring durations con-
strain each other to values that increasingly approach integer multi-
ples. For example, two neighboring durations of 1.1 and 0.9 will be
gradually pulled by the model into the equal values 1.0 and 1.0.

Letus implement a C+ + port of the Connectionist Quantizer, start-
ing from the algorithm as it has been published in Lisp. We refer to
the point in time at which an Event occurs as its onset. The duration
between the onsets of two Events is called the inter-onset-interval,
or IOL Desain and Honing model inter-onset-intervals as cells in a
network. These are called basic cells. An interaction cell is connected
bi-directionally to two basic cells. “Each interaction cell steers the
two basic cells to which it is connected toward integer multiples of
one another, but only if they are already near this state” (Desain and
Honing 1989, 152). The Interaction{} function returns a change
of ratio for two intervals that will move them toward an integer rela-
tionship if they are close to having one already.

Beside the interactions between basic cells, the model operates on
sum cells as well, “These cells sum the activation levels of the basic
cells to which they are connected. The interaction of a sum cell with
its basic cells is bidirectional; if the sum cell changes its value, the
basic cells connected to it will all change proportionally” (Desain
and Honing 1989, 154). Figure 3.12 lists all of the functions used in
the C++ connectionist quantizer.



/* return change of two time intervals */
double Quantizer::Delta(double a, double b, double minimum,

double peak, double decay)

bool inverted = (a <= b);

double ratio = inverted?(b/a):(a/b);

double delta_ratio = Interaction(ratio, peak, decay):;

double proportion = delta_ratio / (ratio + delta_ratio + 1);
if (inverted) proportion *= -1;

return (minimum * proportion);

/* return change of time interval ratio */

double Quantizer::Interaction(double ratio, double peak, double decay)

double goal = round(ratio);
double position = 2 * (ratio - trunc(ratio) - 0.5);
double result =
(goal - ratio) * pow(abs(position), peak) * pow(goal, decay);

return result;

/* quantize data of inter-onset intervals */
void Quantizer::Quantize(int length, ...)
{

va_list args;

va_start(args, length);

Figure 3.12 Connectionist Quantizer



double* intervals = new double[length];
double* changes = new double[length] ;
register int i;
for (i=0; i<length; i++)

intervals({i] = va_arg(args, double);

va_end(args) ;

int iterations = 20;

double peak = 5.0;
double decay = -1.0;
double minimum = 100.0;

for (i=0; i<length; i++) {
changes([i] = 0.0;

if (intervals[i] < minimum) minimum = intervals[i]:

for (i=0; i<iterations; i++)

Update (intervals, minimum, changes, peak, decay, length);

delete [] changes;

delete [] intervals;

/* update all intervals synchronously */
void Quantizer::Update{double* intervals, double minimum,
double* changes, double peak, double decay,

int length)

Figure 3.12 Continued



for (int a begin=0; a_begin<length-1; a_begin++) {
double a_sum = 0.0;
for (int a_end=a_begin; a_end<length-1; a_end++) {
a_sum += intervals[a_end];
double b_sum = 0.0;
int b_begin = a_end + 1;
for (int b_end=b_begin; b_end<length; b_end++) {
b_sum += intervals[b_end];
double delta = Delta(a_sum, b_sum, minimum,
peak, decay);
Propagate (changes, a_begin, a_end, delta/a_sum) ;

Propagate (changes, b_begin, b_end, -(delta/a_sum));

Enforce (changes, intervals, length);

/* derive changes of basic intervalsg from sum-interval change */
void Quantizer::Propagate(double* changes, int begin,

int end, double change)

for (int i=begin; i<end; i++)

changes[i] += change;

Figure 3.12 Continued
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/* effectuate changes to intervals */

void Quantizer::Enforce(double* changes, double* intervals, int length)

{
for (int 1=0; i<length; 1i++) {
intervals[i] *= (changes[i] + 1);

changes{i] = 0.0;

Figure 3.12 Continued

(a) 1.1 2.0 (b)
(a) 1.1 4.9 (b+c)
(a+b) 3.1 2.9 (c)

(b) 2.0 2.9 (c)

Figure 3.13 Inputs to Delta ()

Let us trace through the quantization of a list of three inter-onset
intervals: 1.1, 2.0, and 2.9 (note that these values correspond to those
used as an example by Desain and Honing [1989]. The Quantizer
application on the CD-ROM implements the process with this exam-
ple. The quantizer is constructed using the number of offsets, fol-
lowed by the offsets themselves. We use the C/C++ variable
argument list conventions described further in section 5.1. Following
through the Quantize () process, note that the critical calculations
are made in Delta () and Interaction (). Update () takes care of
exhaustively presenting all of the base and sum node combinations
to Delta (), which computes the required value changes. The com-
plete list of values presented to Delta () is shown in figure 3.13.

These four possibilities exhaust the set of basic and sum cell com-
binations present in a network of three onset values. As running the
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(Juantizer example application demonstrates, at the end of twenty
iterations the base nodes a, b, and ¢ have indeed converged toward
the integer values of 1.0, 2.0, and 3.0.

The process just traced corresponds to the Connectionist (Juan-
tizer as il was published in 1993. Although it is fast enough, this
version is unsuited to real time because it requires a complete se-
quence of onsets: “A model that takes a whole temporal sequence
into consideration at once is not feasible when the aim is to develop
a cognitive model. Luckily, it proved quite simple to design a version
of the quantizer which operates upon a window of events” (Desain
1993, 242). To function as a machine musician component, we want
the quantizer to treat events as they arrive. We can adopt the tech-
nique recommended by Peter Desain: incoming events are added
to a window of events that are continually processed as new ones
arrive. The window has a fixed length—when it is full of events, the
oldest one is removed from the window whenever a new one is
added (first in/first out).

Beyond adopting a windowing technique, we must also cast the
quantization process as a ListenProp so that it may be called with
other analysis routines from the Listener. Figure 3.14 shows the
Calculate () routine that prepares input from the Listener for
treatment by the quantizer,

We must first wait until enough onsets have arrived to make the
quantization meaningful. Once we have at least three events, we con-
tinually enlarge the size of the quantization window until it includes
a maximum of ten inter-onset intervals. The very first [Ol becomes a
point of reference for the quantizer, since the intervals input to the
process need to be expressed as multiples of some base value. We
calculate these ratios by dividing each successive [0l by the base [0
When the intervals and changes arrays have been initialized, the con-
nectionist quantizer is run on them. Finally the base 10! is updated to
provide a baseline closer to an integer multiple of the window values.

The Quantizer application on the CD-ROM uses the ListenProp
implementation just described. The interface to it is shown in figure
3.15. A user can play music on a MIDI device or hit the space bar to
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void Quantizer::Calculate(Event *event)

if (event->I0I() == 0) return; // only one event, go back

if (event->Prev()->IOI() == 0) return;// only two events, go back

register int 1i;

static int countIOI = 0;
if - feountIOI == 0}
baseIOI = (double)event->I0OI{);// take first IOI as base

if (++countIOI > kMaxWindow)

countIOI = kMaxWindow; // maximum window of 10 events

numCells = countIOI;

for (i=0; i<numCells-1; i++) // go back to beginning of window

event = event->Prev();

for (i=0; i<numCells; i++) {

intervals[i] = (double)event->IO0I()/baselOIl;

changes [1] = 0.0;

e&ent = event->Next () ;
}
Quantize(); // run connectionist quantizer
baseIOI *= intervals[O0]; // adjust base IOI

Figure 3.14 Quantizer::Calculate()
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Desain & Honing

1.880 41.987 1.986 1.969 1,956 1.960 1.971 1.482 0.959

o o0 O 0o 0 0 O O O O

0.989 0.991 0.995 0.990 0.9Y8 0.977 0.933 0.983 0.494 0.494

Figure 3.15 Quantizer interface

generate incoming events. As the quantization window size in-
creases, ovals representing the events within it are added across the
display. Below each oval is shown the quantized ratio of its corre-
sponding IOI. Above and between two ovals is the sum of their ratios,
representing the interaction cell based on the two lower [Ols.

As we see in figure 3.15, the quantizer pulls IOIs in the window
into increasingly integral relationships with one another. The input
to the program that produced the output shown was a series of per-
formed quarter notes, effectively, with two eighth notes at the end.
We can read this from the bottom line of values in which the first
eight are all nearly one while the last two are both nearly one-half.

Using the quantizer in real time means that the process will proba-
bly not be able to converge to a stable state before the contents of the
window have changed. If the quantizer continued to iterate on the
values shown in figure 3.15, it would tend to converge on a state in
which the first eight ratios would be equal to 1.0 and the last two
equal to 0.5. Because the next input will shift out the first value and
shift in a new one that has not undergone any iterations yet, it is
likely that the remaining intervals will not arrive at their optimal
values before they too are shifted out.

From the example shown, however, it is clear that some averaging
and thresholding can tell us nearly enough the value to which a ratio
is moving. All of the ratios in the window are within 3% of their
ideal value. Whether or not 97% accuracy is good enough ultimately
depends on the process within which the quantized values are to be
used.
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3.3 Beat Tracking

(Quantization brings performed time-points into alignment with an
underlying grid of pulses. Beat tracking (or beat induction) finds the
underlying pulse of a sequence of time points. These are two aspects
of the same problem: if we can quantize a sequence of intervals, one
of the integer multiples from the sequence can be considered the
beat. If we have a beat pulse, we can perform quantization by moving
all time points in the sequence into alignment with it. In fact, many
rhythm analyzers do not decompose the problem into quantization
and beat tracking phases. Even where such a decomposition is algo-
rithmically possible, it is not clear which phase should come first:
quantization could make beat trackers work better, but having a beat
as a slarting point makes gquantization much easier.

It has even been proposed that beat tracking might be easier if per-
formed without any quantization stage at all:

The small number of models that operate directly on perfor-
mance data—and allow for changes in fempo and expressive tim-
ing .. . —often consider timing as jitter or timing noise; they process
this information by some kind of quantization method. . . . In our
maodel the performed patlern (ie., with expressive timing) is used
directly as input. . . . Moreover, in performances often meter and beat
are communicated, among other means, by the timing. . . . Thus beat
induction models that take performance data as input may actually
perform better if they make use of the information present in the
expressive timing, instead of attempling to gef rid of it. (Desain and
Honing 1994b, 93-94)

Separating quantization, beat tracking, and meter induction, then,
makes it possible not only to experiment with different orderings of
the processes but to leave out some in order to gauge the effect on
other stages as well.

As key induction is to chord identification, metrical analysis is to
beat tracking. That is. once we have a pulse of evenly separated beats,
we would like to identify which of them has greater structural impor-
tance—in other words, which ones are the downbeats.
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In the past, computational analysis of rhythm has generally been
divided into two problems. One is quantization: the rounding off of
durations and time points in a piece to multiples of a common beat.
... The other is metrical analysis: imposing higher levels of beats
on an existing lower level. Models that assume a quantized input
{such as Lerdahl and Juckendoff’s) are really only addressing the
second problem. However, an important recent realization of music
artificial intelligence has been that gquantization and meter finding
are really part of the same process. In imposing a low level of beats
on a piece of music, marking the onsets of events, one is in effect
identifying their position and duration in terms of integer values of
those beats. [Temperley and Sleator 1999, 14)

In this chapter we address what T see as three aspects of the analy-
sis of a rhythmic hierarchy: quantization, beat tracking, and meter
induction. I make a tripartite division because these tasks have been
treated relatively independently in the literature. That is, quantizers
(such as Desain and Honing’s) operate without beat tracking and beat
trackers are writlen to operate without quantization. Both tasks rarely
make reference to a metric level. Metric analysis does rely on the
other two, to varying degrees because it operates on a higher hierar-
chical level and depends on a lower level for material to organize.
Consequently we first will review some beat tracking systems and
then pass to methods for organizing their pulses metrically.

As often happens with the transfer of human knowledge to com-
puter programs, there are striking differences between what is easy
for a human to do and what is easy for the machine. When consider-
ing rhythm, for example, musicianship texts assume that a student,
no matter how untrained, can tap her foot to music. The perception
of a pulse in music is one of the most basic and universal of human
musical skills. [t is, however, notoriously difficult to accomplish the
same “sense’ with a computer program.

In their article, “Computational Models of Beat Induction: The
Rule-Based Approach,” Peter Desain and Henkjan Honing describe
some of the attributes that make computational beat induction hard:
“Only after a few notes (5-10) a strong sense of beat can be induced
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(a ‘bottom-up’ process). Once a beat is induced by the incoming mate-
rial it sets up a persistent mental framework that guides the percep-
tion of new incoming material (a ‘top-down’ process). This process,
for example, facilitates the percept of syncopation, i.e., to ‘hear’ a
beat that is not carried by an event” (1999, 29).

Because of the fundamental nature of the task, many researchers
have addressed the problem. A famous session at the 1994 Interna-
tional Computer Music Conference tested the success of software
from several contributors in tapping a mechanical shoe to a common
input stream (Desain and Honing 1994). As in the case of pitch algo-
rithms, both symbolic and sub-symbolic proposals for beat tracking
are extant and both types were presented at the 1994 session.

Todd Winkler introduces a number of techniques for following the
temporal presentation of musical events in his book GComposing In-
teractive Music (1998). One of the most basic of these is a patch for
finding the inter-onset interval between note attacks (figure 3.16).
The notein object receives both note on and note of £ messages
from a MIDI input stream. Stripnote eliminates the note of £ mes-
sages and sends a velocity through to bangbang only when it is
greater than zero (that is, a note on). Because of Max’s right-to-left
execution order, the right bang from bangbang will first stop the
run of the timer and output the time in milliseconds that was mea-

send two bangs for note on

right bang ends previous
measurement, left bang
starts a new one

time in msec.
between onsets (IOl)

Figure 3.16 Inter-onset interval detection on Max
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sured, Then the bang sent to the left inlet of the timer starts another
measurement that will be terminated by a subsequent note on.

Winkler’s inter-onset interval patch performs in Max the same cal-
culation that is part of the Listener: Hear () procedure listed in
figure 2.16. Once 101s are calculated, they can be used as input to
a number of temporal analyses including beat tracking and density
estimation. See chapter 6 of Composing Interactive Music (Winkler
1998]) for a beat tracker written entirely in Max.

3.3.1 Multiple Attractors

I have published a beat tracking technique (19923) that T now shall
port to the ListenProp design. | previously presented the algorithm
as resting on a connectionist foundation. It is connectionist in that
a number of inputs are multiplied by a set of weights and summed
at the output nodes to find a leading beat candidate. It deviates sig-
nificantly from the networks we have used thus far, however, in that
it does not learn. [ call this version of the beat tracker “multiple at-
tractors” in reference to its technique of maintaining a collection of
pulse theories that are awarded points according to how accurately
they predict the timing of incoming events.

The process fundamentally assumes that beat periods will occur
within a certain range: between 300 and 1500 milliseconds long, cor-
responding to 200 and 40 beats per minute, respectively. These tempi
mark the upper and lower limits of a common metronome. Meatro-
nome boundaries are not arbitrary; they emerged from many years
of performance practice during which tempi beyond these limits
were not normally needed. Since the beat tracker is looking only for
periods that match the foot-tap tempo (and not longer or shorter
pulses in the rhythmic hierarchy) it makes sense to limit its search
to the metronome standard.

Given this limitation, every possible millisecond period length be-
tween the two extremes can be covered by an array 0of 1200 beat theo-
ries. Each beat theory is represented by the structure shown in figure
3.17. A beat theory includes the number of points awarded to that
period, the time it next will tick, and a boolean field indicating
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typedef struct ({

int points; // # of points assigned to this theory
int expect; // time of next expected hit
bool onbeat; // whether or not it was on the beat

} BeatTheory;

Figure 3.17 Beat theory

int Beat::ReduceOffset(long duration)

(

int temp = duration;
int divisor = 2; // first try dividing by two
while (temp > kBeatLong) // while duration is too long

temp = duration / divisor++; // divide by progressive subharmonics

return temp; // return a value in bounds

Figure 3.18 Subharmonic duration reduction

whether or not an incoming beat coincided with a tick of the theory’s
period.

When a new event arrives at the listener, the duration that elapsed
since the previous event is reported to the beat tracker. The tracker
then generates a number of possible beat period interpretations from
that duration. The most important of these is the duration itself: any
distance between two events is taken as a possible beat period. The
only restriction to that assertion is that the duration must fall within
the range of legal periods. If a duration is too long (longer than 1500
milliseconds) the routine ReduceOf £set () will be invoked to bring
it into range (figure 3.18).

ReduceOffset () examines each of the subharmonics of a dura-
tion in order until one is found that is short enough to count as a
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beat period. Remember that subharmonics are computed by dividing
a value by successive integers. The first reduction, then, attempts to
divide the IOI by two. If the interval was twice the beat period, the
first subharmonic will be the correct duration. ReduceOffset ()
continually tests subharmonics against the upper limit of legal beat
periods until one is found within the acceptable range. The legal sub-
harmonic is then returned to the caller.

The caller of ReduceOffset () is the member function El1igi-
ble () (figure 3.19). Eligible () checks two conditions of candi-
date beat periods: first, it must be short enough to fall within the
prescribed range; and second, it must not be within a critical band-
width surrounding already existing candidates. Figure 3.19 shows
how these conditions are handled. If a candidate is too long, it is
handed off to ReduceOffset (). Once a legal candidate is returned,
it is checked against all existing candidates in the offsets array.

int Beat::Eligible(long candidate, int* offsets, int numOffsets)
{
if (candidate >= kBeatLong) // if too long try subharmonics

candidate = ReduceOffset(candidate) ;

// if candidate is close to one already found
for (int i=0; i<numOffsets; i++) {
long diff = abs(candidate - offsets([i]);
if (diff < offsets[1]1/20)
return 0; // declare it ineligible
}

return candidate; // otherwise return legal candidate

Figure 3.19 Determine eligibility
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Whenever the new 101 is within 5% of an already gensrated candi-
date, the new interval is rejected and Eligible (} returns zero.

The heart of the beal tracker is the algorithm that generates succes-
sive candidates to present to Eligible {}. The first possible period
to be considered is the incoming 10T itself. If it is within the legal
range, the TOT itself is always kept as a candidate. The next is the
previous 101, if there is one. If the previous IOl is legal, the algorithm
also checks the new IOI plus the previous one. This covers situations
in which a beat is being articulated by two eighth notes, a quarter/
eighth triplet, or some other division into two parts. Similarly, if the
101 two before the incoming event is legal, it is sent to ELligibkle ()
as well as its sum with the new event, or its sum with the prior event.

The goal is to generate a list of seven possible beat periods that
could account for the incoming IOL After the prior two events and
combinations with them have been checked, the algorithm multi-
plies the new IOI by various factors in a search for more potential
explanations. The list of factors {2.0, 0.5, 3.0, 1.5, .66, 4.0, 6.0, 1.33,
.33, .75} is used for this purpose—the incoming 1Ol is multiplied by
each of these factors and submitted to Eligible () until the candi-
date array is full.

Once all the candidate 10Is have been generated, the program looks
in the array of beat theories to see if points have been awarded to
any other theories near the candidate—in other words, if a recent
candidate IOT has been close to this one. If so, the older theory is
pulled toward the new one and points for the two of them are com-
bined. It is this process that [ call “multiple attractors,” there may
be several beat theories within the array that have some degree of
activation. Whenever a new duration comes close to an existing the-
ory, it adds activation to it and adapts the period to match the incom-
ing information.

Figure 3.20 is a trace of the beat theories generated by the multiple
attractors algorithm during a performance. The leftmost column is
the input IOI—the time in milliseconds between the inputevent and
the event before it. The columns to the right of the input, numbered
0 through 4, show the five leading beat theories after points have
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409 409[ 11] 818[ 6] 204[ 5] 1227[ 4] 613[ 3] 819 1228
412 410[ 22] 819([ 16] 205[ 10] 1228[ 8] 270[ 4] 1231 1641
402 409[ 331 818[ 221 1227[ 16] 204[ 15] 269[ 6] 1633 2042
396 408[ 44] 817[ 32] 1226[ 20] 203[ 20] 268[ 8] 2029 2437
218 407[ 50] 817[ 32] 1226[ 20) 203[ 20] 268[ 8] 2247 2436
201 407[ 631 817{ 32] 202[ 27] 1226[ 20] 218[ 13] 2448 2855

410 408[ 74] 818[ 39] 202{ 33] 1227[ 26] 218[ 17] 2858 3266

Figure 3.20 Multiple attractors trace

been awarded for the input on the left. For example, after the first
input (409) the leading beat period theories are 409 (the 101 itself),
818 (double the 101 length), 204 (half the IO1 length), 1227 (triple the
I0I), and 613 (1.5 times the 10I). The final two columns, labeled R
and E, show the real time in milliseconds at which the event arrived
and the predicted time of a subsequent event according to the leading
beat theory. Therefore R + period[0] = E.

We can see how well the algorithm is doing by comparing the E
listings with subsequent R times. For example, after the first IOl the
beat theory is 409 milliseconds. 409 added to the arrival time of the
event (819) yields a predicted arrival time of 1228 for the next pulse
of this period. In fact, the next event arrives at time 1231 (as shown
in the R column of the second row), 3 milliseconds late according
to the 409 milliseconds theory. Therefore the activation for 409 is
added to the weight according an incoming event and collected in
the theory for 410 milliseconds, somewhat slower than the prior
theory to match the delay in the incoming event relative to the
expectation.

The input that generated the trace in figure 3.20 was a very simple
sequence of four quarter notes followed by two eighth notes and two
more quarter notes. The leading theory remained stable throughout,
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with a period moving between 407 and 410 milliseconds. The great-
est difference between an expected beat and an actual arrival time
was 13 milliseconds. This example indicates how the algorithm does
with simple rhythms. The user is encouraged to experiment with the
Attractors application on the CD-ROM to experience its behavior
with more complex inputs. All of the source code for the application
is found in the same folder for any who wish to modify the process.

3.3.2 Adaptive Oscillators

A pulse is essentially a form of oscillation, and beat tracking is equiv-
alent to finding the period and phase of a very low frequency oscilla-
tor. Large and Kolen have incorporated these relationships into a
system of adaptive oscillators that lock onto the frequency and phase
of periodic impulses. These units gradually increase their level of
activation until they reach a threshold level, at which point they
“fire,” their activation is reset to zero, and the process begins again.
Because the oscillator fires when it reaches the threshold, changing
the threshold level will vary the time between firings and effectively
change their frequency. A driving signal can be used to reset the
threshold level and thereby the frequency of the unit, causing the
unit to lock to the frequency of the driver.

In the model of musical beat that we propose, the driving signal {a
rhythmic pattern) perturbs both the phase and the inirinsic period
of the driven oscillator, causing a (relatively] permanent change to
the oscillator’s behavior. In addition, the oscillator will adjust its
phase and period only at certain points in the rhythmic pattern, ef-
fectively isolating a single periodic component of the incoming
rhythm. (Large and Kolen 1999, 78)

The output of the oscillator as a function of time is defined as:
o(t) = 1 + tanh[g(coszpi(f) — 1)] (Toiviainen 1998).

Figure 3.21 lists the code for an oscillator unit as described by
Large and Kolen. The Oscillator application is built from this routine
and other source code found in the same folder on the CD-ROM. The
first part of Large () updates the expected firing time for the oscilla-
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void Oscillator::Large(bool pulse, long time)

{

while (time > (expected+(period/2)))// move the expectation point
expected += period; // to within one period of onset
phi = (float) (time-expected) / period;
if (pulse) { // if this was an onset
adapt = gamma * (cos(twoPI*phi)-1.0);
adapt = 1.0 / cosh{adapt);
adapt *= adapt;
adapt *= gin(twoPI*phi);
adapt *= (period / twoPI);
period += (periodStrength*adapt) ; // update period
expected += (phaseStrength *adapt); // and phase
phi = (float) (time-expected) / period;
}
output = l+tanh(gamma* (cos(twoPI*phi)~1.0)); // Equation 1

Figure 3.21 Large and Kolen adaptation

tor to bring it within one period of the current time. Then the variable
phi is computed as an indication of the phase of the oscillator. The
phase is important because it delineates the temporal receptive field
of the unit—that part of its period within which adaptation is max-
imized. “Each output pulse instantiates a temporal receptive field
for the oscillatory unit—a window of time during which the unit
‘expects’ to see a stimulus pulse. The unit responds to stimulus
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pulses that occur within this field by adjusting its phase and period,
and ignores stimulus pulses that occur outside this field” (Large
1999, 81). The part of Large () that is executed when a pulse arrives
computes the adaptation for the unit. The adaptation strength is
modified by the value of phi, keeping it high within the receptive
field and attenuating it everywhere else.

Petri Toiviainen’s Interactive MIDI Accompanist (IMA) uses a
modification of the Large and Kolen oscillators to perform beat-
tracking in real time (Toiviainen 1998). Toiviainen’s application is
an accompanist in that it can recognize a number of jazz standards
and play the parts of a thythm section, following the tempo ofa solo-
ist. The IMA introduces some significant departures from the Large
and Kolen adaptation functions as a necessary consequence of the
nature of the application (figure 3.22).

The first change has to do with the discontinuities introduced by
the Large and Kolen adaptations. “To be able to synchronize the ac-
companiment with a live musical performance, the system must pro-
duce a continuous, monotonically increasing mapping from absolute
time (expressed in seconds) to relative time (expressed in the number
ofbeats elapsed since the beginning of the performance). In oscillator
terminology, it must produce a continuous mapping from time to
phase. . .. This is not the case with Large and Kolen's oscillator, as
it adapts its phase abruptly and discontinuously at the time of each
note onset” (Tolviainen 1998, 65).

The other problem from the point of view of Toiviainen’s IMA is
that the Large and Kolen adaptations consider every input impulse
to be equally important. This works well enough for regularly spaced
performances, but can go dramatically awry when ornaments such as
atrill are added. Toiviainen’s response was to design new adaptation
functions for the Large and Kolen oscillator that take into account,
among other things, the duration of events associated with an input
impulse. “The main idea behind this approach is that all adaptation
takes place gradually and a posteriori, instead of occurring at the
time of the note onset. Consequently, notes of short duration do not
give rise to any significant adaptation, even if they occur within the



void Oscillator::Toiviainen(bool pulse, long time)
{
/* if just starting, initialize phi */
if (lastPulseTime < 0) {
phi = phi_at_pulse + phiVel_at_pulse *

((float) (time-startTime) / 1000.0);

} else {
float deltaTime = time - lastPulseTime;
float varPhi = (deltaTime/1000.0) * phiVel_at_pulse;
float adaptLong = GetAdaptLong(varPhi); // get from table

float adaptShort = GetAdaptShort (varPhi); // get from table
phi = phi_at _pulse + varPhi + errFunc *
(etaLong*adaptLong + etaShort*adaptShort);
if (pulse) // change tempo if on pulse
phivVel_at_pulse = phiVel_at_pulse *

(1 + etalong * errFunc * adaptShort);

if (pulse) {
/* Equation 1 */

l+tanh (gamma* (cos (twoPI*phi)-1.0));

output
errFunc = output * (output-2.0) * sin(twoPI*phi);

phi_at_pulse = phi;

period = 1000.0 / phiVel_at_pulse; // update period

Figure 3.22 Toiviainen adaptation
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temporal receptive field. As a result, the field can be set rather wide
even if the rhythm of the performance is complex, thus making it
possible to follow fast tempo changes or intense rubato” (Toiviainen
1998, 66). Because the oscillator does not adapt at the onset of an
event but rather some time after it has passed might seem to indicate
that the response of the IMA adaptation would be slower. In practice
the oscillator converges to a new beat quickly enough to keep up
with a live performance and avoids sudden jumps of tempo with
every update of the period.

Much of the strength of the IMA adaptation arises from the fact
that it is the product of two components, called long- and short-term
adaptation. “Both types of adaptation are necessary for the system
to follow tempo changes and other timing deviations. A single timing
deviation does not give rise to any permanently significant change
in phase velocity. If, on the other hand, the oscillator finds it is, say,
behind the beat at several successive note onsets, the cumulation of
long-term adaptation gives rise to a permanent change in phase ve-
locity” (Toiviainen 1998, 68).

The combination of long- and short-term adaptation means that
the IMA oscillator retains a relatively stable firing frequency even
through trills and other highly ametrical inputs. The program expects
an initial estimate of the beat period to start off the oscillator: such
an estimate can be obtained from the [0l between the first two events,
for example, or from a “count-off” given by the performer on a foot
pedal.

The Oscillator application on the CD-ROM implements a single
adaptive oscillator that changes period and phase with the arrival of
incoming MIDI events. The user can select either the Large and Kolen
adaptation function or that of Toiviainen using radio buttons on the
interface (figure 3.23). The interface also indicates both the length in
milliseconds of the most recent inter-onset interval (10I) and the pe-
riod of the oscillator. In figure 3.23 the last performed event corre-
sponded quite closely to the period predicted by the oscillator—the
two values are within 11 milliseconds of one another.
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Figure 3.23 Oscillator interface

The example application reacts slowly to tempo changes and not
at all to sudden shifts in speed. Both Large and Toiviainen use arrays
of oscillators at different periods and choose the one with the greatest
fidelity to the input. This makes their systems able to move between
large variations in tempi and considerably more powerful than the
limited example implemented here. The interested reader can mod-
ify the source code on the CD-ROM to multiply the number of adap-
tive oscillators.

3.3.3 Meter Induction
Beat tracking is the process of finding a regular pulse in a sequence
of events. Meter in Western music is the organization of pulses into
higher-level groups, whereby some pulses become regularly ac-
cented with respect to their neighbors. These higher-level groups
typically occur in groups of two or three and are reflected in the time
signatures of music notation. For example, a 2/4 meter indicates a
metric group of two beats, in which the first is a strong beat and the
second weak. A 3/4 meter indicates a strong beat followed by two
weak ones. In a 4/4 meter, there is a strong beat at the beginning of
the bar and on beat 3.

The problem of meter induction, then, is to find these higher-level
groups as an organization of a series of undifferentiated beats. An
important class of rule-based meter induction systems has arisen
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based on the model first proposed by Longuet-Higgins and Lee
(1982). These models consist of a small set of rules that are used to
confirm or revise a hypothesis about the ongoing beat period. The
Longuet-Higgins and Lee algorithm used a set of five rules: INITIAL-
IZE, STRETGH, UPDATE, CONFLATE, and CONFIRM. The INTTTAT-
IZE rule captures one of the main foundations of the approach: it
takes the first [Ol encountered as the beat period until proven other-
wise by the remaining rules. Essentially the model assumes that the
first period is the downheat of a duple meter. It establishes increas-
ingly higher-level metric periods built on this interval for as long as
incoming events confirm the pulse. These higher-level periods ex-
tend to a range of about 5 seconds, after which pulses are no longer
held to have metric significance.

The remaining rules of the system handle cases in which either
the meter is triple and not duple, and/or the initial event is not a
downbeat but an upbeat. The main structural cue that triggers the
rules is an event with an IOl that is long relative to those of the events
around it. That is, the model tries to place long notes on strong beats.
In an article detailing his refinement of the rule set, Lee explains why
long 101s, and not only notes with long actual durations, are suffi-
cient markers: “In musical terms, then, this means that—other things
being equal—a long note is perceptually more salient than a short
note, regardless of whether the absolute duration of the long note
(measured from its time of onset to its time of offset) is greater than
that of the short note. It seems reasonable to conclude that long notes
and accented notes cue metrical structure in the same way: They
tend to be heard as initiating higher-level metrical units than notes
which are short or unaccented” (Lee 1985, 57). In other words, long
[Ols can be taken as metrical markers whether or not the event filling
the interval is long as well.

The Temperley and Sleator Serioso system (introduced in section
2.2.2) has a metric analysis component that, like the Longuet-Higgins
and Lee model, uses long events as a marker for strong beats. Figure
3.24 lists the three preference rules of their metric component.
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Event rule—prefer a structure that aligns beats with

event onsets.

Length rule-prefer a structure that aligns strong beats

with onsets of longer events.

Regularity rule-—prefer beats at each level to be

maximally evenly spaced.

Figure 3.24 Serioso metric preference rules

The Serioso rules can produce a metric interpretation of monopho-
nic or polyphonic music and can parse information coming from a
performed sequence of events. That is, the model does not depend
on strict metronomic regularity (such as is produced by a quantized
performance) to work.

Polyphony requires some additional interpretation of the rules.
The event rule, for example, prefers beat locations that have the most
event onsets. In other words, if all of the voices of a polyphonic con-
text are arriving at one time point, that point makes a good beat. Fur-
ther, it often occurs that a long note in one voice is obscured by
intervening attacks in other voices. If a program tracks the MIDI
stream coming from a keyboard performance, for example, all of the
voices of the composition will arrive at the computer on the same
channel and cannot be differentiated from each other. As in the Lee
model cited above, Temperley considers long IOIs to be long events.
That is, events are long whether or not the duration of the sounding
note is long as well. “Intuitively, what we want is the IOI of a note
within that line of the texture: we call this the registral I0I”’ (Tem-
perley and Sleator 1999, 13).

There are published algorithms for separating the voices of a poly-
phonic composition (Marsden 1992) but the problem is notoriously
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difficult (as the Marsden article establishes) and will not be at-
tempted here. Temperley adopts the simple heuristic of taking any
note onset within nine semitones of a prior one to establish the regis-
tral 101 for that prior event. This breaks down, obviously, when two
voices are operating within that span. “Taking all this into account,
we propose a measure of an event’s length that is used for the pur-
pose of the length rule: the length of a note is the maximum of its
duration and its registral IOI" (Temperley and Sleator 1999, 13).

Serioso’s metric analysis is the structure that best satisfies all three
rules after the evaluation ofa composition as a whole. Though a com-
plete analysis is required to arrive at a final parsing, Temperley’s
approach moves through the score from left to right and keeps track
of the best solution at each step along the way (resembling Jacken-
doff’s beam-search-like proposal [Jackendoff 1992]). At any given
point the program is able to identify a maximal metric interpretation
of the work to that moment, though the interpretation may change
in light of further evidence later in the work. The process can there-
fore be used in real time as it only requires the information available
as the piece is performed. It also accounts for “garden path” phenom-
ena in which one way of hearing a passage is modified by the audi-
tion of subsequent events.

Serioso generates not only a tactus for the composition under anal-
ysis (beat tracking), but two metrical levels above the tactus and two
below it. The upper and lower levels are found by evaluating tactus
points much as events were evaluated to find the tactus itself. The
tactus is called level 2, those abowve it are levels 3 and 4, and those
below it levels 0 and 1. “Level 3 is generated in exactly the same
way as level 2, with the added stipulation that every beat at level 3
must also be a beat at level 2, and exactly one or two level-2 beats
must elapse between each pair of level-3 beats” (Temperley and Slea-
tor 1999, 15).

There are two notable aspects of their method for generating addi-
tional metric lavels: first, the method is essentially recursive, using
the same rules for the tactus, its meter, and its subdivision. Second,
their method searches for multiplications and divisions by two or
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three, just as the processes related to the Longuet-Higgins and Lee
model do. The Serioso website lists the complete code of Tem-
perley’'s system, including the metric analysis phase. The rules used
in Longuet-Higgins-style models are clearly described by Desain and
Honing (1999).

3.4 Max Extemnals

We have developed a number of algorithmic analysis programs using
the C++ objects of the Machine Musicianship library. Many of the
algorithmic composition techniques covered later in this text were
written in the other language supported on the CD-ROM, namely
Max. How can the examples written in one language be integrated
with programs developed in the other? In many cases, the underlying
algorithms can simply be ported: though it would be superfluous to
implement the processes of this book in both environments, many
of the programs discussed could be written equally well either way.

Another, more direct way of using C+ + code in Max is to rewrite
the objects involved as Max externals. Max itself is already object-
oriented, or at least quite clearly designed using object-orientation
as a model. The most straightforward approach would be to recast a
C++ class as a Max object in which the C++ public methods become
associated with particular messages sent to the Max object’s inlet.
As an example of this technique we will implement the Max external
pcset.

The external takes a list of MIDI pitches as input and returns a
pitch class vector such as those used by several of the harmonic anal-
ysis applications developed in chapters 2 and 3. This is not a particu-
larly complicated process and could in fact be implemented quite
easily in Max itself. We will write it as an external, however, to dem-
onstrate the steps by which this is done.

David Zicarelli's manual Writing External Objects for Max is the
essential guide to the process (1996). The CD-ROM uses Metrowerks
CodeWarrior as the development environment, so [ will briefly note
the way that compiler is configured for the creation of Max externals.
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The most important change from the other, stand-alone applications
on the CD-ROM is that a Max external is compiled not as an applica-
tion but as a shared library. (I will describe here the process of mak-
ing a PowerPC external, but Zicarelli [1996] also explains how to
compile the same code for a 68K external or a FAT version that will
run on both processors).

CodeWarrior must be configured to produce a shared library in-
stead of an application. To accomplish this one edits the Target set-
tings of the CodeWarrior project. In the PPC Target panel, change the
project type to Shared Library, the name to whatever the name of the
Max external should be, the creator to max2 and the type to the string
“?777". This will make your external behave properly when called
from Max, give it the correct name, and let the operating system know
that it goes with Max (which will, for example, cause the external to
be displayed on the desktop with the Max icon).

In writing an external, as with any computer program, we need
first to decide what the functionality of the resulting object should
be. To a large extent this depends on how the output of the object
will be used and in what form the input is likely to arrive. What we
certainly want to do is accept a list of MIDI note numbers and output
twelve integers, with the first corresponding to the pitch class C, and
where a value of one indicates the presence of a pitch class and a
zero indicates its absence. Should the object output a list from one
outlet, or have twelve separate outlets, one for each pitch class?

The answer depends on the most natural way to embed pcset in a
patch. The external will be used primarily to send information to
other objects that can perform analysis on pitch class sets, and so its
output can best be cast as a list. If needed, Max provides an easy way
to divide the list into twelve individual outlets with the unpack ob-
ject (figure 3.25).

Writing a Max external is similar in many respects to designing a
class in C++. Every Max external is associated with a data structure
that maintains variables used by the object, which function much as
private data members do in a C++ class. Figure 3.26 shows the data
struct used by the peset external. Every Max data struct has to begin
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Figure 3.25 Unpacking the pitch classes of a pcset

typedef struct pcset
{
struct object p_ob; // used internally by Max

long p_args[MAXSIZE]; // MIDI note #s to be converted

long p_count; // number of notes
Atom pes[l2]; // pitch classes array
void* p_out; // outlet

} Pcset;

Figure 3.26 Pcset data structure

with a struct object field, as this is used by Max internally to manipu-
late the external. The subsequent fields are up to the programmer
and arise from the calculations performed by the object. In pcset we
need an array (p_args) in which to hold arguments, in this case
MIDI note numbers. The variable p_count holds a count of the num-
ber of actual arguments currently recorded in the p_args array. Fi-
nally, the pcs array is a set of Max Atoms that will be sent as a list
to the outlet p_out.

Max Atoms are themselves structures that can accommodate sev-
eral types of data. Atoms have two fields, one to indicate the type,
and the other to hold the data itself. We want all of our pitch class
indicators to be integers, so internally there is no reason for the pcs
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/* pcset_bang: governs the actual calculation of the pc array */
voild peset_bang({Pcset* x)
{

register short i;

EnterCallback() ; // needed for 68k compatibility

for (i=0; i<x->p_count; i++) // add pitch class to array

DoAtomPc (x, x->p_args{il);

outlet_list(x-»p_out, 0L, 12, x->pcs);
ExitCallback(}; // needed for 68k compatibility

}

Figure 3.27 Pcset bang method

array to be Atoms. Because we want to transmit lists from the outlet,
however, we must conform to the Max standard for lists, which re-
quires an array of Atoms. If we transmitted a list of integers instead
of a list of Atoms, for example, unpack would not be able to separate
the items as shown in figure 3.25.

The basic code for the pcset external is very simple. When the ex-
ternal is initialized, the pcs array is set to zero. The DoAtomPc ()
routine takes a MIDI note number modulo 12 and uses it as an argu-
ment into the array, setting that array member to one. In the bang
method, then, DoAtomPc () is called repeatedly with all of the pitch
classes in the input list, changing all of the appropriate array mem-
bers to ones. The Max outlet_list () routine sends the list of
twelve pcs to the outlet (figure 3.27).

The pcset_list method (figure 3.28) unpacks an input list of
pitch classes and sends them one by one to the bang method. The
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void pcset_list(Pcset* x, Symbol* s, short ac, Atom* av)
{
register short i;

long truncate;

EnterCallback() ; // needed for 68k compatibility
if (ac > MAXSIZE-1) // check to make sure buffer fits
ac = MAXSIZE-1;
for (i=0; 1 < ac; i++,av++) {
if (av-»a_type == A_LONG) // save as long
SETLONG (x~>p_args+i, av->a_w.w_long); else
if (av->a_type == A_FLOAT) {
truncate = (long)av->a_w.w_float;

SETLONG{x->p_args+1i, truncate);

}

X->p_count = ac; // save number of args
pcset_bang (x) ; // calculate and output pc array
pcset_clear (x) ; // reset to zero

ExitCallback(); // needed for 68k compatibility

Figure 3.28 Pcset 11ist method
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void pcset_int (Pcset* x, long n)

{

EnterCallback() ;

SETLONG (x->p_args, n); // copy inlet integer to args
pcset_bang (x) ; // add to pcs array
ExitCallback() ;

}

Figure 3.29 Pcset int method

input list can be either integer or floating point values—if they are
floating, the routine truncates them to integer values before sending
them on to bang.

A user may wish to send note numbers sequentially, instead of
using a list, and have these incrementally build up a pitch-class set.
To accommodate this usage, we need a method to respond to integer
inputs and another that will set the pcs array to zero whenever a
reset message is received. The integer method is even simpler than
the list method, as all we need to do is call the bang method with a
list of one item (figure 3.29).

Finally a simple method that resets all of the members of the
pcs array to zero can be attached to a reset string sent to the inlet
of the object. The pcset_clear method is already called within
pcset_list to reset the array to zero after each incoming list has
been processed and can simply be called by reset as well.

If one is accustomed to the decomposition of processes into inter-
locking methods, writing Max externals is a matter of learning some
terminology and function calls unique to Max. As this simple exam-
ple has demonstrated, C+ + classes are particularly well suited to
such implementation. The data members of the class need to be trans-
ferred to a Max object struct and member functions translated to Max
methods. Though this simple demonstration has but limited utility,
the technique of its construction can be applied to virtually all of the
C++ classes written in this text.



4 Segments and Patterns

In the preceding chapters we have developed ways to analyze
harmonic, melodic. and rhythmic material using both symbolic and
sub-symbolic processes. Now we turn our attention to two of the pri-
mary organizing forces in the perception of music: the grouping of
events and the recognition of patterns. As we shall see, these two
processes are not only key components of machine analysis, but are
fundamentally intertwined: “If all first-order elements were indis-
criminately linked together, auditory shape recognition operations
could not be performed. There must, therefore, be a set of mecha-
nisms that enable us to form linkages between some elements and
that inhibit us from forming linkages between others” (Deutsch
1999a, 299).

4.1 Segmentation

Segmentation is the process by which musical events are organized
into groups. There are several reasons why segmentation is impor-
tant: first, because we perceive music in groups at various levels and
a machine musician should be able to form chunks analogous to
the ones human listeners hear. Segments also offer a useful level of
organization for the algorithmic categorization and analysis of music.
The discovery of patterns within a musical stream, as we shall see
in section 4.2, is greatly simplified when distinct and consistent seg-
ments can be used for comparison. We can also use segments to dis-
tinguish between levels of activity for harmonic or rhythmic
processes: there may be small tempo fluctuations at the event level
that occur within a larger structure of regular phrase lengths, for
example.
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4.1.1 Grouping Preference Rules

The publication of Lerdahl and Jackendoff’s text, A Generative The-
ory of Tonal Music (GTTM) in 1983 was a watershed event for the
development of music cognition. Much of the work developed since
that point has been related in one way or another to the principles
they laid out. One of the most novel elements of their approach was
the treatment of rhythm:

They pointed out that rhythm in the tonal/metric music of the West-
ern tradition consists of two independent elements: grouping—
which is the manner in which music is segmented al a whole variety
of levels, from groups of a few notes up to the large-scale form of
the work—and meter—which is the regular alternation of strong and
weak elements in the music. Two importan! points were made in this
definition: first, although the two elements are theoretically indepen-
dent of one another, the mos! stable arrangement involves u congru-
ence between them such that strong points in the meter coincide with
group boundaries. Second, the two domains deal respectively with
time spuns (grouping) and time points (meter): grouping structure
is concerned with phenomena that extend over specified durations,
whereas meter is concerned with theoretically durationless moments
in time. {Clarke 1999, 478}

GTTM describes rule sets of two kinds: well-formedness rules
define legal structures for the domain under analysis. Preference
rules determine which of the legal structures are most likely to be
heard by human listeners. We have already encountered preference
rules in Temperley’s Serioso analysis system (see sections 2.2.3 and
3.3.3). As bric Clarke indicates, GTTM itself develops well-
formedness and preference rules for two separate bul interacting
components: grouping and meter. In this section we will look at the
grouping rules and ways in which these can be implemented for real-
time analysis.

A common chservation made of the rule set Lerdahl and Jackendoff
introduced is that it is not algorithmic. That is, the set is defined in
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such a way that competing structures could be generated from rules
that are both legal and incompatible with one another. The authors
point out that “the reason that the rules fail to produce a definitive
analysis is that we have not completely characterized what happens
when two preference rules come into conflict” (Lerdahl and Jacken-
doff 1983, 54).

Moreover, GI'TM is not a mechanism for evaluating music as it
unfolds in time: “Instead of describing the listener’s real-time mental
processes, we will be concerned only with the final state of his under-
standing. In our view it would be fruitless to theorize about mental
processing before understanding the organization to which the pro-
cessing leads” (Lerdahl and Jackendoff 1983, 3—4). [ see the relation-
ship between organization and processing somewhat differently—I
think one could easily produce an organization that would exhibit
many structural characteristics in common with human understand-
ing and yel be impossible to realize in real time. It would then be
fruitless to theorize about processing if there is no way to generate
the proposed structure from the experience of music. [ do not claim
that is the case with GTTM, which may be obvious since we are in the
process of implementing it here. In any case, none of this represents a
criticism of Lerdahl and Jackendoff’s estimable theory: Tam only not-
ing that the theory does not immediately do what it was never de-
signed to do. In fact, it is in my view a tribute to the flexibility of their
theory that a real-time segmenter based on these principles works as
well as it doss.

There have been several efforts to implement parts of the GT'TM
rule set algorithmically. Donncha O Maidin presents a Pascal imple-
mentation of the grouping rules in (O Maidin 1992), though that work
is not specifically designed for real-time use. Richard Ashley’s LM
melodic learning system similarly had a GTTM component for the
segmentation of monophonic material: “On the first hearing of a mel-
ody, it parses the incoming perceptual stream (represented as an
event-list) into time-spans, or ‘trajectories,” by a production system
using rules based on Lerdahl and Jackendoff’s Grouping Preference
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Rules” (Ashley 1989, 306). Because of its real-time orientation, the
system on which I rely most heavily in this discussion is the one
published by Stammen and Pennycook (1993).

The grouping well-formedness rules below (Lerdahl and Jacken-
doff 1983, 37-8) determine the structure of legal groups:

GWFR 1 Any contiguous sequence of pitch-events, drum beats, or
the like can constitute a group, and only contiguous sequences can
constitute a group.

The first well-formedness rule makes it easier to imagine this pro-
cess occurring in real time, as it must for our purposes. If all groups
are composed of contiguous sequences, then group boundaries may
be formed as the events of the sequence arrive in succession. Even
if a group boundary is not recognized as such for some number of
events after its actual arrival, the bookkeeping and analytical appara-
tus is far less than would be needed if each new event could be a
member of an arbitrarily large number of prior groups.

GWFR 2 A piece constitutes a group.

GWFR 3 A group may contain smaller groups.

GWFR 4 1If a group G, contains part of a group G, it must contain
all of G..

GWFR 5 1f a group G. contains a smaller group G,, then G; must be
exhaustively partitioned into smaller groups.

GWUFRs 2-5 establish that groups are hierarchical and impose re-
strictions on what kind of hierarchy they can form. In terms of real-
time processing, these restrictions again make the task easier than it
otherwise might be: if any group contains sub-groups, these are
wholly contained within the larger group and serve to exhaustively
partition it.

The rigidity of the hierarchy determined by the well-formedness
rules is one of the more controversial aspects of Lerdahl and Jacken-
doff’s theory (Kendall and Carterette 1990). Alternative construc-
tions include a heterarchy or network representation (Narmour 1977)
and musical schemata (Gjerdingen 1988). Our concern here, how-
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ever, is with the production of terminal segments—the smallest
elements of a Lerdahl and Jackendoff-style grouping hierarchy.
Terminal segments could then form the lowest level of a full-
blown GTTM structure, but might also become the atoms of other
organizations, including the network and schema representations
just cited.

Let us begin by defining a Segment class (figure 4.1). A Segment
contains some number of Events and maintains information con-
cerning which rules led to its formation. The ruleType array is in-
dexed by the number of rules that can contribute to the assertion of
a segment boundary. The Segment class as defined here can only
represent the lowest level of a GI'TM hierarchy—we have encoded
no way to represent a segment composed of other segments. To make
it fully hierarchical, we could add a type field to the object that
would indicate whether it was a terminal Segment (containing
Eventsz] or higher-level (containing other Segments) and fill in the
data arrays accordingly.

A group at McGill University led by Dale Stammen and Bruce Pen-
nycook wrote a real-time segmenter based on GTTM as part of an
interactive jazz analysis/performance system (1993). Their rules are
grouped according to the amount of information required to apply
them. Real-time rules, for example, are those that can be evaluated
using only the information that has arrived up to the moment of com-
putation. Three-note rules. by way of contrast, can only find a bound-
ary one note after the boundary has already passed.

The first real-time rule is the simplest and is a derivation of
GTTM’s first grouping preference rule (43):

GPR 1 Strongly avoid groups containing a single event.
GPR 1, alternative form Avoid analyses with very small groups—
the smaller, the less preferable.

We can see the operation of the minimum size rule inside the
AssertBoundary{} method shown in figure 4.2, which is called
whenever one of the other rules has detected a segment boundary.
The argument number contains the length in events of the newly



class Segment {
public:
enum RuleType { kAttackPoint = 0, kSlurRest, kRegisterChange,

kMaxSize, kGenerated, kNumRuleTypes };

private:
Segment * prev;
Segment* next;

class EventBlock* eventBlock;

int numEvents;

int segmentID;

bool rules [kNumRuleTypes] ;
public:

Segment (int size);
Segment (void) ;
Segment& operator=(const Segment& rhs);

~Segment (void) ;

Segment* Prev(void) const { return prev; }
Segment* Next (void) const { return next; }
void CopyEvents(class Event* event, int size);

class Event* FirstEvent (void);

void SetNumEvents (int newNumEvents)
{ numEvents = newNumEvents; }
void SetPrev(Segment* p) { prev = Py }

Figure 4.1 Segment () class
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void SetNext (Segment* n) { next = fig

void SetSegmentID(int s) { segmentID = s;

void AssertRuleType(RuleType r) { rules(r] = true;
void IncNumEvents (void) { ++numBvents;

class EventBlock* Events(void) const { return eventBlock;
int ID(void) const { return segmentID;
int NumEvents {void) const { return numEvents;
bool RuleOn{RuleType r) const { return rules|r];

}i

Figure 4.1 Continued

found segment. The first conditional of AssertBoundary () com-
pares that value to minEvents. If the number of events played since
the last segment boundary has not reached the minimum length, no
boundary is asserted at this location. With minEvents set to three,
for example, this means that no one- or two-note segments will be
produced.

Here we see an example of the consequence of translating GTTM
into a computer program—GPR1 says only that small groups should
be strongly avoided, not that they cannot exist. The GTTM rule set
is not algorithmic because the preference rules are an interlocking
collection of suggestions rather than prescriptions. To make a com-
puter program, however, we must decide the matter one way or
another. The simplest solution is the one just described—set a
threshold for the minimum number of events a segment must hold.

Lerdahl and Jackendoff’s second grouping preference rule deals
with the proximity of events in different parameters (45):

GPR 2 (Proximity) Consider a sequence of four notes n;n.n;n,. All
else being equal, the transition n,-n, may be heard as a group bound-
ary if



/* AssertBoundary: assert a segment boundary because of the given rule
i
void Segmenter::AssertBoundary (Event* event, Segment::RuleType ruleType,

int number)

register int i;

if (number < minEvents)

return; // reject segments that are too short

if (newLength > 0) ({ // already created this segment

Segment* prior = currentSegment->Prev();

prior->AssertRuleType (ruleType) ; // just add rule type
mac->DrawEvent (prior->Events () ->Tail());
return;
}
++numSegments; // increase the number of segments
if (numSegments > segments->NumSegments()) {

int newSize = segments->NumSegments ()+10;

SegmentBlock* tmp = new SegmentBlock(newSize) ;

for (i=0; i<numSegments-1; i++)
*tmp->Member (1) = *segments->Member (i) ;

delete segments;

il

segments tmp;

currentSegment = segments->Member (numSegments-2) ;

Figure 4.2 AssertBoundary () method
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Segment* nextSeg = currentSegment->Next () ;

int pastBoundary = eventsInSegment-number;

for (i=0; i<pastBoundary; i++) { // point remaining events to new seg
event->SetSegmentID (nextSeg->ID());
event = event->Prev();

}

event->SetLastInSegment (true) ; // make event show it is boundary

currentSegment->AssertRuleType (ruleType) ;
currentSegment->CopyEvents (thisSegStart, number);
for (i=0; i<number; i++)

thisSegStart = thisSegStart->Next () ;

mac->DrawEvent (event) ; // redraw event with rule names
currentSegment = nextSeg;

currentSegment->SetNumEvents (pastBoundary) ;

Figure 4.2 Continued

a. (Slur/Rest) the interval of time from the end of n,to the beginning
of n,is greater than that from the end of n, to the beginning of n,and
that from the end of nj;to the beginning of ny, or if

b. (Attack-Point) the interval of time between the attack points of
n;and n,is greater than that between the attack points of n; and n,
and that between the attack points of n;and n,.

Let us examine the real-time issues involved in implementing
GPR2 more closely. Both parts of the rule are written as a function
of four notes, which implies that a segment boundary cannot be
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Figure 4.3 Incomplete GPR 2b

asserted from these rules until two notes have passed beyond the
location of the boundary. For the analysis and processing of music
during performance, we would like to be able to segment and treat
material more quickly. The solution developed by Stammen and Pen-
nycook (1993) is to notice immediately the distinctive transitions
that make up the first part of the preference rules and posit a provi-
sional segment boundary when they are found. Once all of the evi-
dence has arrived, two notes later, the provisional boundary may be
confirmed or eliminated. Time-critical processing is executed on the
basis of provisional boundaries, and analyses that occur over a longer
span can wait for firmer segmentation.

Figure 4.3 demonstrates an incomplete occurrence of GPR2b
(Attack-Point). We may consider that n, and n, correspond to the
events so marked in the figure. To fully decide GPR2b we need
three durations: the length of time between the attacks of n,and n,,
the length of time between the attacks of n,and n,, and the length
of time between the attacks of n; and n,. When (n;-n,) > (n,-n,) and
(ns-ny) > (n,4-n3), GPR2b is true. Once the half note marked n, in figure
4.4 has sounded for longer than a quarter note with no subsequent
attack, we already know that the first part of the conjunction is true
because (n,-n,) will necessarily be longer than (n,-n,). We may then
assert a provisional boundary at the attack of the next event n,. When
the attack of n,arrives, we will know whether the second part of the
conjunction is also true ((ns-n,) > (n,-n,)).

Figure 4.4 shows these two possibilities: 4.4 (left) is the case where
the second half of the conjunction is true, leading to a segment
boundary between n, and n; (indicated in the figure by a bar line).
Figure 4.4 (right) shows an example where (n;-n,) = (n,-n,), mean-
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Figure 4.4 Possible continuations of GPR 2b

ing that the second half of the conjunction is false and GPR2b
does not apply. The dotted line before n, represents the provi-
sional boundary generated when the first part of the conjunction was
true.

Positing provisional occurrences of a grouping rule makes it possi-
ble to recognize that an event is the beginning of a new segment at
the moment it arrives. It even becomes possible to recognize that an
event is the end of an ongoing segment while that event is still sound-
ing. The price of such speed is, of course, that some events will be
treated as segment boundaries when in fact they are not. Whether or
not the trade-off is worthwhile depends entirely on what will be done
with the provisional segments.

What happens if we wait until all the evidence is in? We still
would not be in a terrible position with respect to real-time pro-
cessing because we will know the outcome of the rule with the attack
of the event following the first event in the segment. For example,
we know in figure 4.4 whether GPR2b is true or false with the onset
of n,. In fact, we know the negation of the rule even without n,: as
soon as the duration (n,;-n,) has passed without finding the onset of
n,, we know GPR2b to be false.

Figure 4.5 lists the code for the full attack-point function. Notice
the calculation of the search duration for long notes: the variable
longOnToOn is set to the most recent duration plus 10%. Because
we are dealing with actual performed durations and not quantized
durations in a score, the 10% margin helps us avoid triggering the
rule because of expressive variations. When we know we are looking
at the duration n,-n,, the routine LongNoteFound () is scheduled to
execute once longOnToOn has elapsed.
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vold Segmenter::AttackPoint (class Event* event)

{
int index = eventsInSegment-1;
// first event of performance, no IOI
i1f (event->IOQOI() == 0) return;
OnToOns [index] = event->I0I();
longOnToOn = OnToOns [index] ;
// make long IOI 10% greater than last one
longOnToOn += {longOnToOn/10);
if (index > 0) // look for long n2-n3

longNoteTask = scheduler->ScheduleTask (Now+longOnTcOn, 0, 2,

0, LongNoteFound, this);

if (eventsInSegment < 4) return;

index -= 2;
long nln2 = OnToOns [index++];
long n2n3 = OnToOns [index++];

long n3nd = OnToOns[index] ;

if ((n2n3>nln2) && (n2n3>n3n4)) { // GPR 2b

AssertBoundary (event, Segment::kAttackPoint, eventsInSegment-2);

newLength = 2;

Figure 4.5 Attack-point function
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The basic implementation of GPR2b is found on the line so com-
mented. When we have all four durations, it is a simple matter of
comparison to see whether the inter-onset interval n2n3 is greater
than both n1n2 and n3n4. If it is, the attack-point rule fires and a
boundary is asserted between n2 and n3.

Figure 4.6 lists the GTTM grouping preference rule 3. The Seg-
menter application on the CD-ROM implements the first of these.
The others can be readily computed in the same way, as the only
difference between them and the RegisterChange function that im-
plements GPR3a will be the intervals they measure. Dynamics are
encoded as the velocity value of the Notes in an event, for example,
and the articulation can be measured as the span of time between
the attack of an Event and its overall duration.

There remains the fundamental problem of combination and prio-
ritization that was signaled by the authors themselves: there are no
meta-rules that establish how to proceed when different preference

GPR 3 (Change) Consider a sequence of four notes njngnsng.

All else being equal,

the transition mp;-n; may be heard as a

group boundary if

a.

(Register) the transition my-n3; involves a greater
intervallic distance than both nj-n, and n3;-ns, or if
(Dynamics) the transition my-n; involves a change in
dynamics and nj-n; and n3-ng do not, or if

(Articulation) the transition n;-n3 involves a change in

articulation and m-n; and n3-n4 do not, or if

(Length) n; and n3 are of different lengths and both pairs

m,ny and n3,ns do not differ in length [Lerdahl &

Jackendoff 1983 p. 46].

Figure 4.6 Grouping preference rule 3
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GPR 6 (Parallelism) Where two or more segments of the music
can be construed as parallel, they preferably form parallel

parts of groups [Lerdahl & Jackendoff 1983 p. 51].

Figure 4.7 Grouping preference rule 6

rules come into conflict. Beyond that, GPRs 4—7 are more problem-
atic both in terms of algorithmic formulation and real-time perfor-
mance. Consider GPR6 (figure 4.7).

There are two problems here from an algorithmic point of view: first,
how to determine that two musical segments are parallel, and second
how to ensure that they form parallel parts of groups. The parallelisms
that Lerdahl and Jackendoff use to illustrate the rule are similarities of
melodic and rhythmic contour. Exactly which similarities apply and
whether they must be present both melodically and rhythmically are
among the issues that are left to the judgment of the analyzer. The next
section is devoted to noticing such similarities algorithmically.

Even assuming we could develop a parallelism recognizer, how-
ever, let us note in passing a circular relationship that would become
more acute in combination with GPR6: pattern recognition, particu-
larly in real time, relies on having consistent groups to compare. If
grouping depends on patterns that depend on groups, we find again
the kinds of control structure complications that were encountered
with the interplay between chords and keys. Here is another instance
of interacting processes that must collaborate to converge on a con-
vincing structure.

The relevance of grouping preference rules for real-time segmenta-
tion depends, as usual, on the ends to which the discovered grouping
boundaries will be put. Similarly, the issues of control and arbitration
between competing rules can only be decided within the framework
of a particular application. GTTM itself does not offer any recommen-
dations, but Ray Jackendoff suggested some ideas in his 1992 article,
“Musical Processing and Musical Affect.” In particular he outlined a
parallel multiple-analysis model in which several structural candi-
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dates would be developed simultaneously: ““The idea behind this the-
ory is that when the processor encounters a choice point among
compeling analyses, processing splits into simultaneous branches,
eachcomputingananalysisfor one ofthe possibilities. Whena particu-
larbranch dropsbelow some threshold of plausibility, itisabandoned.
Whatever branches remain at the end of the piece then contain viable
structures for the pieceasawhole” (Jackendoff 1992, 62). [n computer
science, such a strategy is referred to as beam search.

The multiplication of parallel theories is mitigated in the proposal
by the stipulation of a selection function, which continually evalu-
ates the emerging structures and indicates one of them as the most
preferred. It is in the selection function that arbitration processes for
competing preference rules would need to be worked out. With the
addition of a selection function, real-time systems could use the most
preferred analysis at any given point in the processing, even though
that choice might be overridden by another at later moments of the
performance. In fact much the same technique is used in the Serioso
preference rule system of Temperley and Sleator.

Jackendoff's interest in devising a real-time mechanism for the
preference rules lies primarily in the leverage it affords for theorizing
about the listening process and its relationship to expectation:

The theory of musical processing sketched above makes possible a
stronger notion of musical expectation or implication, or what might
be called prospective hearing. The theory claims that the listener is
using principles of musical grammar to assign multiple possible
analyses o the fragment of music heard thus far. Among these prin-
ciples, there are many that can project structure for parts of the music
that have not vet been heard. For example, one of the principles of
grouping (Grouping Preference Rule 5 in GTTM]) creates a preference
for symmetrical organization. When a single group is heard, this
principle leads the processar to create a potential structure in which
this group is balanced by a second group of the same length—that
is, there is an “expectation” that the music will continue in a way
that fills in a symmetrical structure. (Juckendoff 1992, 64-65)
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It is precisely such expectations that would be most valuable for
a machine musician to project, and the search for meaningful seg-
ments is an important part of generating them. Let us leave the group-
ing preference rules with some concluding observations: the GTTM
rules must be adapted for application in a computer program. Some
rules are readily usable as they stand while others present more dif-
ficulty, both in terms of formulation as well as application.

Figure 4.8 shows the interface of the Segmenter example on the
CD-ROM. The interface and program design of the Segmenter are de-
rived from code provided by Bruce Pennycook and Dale Stammen.
[ ported the code to C++ using the Machine Musicianship library.
Incoming events appear in a piano-roll notation, with pitch number

T
L]

Segmenter

96

84

72

&0

48

36

24

Figure 4.8 Segmenter interface
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labeled along the y axis, and time advancing from left to right along
the x axis. The input to the application that generated figure 4.8 was
a performance of the opening of Mozart’s G Minor Symphony. This
work was used because it is also the musical material for the demon-
stration of GPRs 2 and 3 found on page 47 of GTTM. Since | have
here implemented only GPRs 2a, 2b, and 3a. only those rules appear
on the interface on the final event of the segment they define. Their
placement in figure 4.8 corresponds to the illustration in figure 3.19
of GTTM (Lerdahl and Jackendoff 1983, 47).

The only differences arise from the way the rules are imple-
mented—rule 3a fires on the 12th note, for example, because the pro-
gram considers the unison to be an interval. Since the leap between
notes 12 and 13 is larger than the half-step between 11 and 12, and
larger than the unison between 13 and 14, rule 3a fires. Rules 2a and
2b do not fire on note 10, on the other hand, because of the prohibi-
tion against short segments. Since a boundary was just attached to
note 9, a new one cannot be generated on note 10. Already in this
short example we see that arbitration between conflicting rules is the
primary hurdle to a fully developed GTTM segmenter.

4.1.2 Gestalt Segmentation

James Tenney and Larry Polansky’s segmentation work is drawn
from the tradition of Gestalt psychology, as indicated by the title of
the article in which it is laid out: “Temporal Gestalt Perception in
Music” (1980). Gestalt psychology is concerned with perceptual
principles that ascribe a continuous cause to a series of discontinu-
ous elements., One of these is the Law of Good Continuation: ele-
ments will be grouped together so as to form smoothly changing
trajectories. A classic demonstration of Gestalt principles, particu-
larly the law of good continuation, involves flashing discrete light
sources in a particular time sequence. If a set of three light sources
arranged in a line are flashed one after the other in a darkened room,
viewers perceive the apparent motion of one light moving toward the
final flash rather than three discrete events (which is what actually
occurred). Other Gestalt principles include proximity, which holds
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that close elements are grouped together; similarify, that like ele-
ments give rise to groups; common fate, that elements changing the
same way should be grouped; and the principle that we tend to group
elements so as to form familiar configurations.

In Tenney and Polansky's work, the Gestalt principles of proximity
and similarity are used as the basis for rules that govern grouping of
elements, clangs, and sequences. “An element may be defined more
precisely as a TG [temporal gestalt] which is not temporally divisible,
in perception, into smaller TGs. A clang is a TG at the next higher
level, consisting of a succession of two or more elements, and a suc-
cession of two or more clangs—heard as a TG at the nexf higher
level—constitutes a sequence” (Tenney and Polansky 1980, 206—
207). Essentially, an element corresponds to an Event in the hierar-
chical representation outlined in Chapter 2. A clang is then a group
of Events, or a Segment. A sequence in Tenney and Polansky’s
work would be a collection of Segments= in ours. Consequently, we
are concerned for the moment primarily with the application of the
rules to form clangs, or groups of elements.

The 1980 article formalized concepts that Tenney had been work-
ing with since the early 1960s, particularly the idea that Gestalt
principles of proximity and similarity are two primary factors con-
tributing to group formation in music perception. The rule related to
proximity is defined as follows: “In a monophonic succession of ele-
ments, a clang will tend to be initiated in perception by any element
which begins after a time-interval (from the beginning of the previous
element, i.e., after a delay-time) which is greater than those immedi-
ately preceding and following it, “other factors being equal’” (Tenney
and Polansky 1980, 208 [italics in original]). The rule in this form,
expressed with reference to time, is in fact identical to Lerdahl and
Jackendoff’s Grouping Preference Rule 2Zb (Attack-Point).

Lerdahl and Jackendoff note the resemblance in GTTM while con-
sidering the feasibility of implementing their rule system in a com-
puter program. “Tenney and Polansky . . . state quantified rules of
local detail, which are used by a computer program to predict group-
ing judgments. They point out. however, that their system does not
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comfortably account for vague or ambiguous grouping judgments, be-
cause of its numerical character, and they note the essential arbitrari-
ness in the choice of numerical weights. And, although aware of the
need for global rules such as those of symmetry and parallelism, they
do not incorporate these rules into their system. It is our impression
that they do not really confront the difficulty of how in principle one
balances global against local considerations” (Lerdahl and Jacken-
doff 1983, 55). Though the problems of rule arbitration and the quan-
tification of percepts such as parallelism remain, [ believe that the
number of algorithmic tools now at our disposal (many developed
as an oulgrowth of GTTM itself) makes a systematic and indeed com-
putational investigation of the issues involved tractable. Let us con-
tinue, then, with a review of the Gestalt segmentation proposal.

Tenney and Polansky’s similarity rule is a generalization of their
proximity rule and corresponds closely or exactly to other Grouping
Praference Rules: “In a monophonic succession of elements, a clang
will tend to be initiated in perception by any element which differs
from the previous element by an interval (in some parameter) which
is greater than those (inter-element intervals) immediately preceding
and following it, ‘other factors being equal’” (Tenney and Polansky
1980, 209 [italics in original]). The similarity rule approximates GPR
3 (Change) in looking for intensifying discontinuities—that is, differ-
ences between neighbors in which the middle element changes more
than the others.

Tenney and Polansky’s temporal gestalt work was implemented in
a computer program. This algorithmic orientation requires them to
produce quite precise formulations of the objects and relationships
described in their rules. The first manifestation of this precision is
the definition of distance between two objects when those objects
are quantified along several independent dimensions. In this case,
the dimensions are pitch, duration, intensity (loudness), and, to
some extent, timbre. Tenney and Polansky consider such objects
as points in a multidimensional perceptual space. The problem,
then, is how to measure the distance between two points. The two
possibilities they consider are the Euclidean and city-block metrics.
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“In the Euclidean metric, the distance between two points is al-
ways the square root of the sum of the squares of the distances (or
intervals) between them in each individual dimension (in two di-
mensions, this is equivalent to the familiar Pythagorean formula for
the hypotenuse of a right triangle). In the city-block metric, on the
other hand, the distance is simply the sum of the absolute values of
the distances (or intervals) in each dimension” (Tenney and Polan-
sky 1980, 212).

The interval between two elements in any individual dimension
is quantified by some measure appropriate to that parameter: pitch
intervals are measured in semitones; durations are measured as a
multiple of some quantization value (e.g., eighth-notes); and inten-
sity in terms of dynamic-level differences printed in a score. The
city-block distance between two elements is calculated by adding
these parameter-specific intervals for all features under consider-
ation. Figure 4.9 demonstrates the segmentation of the opening me-
lodic line of Beethoven’s Fifth Symphony arising from its intervals of
pitch and duration (example taken from Tenney and Polansky [1980,
215]).

The segmentation rules used in figure 4.9 are quite simple and can
be computed using a mechanism identical to the one introduced
in the previous section. The “delay-time” and pitch intervals be-
tween consecutive Events can be found using the code shown in

—
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Figure 4.9 Gestalt segmentation of Beethoven's Symphony #5
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int TG::CityBlock(Event* event)

{
int delay = event-~>I0I();
int pitchInterval = event->Notes(0)->Pitch();
pitchInterval -= event->Prev()->Notes(0)->Pitch();
pitchInterval = abs(pitchInterval);
return (delay + pitchInterval);

}

Figure 4.10 City block measurement

figure 4.10. The delay-time is simply the IOl between one Event and
the next, and the pitch interval is found by taking the absolute value
of the first MIDI pitch number minus the second.

The problems with this from a real-time perspective are the ones
we have come to expect: first, the delays in the Tenney and Polansky
article are expressed in terms of some underlying quantized values,
e.g., eighth notes. We will need to substitute ratios of some common
base duration since the onset times of performed events have no
quantized values attached (see a description of this process in section
2.4.2). The other problem is that segment boundaries are not found
until one event beyond their occurrence, because we need to see that
a given interval is larger than the ones both before and after it. This
delay simply must be accepted if we wish to use the rules their article
suggests.

The gestalt segmentation idea uses, in effect, the inverse of prox-
imity and similarity to identify boundary lines between groups. In
other words, when elements are not proximate and/or dissim-
ilar, they tend to form the beginning and end of neighboring clangs.
This concept is echoed in the literature of music theory, particularly
in the work of Wallace Berry. In his text Structural Functions in
Music, Berry states that musical structure “can be regarded as
the confluence of shaped lines of element-succession which either
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agree (are complementary) in intensity direction or disagree
(are mutually counteractive, or compensatory) in direction™ (1987,
9). For Berry, the elements of music include tonality, texture,
and rhythm. Elements are usually engaged in processes of inten-
sification or relaxation, also called progression and recession,
though sometimes they are in stasis. Tonality, for example, pro-
gresses as it modulates away from the home key and recesses as it
returns.

Berry relates accentuation to grouping structure when he remarks
that “the effort to understand accentual criteria in the experience of
music is . . . the effort to enumerate factors which appear to contrib-
ute to and condition the perception of grouping by accentuation of
certain impulses as metrically ‘initiative’” (1987, 338). The criteria
of accentuation he goes on to elaborate, then, can be read as a list of
grouping markers. The accentuation criteria are grouped into three
large classes ranked in order of importance. The first class of rules
concern discontinuities between elements in which a superior value
(accent) in some dimension follows a lesser value. For example, con-
sider rule 1: Change to faster tempo. This criterion proposes that a
noticeable shift to a faster tempo produces a structural accent that
will be perceived as a group boundary. Interestingly, Berry considers
that a shift to a slower tempo will less commonly produce such an
effect. This is what he means by change to an accentually superior
value: the first class of effects is brought about when an intensifying
discontinuity takes place. Figure 4.11 lists all of the of class | accen-
tuation criteria.

An examination of this list shows some criteria very similar to the
ones we have already implemented (pronounced change of pitch,
longer duration) and others that either require more information
(more intense timbre) or operate on a higher hierarchical level
(change to more intense texture). Berry’s proposal is notable in the
context of the current discussion both because he reinforces the iden-
tification of discontinuity as a grouping principle. and because some
of the specific manifestations of the principle he identifies appear to
be a useful expansion of the parameters we have examined so far, The
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.1l. Change to faster tempo.

.2. Pronounced change of pitch.

.3. Approach by leaps in lines.

.4. Longer duration (agogic accent).

.5. Articulative stress.

.6. Change to more intense timbre.

.7. Change to denser or otherwise more intense texture.

.8. Tonal or harmonic change of unusual degree or distance.

.9. Dissonance.

Figure 4.11 Wallace Berry’s accentuation criteria

most noticeable difference between this and the previous systems we
examined is Berry’s emphasis on “superior” values.

In his 1997 dissertation, Emilios Cambouropoulos reviews the ge-
stalt origins of music segmentation and generalizes the proximity/
similarity judgment into the Identity-Change Rule (ICR): “Amongst
three successive objects boundaries may be introduced on either of
the consecutive intervals formed by the objects if these intervals are
different. If both intervals are identical no boundary is suggested”
(Cambouropoulos 1997, 282). Another rule is added to handle the
case of two successive identity changes: the Proximity Rule (PR)
states “amongst three successive objects that form different intervals
between them a boundary may be introduced on the larger interval,
i.e., those two objects will tend to form a group that are closer to-
gether (or more similar to each other)” (Cambouropoulos 1997, 282).

Like Wallace Berry, Cambouropoulos regards accentuation and
segmentation as two aspects of the same process. In fact, his work
includes a technique for deriving one from the other: “In this paper
it is maintained that local grouping and phenomenal accentuation
structures are not independent components of a theory of musical
rhythm but that they are in a one-to-one relation, i.e., accentuation
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Figure 4.12 Smaller interval segmentation

structure can be derived from the grouping structure and the reverse”
(Cambouropoulos 1997, 285).

Berry’s system puts particular emphasis on transitions to superior
values, and the proximity rules of both GTTM and Tenney and
Polansky similarly favor boundaries on large intervals. As Cam-
bouropoulos points out, this bias excludes the recognition of a
boundary in a rthythmic sequence such as that shown in figure 4.12.
The ICR and PR rules are written in such a way that diminishing
intervals (i.e., changes to shorter, smaller, quieter values) will form
segment boundaries as well as intensifying ones. This orientation
produces a segment boundary in figure 4.12 at the location indicated
by the dashed line.

We have seen the Gestalt principles of proximity and similarity
cited by several researchers as the operative processes behind group
formation in music. The low-level distance metrics adopted by these
systems differ in detail but also show striking resemblances. My own
program Cypher noticed simultaneous discontinuities between sev-
eral features of neighboring events as a way to detect segment bound-
aries, another way of expressing the same idea (Rowe 1993). The
Segmenter application on the CD-ROM can be used as the framework
for segmentation schemes along these lines, combining difference de-
tectors across several parameters simultaneously to arrive at low-
level grouping structures in real time.

4.2 Pattern Processing
Music is composed, to an important degree, of patterns that are re-

peated and transformed. Patterns occur in all of music’s constituent
elements, including melody, thythm, harmony, and texture. If com-
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puter programs can be made to learn and identify musical patterns,
they will be better equipped to analyze and contribute to musical
discourse as it is understood by human practitioners. Pattern pro-
cessing in music encompasses two goals: (1) learning to recognize
sequential structures from repeated exposure, and (2) matching new
input against these learned sequences. I will refer to processing di-
rected toward the first goal as pattern induction, and that directed
toward the second as paftern matching.

This usage follows the one suggested by Herbert Simon and Rich-
ard Sumner in their 1963 article “Pattern in Music,” which proposed
a formalism for describing musical patterns and a method for finding
such patterns in music representations. Their study draws a direct
parallel between musical patterns and the familiar letter-series se-
quences of intelligence tests, wherein the subject must continue a
list of letters such as ABM CDM EFM. . .. “To perform successfully
on a letter-series test, a person must do two things: (1) examine the
partial sequence presented to him, and induct from it a pattern con-
sistent with it; and (2) use the pattern to extrapolate the sequence,
generating the successive symbols that belong to it. . . . We will call
the first task pattern induction, the second task sequence extrapola-
tion” (Simon and Sumner 1993, 103).

Patterns are so fundamental to our understanding of music that
their identification can be part of many tasks, including indexing,
analysis, and composition. Accordingly, much recent research has
been concentrated in this area, and several working pattern systems
are extant. Melodic similarities in particular have been a focal point
of algorithmic development (Selfridge-Field 1998). Because they are
designed for classifying large corpuses of existing material, many of
these systems need not be concerned with causality or efficiency and
so are not directly pertinent to real-time applications. Similarly,
there is an extensive literature on pattern matching in computer sci-
ence that documents algorithms generally intended for non-real-time
search processes. We have, therefore, a large repertoire of sources,
but must adapt them extensively to fit machine musicians.
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In the most demanding real-time environment, both pattern induc-
tion and pattern matching would be carried out onstage. To achieve
these goals, the program would need to notice sequences that have
been repeated several times and find subsequent occurrences as they
arise in the rest of the performance. Given that functionality, the pro-
gram could report a match of the incipit of stored patterns and pre-
dict their continuation. That prediction might be used to deliberately
harmonize or provide a counterpoint to the rest of the material as it
is performed.

Carrying out both phases of pattern processing in real time con-
sumes a greal deal of processing power and so requires a stringent
restriction of both the types of patterns treated and the number con-
sidered simultaneously. Another approach would be to conduct the
induction phase on some corpus in advance, and then run the match-
ing phase against the discovered patterns during the performance
itself,

In either case, there must be some limits placed on the nature and
length of the patterns considered—a brute force analysis of all pat-
terns of all lengths is simply too computationally demanding for a
real-time application, particularly one that is trying to accomplish
other intensive processes at the same time. It is for this reason that
we covered segmentation before pattern processing: if the elements
returned from segmentation are grouped consistently, we may expect
a measure of correspondence between template and candidate seg-
ments that is high enough for a program to recognize similar patterns.

4.2.1 Dynamic Programming

Joshua Bloch and Roger Dannenberg published a pattern matching
technique derived from dynamic programming in “Real-time Com-
puter Accompaniment of Keyboard Performances™ (1985). T'will refer
to Bloch and Dannenberg in what follows because | make use of the
description of the algorithm found there: the work is actually a poly-
phonic extension of a process first described by Dannenberg (1984).
Computer accompaniment is another name for score following, a
technique that tracks the progress of a human soloist’s performance
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through a known score (see section 5.2). The tempo of the soloist’s
rendition can be calculated from the durations between successive
matches, and that tempo drives the computer’s performance of an
accompaniment.

Imagine a representation of a solo musical line that consists of a
sequence of pitch numbers, one for each note in the solo. Now imag-
ine that same musical line being performed on a MIDI keyboard. With
each note that is played, a new pitch number arrives at the computer.
[f the line is performed without error, the sequence of pitch numbers
stored in the machine and the sequence arriving from the performer
match exactly. Because errors often do occur, however, the goal of
the Bloch and Dannenberg algorithm is to find the association be-
tween a soloist’s performance and the score in memory that at any
given moment has the greatest number of matched events.

A variable called the rating shows at any given moment the number
of matches found between the performance (or candidate) and the
stored score (or template). The rating is calculated using an integer
matrix in which rows are associated with the template and columns
with the candidate (table 4.1). When an item is matched, the rating
for the corresponding matrix location is set to the maximum of two
values: either the previous rating for that template location, or the
rating of the previous candidate location plus one.

The matrix shown in table 4.1 illustrates how the values are up-
dated as candidate elements are introduced. Time increases from left

Table 4.1 Rating Matrix
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to right across the figure. Labels at the top of the matrix indicate new
candidate elements as they are introduced and the labels down the
leftmost column represent the elements of the template pattern. The
underlined values show which matches cause the rating value to be
updated.

For example, when the candidate element 1 arrives, it matches the
template element 1 at the second location in the pattern. At the loca-
tion (1, 1) in the matrix, the rating is increased from one to two since
incrementing the previous rating by one yields a value greater than
the rating stored in the second location of the candidate prior to the
match.

The MusicPattern class implements the Bloch and Dannenberg
matcher. Figure 4.13 lists the heart of the algorithm. The matrix
maxRating keeps track of the maximum number of matches found
at any point in the performance, and the array matched shows
which of the template pattern members have been found in the in-
coming material. Let us use the class to test some simple match con-
ditions. We compare a template pattern of five elements { 9,1,8,2,7 }
to four candidate patterns representing some common types of devia-
tion: insertion, deletion, repetition, and transposition.

In the insertion test, the intruding element is not matched. Note
in table 4.2 that the matrix entries under the candidate member 6
(the inserted element) are the same as those under the previous can-
didate. All other members are correctly identified as shown. In the
implementation on the CD-ROM, the variable newMatch is setto —1
when the routine finds no match for an element under consideration,
as happens with the insertion in this example. A negative value of
newMatch, then, signals the insertion of an element that does not
appear in the template at all.

The deletion test yields four matches (table 4.3). An array of inte-
gers, called matched, shows which elements of the template pattern
have been found and which have not. At the end of this test, matched
contains { 1, 1, 0, 1, 1 }, indicating that the third element was not
found.



int MusicPattern::PatternMatcher (int start, int newElement)

int rating = start;
int newMatch = -1;
if (start < 1) return -1;

for

(int r=start; r<patternSize+l; r++) {

int current = r-1;

// initialization: current matrix element must be at least equal
// to maxRating[r-1][1] since one more template item cannot reduce
// # of matches, and at least equal to maxRating{r][0] because

// that is the score attained by one less candidate element
maxRating[r] [1] = max(maxRating[r-1][1l], maxRatinglr][0]);

// does the new element match the rth element of the template?
if (newElement == element|[current]) {

// if first match and element was not matched before,

if ((newMatch<0) && (matched[current]==0)) {
matched[current] = 1; // flag element as matched
newMatch = current; // save location of first match
++matches; // increment number of matches
}

// found match, rating set to max of previous rating for
// this element or the previous match plus one
maxRating(r] [1] = max{(maxRating[r]([l], l+maxRatingl[r-1]I[0]);

rating = maxRating([r] [1];

Figure 4.13 PatternMatcher () listing
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return rating;

Figure 4.13 Continued

Table 4.2 Insertion Test
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Table 4.3 Deletion Test
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Table 4.4 Substitution Test
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Table 4.5 Repetition Test
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Substitution is accurately handled by a report of four matches (ta-
ble 4.4) and a zero for the missing element in the corresponding
matched array position. Further, newMateh contains —1 (no match)
when the replaced element is encountered.

Repetition is much like insertion: the only difference is that the
intruding element has already been seen. Because the matched array
notes when an element has been matched, the algorithm correctly
recognizes the second appearance of 8 in the candidate and does not
increment the rating (table 4.5).

From the preceding tests we see that a very simple matching engine
can handle the most common types of deviation from a pattern. The
difficulty in musical pattern processing lies not in the matching
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algorithm, then, but in the preparation of patterns for presentation
to the algorithm as well as in the maintenance of large numbers of
remembered templates.

4.2.2 Intervallic Representation

The Bloch and Dannenberg algorithm uses an absolute representa-
tion of the pitch content of a score. That is, only a performance
played at the encoded pitch level is recognized, and transpositions
are not matched. In this respect the target task of their algorithm dif-
fers significantly from the pattern processing goals described in this
chapter. We wish to identify repeated patterns in any transposition.
Further, contours similar to a template should be identified as such
with some metric to specify the degree of similarity. Processing me-
lodic contour rather than exact tonal location also follows the evi-
dence of human music cognition more closely. Humans can readily
recall the shape of melodic material but cannot (unless they have
perfect pitch) reproduce the melody at the original tonal location
with much accuracy.

To that end, let us replace the absolute representation of pitch with
an intervallic one. Actually, an intervallic representation will work
with other aspects of music as well, such as rhythm. T refer to pitch
in these examples because it is the simplest to demonstrate, but it
should be understood that the techniques discussed are not exclu-
sively applicable to that parameter.

Bharucha describes input representations for neural networks de-
signed to recognize patterns through transposition: “When modeling
the learning of musical sequences that are invariant across transposi-
tion, an invariant pitch-class representation is appropriate. . . . A
complete invariant pitch-class representation would have 12 units
corresponding to the 12 pitch-class intervals above the tonic, which
may be referred to as Units 0 through 11 for tonic through leading
tone, respectively” (Bharucha 1999, 416). This version of an in-
variant pitch-class representation requires identification of a tonic,
information that we may or may not have in the pattern processing
task.
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Our discussion of sequential neural networks included a discus-
sion of Bharucha’s account of the architecture, which he terms tem-
poral composites due to their integration of information that in
performance was spread out through time. Neural networks are emi-
nently well suited to pattern recognition and completion tasks, and
the introduction of pitch invariance enables them to learn a number
of useful harmonic categories: “A temporal composite of a pitch-
class representation may be called a tonal composite, and a temporal
composite of an invariant pitch class representation may be called a
modal composite. Tonal composites that integrate information be-
tween chord changes represent the chords that have been either
played or implied, and can account for aspects of the implication of
harmony by melody. The corresponding modal composites represent
chord functions. Tonal composites over longer durations represent
keys, and modal composites represent modes™ (Bharucha 1999, 422).

Bharucha’s invariant pitch-class representation requires the desig-
nation of a tonic in the candidate patterns that are compared to the
stored templates. We may wish to avoid designation of a tonic for
any of a number of reasons: the music coming in may be tonally am-
biguous or not tonal at all. Even assuming it is conventionally tonal,
we may not have access to a process that can reliably identify a tonic
in real time.

An alternative representation that avoids use of a tonic simply en-
codes intervals as the number of semitones separating a pitch from
the one preceding it. Therefore the progression C4 to D4 would be
represented by the sequence (60, 62) in an absolute representation,
but as (+2) in an intervallic one. From this example we can see that
one consequence of adopting an intervallic representation is that
there is always one less element in the representation than there are
pitches represented. The first pitch ofa sequence is in essence always
a match, since it serves only to establish the degree of transposition
should all the following intervals match completely.

Other than this quirk, it would seem at first glance that the Bloch
and Dannenberg algorithm would work just as well for intervals as
for absolute pitches. This is largely true, but a second, less obvious
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Figure 4.14 Effect of misplayed note on intervallic representation

consequence of having one value encode the distance between two
pitches is that one misplayed note in a sequence will cause two val-
ues not to match. The problem can be seen clearly in figure 4.14.

Even though only one note differs between the two pitch se-
quences, two intervals are affected. A straight application of the ear-
lier algorithm to these sequences would indicate that two deviations
occurred, not one. Notice that adding together the first two intervals,
however, will show that the third pitch is the same distance from
the first in both examples. Examining four sums of candidate and
template intervals, then, will accurately identify cases of insertion,
deletion, substitution, and repetition. The routines listed in figure
4.15 implement a matching engine for these cases.

Let us run a second series of tests against the intervallic representa-
tion of the pattern shown in figure 4.16. We again will check each
of the deviation types of insertion, deletion, substitution, repetition,
and transposition (here referring to the reversal of two adjacent
pitches in the pattern, not transposition to a different pitch location).
The input sequences used for these tests are shown in figure 4.17.

Insertion, deletion, and substitution are correctly handled by the
tests marked correspondingly in the code. Repetition is just a special
case of insertion. Transposition is not recognized as such, but is seen
by the program as a combination of deletion and insertion. Note that
the first four intervals of the transposition example are the same as
the deletion test. Accordingly, the program sees these intervals as
representing a deletion. The appearance of the missing interval then
is marked an insertion.

There are two other significant departures from the Bloch and Dan-
nenberg algorithm in this code: first, the maxRating array has been



void IntervalMatch::UpdateMatched(int r)

{

if (matched(x] == 0) { // if element was not matched before,
matched[r] = 1; // flag curfent element as matched
i
++matches; // increment number of matches

int IntervalMatch::PatternMatcher{(int rating, int newElement)
{

if (rating < 0) return -1;

int r = rating;

if (newElement == element[r]) {
UpdateMatched(r) ; // match
rating += 1;

} else

if (newElement == (element[r]+element[r+1])) {
UpdateMatched (r+1) ; // deletion
rating += 2;

} else

if ((lastElement+newElement) == element([r]) {
UpdateMatched (r) ; // insertion
rating += 1;

} else

Figure 4.15 IntervalMatch matching engine
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if ((lastElement+newElement) == (element[r]+element [r+1])) {
UpdateMatched (r+1); // substitution

rating += 2;

lastElement = newElement;
return rating;

}

Figure 4.15 Continued

Figure 4.16 Template pattern

eliminated. Bloch and Dannenberg are concerned with score follow-
ing, and so want primarily to follow the advance of the match be-
tween the template and the candidate. In our pattern processing
goals, we are more interested in characterizing the degree of similar-
ity between two patterns. This is captured by the matched array,
showing which template intervals have been found in the candidate,
the number of matches found, and the index number of the most
recent match. All of these parameters can be computed without the
added overhead of the matrix calculation from the previous program.

The second departure is that each incoming element is not
matched against the entire remainder of the sequence. To match
against the entire remainder was extreme in any event and clearly
would yield wrong results when used with large templates, since
elements far removed from the current context could be matched
with incorrect candidate elements. This implementation effectively
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Figure 4.17 Intervallic matching tests

detects one element in advance because both the deletion and substi-
tution tests compare input with the highest unmatched template ele-
ment and its successor. The IntervalMatch application and its
associated source code may be found on the CD-ROM.

Matching algorithms, like the other processes we have reviewed,
must be considered with reference to some application. The Inter-
valMatch algorithm is one of a family of procedures that can be ap-
plied according to the nature of the task at hand. Adding the
matched array and eliminating the matrix calculation from the Dan-
nenberg algorithm speeds the work even as it discards information
that may be useful for recognizing re-ordered patterns. For restricted
kinds of material even exhaustive search may be tractable: traversing
a tree that encodes each successive interval of a pattern at a deeper
branching level could be accomplished in real time with a tree
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using less than one megabyte of memory (Dannenberg 1999). The
IntervalMatch algorithm, then, should not be taken as a definitive
solution, but as one choice among many, to be selected according
to the requirements of the application and the computing resources
available.

4.2.3 Segmentation and Matching

From the first two implementations we learned that the comparison
algorithms necessary for monophonic pattern matching are relatively
straightforward and can be adapted easily from the existing litera-
ture. The differences between score following (the primary applica-
tion for which such algorithms have been developed) and the
processing tasks that are our focus here, however, lead to significant
departures from the published sources. First, as we have seen, our
goal is to establish a measurement of the degree of similarity between
two patterns while maintaining a point of correspondence between
a template and candidate.

Measuring the degree of similarity brings this work into proximity
with portions of David Cope’s Experiments in Musical Intelligence
(EMI). EMI is used to induce stylistic characteristics from a particular
composer or corpus of works and to use these characteristics to syn-
thesize new examples of the style. Cope writes in hisbook Computfers
and Musical Style: “If there is a discovery here, it is that one way of
defining style is through pattern recognition and that musical style
can be imitated if one can find what constitutes musical patterns.
Further, comparisons of these patterns from work to work will reveal
those patterns that are generic to a composer’s style and those that
are found in a single work only” (Cope 1991, xiv).

Accordingly, one of Cope’s primary concerns is pattern induction.
His software discovers signatures—patterns of melodic and rhyth-
mic material found repeatedly in a particular composer’s body of
work. “A signature is a set of contiguous intervals (i.e., exempt from
key differences) found in more than one work by the same composer.
Signatures typically contain two to nine notes melodically and more
if combined with harmonies. They are generally divorced from
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rhythm, though rhythmic ratios often remain intact. Signatures are
work-independent. They do not sound as if they come from a certain
work of a composer but rather from the style of a composer (or a
group of composers)” (Cope 1991, 46). Signatures are saved together
with information about the context in which they are typically used.
For example, one pattern may be typically used at cadence points
and another as a subsidiary melodic motive.

The matching algorithm described in Computers and Musical Style
is a straightforward measurement of the distance between corre-
sponding intervals in two lists. If the distance between the intervals
is less than or equal to a tolerance setting, the intervals are judged
to be the same. In other words, if one list has an entry of 2 semitones
and the other an entry of 3 semitones, those intervals would be de-
clared a match as long as the tolerance was set to 1 semitone or
higher.

Cope’s process (1992) malches intervals whose absolute value is
within the prescribed tolerance. This amendment causes inversions
of signatures to be recognized as the same: an interval of —2 semi-
tones (down a major second) is judged to be a match with an interval
of +2 semitones (up a major second). Other variables (or “tuners”)
of the matching process include motive-size, which controls the
number of elements to be included in a motive; and interpolation,
which governs the number of insertions that will be allowed in two
motives judged similar.

A fundamental design decision of pattern induction is the choice
of how much overlap between distinct segments to allow. “To illus-
trate, if the pattern ABCDEF is seen in the data, an order three model
can store ABC, BCD, CDE, and DEF, capturing all possible segmenta-
tions of the data. Alternatively, a model can disallow overlapping
segments and instead store only ABC and DEF" (Reis 1999).

An order three model is one that maintains only patterns with
three members each. Table 4.6 illustrates the two overlap strategies
Reis describes together with a third: partial overlap. Partial overlap
makes it legal to repeat elements in different segments (e.g.. both the
first and second segments of the figure include the element G) but
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Table 4.6 Segmentation Overlap

Pattern ABCDEF

Full Overlap ABC BCD CDE DEF
Partial Overlap ABC GDE DEF

No Overlap ABC DEF

does not require that all possible partitions be produced, as full over-
lap does.

David Cope’s matching engine uses full overlap and therefore is
exhaustive in that scores are broken into patterns of motive-size
length such that all possible contiguous patterns are generated. If
motive-size were three, for example, each interval in the score would
appear in three patterns—once as the first interval of a pattern, once
as the second, and once as the last. All possible patterns of a given
size in the compared scores are examined, using tolerance and inter-
polation to tune the degree of similarity allowed. The multiple-view-
point music prediction system of Conklin and Witten similarly uses
a full-overlap, exhaustive search paradigm (Witten, Manzara, and
Conklin 1994).

This clearly constitutes pattern induction in our parlance, and yet
is difficult to use in real time for the simple reason that it requires
exhaustive search. For our purposes, matching all possible patterns
of a given size is unacceptable because it will take too much time.
Further, we wish to find patterns which presumably will be of several
different sizes, meaning that we would need to exhaustively search
many different pattern lengths simultaneously, making the algorithm
that much further removed from real-time performance.

The great advantage of full overlap is that it will never miss a pat-
tern due to faulty segmentation. A no-overlap system critically de-
pends on the consistent grouping of events such that subsequent
pattern matching will compare sequences that start at the same point
in the figure. The other possibility is partial overlap: that is, the same
event may be used in more than one segment when their boundaries
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are ambiguous (table 4.6). The rhythm analysis processes described
by Rosenthal (1989), and Longuet-Higgins and Lee (1984) are both
based on partial-overlap segments, as is the context modeling system
described by Reis (1999). (I owe the categorization of degrees of over-
lap to Reis as well).

Context modeling involves extracting and accumulating a set of dis-
crete sequences, or patlerns, faken from the musical surface. Fach
stored pattern is then used as a context for the purposes of matching
incoming musical data and generating appropriate expectations. For
example, if the pattern ABCD has been stored in the model, the ap-
pearance of ABC in the data will trigger the expectation of I as the
next even!. Instead of absolute pitches, sequences of pitch intervals
are stored in order to allow for matching transpositions. (Reis 1999)

Information theory is a way of measuring the amount of informa-
tion present in a given sequence of symbols (Shannon and Weaver
1949). The information content of any given symbol within a se-
quence is a function of its predictability. For example, when pro-
cessing sequences of letters in the English language, the letter “u”

e, i

following the letter “q”" imparts very little information because “u
after “q’" is very predictable. “We quantify the information content
in terms of entropy, a measure of the amount of order, redundancy,
or predictability of a system. When applied to any communications
situation, entropy measures the amount of information contained in
a message; it is small when there is little information and large when
there is a lot” (Witten et al. 1994, 70).

Context modeling, then, can be analyzed through information the-
ory to measure the entropy of a signal with respect to predictions
made from a stored set of patterns. Reis’ context modeling techniqgue
uses a segmentation scheme, called perceptually guided segmenta-
tion, that is based on rules from music cognition similar to those
discussed in section 4.1. Changes of melodic direction, large pitch
leaps, and long note durations are among the perceptual cues the
system uses to locate group boundaries. Because segmentation rules
of this kind can yield conflicting placements of boundaries, Reis
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allows partial overlap of the segments to be analyzed rather than an
arbitration scheme to decide which segment boundary is correct.

Here we see an advantage of using partial overlap: it does not in-
volve the exhaustive search of full overlap, but will reserve compet-
ing segmentations of material when the best boundaries are unclear.
A question arises, however, as to how much eliminating some of the
segments that would be produced through full overlap might com-
promise the predictive power of the model. Reis investigated this
question by comparing the predictive performances of segments as-
serted using perceptual guidelines to those of others shifted away
from the perceptual segments’s boundaries by one or more events.

“The idea behind segmentation shifting is fairly simple, and is
based on two hypotheses: (1) There exist certain points of segmenta-
tion in a piece, named here s-points, which lead to a context model
with better prediction performance. Other points, o-points, lead to
context models with worse prediction performance. (2) The PGS
[perceptually guided segmentation] strategy suggests segmentation
that correspond to the s-points™ (Reis 1999). Accordingly, PGS seg-
ments should have a better prediction performance than shifted ones
that presumably fall on s-points only rarely, and only by chance.

Reis conducted his segmentation shifting experiment on short-
term context models learned from a corpus of 100 Bach chorales. A
short-term context model is one that develops patterns from a single
composition, rather than from a style or oeuvre encompassing many
works. The prediction entropy is a measure of the inaccuracy of a
model.

All shift sizes produce segments that have less predictive power
than the perceptually guided ones, confirming that the PGS strategy
finds the most efficient patterns. Moreover, small shifts tend to be
less accurate than larger ones. Reis conjectures that this occurs be-
cause small shifts are less likely to randomly shift the segment onto
another s-point. The exceptions to this regularity are segments
shifted by one event. Reis notes: “It is often unclear whether discon-
tinuous events, such as longer notes, should be included in the end
of the previous segment, or at the beginning of a new one. Thus,
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a shift of one note can sometimes correct for this, and prediction
performance degradation is less drastic” (Reis 1999).

Ben Reis’s segmentation shifting work establishes empirically two
important principles for real-time pattern processing: first, that a par-
tial or no overlap regime can produce the most relevant segments for
context modeling; and second. that the use of perceptual cues de-
rived from music cognition research is effective in establishing the
proper segmentation.

4.2.4 Pattern Processors

Pierre-Yves Rolland and his group at the Laboratoire Formes et Intel-
ligence Artificielle (LAFORIA) in Paris have developed techniques
to apply pattern processing to the analysis of jazz improvisations.
Much of their work has been devoted to the discovery of a collection
of motifs similar to those first presented in Thomas Owens’ doctoral
dissertation on the improvisations of Charlie Parker (1974). “Our aim
is to investigate the possibility [of developing] a system able to per-
form motive-oriented analyses such as Owens’s, with performances
comparable to musicologists’s, and within minutes instead of years”
(Rolland and Ganascia 1996, 241).

In designing their system, Rolland’s group distinguishes between
two phases ofa motive induction process: (1) factor matching, which
aligns sequence segments and organizes them into a similarity graph,
and (2] categorization, which clusters groups of similar sequence seg-
ments encoded in the graph, yielding patterns. This algorithm,
named FlExPat (from Flexible Extraction of Patterns), has been im-
plemented in a system called Imprology. Central to the process is a
similarity judgment: the FlExPat algorithm calculates the similarity
between two sequence segments according to a comparison of multi-
ple perspectives on their content.

Given two sequence segments, the comparison model first aligns
them using a set of allowed pairing types (APTs). Alignment associ-
ates (possibly empty) groups of elements from one sequence with
(possibly empty) groups of elements from the other. Allowed pairing
types correspond to the typical sequence mismatches discussed in
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section 4.2.1: for example, the standard set of APTs is { Insertion,
Deletion, Replacement }. Other pairing types accommodate more
complex alignments, such as those that occur when an element of
one pattern is ornamented in the other. Swaps, fragmentations, and
consolidations are among the APTs FlExPat uses to handle such
cases.

Morsover, FlExPat associates a contribution function with each
pairing type that assigns a numerical rating to the contribution of any
pair to the similarity of two sequences as a whole. The contribution
functions can be changed to give more or less weight to a particular
perspective on the material under examination. For example, one
perspective might favor the rhythmic similarities between two se-
quences while another emphasizes their melodic pairs.

The factor matching phase produces a similarity graph that repre-
sents the relations between all couples of sequence segments. The
contribution functions for aligned pairs are computed to yield an
overall similarity rating for all sequences connected by the graph.
star center’” algorithm that

0

Categorization is accomplished by the
groups the most prototypical occurrence of a pattern together with
its variants (the prototype appears at the center of a cluster in the
graph resembling a star, hence the name).

Rolland’s pattern extraction process is unique in that it can group
sequences from a corpus into different categories according to the
matching priorities set by a user (through the contribution func-
tions). Though the extraction itself does not work in real time,
FlExPat could be used to organize pattern libraries for matching in
performance.

Figure 4.18 shows a collection of three patterns from Charlie
Parker blues solos found to be similar by FlExPat. Though similar to
the motives identified in Owens’s study, this sequence was “dis-
covered” by FlExPat and does not appear in the musicologist’s
compendium.

I have developed a number of segmentation and pattern proces-
sing algorithms over the years (Rowe 1993). The Pattern Processor
application on the CD-ROM combines several of them, most notably
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Figure 4.18 Charlie Parker motives from FIExPat

those documented in 1995 (Rowe and Li). That work itself relied
heavily on the Timewarp application described by Pennycook et al.
(1993).

Timewarp was built on the Dynamic TimeWarp (DTW) algorithm
first developed for discrete word recognition (Sankoff and Kruskal
1983). The DTW can be visualized as a graph, where the horizontal
axis represents members of the candidate pattern and the vertical
axis members of the template. A local distance measure is computed
for each grid point based on feature classifications of the two pat-
terns. Pennycook and Stammen used an intervallic representation of
pitch content and suggested duration ratios for rthythm, defined as
the ratio of a note’s duration divided by the previous note’s duration.

In order to recognize [an] unknown fragment, the candidate’s feature
template is compared to a database of reference templates. The DTW
compares the unknown candidate with each template in the data-
base and assigns a distance value that indicates the degree of similar-
ity between the candidate and reference templates. The Recognizer
matches the candidate with the reference template that results in
the lowest distance measure. When several close matches occur, an
Evaluator is used to select the best match. If the best match distance
is higher than a pre-defined threshold, the candidate’s template is
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considered to be unique and can be added to the database of refer-
ence templates. (Stammmen 1999, 92)

The Pattern Processor application on the CD-ROM, following Pen-
nycook and Stammen, uses a similar procedure. The first step is to
segment the material using the Segmenter process introduced in sec-
tion 4.1. Segments then generate patterns, which consist in this case
of melodic intervals. Though the example concentrates on melody,
the same approach might be used to treat chord roots from a progres-
sion of tonal harmonies or sequences of rthythmic durations. Time-
warp combines time differences with other parametric intervals to
vield a single distance metric, within which there is no way to iden-
tify whether intervallic or temporal differences are the source of the
deviation. The Pattern Processor framework can be used to coordi-
nate separate matches for pitch and rhythm (for example), allowing
similar harmonic material to be recognized even when prasented in
vastly varying rhythmic guises, and vice versa (Rowe and Li 1995).

The Pattern Processor algorithm proceeds as follows: (1) incoming
MIDI data is treated by segmentation rules and segment boundaries
are flagged; (2) ongoing segments are compared to two key patterns,
one with an upwardly moving contour and the other moving down-
ward; (3) the distance between the candidate and the key patterns is
used to direct the search to a group of patterns that are equally as
distant from the keys as is the candidate: (4) additional comparisons
are made between the candidate and the collection of patterns found
at the same distance from the keys; and (5) reports are issued con-
cerning the proximity of the candidate to the stored patterns.

When a new segment boundary is found, the most recent pattern
is either added to the list at the appropriate distance location, or the
instance count for an existing pattern is incremented if the most re-
cent one was a close match. The Pattern Processor is able to discover
previously unknown melodic patterns presented repeatedly in a
stream of MIDI data and to flag ongoing new occurrences of these
patterns as the input continues. Such capabilities can be used in
composition and performance to give special treatment to salient
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patterns that have been remembered from previous passes with
the system or that are introduced onstage during the course of
improvisation.

4.3 Auditory Models

Auditory inputs to interactive systems receive a digitized audio
stream rather than the idealized representation of notes that is MIDL
As was discussed in section 2.2, MIDI captures the physical actions
of fingers on a keyboard, not acoustic reality. The leverage that we
have been able to obtain from analyzing MIDI input comes from the
reasonably direct correspondence between such physical actions and
the sounding output, at least as far as keyboard instruments are con-
cerned. Keyboard instruments, such as the piano, are essentially per-
cussive. That is, sound is produced by striking a vibrating medium
(the string) with an object (the hammer). Nothing can be done to
change the resulting sound from that point on aside from damping
the string in some way (e.g., by releasing a sustain pedal). Therefore
most of the information produced with a piano is retained by simply
recording the keystrokes, and the MIDI mapping between finger ac-
tions and aural events works well enough.

MIDT also is capable of a relatively direct representation of the no-
tation in a musical score, at least when augmented with timing infor-
mation. Extensive libraries of MIDI-encoded musical scores exist
because of this correspondence. A musical score, however, shares
some of MIDI's limitations with respect to the actual sound of music,
the auditory information that arrives at listeners” ears. Listening to
the complex sound arising from a symphony orchestra, for example,
or the Art Ensemble of Chicago is an experience quite removed from
the notion of a conglomeration of individual and identifiable notes.
“There seems to be a general consensus on the notion of discrete
elements (e.g.. notes, sound events or objects) as the primitives of
music. It forms the basis of a vast amount of music-theoretical work
and research in the psychology of music, but a detailed discussion
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and argument for this assumption is missing from the literature”
(Honing 1993, 228).

As FEric Scheirer points out, representations built on notes gener-
ally reflect a bottom-up approach to the information involved. That
is, notes are gathered into phrases, phrases into groups of phrases,
and so on, until a higher level is reached that somehow encompasses
a global understanding of the work. “We know from existing experi-
mental data that this upward data-flow model is false in particular
cases. For example, frequency contours in melodies can lead to a
percept of accent structure . . . which in turn leads to the belief that
the accented notes are louder than the unaccented. Thus, the high-
level process of melodic understanding impacts the ‘lower-level’
process of determining the loudnesses of notes” (Scheirer 1996, 318).
As in the case of the missing fundamental (section 2.2), our minds
interpret sounds, including the sounds of music, according to genetic
predispositions and our own prior experience. The auditory model-
ing research [ will sketch now moves toward a formalization of those
aspects of experience.

4.3.1 Auditory Input and Self-Organizing Maps
Both musical scores and MIDI represent music as a sequence of dis-
crete notes defined by pitch and quantized on and off times. Per-
formed music does not conform to these conventions, however, The
sound reaching a listener’s ears is a continuous, unquantized stream
of pressure changes that are interpreted according to the low-level
features of the sound itself and the high-level expectations that the
listener has acquired (either genetically or through experience). Be-
cause of this difference, many researchers are basing their analysis
on an untreated audio stream rather than a more structured represen-
tation such as MIDL

Using audio signals as input to a real-time system avoids the distor-
tions of discretization even as it introduces other kinds of problems.
It can be difficult and computationally costly to get timing and pitch
information from an audio stream in real time that is as accurate as
MIDT information. At the same time, the sheer mass of information
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available explodes, particularly concerning timbre, and this explo-
sion can itself be problematic. One way to think of MIDI is as an
extreme form of data reduction. Without such a reduction, much
more of the real-time resources of a system are devoted to gathering,
storing, and analyzing an image of'a human musician’s performance.

Some of the work of the Machine Listening Group at the M.LT.
Media Lab is based on modeling the musical perceptions of un-
trained listeners rather than those of musicians, The motivation for
this orientation combines several observations: first, non-musicians
cognitively structure what they hear in ways that differ markedly
from the concepts used by musicians: “Non-musicians cannot recog-
nize intervals, do not make categorical decisions about pitch, do not
understand the functional properties which theoreticians impute to
chords and tones, do not recognize common musical structures, and
might not even maintain octave similarity” (Martin, Scheirer, and
Vercoe 1998). Another reason is that multimedia systems are cur-
rently unable to perform even those tasks of musical discrimination
that untrained listeners can, so that using the non-musician’s abili-
ties as a point of departure may more readily produce tools with
widespread application.

A well-known tool for real-time sound analysis is the Fast Fourier
Transform (FFT), a method for computing the spectral content of a
sound. The accuracy of the FF'T is constrained, however, when the
transform must be performed in real time. Because it changes the
representation of information from the time domain to the frequency
domain, there is a trade-off in precision between the length of time
analyzed and the number of distinct partials present in the transfor-
mation. Simply put, analyses of short durations (good temporal reso-
lution) will show energy in broad spectral regions (poor frequency
resolution), while analyses of long durations (poor temporal resolu-
tion) will produce finer-grained spectral information.

A spectrogram plots the evolution of the spectral energy of a sound
through time. One version represents time along the x axis, frequency
along the y axis, and intensity by the shading of the line at a particu-
lar point on the graph. “This kind of ‘spectrogram’ is often seen still
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in texts and in legal proceedings, yet it does not represent what the
cochlea reports: it has linearly spaced filter bins (y-axis) with the
same bandwidth at all frequencies, while the cochlea has near loga-
rithmic spacing of hair cell frequencies with roughly proportional
bandwidths (constant ratio to the center frequency). The FFT gives
poor frequency resolution in the lower octaves, and too much in the
upper, and since its bandwidths are constant it entirely misses the
‘beating’ that can make up for a missing fundamental” (Vercoe 1997,
313).

To skirt the problems of the FF'T and model much more closely
the function of the ear itself, Vercoe developed an auditory model
based on constant-(] filters and auto-correlation that is able to per-
form beat tracking from an audio signal. The first step divides the
audio signal into 96 filter bands, with 12 bands per octave spread
across 8 octaves. These bands are scaled according to the Fletcher-
Munson curves to approximate human loudness sensitivity (Handel
1989). Once scaled, the process detects note onsets by tracking posi-
tive changes in each filter channel. These positive difference spectra
are elongated with recursive filters to extend their influence over
time and added together to provide a single energy estimation. A
version of narrowed auto-correlation is then performed on the
summed energy to recognize regularities in the signal and predict
their continuation: “As the expectations move into current time, they
are confirmed by the arrival of new peaks in the auditory analysis;
if the acoustic source fails to inject new energy, the expectations will
atrophy over the same short-term memory interval” (Vercoe 1997).
This algorithm, realized with Vercoe's widespread Csound audio
processing language, can perform beat tracking on an acoustic signal
without recourse to any intervening note-level representation.

Marc Leman has developed a system that can learn to identify tonal
centers from an analysis of acoustic input (1995). It is a central prem-
ise of his system that it proceeds from an auditory model rather than
from some predefined representational abstraction: “Many computer
models of music cognition . . . have thus far been based on symbol
representations. They point to the objects in the world without re-
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flecting any of the physical properties of the object” (Leman and Car-
reras 1997, 162).

Leman’s analysis systems send an audio signal through a number
of steps that produce increasingly specific cognitive “images” of the
input. They are divided into two parts: a perception module and a
cognition module. The perception module is an auditory model of
the output of the human ear. Leman has used three kinds of auditory
models in his work, including (1) a simple acoustical representation;
(2) one based on the work of Ernst Terhardt (Terhardt, Stoll, and
Seewann 1982) that computes virtual pitches from a summation of
subharmonics; and (3] another derived from work described by Van
Immerseel and Martens (1992) that models the temporal aspects of
auditory nerve cell firings. Shepard tones (Shepard 1964) are used
as input to the models, eliminating the effect of tone height.

The input part of the simple acoustical model (SAM) is organized
in essentially the same way as the pitch class sets we introduced
in chapter 2. Because the representation models Shepard tones, all
pitches are reduced to a single octave in which height has been elimi-
nated from the percept and only the tone chroma (pitch class) re-
mains. The analytic part of SAM, then, outputs vectors of integers
where a one indicates the presence of a pitch class and a zero its
absence. The synthetic part calculates fone completion images from
input patterns of this type. Tone completion images are computed
from the sum of subharmonics of the pitches in the chord, following
the tradition of virtual pitch extractors discussed in section 2.3. Sub-
harmonics are weighted according to the table in table 4.7.

A C-major triad, for example, would assign a weight of 1.83 to the
pitch class C, since the chord contains intervals of an octave (1.00),
fifth (0.50), and major third (0.33) relative to that pitch class. The Cj
pitch class, in comparison, would get a weight of 0.1 since only the
minor third above Cj (E) is present in the input chord.

The heart of the Van Immerseel and Martens perception module
(VAM) is a set of 20 asymmetric bandpass filters distributed through
the range 220-7075 Hz at distances of one critical band. After some
additional processing, the “auditory nerve image” is outpul, a
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Table 4.7 SAM Virtual Pitch Weightings

SUBHARMONIC WEIGHT
Octave 1.00
Perfect Fifth 0.50
Major Third 0.33
Minor Seventh 0.25
Major Second 0.20
Minor Third 010

vector of 20 elements corresponding to these filter channels that is
updated at a sampling rate of 2500 samples per second (one every
0.4 milliseconds).

The VAM has two stages. The first is an auditory front end that
uses the 20 overlapping bandpass filters to change sounds into neural
firing patterns. The second is a periodicity analysis of the firing pat-
terns output by the filters, a process reminiscent of Barry Vercoe’s
audio beat tracking algorithm described above. “For each neural fir-
ing pattern that comes out of one of the 20 auditory channels, a peri-
odicity analysis is done by means of a short-term-autocorrelation
analysis using delays of 0.4 ms. The analysis is applied to frames of
30 ms.” (Leman and Carreras 1997, 149).

The periodicity analysis outputs a completion image, formed from
the sum of the 20 channels, from which the frequency content of
the audio input may be calculated. Leman is less concerned with
particular frequencies than he is with the pattern arising from the
analysis, however. Accordingly, completion images are integrated
into context images that “give an account of the context-dependen-
cies among perceived musical pilch patterns over a time period of
about 3 seconds” (Leman and Carreras 1997, 150).

The cognition module of Leman’s system is based on a Kohonen
self-organizing map (Kohonen 1984). Kohonen nets learn to cluster
inputs into categories through unsupervised learning. The neural
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networks reviewed in section 3.1 use supervised learning to guide
the development of connection weights. Another important class of
networks is based on unsupervised learning in which sets of training
inputs are presented to the network without “correct answers”
attached. Unsupervised learning applies to cases where the target
output patterns are unknown, or to see whether the traditional cate-
gories of a discipline emerge from the system without any external
direction.

The version of Leman’s systems that combines the simple auditory
model (SAM) as a perception module with a Kohonen self-organizing
map (SOM) as a cognition module is called SAMSOM, from the acro-
nyms of the two parts. SAMSOM was used to analyze a training set of
115 chords (table 4.8). We inherit from music theory ways of thinking
about the categories that organize such a collection. The goal of cate-
gorizing them with SAMSOM is to see whether matching categories
arise from the nature of the auditory system (as represented by SAM)
and the inherent similarities between the chords themselves.

The form of unsupervised learning used in a Kohonen network is
called competitive learning. The architecture of the network consists

Table 4.8 SAMSOM Training Set

NUMBER TYPE

12 major triads

12 minor triads

12 diminished triads

4 augmented triads

12 major seventh chords

12 minor seventh chords

12 dominant seventh chords
12 half dim. seventh chords
12 augmented seventh chords
12 minor/major seventh chords

3 diminished seventh chords
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of two layers, an input layer and the Kohonen layer. The input layer
contains one node for each component of the input patterns. In
SAMSOM, then, the input layer contains 12 nodes, one for each pitch
class. Bach unit in the input layer is connected to all units in the
Kohonen layer, and an initial random weight is associated with each
connection. When an input pattern is presented, it is multiplied by
the weights on each connection and fed to the Kohonen layer. There
the unit that is most activated by the input is able to participate in
learning, hence the name “competitive learning.” In fact, the most
highly activated node is referred to as the “winning” node.

The Kohonen layer is organized as a two-dimensional array. Fol-
lowing the example of the cerebral cortex, the winning node and
units in the neighborhood benefit from learning. A neighborhood
comprises all the nodes within a certain number of rows or columns
around the winner in the grid. “As the training process progresses,
the neighborhood size decreases until its size is zero, and only the
winning node is modified each time an input pattern is presented to
the network. Also, the learning rate or the amount each link value
can be modified continuously decreases during training. Training
stops after the training set has been presented to the network a pre-
determined number of times” (Rogers 1997, 136).

At the end of training, a topology of characteristic neurons has
emerged as a classification of the input set. The characteristic neuron
(CN] for an input is the unit in the Kohonen layer most activated
by that input. The CNs for the training set become clustered during
learning according to the similarities of their represented inputs. In
the CN-map produced by SAMSOM, for example, the characteristic
neurons for C major and A-minor 7th are near one another. These
two chords are closely related from the standpoint of music theory,
as well, because all of the pitch classes of C major are subsumed in
A-minor 7th. All other major/relative minor 7th combinations pre-
sented to the model become similarly clustered.

Aside from the identification of closely related chords (which Le-
man shows goes well beyond the simple example just cited [1995]),
the SAMSOM output map shows an association between tonal cen-
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ters that are related by the cycle of fifths. The response region of
an input is that part of the Kohonen layer activated by the input.
Considering the set of major chord inputs, the response regions of
the SAMSOM map most highly correlated to C major (for example)
are G major and F major—those a perfect fifth away from C. The
correlation between G major and F major is much lower,

Leman refers to the product of the SAMSOM model as “images
out of time,” meaning that the inputs make no reference to the timing
of their presentation. We may also consider it “out of time” hecause
the calculation it performs is complex enough to take it well out of
the realm of real time. When such a Kohonen network has been
trained, however, subsequent inputs are classified according to the
learned associations of the training set. Thus a trained network can
be used, even in real time, as a classifier of novel inputs.

The main reason that auditory input to and output from interactive
systems have been used less than MIDII/Q is that they required more
sophisticated (and more expensive) hardware. Even personal com-
puters have now become so powerful, however, that extensive treat-
ment and synthesis of digital audio can be performed with no
additional hardware at all. With the physical and financial limita-
tions to the technology largely eliminated, the focus shifts to deriving
structure from an audio stream that will multiply the possibilities
for interaction. Though the techniques of unsupervised learning are
nol appropriate for use onstage, the work of Leman and others has
demonstrated that it can be applied before performance to derive
structural categories for the interpretation of audio signals in real
time.
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5 Compositional Technigues

Through four chapters we have concentrated on methods of algorith-
mic music analysis and how these can be executed during live perfor-
mance. Now we change focus to the compositional processes that
can be shaped in response to information about the ongoing mu-
sical context. Algorithmic composition is an ancient and extended
craft whose many manifestations cannot be explored here, just as
those of algorithmic analysis were not. To limit the scope of the dis-
cussion, we will be concerned first of all with techniques that can
be realized in real time because we want to run them onstage. Beyond
that, all of the algorithms will be interactive in some way—that is,
they will change their behavior in response to user input, musical
or otherwise.

Algorithmic composition differs markedly from algorithmic an-
alysis in several respects. First, the range of techniques included
in the activity called composition varies much more widely than
does that of analysis. One can imagine a twentieth-century com-
poser using numbers chosen from listings in a telephone book to
organize pitch relationships. It is difficult to envisage how an an-
alyst could use telephone listings to devise an account of pitch
relationships unless it were the specific passage from the very
same phone book used to explain a piece made reading from it.
In other words, though there could be a general-purpose tele-
phone-book pitch generator (which is not to say that there should
be), there could hardly be a general-purpose telephone-book pitch
analyzer.

Much of the algorithmic analysis developed in this book relates to
research in music cognition concerning the processes of hu-
man listening. A similarly extensive literature for the cognition of
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composition simply does not exist. Part of the reason for that may
stem from the phenomenon just discussed—that composers may be
engaging in quite different activities when they work. Another reason
is that it is much harder to test what is going on cognitively during
composition. Analysis, like listening, is easier to model compu-
tationally in a general sense than is composition. The result of an
analysis is a written, rational document that may be examined for
formal constructions amenable to implementation in a computer pro-
gram. It is not, however, the inverse transform of an act of composi-
tion. At the end of an analysis we are not back at the composer’s
thoughts.

In his novel Amsterdam, lan McEwan describes the thoughts of a
fictional composer as he walks, looking for ideas for a large-scale
orchestral work: “Tt came as a gift: a large grey bird flew up with a
loud alarm call as he approached. As it gained height and wheeled
away over the valley it gave out a piping sound on three notes which
he recognised as the inversion of a line he had already scored for a
piccolo. How elegant, how simple. Turning the sequence round
opened up the idea of a plain and beautiful song in common time
which he could almost hear. But not quite. An image came to him
of a set of unfolding steps. sliding and descending—from the trap
door of a loft, or from the door of a light plane. One note lay over
and suggested the next. He heard it, he had it, then it was gone”
(McEwan 1998, 84).

Such a stream of thought seems familiar to me, at least, as a com-
poser, even though I rarely compose songs in common time. Because
of the fleeting and unconscious quality of much compositional work,
l cannot reduce the entirety of compaosition to a set of rules or even
to a list of parameters and a training set. | can, however, imagine
using processes to make music and even imagine how different pro-
cesses might be appropriate to different musical situations. It is in
that spirit, then, that we will explore algorithmic composition—as
acollection of possibilities that can be employed within the aesthetic
context of a composition or improvisation.
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5.1 Generation Techniques

In my book Inferactive Music Systems, | identified three classes of
compositional algorithms that are particularly suited to interaction:
sequencing, generation, and transformation (1993). Sequencing in-
volves the use of prerecorded material that is played back more or
less as recorded, but with control over start and stop points, looping,
playback tempo, and so on. The Max =seq and mt objects are para-
digm examples of the sequenced approach. One can apply the same
kind of thought to recordings of audio data rather than MIDI se-
quences. Transformation techniques, which were discussed exten-
sively in Interactive Music Systems in connection with my program,
Cypher. take input arriving from an external source, apply one or
several transformations to it, and output the varied material as a
counterpoint to the original. Generation techniques extract seed ma-
terial from some stored repertoire and apply processes to adaplt, ex-
tend, or embellish it.

Simon and Sumner’s 1963 article “Pattern in Music” has already
been cited in connection with pattern processing techniques (section
4.2), particularly with reference to their term, “pattern induction.”
The other part of their article dealt with a process they called “se-
quence extrapolation.” Sequence extrapolation can be considered a
type of compositional process, in fact an example of a generation
technigue. Essentially Simon and Sumner describe patterns as ex-
tractions from an alphabet according to a set of rules. The most
straightforward rule is the NEXT operator, which simply chooses the
next element from a given alphabet. They generalize this operation
to the function “N¥s) = N(N¥(q)), for k = 2. ... Thus N? means
‘NEXT of NEXT,” N°, ‘NEXT of NEXT of NEXT,” and so on” [Simon
and Sumner 1993, 93).

The system introduced by Deutsch and Feroe (1981) similarly de-
scribes pitch patterns in terms of operations on an alphabet. In fact,
the operations they use are virtually identical to those of Simon and
Sumner. If we notate an alphabet as follows: x = [e(1), e(2), e(3), . ..
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sle(k)] = e(k) ; same

nle(k)] = e(k+1) ; next

n.ife(k)] = e(k+i) ; multiple next
ple(k)] = e(k-1) ; previous
p.ife(k)] = e(k-1) ; multiple previous

Figure 5.1 Elementary operators from Deutsch and Feroe

e(n)], we see that each element of the alphabet is given an index that
corresponds to its place in the sequence (here 1, 2, 3, . . . n). Then
the operators are ways of selecting a new element from the alphabet.
For example, the operator same is defined as: s[e(k)] = e(k). In other
words, the same operation applied to any element of an alphabet
produces that same element again. Figure 5.1 shows the complete
list of elementary operators.

Similarly, Eugene Narmour’s implication-realization model de-
fines a number of operations for the elaboration of structural pitches
on several hierarchical levels (Narmour 1999).

5.1.1 Selection Principles

We will not develop the alphabet operator idea as an analytic system
here, but rather as a method of composition. The pattern-oriented
systems just discussed consider musical material as the product of
operations on an underlying alphabet of elements. This same meth-
odology forms the basis of a number of compositional algorithms,
whether interactive or not (Loy 1989). The composer Gottfried Mi-
chael Koenig developed similar ideas in a series of algorithmic com-
position programs beginning in the 1960s, including Project 1,
Project 2, and the Sound Synthesis Project (SSP). Beginning from
a background of serialism, Koenig designed a number of selection
principles by which elements from a stored pool were chosen and
combined. The most clearly serial of these was series, which would
randomly choose elements from a collection without repeating any
until all had been output. The Max object urn performs the same
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operation and in fact can be used compositionally in much the same
way that Koenig’s selection principles are. (See section 7.2 for a patch
using urn by Amnon Wolman.)

Composer/programmer Paul Berg, who worked with Koenig at the
Institute of Sonology in the Netherlands for many years, has incor-
porated a number of selection principles (both Koenig's and his
own) in the Algorithmic Composition Toolbox (AC Toolbox), writ-
ten for the Apple Macintosh in Common Lisp (Berg 1998). The
Toolbox is a collection of algorithmic techniques for producing
compositions. The choice, combination, and application of the
tools is left up to the user, providing an environment in which many
different styles and manifestations of compositional ideas can be
realized.

In the AC Toolbox, a section is a collection of one or more notes.
Sections are always defined with respect to a basic pulse duration.
One can think of the pulse (called the clock) as the default resolution
of an underlying quantization grid. Since rhythms are defined as
floating point multiples of the clock value, however, there is no en-
forced quantization. A rhythm of 1.3 times the clock pulse will pro-
duce an event that falls between two adjacent ticks, for example. A
data section is one in which each parameter is calculated without
reference to the others. Pitch and rhythm, e.g., may be controlled as
independent qualities of the material. A data section is defined by
specifying values or functions for its clock (pulse), pitch, rhythm,
dynamic, and channel (figure 5.2).

The length of a section can be defined by indicating either the num-
ber of notes that should be generated or the span of time that the
material must fill. The data section defined in figure 5.2 has a clock
pulse of 100 milliseconds and contains fifteen notes. Each note has
a duration of one clock tick (100 ms), a velocity of mezzoforte, and
will be played on channel one. The entire section, then, would cover
a span of 1500 milliseconds (1.5 seconds). The pitches are deter-
mined by applying a tool called multiple-bandwidths.

The multiple-bandwidths tool produces all values between pairs
of low and high bounds supplied by the user, inclusively. The
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Figure 5.2 Data section dialog box

expression in figure 5.2, then, will generate the following list of val-
ues: (60 61 62 63 64 65 66 67 68 69 61 62 63 64 65). Multiple-band-
widths is used to produce a collection of stored elements that Berg
calls stockpiles. Stockpiles are sets of values from which selections
can be made to generate sequences. They are similar to the alphabets
of Simon and Sumner, and Deutsch and Feroe, except that elements
of a stockpile may be repeated while those in an alphabet typically
are not. Stockpiles might be interpreted as pitches, durations, or dy-
namics. They can be formed initially by listing the elements of the
set, by combining existing stockpiles, or by applying a generation
rule (such as multiple-bandwidths).

Figure 5.3 lists a C++ version of the AC Toolbox multiple-band-
widths generator. Much of the code in it is necessary purely because
C++ is not Lisp. (Notice that even the name must change because
C++ thinks the hyphen is a minus sign). The arguments to the Lisp
version of multiple-bandwidths are simply pairs of low and high
bounds. This works because Lisp can see when the list of pairs comes
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int* ToolBox::multiple_bandwidths(int pairs, ...)

{
register int i;
va_list args; // variable argument list
va_start (args, pairs);
int* bounds = new int[pairs*2]; // allocate bounds array
for (i=0; i<pairs*2; i++)
bounds[i] = va_arg(args, int);// read bounds from arguments
va_end(args) ;
int length = 0;
for (i=0; i<pairs*2; i+=2) // calculate length of output
length += ((abs(bounds[i]-bounds[i+1]))+1);
int* list = new int[length]; // allocate output list
int index = 0; // address into output list
for (i=0; i<pairs*2; 1i+=2)
for (int j=bounds[i]; j<bounds[i+1]; j++)
list[index++] = 3j; // generate and store values
delete [] bounds; // clean up bounds array
return list; // return generated list
}

Figure 5.3 multiple_bandwidths ()
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to an end. In C++, on the other hand, we must first specify how
many pairs will be coming. The argument definition (int pairs,

.) indicates that the first argument will hold the number of sub-
sequent low/high pairs required, followed by the pairs themselves.
The ellipsis (...} is the language’s way of indicating that an un-
known number of arguments will be used to invoke this function. In
this formulation we assume that the caller will know how many
pairs follow as arguments: another approach would be to assign
an unambiguous marker to the end of the list such that when
multiple_ bandwidths encountered the marker it would stop pro-
cessing boundary pairs.

There are four macros, defined in the header <stdarg.h>, that
handle variable argument lists in C and C++. The first. va_list, is
used to declare a pointer to variable length arguments. Any use of
variable arguments must include at least one typed argument, here
the integer pairs. The macro va start (args, pairs) initializes
the arguments pointer and indicates how many bytes are used
by the first argument in the stack. Subsequent calls of the form
va_arg (args, <type>) will return a value of the type required
from the argument stack and advance the pointer accordingly. Fi-
nally, va_end completes the argument list processing.

Once we have the bounds pairs collected, we can compute the
length of the output list required. Then it becomes a simple matter
of filling the list with the successive values requested. Note that in
this technique, it becomes the responsibility of the process invoking
multiple bandwidths to eventually release the memory allocated
for the stockpile—in Lisp this would be done automatically by gar-
bage collection.

Selection principles become viable once we have a stockpile of
values from which to choose. One of GM. Koenig's most valuable
principles, carried forward in the AC Toolbox, is the tendency mask.
Atendency mask is a set of dynamic boundary points between which
elements will be selected at random. In a process similar to the invo-
cation of multiple-bandwidths, a tendency mask can be generated
by specifying lists of upper and lower bounds. Unlike multiple-
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Figure 5.4 Tendency mask generator
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Figure 5.5 Tendency mask

bandwidths, however, there need not be an equal number of upper
and lower bounds.

Figure 5.4 shows a dialog box that is used to generate a tendency
mask. The mask is given a name and some number of upper and
lower bounds. The upper and lower values are scaled to occupy the
same duration, such that if there are more top or bottom values, the
corresponding boundary line will change direction more often. Fig-
ure 5.5 shows a display of the mask generated by clicking on the
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Make button of figure 5.4. Though it does not occur in this example,
there is in fact no restriction on the relationship between upper and
lower boundary values. In particular, the upper bounds need not be
greater than the lower. A tendency mask could well have the top and
bottom boundary lines cross several times throughout the duration
of the mask.

The use of a tendency mask, once defined, depends on the number
of events that are to be generated. If, for example, we were to request
100 events from the tendency mask defined in figure 5.4, the top and
bottom boundary values would be distributed evenly across the gen-
erated events, i.e., a new value would be encountered every 10
events. Tendency masks are actually a kind of breakpoint envelope,
in which the values given are points of articulation within a con-
stantly changing line.

Figure 5.6 lists the member function Getvalue (), which returns
a number from the tendency mask at the current index position. First

int TendencyMask::GetValue(int index)

{

int upper = CalculateUpperBound (index} ; // get upper bound

int lower = CalculateLowerBound(index) ; // get lower bound

int range = upper-lower; // find range

if (range == 0) // avoid division by 0

return lower;

int value = rand()%range; // generate random value
if (range < 0) // if range is negative

value = -value; // make value negative
return (value + lower); // add to lower

Figure 5.6 Getvalue ()
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the actual upper and lower bounds corresponding to the index argu-
ment are calculated. Then a random number is chosen that falls
within the absolute value of the difference between the upper and
lower bounds. (We may consider the random number the absolute
value because the modulo operation simply returns the remainder
after division by the argument—the remainder will be positive
whether the division was by either a positive or negative number.)
If the range is equal to zero we simply return the lower value (since
upper and lower are the same), thereby avoiding a division by zero
in the modulo operation. If the range is in fact negative, the random
value is made negative as well. Finally the lower boundary value is
added to the random number and the result is returned.

Figure 5.7 shows the output of the tendency mask defined in figure
5.4 applied to a stockpile of pitch values covering all semitones be-
tween C2 and the C6 (where C4 = middle C). Though there is random
movement on a note-to-note basis, the overall shape of the pitch se-
quence follows the outline of the mask shown in figure 5.5. The ten-
dency mask selection principle offers a way to produce variants of
a constant structural gesture. Each realization of the mask is differ-
ent due to the random selection, but they all will express the same

S[[=—= Showme pitch =="——=|
Qo
] ak
U g.
* .5 g 3 SR T
-.t .: e .... .;,:5‘ - -.3,: ‘:
B0 s. =, # &.w;‘ ;""""'E""’ 'i"'".i-", B
. .:. . "=|-:".:' L L/
i' ‘.i. .o. .O‘I. - .':
"% .
20
[@

Figure 5.7 Tendency mask output
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underlying shape. The similarity of each realization will be further
determined by the consistency of the stockpile referenced by the
mask. If the same mask is used to output values from two unrelated
stockpiles, for example, the relationship between the realizations
will be more distant. The Toolbox routines on the CD-ROM make
it possible to generate stockpiles with multiple bandwidths and
reference them with a tendency mask. The AC Toolbox itself is the
best environment for exploring these ideas, however, and is available
for free download from the internet.

5.2 Score Following and Algorithmic Signal Processing

Score following is a pattern matching technique that traces the prog-
rass of a live performer through the composition she is playing. The
technology of score following has been developed for over a decade
and documented thoroughly elsewhere (Dannenberg 1989). The ex-
amples Cort Lippe contributed to the CD-ROM companion to my
book Interactive Music Systems (1993) documented score following
techniques implemented in Max. Rather than review the mechanics
of score following again, [ will here concentrate on the compositional
opportunities the technique engenders.

Miller Puckette is universally known as the father of Max. Less
widely recognized is the impact of Philippe Manoury and his compo-
sitions on the development and sophistication of Max, particularly
with respect to its signal processing version. It was while working
with Philippe Manoury and Thierry Lancino on interactive composi-
tions for traditional instruments and live signal processing on the 4X
machine at IRCAM that Puckette first developed and refined the Max
language. The combination of score following and algorithmic digital
signal processing as implemented in Max at IRCAM traces back to
this work, perhaps most influentially from Manoury’s composition
Jupitfer, written in 1986-7.

The computational engine of the signal processing performed in
these pieces has gone through several generations since the date of
Jupiter’s composition. The original configuration required a 4X ma-
chine, the summit of IRCAM’s di Giugno-designed digital signal pro-
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cessing hardware series (Baisnée et al. 1986). An extremely powerful
and original device, the 4X was powerfully expensive as well, be-
yond the reach of most every computer music studio in the world
save [RCAM. The successor to the 4X became the IRCAM Signal Pro-
cessing Workstation (ISPW), a dedicated sound processor built as
a peripheral to the NeXT machine (Lindemann et al. 1991). When
multiple ISPW cards were used the configuration was roughly equiv-
alent to a 4X machine but at a much lower price. At that point, the
technology became affordable for many institutions and a significant
number of them acquired systems and began producing music. As
all hardware cycles must, however, this one came to an end when
production of both the NeXT machine and the i860 chip, heart of its
DSP engine, ceased.

Currently, the move to a third generation of interactive digital sig-
nal processing systems is underway, with several packages already
available that can support to varying degrees the computation neces-
sary to perform works composed in the 4X/ISPW tradition. The most
notable characteristic of these projects is that they are comprised al-
most entirely of software. The speed of central processing units, in-
cluding those found on personal computers, has become so fast that
they have the power to analyze and produce audio in real time even
while attending to other tasks, such as disk I/0 and user input. The
beauty of this development is that it effectively ends the grip of hard-
ware cycles, even though the sheer DSP horsepower available will
in many cases be less in the short term. Maintaining and developing
software packages as sophisticated as these bring their own set of
problems, to be sure, but these are negligible when compared to the
intractability of trying to keep old machines running that are no
longer manufactured.

The three projects most immediately relevant are Miller Puckette’s
Pd, David Zicarelli’s msp, and IRCAM’s jMax. One of the things to
which the name of Puckette’s Pd system refers is the fact that it exists
in the public domain, We therefore have access to the source code and
can examine the algorithmic workings ofthe objects involved directly.
Msp comprises digital signal processing extensions to the well-known
MIDI version of Max, and is itself largely a port of Pd objects to the
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Macintosh. jMax is IRCAM’s latest iteration of the idea with a front
end written in Java and is available from the IRCAM website.

Beyond the heartening prospect of avoiding a hardware port every
five years or so, these packages really complete the price trajectory of
this technology: now composers and researchers have the hardware
necessary for real-time DSP simply by purchasing a personal com-
puter. There remains only a relatively inexpensive additional pur-
chase necessary for the software—and in the case of Pd, the software
is free.

DSP software provides the technology to synthesize a response in
score-following applications. If the instrument played by the soloist
is not a MIDI device, the other technological problem is to accurately
represent the music being played in real time.

5.2.1 Pitch Tracking

Pitch tracking attempts to find the fundamental pitch of notes in a
monophonic audio signal. One purpose of this exercise is to allow
instruments other than keyboards and mallet percussion to function
accurately as sources of MIDI, thereby interfacing with commercial
synthesizers and software packages. Pitch-to-MIDI converters are de-
vices built for this task.

MIDT keyboards can use very simple sensors under the keys and
have no reason to analyze the acoustic sound of a piano, for example.
All of the performance information is present in the attack and can be
adequately represented from the key-strike alone. Analogous devices
have been built for other instruments—that is, physical monitors that
track fingerings. bow position, or other manipulations rather than the
acoustic sound itself. The IRCAM flute incorporated such a physical
extension in the form of optical sensors that tracked the movement
of the Boehm mechanism on the instrument. In cases where one fin-
gering might produce more than one pitch, additional signal pro-
cessing of the acoustic signal on the 4X decided between them
(Baisnee et al. 1986).

In his article, “Cybernetic Issues in Interactive Performance Sys-
tems,” Jeff Pressing develops the idea of dimensionality of control
as a way of evaluating the interaction between a player and a perfor-
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mance system (1990). He outlines the control dimensions, or degrees
of freedom, available to performers of traditional and computer-
based instruments. A cellist, for example, has available roughly four
degrees of freedom: bow force, how velocity, bow distance from the
bridge, and finger position on the fingerboard. Each one of these con-
trol dimensions affords the player some degree of control over vari-
ous parameters of the sound: bow force controls dynamic, for
example, while the finger position on the fingerboard is primarily
responsible for pitch. A physically based sensing mechanism should
be able to capture information corresponding to the available degrees
of freedom. The hypercello developed for Tod Machover’s composi-
tion, Begin Again Again . . ., for example, tracked all four of the
dimensions outlined by Pressing and output the orientation of the
cellist’s bowing wrist as well.

Though the physical interface solution may be the hest one for
detecting pitch and performance gestures, it suffers a number of
limitations. First of all, physical sensors often interfere with the
normal sound production capacities of the instrument. Many in-
struments so equipped make no sound of their own or must be amp-
lified to be heard, just as MIDI master keyboards only control the
sound of a separate synthesizer. Second. even when working
flawlessly, simple pitch detection takes us exactly as far as the MIDI
standard does and no farther. We certainly do not want to step
back from the standard of precision set by MIDI, but rather seek
ways to augment pitch and wvelocity with additional information
describing the evolution of a sound’s timbre over time. At the end
of chapter 6 we will review some research that explores these possi-
bilities.

5.2.2 Jupiter

Jupiter was the first of four interactive works Philippe Manoury and
Miller Puckette realized at IRCAM that together form the cycle Sonus
Ex Machina: Jupiter for flute and 4X (1987); Pluton for piano and 4X
(1988); La Partition du Ciel et de I'Enfer for flute, two pianos, 4X and
orchestra (1989); and Nepfune for three percussion and 4X (1991).
The titles of the compositions reveal the technological platform of
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their initial realization: the redoubtable 4X machine designed and
built by Giuseppe di Giugnio and his team at IRCAM in the 1980s.
Since their initial composition they have graduated to the relevant
successive hardware configurations: first the IRCAM Signal Pro-
cessing Workstation (ISPW) and currently jMax/Pd.

The non-technical references of the titles are not to planets but
rather to the sons of Saturn (Jupiter, Neptune, and Pluto) who di-
vided the world between them on their father’s death: Jupiter ruled
over heaven, Pluto over hell, and Neptune over the seas (Odiard
1995, 41). La Partition du Ciel et de I’Enfer, then, refers to the fact
that the processes in the piece are derived from those of both Jupiter
(le ciel) and Pluton (I’enfer). Though the entire cycle is a monumental
exploration of new musical and technical ground, here we will make
some observations concerning the implementation of compositional
ideas in Jupiter alone.

The form of Jupiter is divided into fourteen sections (figure 5.8).
The construction is strongly symmetrical, in that every section
save the third is paired with at least one complement. In fact, every
section but the first is tied to exactly one other one. The first is
coupled not only with section IV, but with the final section (XIV),
as well. (Section XIII was eventually omitted from the work.) The
relationship between coupled sections assumes one of four types:
(1) elaboration of an initial melodic cell, (2) detection/interpo-
lation, (3) ostinati, and (4) spectral envelopes.

The melodic cell tying together sections I, IV, and XIV is based on
the name of Larry Beauregard, the talented flutist for whom the piece

A spectral envelope

initial cell fam-tam fongue-ram
motto ostinato ’
Lo ][] v ] v ] [vi] ulﬂvm] [IX ][ x| |TX|_] EUETIEY
é thythm é thythm ,é thythm ‘
detection interp olation detection _interp olation detection  interp olation

initial cell (motto)

Figure 5.8 Jupiter formal plan (Odiard 1995)
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Figure 5.10 Jupiter opening

was written but who died before it could be completed. There are
eight pitches in the cell that correspond to the name as shown in
figure 5.9 (Odiard 1995, 54). Figure 5.10 shows how the cell is ani-
mated rhythmically during the flute opening of the piece.

The detection/interpolation sectional pairs are based on the recog-
nition and elaboration of sequences of durations. The processing is
typical of Manoury’s disposition toward algorithms as a composi-
tional device: “A process which can be perceived as such, that is to
say whose future course may be anticipated, destroys itself of its own
accord. It should reveal without being revealed, as if it were the se-
cret artisan of a universe whose forms we perceive, but whose mecha-
nisms we fail to grasp” (1984, 149-150).

The Max process that implements the required interpolation is di-
vided into several sub-patches. The recording of the interpolated
material itself is accomplished using explode, Miller Puckette’s
multi-channel MIDI recording/playback object.

Figure 5.11 demonstrates one sub-process from the interpolation
patch, PlaybackLoop (note that this example, like all of the exam-
ples in this book, has been modified to focus on the algorithms under
discussion and is therefore somewhat different from the one actually
used in Jupiter).

All of the Jupiter patches make extensive use of the Max send/
receive mechanism, and PlaybackLoop is no exception. There are
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Figure 5.11 PlaybackLoop

two receivers present, one which resets the note index to zero, and
another that resets the number of notes to be played in a loop. The
main function of the patch is to increment a note count with each
incoming pitch. The inlet receives the pitches from an explode ob-
ject that has recorded the material to be repeated. Whenever a new
pitch arrives at the inlet of PlaybackLoop, it bangs out the number
stored in the int object in the center of the patch. Initially the int
holds zero, but each time a value is output it adds one to itself, incre-
menting the pitch count. The select object at the bottom of the
patch performs the rest of the processing. When the note index from
the int matches the number of notes in the loop, select sends a
bang to the outlet of PlaybackLoop.

Figure 5.12 demonstrates another sub-patch from the interpolation
process: NumberOfPlaybacks. At the top of the patch is a receive
object that starts the patch when a playback message is received. Note
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that this triggers an init-playback message that sets the loop
counter of PlaybackLoop to zero. NumberOfPlaybacks itself
performs a number of functions, keyed to the number of playback
cycles requested on invocation. The int object below the large trig-
ger keeps track of the number of cycles through playback that have
been performed. At each increment, the cycle number is divided by
the total number of cycles requested. This produces a floating point
value between 0 and 1 that is used to control the interpolation be-
tween sequence playbacks in the interpolation control patch (figure
5.13).

The rest of NumberOfPlaybacks is itself a control structure that
keeps track of when the requested number of cycles has been gener-
ated. When all loops have finished, the gate at the bottom of the patch
that controls subsequent loops is closed and the gate governing the
transmission of a “finished”” bang is opened. The only input to the
patch is the bangs coming from PlaybackLoop. These bangs are
used to increment the cycle count and update the interpolation fac-

| F #1-expA |
!
|explode | first recording

PlaybackLoop

{NumberOfPlaybacks |

interpolation
m factor

[r #1-expB |
|
second recording [explode I

|
fexpr (811 * (1. - $i3) + $i2 * i3 + .5) |
=

[s #1-expr-output | interpolated time

Figure 5.13 Interpolation control



Compositional Techniques 221

tor, unless all requested loops have been produced. Then the interpo-
lation is set to 1.0 (the end of interpolation) and a bang is sent
through the rightmost outlet of NumberofLoops, signaling the end
of the process.

Figure 5.13 shows how the PlaybackLoop and NumberOfPlay-
backs palches are tied together. Two explode objects are used to
record the two sequences. As they play back, the interpolation factor
generated by NumberofPlaybacks is sent into the right inlet of an
expression that calculates a duration interpolated between the out-
put of the two sequences.

5.2.3 Spectral Analysis and Control of Interaction

We have noted the limitations of MIDI as an input representation.
Just as extreme are its limitations with respect to the control of syn-
thesis. The limited bandwidth restricts the range of real-time control
that can be exercised over external synthesis equipment. Commercial
synthesis gear itself has suffered from a “me-too” approach to
sound generation, leading virtually all devices to become some va-
riety of sound sampler, playing back pale imitations of traditional
instruments.

Consequently, the advantages of digital audio as an inpul represen-
tation are echoed and even multiplied when composers are able to
design their own synthesis processes and control these at a much
finer grain than can be accomplished through MIDIL The composers
Cort Lippe and Zack Settel have made extensive use of these possibil-
ities using the same underlying signal processing environments as
those used to realize Jupifer, both in their own compositions and
together as The Convolution Brothers.

Their approach is interactive in that the synthesis methods are di-
rected by an analysis of the performance of a human player. As Settel
writes in his program note for Hok Pwah—a composition for voice,
percussion, and live electronics—one intention of the work is “to
extend the role of the duet, giving the two soloists an extremely large
instrumental and timbral range nonetheless based on (or confrolled
by) their instrumental technique™ (Settel 1993).
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To accomplish such control, specialized objects of the DSP Max
environment are used to analyze a digital audio signal emanating
from the performance of a human musician. (DSP Max refers to a
family of implementations, including the IRCAM version of Max
with which Jupiter was realized; Cycling '74’s msp; Miller Puckette’s
pd; and IRCAM’s jMax). One such object is jack~. “The jack~ object
detects up to twenty peaks in a given signal for each FFT analysis
window, and outputs frequency/amplitude pairs. The jack~ object
attempts to maintain continuity between analysis windows by keep-
ing the same voice allocation for common frequencies in adjacent
windows. (When controlling a bank of twenty oscillators with the
twenty frequency/amplitude pairs, this attempt at maintaining conti-
nuity helps to keep the oscillators from jumping to extremely differ-
ent frequencies when the spectrum of the input changes)” (Lippe
1997, 1).

Figure 5.14 shows the jack~ object in a simple patch that demon-
strates one aspect of its analysis: the leftmost outlet returns a MIDI
note number corresponding to the pitch of the input. In figure 5.14,
the split object restricts the range of pitch-tracking to the notes of the
piano keyboard, bounded by 21 (low A on the piano) and 108 (high
C). Finally a send object broadcasts the detected pitch number to all
parts of the patch that require it.

The second outlet of jack~ transmits a bang when the analysis has
detected a note onset. As shown in figure 5.15, this can be used to
compute inter-onset intervals between events by feeding it to both
inlets of a timer object, a simple way to measure the time elapsed
between successive bangs.

[jack~512256180 | fft analysis

|

|sp|it 21108 | restrict pitches to MIDI range
|

|5 pitch-track-out | broadcast to pitch receivers

Figure 5.14 jack~ pitch tracking
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broadcast to pitch receivers |spitch—track—out l timer | get time since
last onset

s last-duration

Figure 5.15 jack~ |0l measurement

These patch fragments are taken from the program written by Cort
Lippe for his composition Music for Piano and Computer (1996), one
of a number of his works for soloist and interactive digital signal
processing. As indicated in the citation, jack~ is used in this compo-
sition not only for pitch tracking, but to control a bank of twenty
oscillators as well. The input signal to the analysis is the sound of
the live piano. The traditional approach to analysis/resynthesis
uses sine-wave oscillators to recreate individual partials of the ana-
lyzed sound. Lippe follows tradition for part of the piece, but re-
places the sine waves in the oscillator lookup tables with other
sounds during other sections. In fact, at some points the resynthesis
sounds are determined algorithmically by the piano performance—
for example, by switching oscillator tables according to the per-
former’s dynamic.

Zack Settel has written a large number of analysis processes con-
tained in the Jimmies library distributed by IRCAM. In keeping with
Max design philosophy, these processes are small units that can be
plugged together to create more individual and sophisticated forms
of audio tracking. Figure 5.16 shows the patch for calculating the
root-mean-square (RMS) amplitude of a digital audio signal. The
RMS amplitude is computed just as the name suggests: values from
the signal are squared and their mean is taken. The square root of
the mean provides a measure of the energy in the signal.

The object zerocross~, another building block, returns a rough
estimation of the amount of noise in a signal by counting the
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Figure 5.16 RMS amplitude computation

frequency of zero crossings. In Punjar, Settel uses zerocross~ to-
gether with the RMS computation to detect vocal qualities such as
sibilance as a control parameter for synthesis.

Figure 5.17 shows part of the analysis process of Punjar. Audio
arriving at the top of the patch is sent to the RMS~ computation (fig-
ure 5.16) and zerocross~. If the RMS amplitude falls below 0.02,
the send variable t_rest, representing a rest (silence), is set to true.
When the amplitude is above the threshold, a gate is opened and the
output of zerocross~ passes through to a comparison operator (>).
The combination of the comparison and the change object will cause
a one or zero to be sent to select whenever the zerocross~ output
moves across a threshold of 50. That is, when zerocross~ goes
from below 50 to above it, a one will be sent to select, and when
zerocross~ goes from above 50 to below, a zero is sent. Once the
threshold is crossed, no other messages are sent until it is crossed
again.

Settel uses movement up over the noise threshold of 50 as evidence
of a sibilant sound (e.g., “‘s”, “sh”, or ““v”’). Such positive changes
go to the send variable t _zero, used to broadcast noise information
to the rest of the patch. In this way the vocal quality of the singer’s
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Figure 5.17 Rest and sibilance detection

performance can be used to affect the synthesis and processing of
the electronic part.

The Japanese composer Takayuki Rai has used compositional algo-
rithms and real-time signal processing in a number of works includ-
ing Four Inventions for piano and a signal processing computer
(1988/1ev.1996); Seven Refractions for flute and a signal processing
computer (1995); and Kinetic Figuration for MIDI piano, VP-1 syn-
thesizer, and the ISPW (1994). Kinetic Figuration presents the
pianist with twelve Cells, collections of musical material that can
be ordered by the player during performance. A DSP-Max patch writ-
ten by the composer processes both the MIDI information coming
from the keyboard as well as the sound of the piano itself. “Most of
the Cells have function notes or function keys notated in the upper
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Figure 5.18 Accel path

area of the score. By playing these indicated notes, a pianist, as if
he/she gives input data to [a] computer via a normal computer key-
board, can control the entire computer system; chang[ing] parame-
ters, mov([ing] out from the current Cell to the next, and so on” (Rai
1998).

Figure 5.18 demonstrates one of the compositional processes Rai
developed for Kinetic Figuration. Note the two clip objects labeled
“duration limiter” and “velocity limiter.” Both of these complete
feedback loops that control the velocity and timing of the patch’s
output. The velocity limiter, for example, comes after a subtraction
object that continually subtracts 10 from the last velocity used. When
the example patch is turned on, the integer object maintaining the
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velocity is initialized to 127. Whenever the velocity is banged out
from the int, 10 is subtracted from it and the remainder stored back
in the memory. The velocity is set to 127 for the first note and de-
creases with each attack by 10s until it reaches 57. Because the re-
mainder is passed through the ¢1ip object, there it will pin until the
patch is stopped and started again.

The duration between bangs coming from the metro undergoes a
similar modification through feedback. The expression object contin-
ually reduces the number of milliseconds input to the right inlet of
the metro until it reaches 70. In the example patch, both of these
parameters stick at their target value until the toggle at the top is
stopped and started again. In Takayuki Rai’s version, all of the rele-
vanl parameters (velocity decay, acceleration rate, number of notes
output, ete.) are controlled through inlets to a subpatch. The CD-
ROM includes both the reduced version shown above and an accel
subpatch following the composer’s original.

5.2.4 Rhythmic Effects in Improvisation

Composers at IRCAM have used signal processing combined with
score following as a compositional paradigm for some decades. Mu-
sicians at other centers around the world followed suit, beginning
with the commercialization of the ISPW in the late 1980s. Another
approach to algorithmic signal processing developed in roughly
the same time frame, often using the same equipment: rather than
tying the control of signal processing techniques to the progression
of a human musician through a fixed score, these systems change
the processing of external sounds as a function of a developing
improvisation.

Though we have focused on the IRCAM tradition of signal proces-
sors, many praclitioners have used other commercially available
gear. Several manufacturers make effects and signal processing de-
vices available at a relatively low cost that can be controlled in real
time with MIDI messages. The composer/singer Dafna Naphtali has
worked for years with the Eventide family of signal processors in
improvisational performances. An important part of her Max patch
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coordinates control of the signal processing with a pulse that is com-
puted during performance. The approach is similar in spirit to the
beat-tracking applications discussed in chapter 3, but differs in that
the only durations input to the process are already stipulated to be
beat events. Once all inputs are defined as pulses, beat tracking be-
comes a simple matter of measuring their duration.

The subpatch Roundup takes a floating point input and rounds it
to the nearest integer. If the floating point value falls precisely be-
tween two integers it will be rounded up (hence the name). The patch
makes use of the fact that an integer number box will truncate a float-
ing point input (that is, throw away the fractional part).

As shown in figure 5.19, an incoming value of 3.5 is truncated to
3 by the integer number box. The truncated 3 is used as one part of
an integer sum and as the right inlet in a modulo operation. The
floating point input is multiplied by two and fed to the other inlet
of the modulo box. Continuing the example shown, 3.5 multiplied
by 2 is 7. The remainder of 7 divided by three is one, shown as the
output of the modulo operation. This added to the integer part of the
input gives 4.

add modulo of g Round Floats to nearest integer

input float * 2 (values halfway between two

and itseif to integers round up)

truncated

integer portion ]

of number |>3~5 —l |>3 I Inuncates 16

integer part

if fractional part is > 0.5,
modulo will output 1,
otherwise 0

Wy
i

E rounded output

Figure 5.19 Roundup
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Clicktime (figure 5.20) reports the time in milliseconds and beats
per minute between two clicks on the mouse. The timing is per-
formed by a clocker object that times the duration between receiv-
ing a one and a zero at its left inlet. The beats per minute equivalent
is found through dividing 60000 by the millisecond duration (60000
is equal to 1000 milliseconds * 60 seconds in a minute). When a zero
is received at Clicktime’s inlet, it turns off the clocker and bangs
out the millisecond and beats-per-minute versions of the duration
since the previous click.

Note that because one action (a mouse-click) is used to turn the
toggle on and off, only the durations between every other click will
result in the computation of new output values. That is, if the user
regularly clicks the mouse, every other click will update the bpm
value reported from Clicktime. Naphtali uses Clicktime as a control
structure for sending parameter values to the Eventide signal proces-
sor in real time. She has developed an extensive library of presets
appropriate to both standard Eventide effects and custom processes.
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Clicktime and other controls allow her to quickly change and manip-
ulate such effects in completely improvised performances.

The Center for New Music and Audio Technologies (CNMAT) has
developed many systems for interactive improvisation, often ex-
pressed through algorithmic signal processing or synthesis. Their
work has an extensive thythmic component based on research first
carried out by Jeff Bilmes at the MIT Media Laboratory. Bilmes built
an engine for the analysis and synthesis of expressive timing varia-
tions on the observation that musicians maintain independent, very
fine-grained subdivisions of the beat pulse as a reference for the
placement of events in time. “When we listen to or perform music,
we often perceive a high frequency pulse, frequently a binary, tri-
nary, or quaternary subdivision of the musical tactus. What does it
mean to perceive this pulse, or as I will call it, tatum? The tatum is
the high frequency pulse or clock that we keep in mind when per-
ceiving or performing music. The tatum is the lowest level of the
metric musical hierarchy. We use it to judge the placement of all
musical events” (Bilmes 1993, 21-22).

Tatums are very small units of time that can be used to measure
the amount of temporal deviation present or desired in any per-
formed event. The name tatum has multiple connotations: first, it is
an abbreviation of “temporal atom,” referring to its function as an
indivisible unit of time. In addition, it honors the great improviser,
Art Tatum, as well.

A central tenet of the tatum approach is that expressive timing vari-
ation in many musical styles (including jazz, African, and Latin mu-
sic) is not convincingly modeled by tempo variation alone. Rather
than defining expression as a change in the tempo of an underlying
pulse, the deviation ofa given event from a fixed pulse is used. When
modeling the performance of an ensemble, each member of the en-
semble has her own deviation profile. This means that some perform-
ers might be ahead of or behind the beat, while others play more
strictly in time. Such a conceptualization corresponds more closely
to the way musicians think about their temporal relationships during



Compositional Techniques 231

performance than does the idea that they all are varying their tempi
independently.

In his thesis, Bilmes demonstrated tools for deriving, analyzing,
and synthesizing temporal deviations present in the multiple layers
of drums he recorded in a performance by the Cuban percussion en-
semble, Los Mufiequitos de Matanzas (1993). His work has become
a foundation of the CNMAT Rhythm Engine (CRE), used to organize
the rthythmic activity in several interactive environments.

One such environment used the CRE to store, transform, and com-
bine thythmic patterns related to those of North Indian classical mu-
sic. Rhythm in this tradition is based on tal theory, a way of
organizing drum patterns within beat cycles of a certain length, such
as the 16-beat tin tal or 12-beat jup fal. “A particular fal is character-
ized not only by its number of beats, but also by traditional thekas,
fixed patterns that would normally be played on a tabla drum to de-
lineate the rhythmic structure of the taf in the most straightforward
way”’ (Wright and Wessel 1998).

The system organizes a collection of rhythmic subsequences in a
database. Fach subsequence identifies one “reference tatum,” the
point that is anchored to a rhythmic grid when the subsequence is
timescaled and scheduled to be played. Normally the reference tatum
is the first event of the subsequence, but could come sometime later
if the pattern includes pickup notes. Subsequences can undergo sev-
eral forms of transformation before they are played, the most impor-
tant of which is timescaling. That is, a subsequence can be sped up
or slowed down by some multiple, as well as adjusted to match the
tempo of an ongoing performance.

Subsequences record the placement of events in time. Usually an
event is a note or drum stroke, but it can represent some other type
of action as well: for example, the system can position “start record”
and “stop record” messages within a rhythmic pattern. In this way,
material from the live performance can be sampled at precisely con-
trolled moments within the rhythmic structure: “We think of the
notes before the ‘start record’ as a musical stimulus, and then use
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the recording feature to capture a co-improviser’s response to this
stimulus” (Wright and Wessel 1998).

Subsequences can be initiated as repeating or one-time cells. Each
time through the tal, the CRE scheduler combines ongoing cell repeti-
tions with newly scheduled one-time cells. Filtering and modifica-
tion of the subsequence outputs are applied just before the sounds
are played, providing real-time access to their timbral and dynamic
presentation. One kind of modification affects the performance of
overlapping events: ifa repeating cell and a one-time cell both sched-
ule an event on the same tatum, one of several strategies can be exe-
cuted before that tatum is played. For example, one of the competing
event sounds may be chosen and the other dropped, with the surviv-
ing sound played louder. Alternatively, the two competitors may be
performed as a flam, with one slightly ahead of the other.

The CNMAT website maintains several articles describing the use
of the Rhythm Engine in real-time improvisation, as well as a link
to Jeff Bilmes's thesis describing the theoretical foundation of tatums
(Bilmes 1993). As the North Indian example demonstrates, this way
of thinking about time offers a powerful and flexible structure for
organizing the temporal relationships of many different styles of im-
provised music.

5.3 Standard MIDI Files

Standard MIDI Files (SMI) are an extension to the MIDI standard
that were developed to allow applications to interchange complete
musical scores. Accordingly they include much more extensive in-
formation about the music encoded than does the simple stream of
MIDI note messages that might be generated from such a file. One
could input a Standard MIDI File to the applications we have devel-
oped simply by routing the output of a sequencer that has read the
file to an TAGC Bus, and then reading from the bus in the same manner
demonstrated with Max in section 2.2.2. It would be preferable to
build in a Standard MIDI File reader, however, to gain access to the
additional information those files can provide. This section, then,
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presents an SMF reader that outputs EventBlocks suitable for anal-
ysis by the listening objects.

There are three formats of Standard MIDI Files: Format 0 encodes
sequences with one track and is best suited for monophonic music.
Format 1 supports multi-voiced sequences, where each voice is
recorded on a separate track. Format 2 files allow each track to
be temporally independent. The application described here (and
the corresponding code on the CD-ROM] deals with format 0 files
only.

Each note event in an SMF has five fields: (1) a delta time, (2) note
on/note off status, (3) channel number, (4) MIDI note number, and
(5) MIDI velocity. Four of these five (status, channel, note, and veloc-
ity) are sent in normal MIDI channel voice messages. The only infor-
mation that SMF adds at the note level, then, is the delta time. “Delta
time indicates the time delay between the onsets of discrete MIDI
events in a serial stream of data. Delta times are encoded either as
pulses per quarter note (PPQN) or as SMPTE time code™ (Hewlett et
al. 1997, 48). Given either PPQN or SMPTE values, we may compute
for each event the absolute onset time in milliseconds. Since the ad-
ditional information is available, however, we may be well served
to maintain it in our representation.

Analytical applications generally have little use for SMPTE times.
PPN, however, can be used to calculate the position of an event in
terms of bars, beats, and ticks, where ticks are the number of pulses
per quarter note (usually there are 480 PP(JN). The work of beat and
meter induction (section 3.2), then, becomes superfluous. We already
know which events fall on the beat and where the beats fall in a
metric structure. This assumes, of course, that the sequence being
read has already been quantized. If it has not, the events in the file
will have an arbitrary relationship to the grid of bars and beats, and
no information gain will result from dealing with an SMF as opposed
to a MIDT stream output from it. In fact the quantization process de-
scribed in section 3.2.1 could be used on an unquantized MIDI
stream to produce a quantized Standard MIDI File by calculating the
appropriate PPQN values for each event.
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Parsing a Standard MIDI File is simply a matter of reading the
events as specified by the standard and repackaging the information
in the Machine Musicianship library representation. Rather than la-
bor over the details here, [ refer the reader to the SMF Reader applica-
tion on the CD-ROM, which opens MIDI files and reads them into
an EventBlock. The application then simply plays the file back
from the EventBlock, though clearly at that point the information
could be sent to any of the analysis routines as well.



6 Algorithmic Expression and Music Cognition

The traditional creation of Western music moves from the score writ-
ten by a composer through a performer’s interpretation to the under-
standing of a listener. We have considered algorithmic tools for
composition and analysis, informed by the cognition of listening. In
this chapter we will review proposals for algorithmic performance,
particularly those that deal with expression. Before addressing that
work, let us pause to think more closely about the cross-fertilization
between music cognition and machine musicianship.

6.1 Music Cognition and Machine Musicianship

Music cognition occupies a position at the intersection of music the-
ory, cognitive science, and artificial intelligence. Artificial intelli-
gence in particular is concerned with the emulation of human
reasoning in computer programs. In cognitive science, the viability
of proposed human mental processes is often tested by implementing
such programs. This repertoire of software, then, offers a rich library
of tools for the exploration of machine musicianship.

In this study. Tassume a substrate of knowledge and understanding
underlying our musical behavior, generally. A common objection to
the idea of machine listening is that different people experience mu-
sic differently, and therefore encoding a particular version of musical
understanding enforces one type of experience at the expense of oth-
ers. | am sympathetic to that argument and, in fact, believe it to be
true at higher levels. T also believe, however, that such differences
of experience rest on a much simpler and relatively uncontrover-
sial layer of perceptions and concepts available to every listener—
every listener, that is, within a given musical culture. Though the
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techniques described in this book specifically address Western mu-
sic, there are, in my opinion, cognitive foundations underlying the
experience of music in other cultures that overlap Western norms to
some extent,

Different people may have very different experiences and opinions
of a novel they have read. Nonetheless, they will agree that certain
characters populated the novel, participated in certain events, and
reacted by taking certain actions. If we can develop programs capable
of making plausible inferences about the obvious, we will have a
platform on which more individual and sophisticated musical pro-
cesses can be built.

That said, this text remains agnostic concerning the question of
whether a program is capable of musical “reasoning” in the same
way that humans are. Researchers in music cognition carry an addi-
tional burden in the design of musically capable programs—they
must ensure that the output of the algorithm correlates significantly
with the behavior of human subjects performing the same task. While
we are concerned with emulating human performance as well, we
do not face the methodological requirement of reproducing the ex-
perimental data produced by human subjects.

There are essentially two reasons why the recreation of experimen-
tal data from music cognition is not the standard of verification for
algorithms described in this text: the first and most important is that
it would simultaneously expand the scope considerably, and elimi-
nate much work in computer music that was never written to address
the music cognition literature in the first place.

The second reason is that matching the performance of human
subjects and writing programs that work well musically are not al-
ways the same thing. People are much more musical than programs,
but it is not hard to find musical tasks that machines can do better,
or at least more quickly. (Try to write down the root and type of
any chord you hear within 10 milliseconds.) The point ofthe exercise
is to design tools that can help people make better music. Given
that orientation, there would be no point in changing a program that
performs well simply because it does not go about the work in the
same way that humans do. Deep Blue doesn’t play chess the way
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people do, but plays better than almost all of them. Certainly no one
would suggest that Deep Blue should be made to play worse if it
then would better match the data from experiments on human chess
players.

Machine musicianship as [ consider it in these pages is a form of
weak Al weak in that T claim no necessary isomorphism to the hu-
man cognitive processes behind the competencies being emulated.
It would be wonderful, certainly, if these programs could shed any
light on the psychology of music and some of them may serve as
platforms from which to launch such inquiry. It certainly works in
the other direction, however: because of their meticulous attention
to the details of human musicianship, music cognition and music
theory are the most abundant sources of ideas I know for program-
ming computers to be more musical.

Artificial intelligence has been an important partner in the devel-
opment of musically aware computer programs as well. Every new
wave of Al technology, in fact, seems to engender an application of-
fering possibilities for some aspect of music composition, analysis,
or performance. Ebcioglu’s expert system for harmonizing chorales
in the style of ].S. Bach (1992), Bharucha and Todd’s modeling of
tonal perception with neural networks (1989), and Cope’'s use of aug-
mented transition networks for composition (1991) are only some of
the more celebrated instances of this phenomenon. From the point
of view of artificial intelligence research, such applications are at-
tractive because of music’s rich capacity to support a wide variety
of models. Musical problems can be stated with the rigidity and pre-
cision of a building-blocks world, or may be approached with more
tolerance for ambiguity, multiple perspectives, and learning. From
the point of view of algorithmic composition and performance, arti-
ficial intelligence is of central importance because it directly ad-
dresses the modeling of human cognition.

6.1.1 Expert Systems

An Al technique that has been widely and successfully applied
to algorithmic composition is the exper! system (Ebcioglu 1992;
Schwanauer 1988). These programs maintain a knowledge base of
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assertions concerning the compositional task at hand and use some
variation of generate-and-test with backtracking to find solutions to
problems that are consistent with the given knowledge base. Let us
sketch the architecture of a generic expert system: Given a complete
specification of some goal state (the problem], partial solutions are
generated using collections of condition-action pairs (productions)
that look for certain conditions in the problem and the solution as
it has been constructed so far. If those conditions are satisfied, the
action part of the rule fires, causing some change to be made in the
solution.

This process constitutes the generation part of a generate-and-test
cycle. Tests are made by comparing a solution against some number
of constraints. Solutions that do not satisfy the constraints are re-
jected. In a final phase of the process, heuristics are applied to direct
the search for solutions in the most promising directions and to as-
sign merit values to solutions that have successfully passed the test
phase. Successive steps in a sequence of operations are concatenated
in this manner. If at any step a partial solution cannot be found, the
system backtracks to the previous step and selects an alternative so-
lution in an effort to find a successful candidate at the previously
insoluble next step.

Kemal Ebcioglu implemented such a cycle as the heart of his sys-
temn for harmonizing chorales in the style of .S. Bach:

The condition-action pairs are called the generate section, the con-
straints are called the test section, and the heuristics are called the
recommendaltions section of the knowledge bhase. Fach step of the
program is executed as follows. . . : All possible assignments to
the n’th element of the partial solution are sequentially generated
via the production rules. If u candidate assignment does nof comply
with the constraints, it is thrown away; otherwise its worth is com-
pufed by summing the weights of the heuristics that it makes [rue,
and it is saved in a list, along with its worth. When there are no more
assignments to be generated for solution element n, the resulting list
is sorfed according to the worth of each candidate. The program then
attemplts to continue with the best assignment to element n, and then,
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if a dead-end is later encountered and a backtracking return is made
to this point, with the next best assignment, etc., as defined by the
sorted list. (Ebcioglu 1992, 304)

In this review [am primarily concerned with those technigques that
can improve the real-time musicianship of interactive programs.
From this point of view, the generic expert systems architecture is
appealing as long as the move to backtracking in the face of insoluble
positions is eliminated. Decisions in an interactive setting most often
cannot be retracted, since generally they are executed as soon as they
are made. Therefore reversing a prior decision when a dead end is
reached, as in backtracking, is impossible. As a corollary, an interac-
tive system must have some default way of declaring a winner when
the normal generate-and-test cycle does not complete successfully.
[fbacktracking is not available to break an impasse, some other mech-
anism for moving on must be devised.

Generate-and-test cycles, on the other hand, can certainly be used
in interactive situations as long as the cycles can be executed quickly
enough. The choice of a particular solution must be made assuming
that the current state cannot be altered by backtracking through pre-
vious decision nodes. The importance of fast and effective heuristics
in such a strategy is then magnified with respect to the non-real-time
case.

Part of my program Cypher operates using techniques similar to
generate-and-test. Cypher has been described in detail elsewhere
(Rowe 1993), and will be summarized and implemented again here
in section 7.4. For the purposes of this discussion the following out-
line should suffice: Cypher is composed of two large components: a
listener and a player. The listener examines MIDI data arriving from
some source and characterizes a number of musical features found
there. It passes messages relaying the result of its analysis to the
player. The user of the program can configure the player to respond
to those messages in various ways. For example, the listener could
pass a message asserting that the input is “a loud C-minor chord in
the high register.” (Actually Cypher transmits classifications of six
features for each incoming event).
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The user of the program sets up some number of listener-to-player
links that function as condition-action pairs, in which a message sent
from the listener constitutes a state to be examined by the condition
part. Actions are algorithmic transformations of the MIDI material
being input to the program. To continue the previous example, a user
could assert that when loud, high, C-minor chords are heard, that
material should be inverted, slowed down, and arpeggiated. This
process corresponds in a rough way to the generate section of an
expert system such as the one described by Ebcioglu earlier. The
comparison is very limited, however, in that Cypher only generates
one solution. There are no competing versions to be ranked ac-
cording to heuristics.

The solution can be modified, however, by the test part of a
generate-and-test cycle. The test section uses a second instance of
the same listener process found in the generate section. Here, the
listener describes the features found in the material the program is
about to play after completing the actions designated by the genera-
tion productions. I call this test section the critic, since it acts as an
internal arbiter of the music the program will produce. The critic
includes an independent list of condition-action pairs. These pro-
ductions look at the analysis of the incipient output and make
changes to the output if necessary. Roughly, then, the condition parts
of the critic condition-action pairs constitute the test in a generic
generate-and-test system. In this case, however, solutions that fail
the test are not rejected, but are modified by the actions. For example,
a critic production might specify that if the program is about to out-
put fast, loud, dense chords in the low register, that material should
first be thinned out, slowed down, and made softer.

The important points to notice here are two: first, much of the
mechanics of experl systems (with the important exception of
backtracking) can be adapted for use in real-time interactive applica-
tions. Second, real-time analysis processes will permit the condi-
tions and actions of expert systems to be stated using common
musical expressions about such elements as density, register, dy-
namic, and the like.
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6.2 Knowledge Representation

A central issue for both artificial intelligence and cognitive science
is that of knowledge representation. Symbolic systems in particular
rely on the organization of knowledge about things and relationships
in the world to build a framework within which reasoning processes
can function. Even sub-symbolic systems make assumptions about
some frame of reference in the kinds of inputs they accept and the
way their outputs are interpreted.

6.2.1 Schemata
An important representation for all of these fields, and for music cog-
nition in particular, is the schema, or frame. Albert Bregman defines
schema as “a control structure in the human brain that is sensitive
to some frequently occurring pattern, either in the environment, in
ourselves, or in how the two interact” (Bregman 1990, 401). Programs
modeling some aspect of cognition frequently make use of a formal
version of the schema, typically interpreted as a collection of inter-
related fields that is activated when a certain pattern of activity is
encountered. For example, Marc Leman describes the output of the
self-organizing maps used in his system (section 4.3) as schemata.
The title of his book, Music and Schema Theory reflects the impor-
tance of the concept to his model {1995).

Schemata are important both as a way of organizing the response to
a situation and as a compact representation of knowledge in memory.
Many of the structures and processes we have already developed
may be considered from a schematic viewpoint. Irene Deliége and
her colleagues suggest that the structures of the Generative Theory
of Tonal Music, for example, are schemata for the organization of
tonal material in memory: “The same underlying structure could be
related by a listener to many different surface structures. The capac-
ity to abstract an appropriate underlying structure in listening to a
given piece could thus be held to represent the most highly devel-
oped mode of musical listening” (Deligge et al. 1996, 121). The appli-
cation of such schemata to different compositions could indeed
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underlie many of the differences found between musicians and non-
musicians in performing musical tasks. For example, the superior
performance of trained musicians in memorizing and reproducing
previously unknown material could well be a product of their ability
to relate the novel material to structures already in mind.

The Deliege article goes on to suggest an alternative structure for
musical memory, namely a cue-abstraction mechanism (mécanisme
d’extraction d’indices). Cues are small groups or patterns within a
larger musical texture that exhibit certain salient attributes. These
attributes could include striking characteristics of melody, harmony,
rhythm, gesture, and so on. Their recognition acts as a grouping trig-
ger such that the arrival of a new cue spurs the creation of a grouping
boundary.

In this way, longer structures (motives, phrases, etc.) may be labeled
and encoded in memory by means of cues tha!t alone are stored in
immediate memory and enable access lo the entire structure. The
cues can then be used as signposts; they embody invariant character-
istics of the musical material and take on the function of referential
entities enabling constant evaluation of new material. Thus the cue
provides the basis for grouping and for the chaining together (concat-
enation} of groups at different hierarchical levels of listening; concal-
enation of groups will continue for as long as a particular cue
continues to be recognized. When a new and contrasting cue is per-
ceived, it establishes the boundaries of the higher level grouping—
periods or sections of the piece—and can initiate a new grouping.
In other words, grouping can be seen to make use of two principles;
the principle of “sameness,” which determines the length of the con-
catenated groups, and that of “difference,” which establishes their
boundaries (Deliege et al. 1996, 122-123).

We may consider a cue to be a particular kind of pattern (see sec-
tion 4.2). A pattern becomes a cue when it exhibits attributes that
are particularly striking for the context in which they occur. An
algorithmic cue finder, particularly during performance, would be
a challenging undertaking, but at a minimum would require some
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reference to the style of the music in which the cues are embedded. In
section 8.1 we will review a proposal for automatic style recognition.
Certain cue attributes could be tied to the recognition of styles such
that when a given style is active, the presence of the associated attri-
butes would mark a pattern as a cue.

None of the segmentation techniques we built in section 4.1 make
use of the recognition of distinctive patterns as suggested by the cue-
abstraction proposal. Using cues in segmentation would lead to a
circularity that must be dealt with in control structures governing
the two. That is, we use calculated segments as the starting point of
the pattern recognition procedures outlined in section 4.2. Ongoing
segments are matched against stored patterns that have been assigned
boundaries by the same grouping process. Once we use the recogni-
tion of patterns as boundary markers, we encounter a feedback prob-
lem in which cues determine groups that determine cues. Though
cue abstraction may be a very powerful addition to the segmentation
techniques currently in use, the resonance between groups and cues
would need to be closely controlled in the real-time case.

Another kind of schema models progressions of tension and relax-
ation through time:

Research on musical expressivity and on musical semanlics, carried
out by Franceés (1958) and Imberty (1979, 1981) showed the essential
part played by musical tension and relaxation schemas; these sche-
mas are extracted from the musical piece and then assimilated to
kinetic and emotional schemas of tension and relaxation, which ac-
cumulate all of the affective experience of the listener. Therefore, it
seems reasonable to consider that the most important part of musical
expressivity might be determined firstly by the specific way each
composer organises the musical tension and relaxation in time, and
secondly by the kinds of musical tension and relaxation the listener
manages to abstract. (Bigand 1993, 123-124)

Bigand proposes algorithmic means of determining the tension
and relaxation of musical segments, particularly as these are mani-
fested by melodic, harmonic, and rhythmic processes. For example,
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Table 6.1 Bigand Tonal Weights

TONAL FUNCTION WEIGHT
Tonic 7
Dominant 6
Third 5
Other 4

he outlines a system that assigns particular melodic pitches a weight
according to their tonal function (table 6.1). Pitches that are not part
of the prevailing tonality would be assigned three or two points de-
pending on whether the tonality of which they are members is
closely or distantly related to the current key. The tonal function
weight is further modified by other multipliers for note duration and
metric position. The result is a tension/relaxation curve induced
by a given segment that approximates those recorded from human
subjects.

Here we see the outlines ofa way to describe the emotional expres-
sion created by a piece of music. Emotion in music has been a subject
of intense interest for writers in such diverse fields as philosophy,
music theory, and music criticism for centuries. [t is particularly
problematic for algorithmic modeling because it seems so keenly per-
sonal and variable, even for the same listener on different hearings.
At the same time, an account of the listening experience that makes
no reference to emotion at all seems seriously incomplete—for many
listeners, an emotional response is the most important aspect of why
they listen to music in the first place. John Sloboda opens his classic
text The Musical Mind with the assertion that “the reason that most
of us take part in musical activity, be it composing, performing, or
listening, is that music is capable of arousing in us deep and signifi-
cant emotions” (Sloboda 1985, 1).

Like Jackendoff's sketch of an algorithmic listening system, Bi-
gand’s tonal weights are devised partly to provide a method for eval-
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uating the affective course of a piece of music. [ will not pursue the
algorithmic analysis of emotional responses in this text, though
many of the analytic tools we have developed could help describe
the affective dynamic of a work when cast in those terms. (The work
that has been published in this area is still developing. For one of
the most refined examples, see Antonio Camurri’s EyesWeb project;
see also section 9.3.) For the moment let us consider the other crucial
part of Bigand’s tension/relaxation schemata, which is that they are
formulated with explicit reference to temporal development.

6.2.2 Scripts and Plans

Schemata that have a particular trajectory in time are often called
scripts, or plans. Schank and Abelson’s Seripts, Plans, Goals and
Understanding: An Inguiry into Human Knowledge Structures pro-
vides a particularly succinct overview of these structures and the
kinds of processing they make possible (1977). The temporal element
is of course critical for music because music is an art that exists in
time. Schemata, as we have seen, are collections of information and
processes that are invoked by the appearance of particular configura-
tions of elements. Scripts add to this concept sequencing events: for
example, the script of a birthday party might include a number of
actions, some with a determined order and some that can change.
That is, the guests will arrive near the beginning and leave near the
end, but the cake may be eaten before the presents are opened or the
other way around.

In his book A Classic Turn of Phrase, Robert Gjerdingen argues for
the psychological and music theoretic reality of schemata. His use
of schemata is tied to parallel developments in cognitive science, but
is also explicitly related to certain traditions in music theory: “With
respect to the harmonic and voice-leading aspects of classical music,
an early proponent of a type of schema theory was the great Austrian
theorist Heinrich Schenker’ (1988, 23). Beyond Schenkerian analy-
sis, Leonard Meyer’s discussions of form, process, and archetypes,
and Eugene Narmour’s style forms, style structures, and idiostruc-
tures all relate to Gjerdingen’s concept of musical schemata. In
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other work, Dowling credits schemata with guiding the perception
of overlapping melodies in his influential studies of the process
(Dowling and Harwood 1986). Stephen McAdams's sketch of infor-
mation flow during music listening gives a prominent position to
mental schemata as capturing the listener’s accumulated knowledge
of music and guiding her attention while hearing a particular piece
(1987).

Gjerdingen’s book examines in some detail the “changing-note ar-
chetype” described in the work of Leonard Meyer, in particular the
variety with scale degrees moving from 1-7 and then 4-3 in a me-
lodic line. Considering this archetype as a network of related sche-
mata requires elaborating the features, implications, and processes
typically associated with the archetype in actual works of music. “A
defensible definition of the schema underlying these cadences would
require that the norms and interrelationships of meter, harmony,
rhythmic groupings. voice leading, melody, and texture all be speci-
fied” (Gjerdingen 1988, 34).

Organizing knowledge into schemata is a music theoretic under-
taking of considerable scope. Gjerdingen’s 300-page work covers one
variant of the changing-note archetype. Transferring the work to
computer programs would pose a comparably daunting task, We may
be encouraged, however, by the fact that much work on representing
and manipulating frames and schemata has already been accom-
plished in the field of artificial intelligence (Bobrow and Winograd
1977). A number of knowledge representation languages have been
produced that simplify the collection of concepts into semantic net-
works or schemata—Antonio Camurri’s HARP system for musical
reasoning is built on a variant of one of these, KL-ONE. In chapter
9 we will review one of Camurri’s knowledge bases more closely.

6.3 Learning
A remarkable property of most interactive music systems is that they

do not learn. They are endowed by their programmers with certain
methods for generating music and (perhaps) analyzing the music
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with which they play. Once the program appears onstage, or even in
the rehearsal hall, it has largely reached a level of performance that
will change little until the concert is over. Exceptions to this general-
ization are programs such as Barry Vercoe's Synthetic Performer,
which learns in rehearsal the interpretation that a particular human
player brings to a piece of chamber music (Vercoe 1984).

Steven Tanimoto defines learning as “an improvement in informa-
tion-processing ability that results from information-processing ac-
tivity” (Tanimoto 1990, 312). Learning therefore involves change in
the functioning of a system due to the operation of the system itself.
Tanimoto’s definition makes learning a positive change—the system
is not held to have learned if its performance degrades. Critical to
identifying learning, then, is a specification of what “improvement”
means for a particular system. The field of machine learning is a
broad and active one, and I will not undertake any overview here.
Rather, let us consider the issues involved in using machine learning
techniques in an interactive system.

“Hach learning model specifies the learner, the learning domain,
the source of information, the hypothesis space, what background
knowledge is available and how it can be used, and finally, the crite-
rion of success” (Richter et al. 1998, 1). Here again we find reference
to an improvement metric as a way to quantify learning. One of the
most widely used learning models is the neural network, which we
have already considered in some detail. The key induction network
introduced in section 3.1, for example, used information from music
theory both as the source of knowledge about chord functions and as
the criterion of success, and the network was considered successful
if it produced key identifications in agreement with music theory.
Another criterion of success might be agreement with the results of
music cognition experiments. As in the case of representation, suc-
cessful learning can only be judged within the context of a specific
problem.

We can distinguish two basic learning phases that we might wish
a machine musician to undergo: first, learning as preparation for
performance; and second, learning during performance. Several
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interactive programs have incorporated learning as preparation for
performance—Vercoe’s Synthetic Performer is one example. Others
include the CNMAT systems that use neural network components
(Lee and Wessel 1992) and the NetNeg program described in section
6.4. There have been relatively few cases of learning during perfor-
mance (though these do exist, for example in the work of David Ro-
senboom [1992]).

Neural networks, though fast enough for real-time use after
training, generally take too much time during the learning phase to
be of much use onstage. Pattern induction as covered in section 4
can be seen as a form of learning since the program learns new mate-
rial from repeated exposure. The form of learning we will consider
now—Ilearning during performance—involves the use of genelic
algorithms.

6.3.1 Genetic Algorithms
Genetic algorithms (GAs) simulate the evolution of chromosomes in
an ecology as a learning paradigm. Derived from work pioneered
by John Holland and his associates at the University of Michigan
in the 1960s, genetic algorithms have become a powerful tool for
developing novel solutions to complex and poorly defined prob-
lems (Mitchell 1996). The concepts and processes of genelics are
modified to produce an environment of algorithmic development.
A “chromosome” in a genetic algorithm is a potential solution to
some problem. Such chromosomes are normally encoded as a bit
string. Chromosomes are evaluated by a fitness function that deter-
mines how well the candidate solution solves the problem at hand.
“The minimal requirements for using a GA are that the solutions
must map to a string of symbols (preferably bits), and that there be
some way of determining how good one solution is at solving the
problem, relative to the other solutions in the population” (Biles
1094, 131).

A genetic algorithm evolves its chromosomes by selecting the fit-
test ones and mating them to produce a new population. Twao chro-
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Parent A Parent B
0010 1001
Child 1 Child 2
0001 1010

Figure 6.1 Bit-string crossover

mosomes are mated by taking parts of the bit strings of each and
combining them to make a new string. The methods of combining
chromosomes follow biology: two of the most important mating func-
tions are crossover and mutation. In crossover, a chromosome locus
is chosen at random. Bits before the locus in parent A are concate-
nated with bits after the locus in parent B to form one offspring, and
the post-locus bits of A are concatenated with the pre-locus bits of
B to form another. Figure 6.1 shows the offspring created from two
four-bit parents with crossover at locus 2.

Mutation randomly flips bits in one chromosome. That is, a single
bit position in a chromosome is chosen at random and the value there
is inverted (a zero becomes a one, and vice versa).

A fitness function gauges the success of a solution relative to other
solutions (chromosomes). A famous genetic algorithm was devel-
oped by W. Daniel Hillis to evolve sorting algorithms (1992). In that
case the fitness of a chromosome was a measure of whether or not
it could correctly sort a list of 16 items. The sorting algorithm is a
well-known optimization problem in computer science, described
extensively by Donald Knuth in the third volume of his classic text
The Art of Computer Programming (1973). One of Knuth’s solutions
is a sorting network, a parallel process in which pairs of elements
in the list are compared and swapped if they are found to be out of
order. Such networks are correct if they are guaranteed to produce
a sorted list at the end of all comparisons. They are minimal if they
produce a correct result with the fewest number of comparisons.
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After several years of work, the minimal network found as of 1969
used 60 comparisons.

The first version of Hillis's sort algorithm GA evolved a sorting
network that used 65 comparisons. Because the fitness function was
testing only for correctness, and not minimality, it is already remark-
able that such an efficient network evolved. The reason the GA did
not produce even more efficient networks, rivaling those produced
by human researchers, was that its fitness was tested against a ran-
dom sample of unsorted lists (the complete set of such lists being a
universe too large to use). Once the GA arrived at a network that
worked, it was not challenged often enough by the test patterns (the
ecology) to be pressured to change.

The second version of the GA therefore co-evolved the sort algo-
rithms together with the tests used to determine their fitness. The
analogy Hillis had in mind was host-parasite or predator-prey coevo-
lution in which two organisms evolve in relationship to each other.
In this case the sorting networks were a kind of host and the test
samples a parasite. “Both populations evolved under a GA. The fit-
ness of a [sorting] network was now determined by the parasite lo-
cated at the network’s grid location. The network’s fitness was the
percentage of test cases in the parasite that it sorted correctly. The
fitness of the parasite was the percentage of its test cases that
stumped the network (i.e., that the network sorted incorrectly)”
(Mitchell 1996, 26). No longer would the networks stop evolving at
the point of being able to solve a test of average difficulty. Now as
the networks improved, the problems they were given to solve would
also become harder. The GA with coevolution produced a network
with 61 steps—only one step behind the best human solution.

The fitness function for the sorting network GA is clear: for a chro-
mosome to be considered fit, it must represent a correct network. The
ecology within which the chromosomes evolve exerts pressure on
them to sort correctly. In an artistic application of GAs, however, we
might expect a very different sort of ecology—one in which
the aesthetic preferences of an observer determine the fitness of a
solution.
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Karl Sims has written a drawing program that causes images to
evolve according to the ecology of the viewer (1991):

In a typical run of the program, the first image is generated at random
{but Sims can feed in a real image, such as a picture of a face, if
he wishes). Then the program makes nineteen independent changes
{mutations) in the initial image-generating rule, so as fo cover the
VDU-screen with twenly images: the first, plus its nineteen (“asexu-
ally” reproduced) offspring. At this point, the human uses the com-
puter mouse to choose either one image to be mutated, or two images
to be “mated” {through crossover). The result is another screenful of
twenty images, of which all but one {or two) are newly generated by
random multations or crossovers. The process is then repealed, for
as many generations as one wants. (Boden 1994, 110-111)

Working with Sims’s program is absorbing and leads to novel and
interesting images that are related in a perceptible but indirect way
to the choices of the user. The observer determines the creation of
the work by providing the environment in which evolution of the
images proceeds.

In the domain of music, John Biles has written a genetic algorithm
called GenJam that improvises jazz solo lines (1994; 1998). Here it
is the preference of a listener that determines the fitness of chromo-
somes: at the end of each generation a human partner rates the output
of the GA to guide its evolution at the next step.

Biles uses what he calls “GenJam Normal Form” (GJNF) to repre-
sent the pitch and rhythm information of a solo melodic line. GINF
uses one chromosome to encode the material of one measure. Each
measure is assumed to be four beats long and each beat can be articu-
lated by two eighth notes. With these assumptions, a chromosome
in GJNF consists of a string of eight symbols, one for each eighth note
position within a measure. In this case the symbols are not bits, but
addresses into a table that contains a scale consonant with the chord
being played in the corresponding measure.

For example, Biles uses a hexatonic minor scale without the sixth
degree to accompany minor seventh chords. The chord progression
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Table 6.2 GenJam Fm7 Scale Map

INDEX 1 2 3 4 5 6 7 8 9 10 1 12 13 14

PITCH C B F G A B C B F G Ab Bb C Eb

Figure 6.2 Output from scale map against Fm7

for a tune being learned is read from a file prior to running the GA.
A preprocessor then constructs scale tables for each measure ac-
cording to the given harmonic structure. The scale used to accom-
pany an Fm7 chord might consist of 14 pitches arranged as shown
in table 6.2.

Note that these are not pitch classes but rather pitches in a particu-
lar octave. A GenJam chromosome with the sequence of symbols
{910 111213 11 10 9 }, then, would perform the musical fragment
shown in figure 6.2 when played against an Fm?7 chord (this example
is taken from Biles [1998, 233]).

Indices into the table begin with one because the locus symbol zero
has a special meaning: whenever the program encounters a zero in
a chromosome it generates a rest in the output by sending a note
off command to the MIDI pitch most recently sounded. A locus
symbol of 15 also has a special meaning, in that when 15 is encoun-
tered no MIDI messages at all are sent, effectively holding the most
recently sounded pitch (or continuing a rest).

GenJam makes four kinds of mutations to measure chromosomes:

1. reverse replace a chromosome with its retrograde
2. rotate rotate symbols from 1 to 7 positions to the right
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3. invert reverse direction of symbol intervals
4. transpose add or subtract random amount from symbols

Biles developed this set of what he calls “musically meaningful
mutations,” notably without the use of crossover or single-point mu-
tation. Beyond the mutations to measure chromosomes, moreover,
there is an additional set of four phrase mutations:

1. reverse play the four measure chromosomes in reverse order
2. rotate rotate the measures from 1 to 3 positions to the right

3. repeal  repeat a random measure, replacing the follower

4. sequence repeat the human’s last measure 2 or 3 times and fill

A phrase is a sequence of four measures. The phrase mutations
therefore operate one level up the rhythmic hierarchy from measure
mutations. The set of phrase mutations listed here comes from Biles’s
interactive version of GenJam that is able to “trade fours” with a hu-
man partner (Biles 1998). That accounts for the fourth form of muta-
tion, in which material from the human’s phrase is used to form the
response of the GA.

Interactive Genjam forms chromosome representations of the im-
provisation of a human partner in real time. During the performance,
a quantization window continually advances by eighth-note dura-
tions. As MIDI pitches arrive, they are matched against the scale
maps for each measure to find the closest index. The last index found
during a given quantization window becomes the scale map symbol
for that locus. Previous indices found within the same window are
simply discarded.

Trading fours is a jazz improvisation style in which one soloist
will improvise four bars, answered by another who plays the next
four. Interactive GenJam trades fours, then, by building a set of four
measure chromosomes from the human performance as its partner
plays. During the last 30 milliseconds of the human's four, GenJam
performs the mutations listed above on the collected material. The
mutated phrase is then played out over the course of the following
four measures.
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This version of the algorithm in fact does not evolve phrases based
on a fitness evaluation. The human player has no foot pedal or other
virtual gong with which to reduce the fitness of phrases judged to
be poor. Other implementations of GenJam have used a fitness esti-
mation, however, either issued by a human observer as in Karl Sim’s
drawing GA, or even derived from the reaction of an audience of
listeners.

John Biles’s GenJam is interesting both because of the ingenuity
with which it adapts genetic algorithms for jazz improvisation and
because it uses a learning algorithm during the performance itself.
The applications to which GAs could be put as part of an interactive
system are legion—GenJam is to some extent an aural equivalent of
Sims” drawing program, and there are many other ways to interpret
chromosome strings as control parameters of compositional algo-
rithms. GAs might be used, for example, to evolve interpolation func-
tions such as those found in Philippe Manoury’s Jupifer or tendency
mask settings for the AC Toolbox. Learning could be carried out be-
fore the performance allowing the compaoser to exert pressure on the
GA according to the nature of the composition.

The CD-ROM includes a genetic algorithm application that simply
evolves bit strings with as many bits as possible set to one. T use such
a simple example because the fitness function involved is particu-
larly straightforward. The use of this process for other applications
involves a redesign of the interpretation of the bit strings and an asso-
ciated fitness function—much of the evolutionary mechanism (cross-
over, mutation) can remain as written. Beyond this example, genetic
algorithms (like neural networks) are well documented on the in-
ternet and many working environments can be found with a simple
keyword search.

Figure 6.3 shows the definition of the genetic algorithm class. Most
of the member functions follow the preceding discussion: the func-
tion Fitness (), for example, is a routine that determines the fitness
of a particular chromosome. SelectParent () will choose a parent
for the next generation of offspring according to how highly it is rated
by Fitnesz().



class GA {
private:
typedef struct { // used for sorting chromosomes
int fitness;
int ID;
int odds;

} SortRecord;

int bitLength; // number of bitg in string
SortRecord* sort; // array of sort records
int populationSize; // # of chromosomes in population
Chromosome** population; // current population
Chromosome** newPopulation; // next generation

public:
GA(void) ;
~GA (void) ;
void Generation(void) ;

private:
IHE Fitness (Chromosome* x);
void Mutate (Chromosome* x);

Chromosome* SelectParent (Chromosome** population) ;
Chromosome* SelectParent (Chromosome** population,

Chromosome* noCopy) ;
void SortPopulation(void) ;

Y

Figure 6.3 Genetic Algorithm class definition



class Chromosome ({

private:

int

int

float

float

int

public:

&
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bitVector; // string of bits

bitLength; // length of bit string
crossoverRate; // percentage of crossover (0.
mutationRate; // percentage of mutation (0.
fitness; // fitness rating

Chromosome (int bitLength) ;

int

int

void

void

BitVector (void) const { return bitVector; }
Fitness (void) const { return fitness; }
Mutate (void) ;

SetFitness(int f) { fitness = f; }

Figure 6.4 Chromosome class definition

wdd)

.1)

The Chromosome class is shown in figure 6.4. The data and

functions are again related directly to the preceding discussion of

GAs: each Chromosome maintains its own fitness rating, as well as
floating point rates of crossover and mutation. Finally figure 6.5

shows how each new generation is spawned. First the fitness of each

chromosome in the current population is evaluated. A new popula-
tion is generated from the fittest parents using crossover, and off-
spring are mutated according to their mutation rate. The GA

application on the CD-ROM uses this code to evolve a population of

bit strings with as many ones as possible from an initially random

collection.
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void GA::Generation(void)

for (int i1=0; i<populationSize; i++) {

Chromosome*

X = population[i];

x->SetFitness (Fitness (x));

newPopulation = new Ptr{populationSize];

while (i < populationSize) {

Chromosome*

Chromosome*

Chromosome*

Chromosome*

Mutate (son) ;

dad = SelectParent (population);
mom = SelectParent (population, dad);
son = new Chromosome (dad, mom) ;

daughter = new Chromosome (dad, mom) ;

Mutate (daughter) ;

newPopulation[i++] = son;

if (i < populationSize)

newPopulation[i++] = daughter;

Figure 6.5 Generation function
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6.3.2 Artificial Agent Societies

A burgeoning field of research within artificial intelligence involves
the design and implementation of autonomous software agents. The
explosive growth of the internet and of the information the internet
makes available gives rise to a demand for independent entities that
can search through the wide universe of available resources and re-
turn those that will benefit a client, human or otherwise. The para-
digmatic example of such an agent is one that goes off to book the
most desirable (in terms of cost and speed) transportation between
two points. [t may be that the agent looking for the ticket encounters
other software agents representing airlines or travel agencies and
then needs to negotiate with them in order to arrive at the best
solution.

In Interactive Music Systems (1993) T described simple listening
processes as agents, and larger operations involving several such ana-
lyzers as agencies. This usage borrowed from Marvin Minsky's book,
The Society of Mind [Minsky 1986] and corresponded to ideas in that
text that inspired the control structure of my program, Cypher. Since
then, the field of software agents has grown remarkably, and with it
the uses to which the term agent has been put: “ultimately terms and
notions become increasingly watered, so that the same term may re-
ferto a very concrete technology or to almost every entity within DAT
[Distributed Artificial Intelligence]. A prominent example consti-
tutes the term ‘agent’ which may denominate everything from a com-
putational ‘neurone” up to a complex expert system” (Ossowski
1999, 31).

Sascha Ossowski’s own use of the term agent shows interesting
similarities to the description of an interactive music system:
“Agents are conceived as situated systems, being in continuous
interaction with the outside world. Consequently, the basic archi-
tecture of such an agent is then made up of three components:
sensors, which transmit data to a cognition component, which com-
municates action commands to effectors” (Ossowski 1999, 38).
Interactive music systems similarly receive information from sen-
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sors, perform calculations based on that information, and send com-
mands to synthesizers or other sound processors (effectors) in
response.

NetNeg is a hybrid artificial intelligence model for producing first
species counterpoint in real time (Goldman et al. 1999). NetNeg is
interesting for our purposes for several reasons: first, because it is
deliberately designed to work in real time using information as it
becomes available: “dealing with the problem of creating music in
real time opens up the possibility of building real time interactive
applications that combine the activities of a musician and a com-
puter” (Goldman et al. 1999, 71). This orientation means that the
system is not permitted to backtrack during the production of coun-
terpoint: previous solutions are assumed already to have been played
as they were generated.

Second, NetNeg is an example of a hybrid system combining sym-
bolic and sub-symbolic components. One subsystem is a sequential
neural network that learns to produce new melodies; a second sub-
system consists of two agents, one responsible for the behavior of
each voice. One of the central problems of Multiagent Systems (MAS)
is the design of control structures in which agents with their own,
sometimes conflicting, agendas can develop a form of cooperation
that will allow them to accomplish tasks collectively that none of
them could achieve independently. Control structures are further
complicated in NetNeg by the subsymbolic component, another
source of information that must be coordinated with the agents to
generate satisfactory counterpoint.

The scheme used in NetNeg sends separate output vectors from
the sequential net to each of the voice agents.

On the one hand, each agent has fo act according fo ils voice’s aes-
thetic criteria: and on the other hand, it has to regard the other voice-
agent such that both together will result in a two-part counterpoint.
Both agents have to negotiate over all the other possible combina-
tions to obtain a globally superior result. Thus, they influence the
context with their agreement. Given this new conlex!t and the initial
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values of the plan units, the network will predict another output vec-
tor. This process continues sequentially until the melodies are com-
pleted. (Goldman et al. 1999, 78)

NetNeg can compose convincing examples of two-part counter-
point. More importantly, the performance of the system as a whole
is better than can be achieved by either subsystem alone. The design
of NetNeg demonstrates that real-time hybrid systems can work in a
live context and that the flexibility arising from a combination of
several strategies, both symbolic and sub-symbolic, improves the
musical quality of the results.

Goto and Muraoka report a parallel agent-based program that can
find the beat in an acoustic representation of popular music record-
ings in real time (1994). The agents in their beat-tracking system
(BTS) simultaneously examine multiple theories of the current beat
period and calculate their reliability. At any given point the most
reliable hypothesis is broadcast from the BTS as the current beat.
(This strategy is, in some respects, similar to my multiple attractors
algorithm, described in chapter 3).

The input to BTS is an acoustic signal from a CD player. After
digitization the basic unit of calculation is a buffer of 256 samples,
referred to within the system as one time frame. A fast fourier trans-
form (FFT) is performed on four frames at a time, providing a win-
dow size of 1024 samples. With each new calculation of the FFT the
earliest frame from the last FFT is removed and one new frame
added, giving a time resolution of 256 samples. The main purpose
of the FFT is to find note onsets and to isolate the bass drum and
snare drum components of the sound.

Bass and snare drum sounds are important because BTS uses regu-
larities of drum playing in popular music to locate the beat. “Multi-
ple agents interpret the results of the Frequency Analysis stage and
maintain their own hypotheses, each of which consists of next beat
time predicted, its beat type, its reliability, and current IEI [inter-
beat-interval]”’ (Goto and Muraoka 1994, 368). Different agents em-
ploy different strategies to look for the beat: one technique compares
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Figure 6.6 Cindy dancing to the BTS

the detected bass and snare onsets to stored drum patterns and re-
ports beat information from the pattern that best matches the input.
BTS tracks the beat of its target music style remarkably well, to
the point that animated dancers can synchronize with the beat of
arbitrary compact disc recordings of popular music in real time
(figure 6.6).

The BTS in 1994 could locate the tactus, or quarter-note beat level.
An extension reported in 1997 finds not only the quarter-note level
but also higher-level pulses including the half-bar and the bar (as-
suming 4 beats to a bar). Detecting the higher levels involves recog-
nizing strong and weak beats of a meter, not simply a multiplication
of the quarter-note pulse by two or four. Besides metric structure,
the 1997 program employs music knowledge to find the pulse of
drumless performances as well. Though this brings the work closer
to MIDI-based beat trackers, the authors note the difficulty in
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attempting a direct translation: “Musical knowledge that is useful
for analyzing musical scores or MIDI signals, however, cannot im-
mediately be applied to raw audio signals because of the difficulty
of obtaining MIDI-like representations of those signals” (Goto and
Muraoka 1997a, 136).

The heuristic employed to approximate MIDI information is to no-
tice chord changes in the input and mark their onsets as more likely
beat locations. The chord changes are found without identifying the
names of the chords or indeed of any of their constituent pitches. In
this the program is similar to a musically untrained listener who can
sense changes in harmony without knowing which chords make up a
progression. BTS uses the prevailing beat theory to delineate quarter-
note and eighth-note beat “strips.” The expectation of the beat
agents, then, acts as a top-down attentional device, focusing sensitiv-
ity for chord changes on particular temporal spans.

FFT data within each strip is used to calculate a histogram of
salient frequencies. To detect chord changes, BTS compares the
histograms of adjacent strips and assigns a chord change probabil-
ity to the transition between them according to the magnitude of
their differences (figure 6.7). This information directs the assignment
of metric structure, using the following “quarter-note-level knowl-
edge: Chords are more likely to change at the beginnings of mea-
sures than at other positions. In other words, the quarter-note chord

Peaks in strips corresponding to quarter-note
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Figure 6.7 FFT strips indicating chord boundaries
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change possibility tends to be higher on a strong beat than on a weak
beat and higher on the strong beat at the beginning of a measure than
on the other strong beat in the measure” (Goto and Muraoka 1997a,
138).

Musical knowledge about chords, then, helps not only to confirm
the placement of beat boundaries, but to identify those beats that
are more salient and therefore likely to be the strong beats of the
measure.

The agent architecture of BTS comprises, in the 1997 version,
twelve agents grouped into six agent-pairs. The two agents in a pair
maintain rival hypotheses that predict beats one half inter-beat inter-
val away from each other. The heightened sensitivity of one agent
in a pair around the expected arrival of its beat serves to inhibit the
sensitivity of the other. The six pairs differ from each other in their
parameter settings, which direct each of them to evaluate distinct
aspects of the audio analyses. Besides the FFT itself, the audio analy-
sis conducts auto-correlations and cross-correlations of onset times
in several frequency bins. The frequencies examined and the settings
of the correlations, then, are the parameters used to differentiate
agent theories.

Each agent computes its own reliability based on the accuracy of
its predictions and the input of the chord-change heuristic. The most
reliable agent’s theory at any given point is taken as the output of
the system as a whole. In a quantitative evaluation system they devel-
oped, Goto and Muraocka found that the BTS “correctly tracked beats
at the quarter-note level in 35 of the 40 songs (87.5%) and correctly
recognized the half-note level in 34 of the 35 songs (97.1%) in which
the correct beat times were obtained” (1997b, 13).

BTS and NetNeg both demonstrate the power of artificial agent
systems to reconcile the sometimes conflicting information arising
from a variety of analysis processes. That this arbitration and control
can be executed in real time promises more consistent and effective
ways Lo manage similar complexities in interactive performance
systems.
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6.4 Expressive Performance

The realization by a sequencer of a strictly quantized score sounds
lifeless, as anyone who has more than a passing acquaintance with
sequencers knows. Human musicians make temporal, dynamic, and
timbral deviations from the written score to express an interpretation
of the music. Some of this deviation results from different levels of
technique and the simple foibles of human musculature, but re-
search of the last few decades has shown that much variation is in-
tentional and carefully controlled by skilled performers (Palmer
1989). To some degree expression varies with the temperament of the
player, but it is largely determined by the structure of the composition
being performed: “Thus the expressive changes that accompany
changes in performance tempo are based on structural properties of
the music, and can be characterized as the transformation of latent
exprassive possibilities into manifest expressive features in accor-
dance with the dictates of tempo and musical structure” (Clarke
1988,12).

Eric Clarke showed that the performed timing of notes is affected
by their metric position (1985). Three interacting principles lead
to the deviation: (1) the stronger the metric position occupied by a
note, the more likely it is to be held longer, and, conversely, the
weaker the metric position of a note, the more likely it is to be short-
ened; (2) notes that complete musical groups are lengthened (at sev-
eral levels of grouping); and (3) the note before a structurally
prominent note is often lengthened. *“T'his demonstrates that the rela-
tive duration of a note is a property that emerges from the interaction
of a number of features that include its symbolic representation, its
metrical position and position within a group, and its melodic and
harmonic significance” (Clarke 1985, 214].

Clarke’s work measured the influence of musical structure on ex-
pression. A study carried out at the University of Padova focused on
the impact of a player’s exprassive intentions. The group had per-
formers play short excerpts while trying to realize various expressive
qualities: light, heavy, soft, hard, bright. and dark. Then listeners
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were asked to characterize the performances and a comparison was
made between the performer’s intention and the listener’s experi-
ence. Factor analysis demonstrated that the variations indicated by
the listeners closely matched the expressive intent and could be
largely explained by two independent variables. “The first factor
(bright vs. dark) seemed to be closely correlated to the tempo, while
the second factor (soft vs. hard) was connected to the amplitude en-
velope of the notes. and particularly to the attack time” (Canazza et
al. 1997, 115).

Such evidently controllable and rule-oriented relationships be-
tween structure, intention, and exprassion has led a number of re-
searchers to design algorithms that can add expression to a quantized
score. As we have noticed in other areas, both symbolic and sub-
symbolic processes have been explored in the search for algorithmic
expression. In the case of the Padova group, the information gathered
from the factor analysis was used to design a system that could auto-
matically vary synthesis parameters to produce expressive intentions
from the original group of adjectives: light, heavy, soft, etc. (Canazza
et al. 1998).

6.4.1 Rule-Based Systems
One of the most highly developed expressive performance systems
has been implemented over a period of years by Johan Sundberg and
his colleagues at the Swedish Royal Institute of Technology (KTH)
in Stockholm (Sundberg, Friberg, and Frydén 1991; Friberg 1991).
The K'TH program takes an entire score as input and outputs a MIDI
representation with expression added as determined by a rule set.
“The music score is written into a Macintosh microcomputer, which
controls a synthesizer over MIDL. Expressive deviations are automati-
cally generated by a set of ordered, context dependent performance
rules. These rules can be said explicitly and exhaustively to describe
all the expressive deviations that are present in the computer gener-
ated performance” (Sundberg, Friberg, and Frydén 1991, 163).

The KTH system is an instance of analysis/synthesis in that an
expert performer (Lars Frydén, a professional violinist) suggested
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rules based on his experience and commented on their effect in simu-
lated performances. The rules affect duration, sound level, sound
level envelope, vibrato. and pitch deviations. There are two primary
categories of rules: “Some rules appear to help the listener to identify
piteh and duration categories. Rules serving this purpose will be re-
ferred to as differentiation rules. Other rules seem to help the listener
to group tones which form melodic Gestalts of various lengths. These
rules will be referred to as grouping rules” (Sundberg, Friberg, and
Frydén 1991, 165).

Each rule is applied independently over the entire performance
before the next one is considered. Clearly this eliminates the system
as designed from real-time application. Many of the rules can be di-
rectly adapted to onstage use, however. Consider the first duration
differentiation rule: “DDC 1A The shorter, the shorter shortens short
notes and lengthens long notes depending on their absolute nominal
duration” (Sundberg, Friberg, and Frydén 1991, 166). Because it de-
pends only on the absolute duration of the note, DDC 1A can easily
be applied in real time ifthe duration of a note to be output is known
at the time that it is attacked. Lel us look at a simple expression
function that can apply DDC 1A to the output of a compositional
algorithm.

This implementation of DDC1A follows the chart published by
Sundberg, Friberg, and Frydén (1991, 166). The data described in the
chart actually does not lengthen long notes, it just doesn’t shorten
them. In figure 6.8 we look for progressively longer durations and
perform the corresponding reduction when the duration of the note
we are handling is less than the current threshold. Because we return
from the function whenever the duration is found to be within the
currently considered bound, we ensure that the same note will never
be modified twice.

In the KTH rule set, DDC1A not only modifies the articulation of
the affected notes but changes the effective beat duration as well.
That is because the span of time subtracted from the target notes is
not replaced by a pause. Any reduction of the note durations then
shortens the length of the beat containing them as well. We may add
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Expression: :DDC1A (Note* n)

{

1f (n->duration < 50) return; // very short durations unchanged

if (n->duration < 150) { // 50-150 shortened by 2 ms
n->duration -= 2;
return;

}

1f {(n-»duration < 200} { // 150-200 shortened by 5 ms
n->duration -= 5;
return;

Z;

if (n->duration < 500) { // 200-500 shortened by 3 ms
n->duration -= 3;
return;

Figure 6.8 Expression Rule DDC1A

this effect to the implementation in figure 6.8 by shortening the [0l
of the following Event, as shown in figure 6.9.

The KTH system references a quantity control that functions as a
kind of volume knob, determining how pronounced the effect of each
rule on the output of the system should be. The effect could be writ-
ten into a rule like DDC1A by adding a floating point quantity param-
eter and using that to multiply all of the constant adjustments coded
into the routines of figures 6.8 and 6.9.

The second duration differentiation rule, DDC1B, can also easily
be applied in real time, again assuming that the duration of the note
to be output is known at attack time: “DDC 1B The shorter, the softer
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Expression: :DDC1A (Note* n)

{

if (n->duration < 50) return; // very short durations unchanged

if (n->duration >= 500) return; // loeng durations unchanged

Event* prev = n->Event()->Prev();

if (n->duration < 150) { // 50-150 shortened by 2 ms
n->duration -= 2;

prev->SetIOI (prev->I0I()-2);

return;

}

if (n->duration < 200) { // 150-200 shortened by 5 ms
n->duration -= 5;
prev->SetIOI (prev->I0I()-5);
return;

}

if {(n->duration < 500) { // 200-500 shortened by 3 ms
n->duration -= 3;

prev->SetIOI (prev->I0I()-3);

return;

Figure 6.9 Reduction with beat shortening
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reduces the sound level of notes in proportion to their inverted dura-
tion” (Sundberg, Friberg. and Frydén 1991, 166). DDC1A and 1B
taken together serve to deemphasize short notes, particularly in con-
trast to long notes that may succeed them. When they are applied
they tend to make short notes leading to a long one sound like antici-
pations of the longer event. The Expression application on the CD-
ROM is an implementation of DDC1A and DDC1B together with a
simple compositional algorithm that makes it possible to hear a per-
formance of the output with or without the effect of the rules.

The model of musical expression developed by Neil Todd relies
on the observation that phrases are often articulated by a crescendo/
decrescendo shape. Todd expresses this principle as follows: “Prop-
osition: (a) a group is phrased by a crescendo/decrescendo shape;
(b) the particular shape is a function of structural importance;
(c) musical dynamics is coupled to tempo” (1992, 3542). His ap-
proach is thoroughly computational and therefore requires that he
be able to formally declare the relationship between groups and func-
tions of expression. One important principle of the system is that
tempo and dynamic fluctuations within a phrase will be correlated.
That is, as the performance gets louder it gets faster, and as it gets
softer it gets slower.

This correspondence between speed and loudness is connected to
Todd’s view of musical expression as an outgrowth of human kine-
matics: “The model of musical dynamics presented in this paper was
based on two basic principles. First, that musical expression has its
origins in simple motor actions and that the performance and per-
ception of tempo/musical dynamics is based on an internal sense
of motion. Second, that this internal movement is organized in a
hierarchical manner corresponding to how the grouping or phrase
structure is organized in the performer’s memory” (Todd 1992,
3549).

Todd’s model of musical expression produces some strikingly
effective results and can be easily applied to the output of com-
positional algorithms that meet certain conditions. In particular, al-
gorithms must generate entire phrases, or at least have planned their



Chapter 6 270

projected duration and structural role. Given these two parameters,
a Todd performance module can shape the dynamics and speed of
the nascent output.

6.4.2 Learning Expression

The KTH expressive performance rule set was developed through an
analysis-by-synthesis process much like the knowledge acquisition
development of an expert system. Neil Todd’s model is a mathemati-
cal formulation of certain observations about tension, relaxation, and
kinematics. Beyond these symbolic formulations, several research
projects have developed methods capable of learning expression
from examples.

Roberto Bresin's neural networks were developed initially to see
whether the symbolic rules in the KTH system could be learned
(1998). To this end artificial neural network (ANN) topologies were
devised that used a number of input nodes equal to the number of
parameters present in K'TH rule conditions and a number of output
nodes equal to the number of parameters thata KTH rule action could
change.

The rules Bresin considered affect the performance of individual
notes according to local context effects: “Tn this model the perfor-
mance is regarded as a relation that computes time, and/or loudness
deviations for the current note depending on some meaningful pa-
rameters possessed by the note itself. Thus we are dealing with a
local model, based on a non-linear function with a short context”
(1998, 242-243).

The networks trained to mimic the KTH rules use input and output
nodes derived directly from the symbolic formulations. For example,
the network used to compute loudness deviations has three input
nodes and one output node that indicates the amount of deviation
to apply (figure 6.10).

The inputs to the network are a note’s duration, pitch, and “me-
lodic charge.” The melodic charge, developed in the KTH rules, mea-
sures the dissonance of a pitch relative to an underlying harmony.
For example, against a G-major tonal context, the melodic charge of
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Loudness Deviation

Duration Melodic Pitch
Charge

Figure 6.10 Loudness Deviation Network

the pitch class Cis 0 while the charge of F4, because of its dissonance
relative to G, is 6 (Sundberg et al. 1991). Bresin developed a training
set from deviations output by the symbolic rules. The loudness devi-
ation network shown in figure 6.10, for example, was trained using
outputs from the symbolic rules High loud, Durational contrast, and
Melodic charge. The same procedure was applied to a second net-
work trained to make changes to the duration and off-time duration
(offset-to-onset interval) of a note.

Bresin conducted a listening test in which subjects were asked to
rate three performances of a Mozart fragment: (1) deadpan, with no
expressive variation; (2) varied using the KTH rule set; and (3) varied
using ANNGs trained by the KTH rule set. The subjects clearly pre-
ferred the KTH and ANN performances to the deadpan rendering,
and even showed a slight preference for the neural network perfor-
mance overall.

The KTH rule set applies each rule to the score as a whole before
passing to the next. “A reason for the slight preference of the ANN-
versions to the rules-versions would be that the deviations in the
performance depended on contributions from many rules. When
only one of these contributions is responsible for the deviations, then
ANNs and KTH rules give identical results. When more than one rule
is activated, the additive behavior of the KTH rule system . . . and
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the interpolation properties of the neural networks. . . yvield different
results” (Bresin 1998, 251-252).

As discussed in section 6.4.1, the KTH rule system must be
adapted for real-time applications because of the additive control
structure used to execute them. The neural networks Bresin trained
to replicate the KTH rules form just such an adaptation, as they si-
multaneously apply rules that in the symbolic system are executed
sequentially. Interestingly, Bresin’s listening experiment indicates
that their simultaneous action in the neural net may produce results
superior to those obtained by the sequential application regime of
the original. In any case, its parallel operation and reliance on very
local contexts make the Bresin ANN implementation a practical and
trainable engine for real-time expressive performance.

The SaxEx system described by Arcos, Mantaras, and Serra (1998)
uses a case-based reasoning system to learn expressive modifications
of saxophone sounds. “Case-based Reasoning . . . (CBR] is a recent
approach to problem solving and learning where a new problem is
solved by finding a set of similar previously solved problems, called
cases, and reusing them in the new problem situation. The CBR para-
digm covers a family of methods that may be described in a common
subtask decomposition: the refrieve task, the reuse task, the revise
task, and the retain task” (Arcos, Mantaras, and Serra 1998, 196).

Retrieval means finding a previously solved problem, or case, by
matching features of the new problem to features of the known cases.
Reuse means applying a solution to the new example that was found
to work with a known example, since this has been determined to
be similar to the stored case. “When the solution generated by the
reuse task is not correct, an opportunity for learning arises. The revi-
sion phase involves detecting the errors of the current solution and
modifying the solution using repair techniques” (Arcos, Mdntaras,
and Serra 1998, 198). Finally, the retain process adds a newly solved
problem to the collection of solved cases and the process begins
again.

In Saxbx, the cases involve transforming the resynthesis of saxo-
phone sounds such that they exhibit expressive traits similar to those
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produced by human performers in comparable musical situations.
Notes are represented as events, and each event knows about expres-
sive modifications of dynamics. rubato, vibrato, articulation, and
types of attack. Saxtx has successfully learned strategies of expres-
sion that can be transferred from training examples to new input per-
formances. It is unique both in its application of CBR and in its
attention to the synthesis parameters of the sound of the perfor-
mance. Sound examples can be found on the group’s website
(www.lilia.csic.es).

Gerhard Widmer has developed symbolic techniques that learn to
add expressive performance variations to a “flat’” score in the form
of dynamic changes and tempo rubato. Early versions learned expres-
sion related to the function of notes within a context (Widmer 1993,
1995). Each note was assigned structural roles that designated its
metric position, placement in a group, and the like. Widmer used
MIDT recordings of performances of the analyzed work as training
examples. The system learned to make particular expressive mod-
ifications to notes based on their structural characteristics. As a
result, the program “discovered” some of the same expressive per-
formance rules formulated by Sundberg and his colleagues in the
KTH analysis-by-synthesis system.

More recently the focus of learning has migrated to higher-level
organizations of the music: “It is by matching the observed dynamics
or tempo variations against structural aspects of the piece and recog-
nizing regularities in the way particular structures are being shaped
by a performer that effective learning becomes possible” (Widmer
1996, 182). As before, learning is preceded by an analysis phase in
which structural descriptors are attached to groups and the notes
within them. The most important organizations are adapted from the
Lerdahl and Jackendoff metric and grouping preference rules, and
parts of Bugene Narmour’s Implication-Realization theory. Markings
indicating these structures are added to the MIDI score, some by an
automated process and some by hand.

Once the structures are tagged, they are associated with prototypi-
cal shapes indicating both their dynamic and temporal evolution.



Chapter 6 274

There are five shapes: even (no change), ascending, descending,
ascending/descending, and descending/ascending. For example, an
ascending dynamic variation is a crescendo and a descending one is
a decrescendo. An ascending/descending tempo shape produces an
accelerando followed by a ritardando.

Training examples for the learning phase, then, consist of musical
structures paired with expressive shapes. Structures are encoded as a
type (e.g., measure or phrase) together with a description of its music-
theoretic features (e.g., metric placement, harmonic function, etc.).
Shapes are encoded as a type (one of the five listed above) and a
quantitative measure indicating the deviation of the extreme points
of the shape with respect to an average loudness or tempo.

The symbolic learning component finds instances of musical struc-
tures that are associated with a particular expressive shape. It gathers
together all of the feature characteristics that are found in positive
examples (for example, those found to be coupled to a descending
shape) and eliminates those that are also true of other shapes. Be-
cause these rules are formulated symbolically, we may examine the
criteria on which its performance decisions are based. As an exam-
ple, one rule produced by this process asserts that a ritardando (de-
scending temporal shape) should be applied to triadic melodic
continuations that occur early in a phrase and are also part of a
“rhythmic gap fill” figure (Widmer 1996, 188).

Figure 6.11 shows a melodic fragment that fulfills the conditions
required by the example. The “rhythmic gap fill” is a series of short

rhythmic gap fill
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Figure 6.11 Expressive structure
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durations connecting two longer ones, and the “triadic melodic con-
tinuation™ outlines a triad within a larger gesture. Because all condi-
tions of the rule are fulfilled here, a performance by Widmer’s learner
will play this figure with a decelerando.

The system can learn nested structures as well. That is, the phrase
level figure shown in figure 6.11 might be subsumed in a larger mo-
tion that is associated with a different expressive shape. When the
learner performs such hierarchically related structures it averages
the effect of the two to arrive at one local variation.

Widmer tested the impact of structure-level descriptions on the
efficacy of the resulting rules by comparing performances generated
by three different strategies: (1) note-level simple descriptions (pitch,
metric position, etc.): (2) note-level descriptions with structural
backgrounds; and (3) structure-level descriptions. The training ex-
amples were taken from performances of Schumann’s Trdumerei by
Claudio Arrau, Vladimir Ashkenazy, and Alfred Brendel, as col-
lected by Bruno Repp (Repp 1992).

Rules learned by analyzing the second half of the pianists’ rendi-
tions using the three strategies were subsequently applied to the first
half of the composition, after which the experts” and the machine’s
performances were compared. A significant improvement in the
agreement between the machine and expert performances emerged
as more structural knowledge was incorporated. Weighted for metri-
cal strength (a rough measure of salience), the first strategy yielded
agreement of 52.19%, the second 57.1%, and the third 66.67%
(Widmer 1996, 200).

Gerhard Widmer's expressive learning system relates to the goals
of machine musicianship in several ways: its symbolic orientation
produces rules that can be executed algorithmically as long as the
relevant structural characteristics can be recognized. The application
of expressive shapes to timing and dynamics can similarly be accom-
plished in an interactive system if a generated phrase is available for
modification before it is performed.

Generally the application of expression rules requires a significant
degree of planning. A program must analyze at least one full phrase
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before it is played to apply structural rules successfully. This corre-
sponds to human performance, which is most expressive when musi-
cians know where the music is heading.

As interactive systems apply such rules in real time, they may be-
come more eloquent performers at the same time that they become
more independent from their surroundings. Because they would be
responding phrase-by-phrase rather than note-by-note, the corre-
spondence between the machine musician and its human partners
would rely even more critically on the program’s ability to success-
fully predict the continuation of the performance. When the expres-
sion of hierarchical layers is added, the operation of this method
becomes even further removed from real time as longer and longer
spans must be analyzed to find appropriate shapes. It may be that
Widmer's earlier note-level analysis, though less accurate in emulat-
ing expert performance of known scores, would yield more tractable
rules for interactive systems that cannot fully predict what comes
next.



7 Interactive Improvisation

Interactive improvisation poses perhaps the greatest challenge for
machine musicianship. Here the machine must contribute a convine-
ing musical voice in a completely unstructured and unpredictable
environment. Accordingly, it is in improvisation that some kind of
machine musicianship may be most important: because the material
and the development of the material is unknown in advance. the pro-
gram must be able to rely on some kind of musical common sense
in order to both derive structure from what it hears, and impose
structure on what it produces in response.

The difficulty of producing improvisation of any kind, but new
music improvisation in particular, is evoked by Olivier Messiaen’s
description of his own method:

These improvisations became little by little one improvisation, al-
ways forgotten, always rediscovered, alwavs repeated: the terrifving
growls of the Beast of the Apocalypse alternated with the songs of
Thrushes and Blackbirds, the sounds of water and wind in the leaves
with the religious meditation and storms of jov of the Holy Spirit,
Hindu rhythms combined with plainchanf neumes, choruses of Larks
with Tibetan trumpets, melodies of resonance and timbre with the
chromaticism of duration, the most searching polymodalities, the
strangest and most shimmering timbres next to the most restrained
rhythmic permutations and inversions. {1997, 83 [my trans.])

In his article “Generative Principles in Music Performance,” Eric
Clarke postulates three principles of organization that an improviser
could use during performance:

A complete performance will consist of a large number of . . . events,
organized in different ways, and related to [a] first event according
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to three possible principles: {1) The first event may be part of a hierar-
chical structure, to some extent worked out in advance, and to some
extent constructed in the course of the improvisation. . . . (2] The
first event may be part of an associative chain of events, each new
event derived from the previous sequence by the forward transfer of
information. . . . (3) The first evenf may be selected from a number
of events contained within the performer’s repertoire, the rest of the
improvisation consisting of further selections from this same reper-
toire, with a varying degree of relatedness between selections. (1988,
8-9)

Clarke goes on to theorize that improvisation styles can be char-
acterized by their combination of these three strategies. “The im-
provising style known as free jazz is principally characterized by
associative structure, since it eschews the constraints of a pre-
planned structure, and attempts to avoid the use of recognizable
‘riffs’ " (1988, 10). He similarly characterizes traditional jazz as being
more hierarchical because of the importance of the harmonic struc-
ture, and bebop as more selective “in the way in which a performer
may try to construct an improvisation so as to include as many
‘quotes’ from other sources as possible (ranging from other jazz
pieces to national anthems)™ (1988, 10).

There is nogeneral machine improviser yet. Though improvisation
systems do not know what will happen in performance, they gener-
ally are programmed to participate in music of a particular style. Be-
bop improvisers have been implemented that would sound out of
place in a performance of free jazz, and new-music-style improvisers
cannot play the blues. Ultimately the ongoing research in style
analysis/synthesis may make it possible to write a machine impro-
viser that could recognize the stylistic characteristics of the music
being played and adapt its contribution accordingly. Style-specific
improvisers have already proven their artistic merit, however, and
still benefit from an analysis of the musical context even when that
context is essentially restricted a priori.

In this chapter I will discuss a number of case studies, systems
developed by composer/improvisers for improvising interactively
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onstage. Examples in Max and C++ will be developed as a way of
more fully explaining their approach. Finally, I will describe the
structure of my program Cypher, though a much more complete de-
scription may be found elsewhere (Rowe 1993). In this text [ will
concentrate on an expansion of the original version that addresses
ensemble improvisation.

7.1 Sequences in Improvisation

In chapter 5 | outlined three classes of compositional algorithms that
typify interactive systems. One of these classes, sequencing, presents
pre-established material in multiple guises during performance. We
will discuss improvisation with sequences in connection with the
work of Richard Teitelbaum, one of the first and most influential
practitioners of interactive improvisation. From his beginnings as a
founder of Musica Elettronica Viva through the Digital Piano (for
which he won the Prix Ars Elettronica in 1986) to his current work
with Max, Teitelbaum has used an improviser’s sensibility to design
a series of systems that produce music algorithmically in response
to his live performance.

Here is a description Teitelbaum wrote of the processes operating
in his Solo for Three Pianos: “Music played live by the pianist on one
piano keyboard is sensed and instantly read into computer memory
where it can be stored, overlayed, delayed, transposed, inverted, ran-
domized, and otherwise manipulated before being passed on to the
other two pianos for playback at the performer’s behest. This may
be done either simultaneously, or at a selectable delay time, or stored
for future recall” (1982).

This study will examine some aspects of software Richard Teitel-
baum developed in collaboration with Eric Singer for Teitelbaum’s
composition SE(} TRANSMIT PARAMMERS (1998), written for pi-
anist Ursula Oppens and an interactive music system. Though the
sequencing capabilities form only a small part of the interaction in
that work, we will concentrate on it here as an example of an elabo-
rated system developed through many years of experimentation.
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Interactive systems, particularly those involving improvisation,
cede a significant measure of responsibility to the performer onstage
as aco-creator of the work. SEQ) TRANSMIT PARAMMERS takes that
collaboration a step farther by giving the player an opportunity to
invent her own presets before the performance begins. During the
show the patch’s sensitivity to pianistic technique (velocity, articula-
tion, etc.) ensures a direct relationship between the soloist’s expres-
sion and the algorithmic response.

7.1.1 SeqSelect

Teitelbaum’s improvisation systems have long included techniques
for recording, transforming, and playing back musical material dur-
ing the course of a performance. The Max patch developed for SEQ)
TRANSMIT PARAMMERS has a number of objects devoted to these
operations. We will examine SegSelect, a subpatch that provides
compact management of a group of up to nine sequences. Obviously,
nine is an arbitrary number and could be adjusted up or down simply
by changing the number of seq objects in the patch.

SeqgSelect has two inlets at the top of the patch (figure 7.1). The
first accepts messages for the embedded seq objects, such as play
and stop. (Seq is a Max object that records, reads, writes, and plays
back MIDI files.] Note that SegSelect uses the zeq objects for play-
back only—all of the material to be read out has been prepared previ-
ously., The second inlet to SegSelect gels a sequence number,
selecting the corresponding internal sequence to receive subsequent
seqg messages through the other inlet until it is overridden by another
selection.

The gate and switch objects route messages through the patch.
The sequence selector arriving at the second inlet is sent to the con-
trol inlets of both gate and switch. In the case of gate, this routes
all messages arriving at the right inlet to the corresponding outlet of
the gate. Similarly, switch will send anything arriving at the se-
lected input through to its outlet (switch looks and behaves rather
like an upside-down gate). The switch routes the bangs that are
sent when a seq object completes playback of a file.
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Figure 7.2 Minimal Interface

The two outlets of SegSelect are identical to the two outlets of
an ordinary seq object. The first outputs MIDI messages for transmis-
sion tomidiout and the second transmits a bang when the sequence
has finished playing. Finally, the #1 notation in the patch is used to
set the name of a series of sequencer files and a reset message. When
the SeqSelect object is instantiated, the name given as an argument
will replace #1 anywhere in the patch it appears.

The minimal interface shown in figure 7.2 is the most straightfor-
ward way to address SegSelect. The bang and stop buttons at the
upper left start and stop playback of the selected sequence, respec-
tively (note that the 1oadbang object in SegSelect initially sets the
sequence number to one in the absence of user input). The patch
directs sequenced MIDI messages from the left outlet to midiout.
The right outlet transmits a bang when the sequence has finished.
Another bang is connected to a send object (abbreviated to s) that
broadcasts to the receiver harpo . reset. The reset receiver built into
SegSelect sends a stop message to all nine sequencers. Note that
the name argument to SegSelect and the reset sender (“harpo”)
must match. The menu attached to the right inlet of SegSelect
allows the user to switch from one sequence to another.

A second interface to SegSelect (figure 7.3) offers an automatic
way to read through every file sequentially. The bang button above
SegSelect starts the first sequence playing. The bang issued at the
end of the sequence increments a counter that sets the sequence
number to two. The bang also travels to a switch and propagates
back through to SegSelect, starting playback of sequence two. This
continues until the last sequence has been set, sequence nine. At that
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Figure 7.3 Sequential Playback

pk make note/velocity pair into list
|mormat ] format as MIDI message for seq record
[midiparse | extract note/velocity from MIDI message
unpack into separate values

Figure 7.4 MIDI Message Wrapping

point the overflow flag will be sent from the third outlet of the
counter and change the switchto directits input to the right outlet,
leading nowhere. Now when the next bang comes from finding the
end of sequence nine, it will not feed back around to SegSelect but
rather fall into empty space, ending the sequential playback. Note
that at the end of this process the machine will no longer work—for
one thing, the graphic switch will be set to the wrong position. The
bang button at the top of the patch will reinitialize everything so
that the process could be run through again.

In Teitelbaum’s own use of SegSelect, the object is wrapped with
pack/unpack and midiformat /midiparse pairs as shown in fig-
ure 7.4. These surrounding pairs are used to make MIDI messages of
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pk make note/velocity pair into list
[midiformat | format as MIDI message for seq record
SeqgSelect

{midiparse | extract note/velocity from MIDI message

unpack into separate values

transposition input

allow for fiush of output

Figure 7.5 Transposition

incoming pitch and velocity values, and then to unwrap the resulting
MIDI messages to retrieve the original pitch and velocity. The point
of the exercise is both to make available the individual components
of the MIDI channel voice messages handled by the seqg objects,
and to allow new pitch and velocity values to be recorded inside
SegSelect.

The + object appended after unpack in figure 7.5, for example,
provides for the input of a transposition value. Any new integer sent
to the right inlet of the + is added to the pitch numbers of all MIDI
messages coming from the sequences managed in SeqSelect. The
flush object ensures that all sounding notes can be sent a corre-
sponding note off when necessary. This is to address a common
problem with transposition operators: that the transposition level
may be changed between a note on and a note off, causing the
transposed notes to be turned off when the time comes and the origi-
nal pitches to stay stuck on.

SEQ TRANSMIT PARAMMERS takes pitch values from MIDI in-
put to control the transposition of sequence playback as shown in
figure 7.6. Under certain conditions, a MIDI pitch number will be
read from the stripnote object and 60 subtracted from the value.
The trigger object (here abbreviated t) then carefully times the
delivery of two bangs and the calculated transposition amount. The
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take only note on

pk make note/velocity pair into list

[midiformat | format as MIDI message for seq record

SegSelect

|midiparse ||| extract note/velocity from MIDI message
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transposition input

allow for flush of output

Figure 7.6 Transpose from Note Input

rightmost bang is transmitted first and flushes all sounding pitches
from the output, avoiding hung notes whenever the transposition
level is changed. Next the new transposition value is sent to the +
object, and finally the leftmost bang will start playback of the cur-
rently selected sequence.

As each successive layer of the patch is added, we see the pattern
of Teitelbaum’s approach emerge: given a set of prerecorded musical
materials, the improvisation software provides a range of tools for
transposing, looping, and otherwise manipulating them during the
performance. Figure 7.7 demonstrates how looping is added to the
patch fragment developed thus far: the gate object inserted after
SegSelect feeds the bang emitted at the end of playback to the left
inlet of SegSelect. Because a bang is equivalent to a start message,
playback of the same sequence will be recommenced, producing a
loop of the sequence until the gate is closed.

The final extension to this fragment allows us to change the tempo
of a sequence as it is being looped. Figure 7.8 shows the addition of
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Figure 7.7 Looping
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Figure 7.8 Loop Tempo
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a slider with some arithmetic attachments, an int object to store the
output ofthe slider, and a start message box. Max uses integer values
to set the playback tempo of a seq object, where a value of 1024
instructs seq to play back the sequence at its recorded tempo. A
value of 2048 produces playback at twice the recorded tempo, a value
of 512 playback at half the recorded tempo, and so on. The slider in
figure 7.8 is initialized to send out values between 50 and 200. When
the slider output is multiplied by 1024 and divided by 100, it will
vary the playback speed of the seq object to between one half and
twice the original tempo. At that point, the bang issuing from the
gate (when it is open) does not proceed directly to SegSelect but
first passes through the int object (that keeps the integer value of
the current tempo) and a message box that composes the message
“start $1,” where $1 is replaced by the value coming from the int.
The start message is then routed to the left inlet of SegSelect, caus-
ing the sequence to be looped using the most recent tempo set by the
slider.

Richard Teitelbaum’s interactive improvisation style makes exten-
sive use of real-time recording and transformation of material from a
human player. The Max fragment discussed in this section illustrates
how programming elements are added to allow a greater variety of
control over the transformation of the recorded materials. An interac-
tive model of segSelect demonstrating several transformation tech-
niques is included on the CD-ROM.

7.2 Influence on Improvisation Processes

When humans improvise together, players influence each other to
fall in with certain kinds of textures, for example, or to adopt various
melodic or thythmic motives. The relationship is one of cooperation
mixed with a degree of independence. When referring to the relation-
ship between a human and a computer, it is more common to speak
of control—that the human controls the machine. The improviser
George Lewis, who has developed a highly regarded algorithmic im-
provisation program, often remarks that he designs the relationship
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between himself and the program to be one of mutual influence
rather than one-way control.

Describing his Coordinated Electronic Music Studio system (1969)
and Salvatore Martirano’s SalMar Construction (1972), Joel Chadabe
notes:

The CEMS system and the SalMar Construction were the first interac-
tive composing instruments, which is to say that they made musical
decisions, or at least seemed to make musical decisions, as they pro-
duced sound and as they responded to a performer. These instru-
menls were interactive in the sense that performer and instrument
were mutually influential. The performer was influenced by the mu-
sic produced by the instrument, and the instrument was influenced
by the performer’s controls. These insfruments introduced the con-
cept of shared, symbiotic control of a musical process wherein
the instrument’s generation of ideas and the performer’s musical
fudgment worked together to shape the overall flow of the music.
{1997, 291)

Edmund Campion, in his composition/improvisation environ-
ment Natural Selection, similarly uses ideas of influence to organize
the behavior of a large-scale algorithmic improviser written in Max.
Natural Selection for MIDI piano and Max was composed at IRCAM
in 1996, with programming by Tom Mays and Richard Dudas. Cam-
pion designed the first version of the work as an improvisation envi-
ronment for himself performing on a MIDI grand piano and
interacting with a Max patch called NatSel. The rules governing the
operation of the patch are the same rules imparted to the performer
who interacts with it. The construction and operation of NatSel ex-
press the fundamental compositional ideas of both the improvisation
and the later piece: in many respects the patch is the piece. Richard
Povall expresses a similar orientation to his own work: “The most
difficult task at hand is to allow the sysfem to be the composition—
to allow both performer and system to interact with a degree of free-
dom that makes for a compelling, often surprisingly controlled out-
come”” (1995, 118).
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NatSel’s generation of material was influenced by an analysis of
the harmonies and other features of the material being performed
by the composer. “The patch was designed to follow the real-time
composer/performer through a pre-defined, yet nonlinear landscape.
The original version included a second keyboard controller as well
as a Yamaha Disklavier. The second keyboard controller allowed the
performer to leave the piano and take full control of every parameter
of the patch, thus turning NatSel into an independent music genera-
tor. The first performance of Natural Selection was given in Paris
on June 25, 1996 in the Espace de Projection at IRCAM” (Campion
1996).

The compositional algorithms of Natural Selection are predomi-
nately sequenced and generation techniques, in which stored materi-
als are varied during performance as a function of the analysis of
incoming musical gestures. There are three ways in which a human
performer exerts influence over the patch: the first of these is the
average onset velocity. For every incoming MIDI note event, the
patch calculates the mean of the new and previous velocity values—
in effect a simple low-pass filter on the performance dynamic.

The patch in figure 7.9 (avg2) keeps track of the most recent veloc-
ity, adds it to an incoming value, and returns the average of the two.
Because we are using only one memory location (in the int object)
to store previous velocity values, old values must be sent to the

avg2

first bang out last value,
then store new one

add new and previous

divide by two

Figure 7.9 Average sub-patch



Chapter 7 290

+ object before they are overwritten with the new ones. We arrange
the correct order of processing with the trigger object. Messages
are transmitted from a trigger in right-to-left order. The bang issu-
ing from the rightmost outlet will first make int send its current
value into the right inlet of +. Then the integer output of the trigger
(from the left outlet) will overwrite the memory location in int and
add itself to +. The / obhject divides the sum by two and sends the
rasulting average to the outlet of aveg2.

Of course this patch will perform averaging on any sequence of
numbers: in Natural Selection it is used on velocities but also to com-
pute the average duration between successive note attacks, the sec-
ond form of performer influence. Using avgz on these durations
provides a running average of the inter-onset-intervals (IOTs) arriving
from the performer. To avoid skewing the average when the perfor-
mer is leaving a long rest, the program does not send 10ls beyond a
certain threshold (about 1.5 seconds) to the averager.

The third and last form of influence derives from a comparison of
incoming pitch combinations to a matrix. The matrix comprises 64
three-note combinations that are recognized when played either in
sequence or as a chord, and 24 six-note combinations that are recog-
nized only when played as chords. When a combination is found,
the input processor issues an “influence” variable. Influence vari-
ables are used to change the presentation of sequences as well as to
trigger and modify several independent note generation processes.

The performer can record sequences at will. These can be played
back as recorded when triggered, or after transformation by one of
the influence processes. One such process is called “3-exchange,”
which maps all of the notes in a recorded sequence to the pitches of
the last identified tri-chord. The sub-patch order-route (figure
7.10) performs the mapping: MIDI note numbers enter through the
inlet at the top. These are changed to pitch classes, and sent through
a cascade of select objects. When an incoming pitch class matches
one of the select arguments, the corresponding member of the tri-
chord is passed to the outlet. Ct, F{, G, and C are mapped to the first
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note number input

% 12| reduce to pitch ciass

sel 1670 map c#, f#, g, ¢

sl25811| map d, f, g#, b

%:

sel 34910 map d#, e, a, a#

Figure 7.10 order-route

member of the tri-chord; D, F, G¢, and B to the second member; and
the other pitch classes to the last.

The matrix is used not only to recognize user input, but also to
organize the harmonic activity of the patch on output. The pitch col-
lections are stored in the matrix as MIDI pitch numbers within a sin-
gle octave. To realize any particular collection during performance
these minimal representations are interpreted by processes that voice
the member pitches of the chord. Figure 7.11 is a sub-patch that ap-
plies octave voicings to the three members of a stored tri-chord. The
input to the patch is a list of three pitch values. Each member of
the tri-chord is transposed by the number of octaves indicated in
the voicing list. In figure 7.11 this means that every member of the
incoming tri-chord will be transposed down one octave.

The transposition is calculated by the vexpr object, which repeat-
edly evaluates an expression on members of a vector. In this case,
each member of the voicing list will be multiplied by 12, changing
the value in octaves to a value in semitones. The products then are
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Figure 7.11 Tri-chord voicer

added to the corresponding tri-chord member. When all three tri-
chord members have been transposed, the resulting list is sent to
the outlet of vexpr. In figure 7.11 all members of the tri-chord are
transposed by the same amount, but another voicing list (e.g., —1 2
0) might transpose the first member down one octave, the second up
two, and leave the third unchanged. In Natural Selection the com-
poser uses a switchable group of five voicing lists to change the trans-
positions of tri-chords on the fly. Moreover, tri-chords are voiced
before being sent to order-route (see figure 7.10) so that the map-
ping of a sequence to a tri-chord will be made onto a voiced tri-chord
and not the minimal representation.

When the Natural Selection algorithms are running in improvisa-
tion, a control structure keeps track of the compositional variables
and the global quality of the input performance. For example, when
the human player has stopped playing, the patch notices the lack of
activity and resets certain parameters accordingly. To accomplish
this, the activity patch (figure 7.12) watches for any kind of mes-
sage arriving at its left inlet. As long as input keeps coming, the patch
does nothing. The argument given to the patch, or any value sent to
the right inlet, determines the duration of time during which activ-
ity will wait for another message to the left inlet. Once this duration
has elapsed, activity will indicate the absence of incoming mes-
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Figure 7.12 Activity measurement

velocity in scaler in

scaled velocity out

Figure 7.13 Variable reset with activity

sages by sending a bang to its outlet. The bang fires once after the last
input has been received. (Note that activity will not bang until it
has received at least one message at its left inlet).

Campion uses activity to reset certain processes to a default
state during the performance. For example, one part of the program
scales incoming velocity values using a floating point multiplier. If
no new velocities arrive within a five second window, the multiplier
is reset to the default value of one—that is, all scaling is eliminated
until more input arrives.

Figure 7.13 implements this idea in a subpatch. The left inlet
receives MIDI velocity values. The right inlet takes floating point
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scalers. All velocities arriving on the left side are multiplied by the
scaler and clipped to a range of 0 to 120 before being sent back out.
Whenever there has been an absence of velocity inputs for five sec-
onds or more, the activity object will bang a one back into the
multiplication object, effectively eliminating the amplitude scaling
until a new value is received at the right inlet.

The c¢lip object restricts input to a specified range (figure 7.14).
Any input that falls between the upper and lower bounds of the range
is passed through unchanged. If input falls above or below the
bounds, it is pinned to the limit it has passed. So, if a ¢1ip object
has bounds of 0 and 120 (as in figure 7.13), any input above 120 will
be output as 120, and any input below zero will be changed to zero.
Clip accomplishes this behavior by saving the lower and upper lim-
its in int objects. A split handles the first test, passing any input
between the bounds directly to the output. Inputs that do not fall
within the bounds are sent to the right outlet of split, where they are
tested by two conditionals. The first checks to see if the input is less
than the lower bound, in which case the int containing the lower
bound is banged, sending the lower bound to the outlet. The second
conditional does the same operation for the upper bound, checking
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Figure 7.15 Repeat-notes control

to see if the input is higher than the upper bound and banging out
the upper bound if it is. Only one of these conditionals can be true
for any given input.

NatSel’s independent generation processes produce material with-
out reference to the sequences and can operate simultaneously with
sequence playback. The sub-patch repeat -notes, for example, repeats
any note played four times as long as the inter-onset interval between
any successive two of the four does not exceed 400 milliseconds.
The patch in figure 7.15 demonstrates the control structure that de-
termines when the condition for repeat-notes has been met. In-
coming note-ons are first gathered into a list by the quickthresh
object if they arrive within a 50 millisecond window. The change
object bangs a one into the counter whenever an incoming note is
different from the previous one. Therefore the counter will only ad-
vance beyond two if a pitch is repeated. The activity sub-patch
(figure 7.12) resets the counter to one if nothing happens for 400
milliseconds. When the counter advances beyond a limit set in the
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greater-than object (>), a bangis sent to the process that produces the
repeats. The inter-onset-interval between the last two of the repeated
notes is used to control the speed of the generated repetitions, as
shown in figure 7.16.

The repeat-notes independent process outputs a number of rep-
etitions of the input note when the condition determined by figure
7.15 is met. The expression shown in figure 7.16 determines the tim-
ing of these repetitions as well as, indirectly, their number. (The com-
plete repeat-notes patch can be found on the CD-ROM.) The
expression calculates a quasi-exponential curve whose shape is de-
termined by the middle inlet. In figure 7.16 two demonstration val-
ues are supplied: lower values (such as 0.25) cause the rise to be
sharper at the end and higher ones (such as 0.6) make a more gradual
ascent. In Natural Selection, this parameter is set by the velocity with
which the final repetition of the input note was played, such that
harder attacks produce smoother curves and vice versa.

The maximum value, determined by the third inlet, is the value
that when entered in the leftmost inlet will cause the expression to
output 100. Notice in figure 7.16 that the maximum has been set to
300. The value input on the left is 30, multiplied by 10 (300), which
vields an output from the expression of 100. The expression outlet
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is then subtracted from the original maximum, producing a sum of
200. In repeat-notes this output is used as the duration in milli-
seconds between successive attacks of the echoes.

The maximum value (inlet 3) used for the echoes is the IOl between
the last two repeated notes that trigger the patch. As we have seen
in figure 7.15, the IO cannot exceed 400 milliseconds because that
duration causes activity to fire, resetting the counter to one. There-
fore the upper limit on maxima sent to the rightmost inlet of the
expression is 399 milliseconds. Returning to figure 7.16, as the num-
bers sent to the leftmost inlet are incremented, the value subtracted
from the maximum will increase quasi-exponentially. The musical
effect will be one of a nonlinear accelerando on the echoes of the
repeated pitch. The last few echoes will be separated by only a few
milliseconds. As the count of echoes increases, eventually the echo
delay will become zero or less. At that point, repeat-notes ceases
echoing the input pitch and waits again for a new series of triggers.

The NatSel patch in its entirety has been distributed with Max and
is widely available. The CD-ROM includes the examples developed
here as well as an audio excerpt of the composition.

7.3 Transformation in Improvisation

The preceding two sections detailed the use of sequenced and gener-
ation techniques in improvisation environments. A third algorithmic
composition style concerns transformation, in which material arriv-
ing from the outside (from the performance of a human partner, or
from another program) is transformed by processes that vary the ma-
terial, usually based on an analysis of its properties. Amnon Wol-
man’s composition New York for two player pianos was written for
and premiered by pianist Ursula Oppens in 1998. The two player
pianos are MIDI-equipped—one is played by the human pianist and
the other by a computer program. The performance from the human
is sent to a Max patch that combines pre-recorded sequences with
live transformations of the pianist’s material to form a counterpoint
that is output on the second player piano.
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Max is very well-suited to the implementation of transformations.
The design of the language supports algorithms in which data arrives
at the top (with notein or midiin)and is affected by some combina-
tion of objects in the middle, causing new data to be output at the
bottom (through noteout or midiout). The msp extensions route
audio in the same way: the program becomes a signal processor, pass-
ing input signals arriving at the top through some modifications, and
then out through converters at the bottom. In New York, Amnon Wol-
man uses a number of transformation techniques based not on an
analysis of the human performance, but rather on systematic random
variations of the incoming material over time.

The phrase “systematically random” appears oxymoronic, but of-
fers the most accurate description of the variation technique we will
now consider. Wolman’s patch applies random variations of pitch
and velocity within a systematic control structure (figure 7.17).

The random part of the process is realized by the urn object. Urn
outputs random numbers in some range, using them all before any
one is repeated. (The name comes from the image of selecting unique
items randomly from an urn until all are gone.) In figure 7.17, the
argument 8 indicates that there are eight values in the urn, ranging
from zero to seven. The right outlet emits a bang when the last item

bang every 10 ms

select random number
without repeating

scale to range 20 - 83

pack value with route ID

[route 12 3 1 send value to outlet
- with corresponding ID

Figure 7.17 Selection from the urn
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has been taken out. In this example we use the bang to send a clear
message back to urn, refilling it with the values 0 through 7 for an-
other round of selection.

The metro at the top of the patch sends bangs to both the urn
object and a counter. The output of urn is adjusted to yield eight
different values spaced evenly between 20 and 83. The counter tags
these with ID numbers ranging from one to three, which control
transmission of the urn values through the route object attached to
pack. The counter sends a zero to the toggle controlling the metro
when it has produced all three identifiers. This halts the selection
of items from the urn once the three identifiers have all been associ-
ated with new values.

The values spaced evenly between 20 and 83 finally reach a set
of three equality tests, as shown at the bottom of figure 7.18. These
operators compare the urn outputs against the values issuing from
a second counter (shown on the left-hand side of figure 7.18). The
big (left-hand) counter goes from 1 to 108 over a span of 54 seconds
(here I have used a metro with a pulse rate of 500 milliseconds—
in the piece a tempo object gives the performer control over the speed
of the big counter).

bang every 10 ms

select random number
without repeating

turn on/off

metro 500 scale to range 20 - 83

counter 0 1 108

pack value with route ID

select 1 97 108

send value to outlet
with corresponding ID

use to check for
equaltiy with input

Figure 7.18 Tests for equality
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Whenever the big counter strikes one, the select object un-
derneath it sends a bang to the metro controlling the urn. This re-
commences the urn process, filling the equality operators with three
new values. When the big counter is between 20 and 83, its output
may match one of the three urn values. That span of 63 values occu-
pies a little more than half of the full range output by the big
counter, which will match one of them at three different points
within that span. Because the values are distributed among the
points { 20, 29, 38, 47, 56, 65, 74, 83 }, the hits of the counter will
fall randomly on one of eight possible pulses spaced 4500 millisec-
onds apart. Figure 7.19 expands the patch to show what happens
when a hit occurs.

bang every 10 ms

select random number
without repeating

scale to range 20 - 83

turn on/off
metro 500
‘counter 01 108|

send value to outiet

== with corresponding {D

pack value with route ID

use to check for
equality with input

ste
e ol ca o
{drunk 40 4| frandom 200 | l | |
l [ —
i | k] 6
+ ] F20] [0
700

|makenote 60 200

Figure 7.19 Complete example
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Below each equality test is a select object. When a select finds
that its corresponding equality was true (i.e., the operator output a
one), it sends bangs to a group of three constants as well as to two
random operations (drunk and random). The constants are scalers
for the random operations and an addition value. All are used to
affect the behavior of a makenote object that generates the output
of the patch. Makenote has three inlets that control the pitch, veloc-
ity, and duration of a MIDI note. The first of the three constants set
by the select objects is added to any incoming pitches before they
are fed to makenote. The effect will be to transpose any MIDI pitches
played to the patch by the constant amount. Figure 7.19 shows this
amount set to 12, transposing the input up by an octave.

The second constant scales the output of a drunk object that con-
trols the velocity inlet of makenote. The arguments to drunk ensure
that it will produce velocities ranging from 0 to 39. The scaling adds
a constant (equal to 40 in figure 7.19) that shifts this random variation
into a higher loudness range (in this case between 40 and 79). The
final constant similarly affects the range of values used to determine
the duration of makenote.

Playing with the example on the CD-ROM will make the effect of
this mechanism clear: three different types of variation to the input
are made as the counter cycles through the value triplets. The ran-
dom objects ensure that the variations are always dynamic, but the
constant scalers group them into audible categories of output. There
is a tangibly active zone of variation as the big counter enters the
range within which the equality operators switch the parameters of
makenote. Experiment with the tempo of the metro to change the
range and the scaling of the little counter to change the extent of
the active zone.

7.4 Player Paradigm Systems
One dimension of the typology of interactive systems [ have

described previously (Rowe 1993) comprised three composition
techniques—sequenced, generation, and transformation. Another
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dimension concerned types of interaction between the human and
the machine. Instrument paradigm systems are those that treat the
machine contribution as an extension or augmentation of the human
performance. Player paradigm systems present the machine as an in-
terlocutor—another musical presence in the texture that has weight
and independence distinguishing it from its human counterpart.

Mari Kimura is a virtuoso violinist and interactive music com-
poser. Her compositions often combine notated music and improvi-
sation performed with interaction from Max programs that elaborate
on her material. Her 1998 composition, Izguierda e Derecha (Left and
Right) is a player paradigm interactive system, a dialog between the
human violin performance and machine reactions played on a MIDI
piano. The piece gives equal prominence to the human and machine
components, though at times the violin takes over and controls the
piano directly. Usually the Max patch operates through a collection
of compositional algorithms that the violinist can influence through
her own performance, much as Campion’s NatSel patch is designed
around the idea of influence. The Chromatic subpatch is emblem-
atic of the texture-producing modules Kimura combines in her piece
(figure 7.20).

Chromatic generates chromatic scales running up from a constant
starting pitch through a randomly generated range. There are two
metro objects that determine the rate of Chromatic’s operation: the
leftmost metro sends bangs to a counter object that outputs pitch
transpositions. The transpositions from the counter are added to
the constant starting pitch, yielding the scalar motion. The second
metro controls the rate of change of the upper bound of the
counter. The upperbound affects the length of the scales produced,
as the counter will reverse direction whenever the boundary is
reached. In figure 7.20. the upper bound metro is set to fire every
two seconds, banging out a new random limit between 6 and 40.
These values establish that the length of the scales will vary between
6 semitones (a tritone) and 40 semitones (three octaves and a tritone).
The split object that controls the range of variation also introduces
some uncertainty in the regularity of limit change: if a random num-
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Figure 7.20 Chromatic

ber is produced that is less than 6, it will fall into empty space from
the right outlet. This means that 15% of the time, no limit change
will be made, interrupting the regular 2 second rate of variation.
Figure 7.21 demonstrates one way in which Kimura makes the
chromatic patch interactive. MIDI pitch numbers coming from the
pitch-to-MIDI converter of her Zeta violin are mapped to start num-
bers for the chromatic scale generator. Two conditions affect the in-
teraction: first, the patch is only sensitive to violin pitches within
the range 54—70 as determined by the split object. This means that
notes from the bottom of the violin range through the B> above middle
C will affect the scales. Second, the insertion of the table object
provides a layer of indirection between her own melodic output and
the base notes of the scales. Rather than a slavish imitation of her
performance, the table gives the machine’s output a relationship to
the melodic material of the violin that nonetheless remains distinct.
The patch in figure 7.22 demonstrates another of the texture gener-
ators from Izquierda e Derecha. This one produces variations on a
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number of triads based on the C-major scale that are saved in a coll
file. There are five stored triads, which are accessed in random order
by the urn object. The urn first outputs the five addresses for the
coll file in random order, at a rate of four per second (determined
by the metro object at the top of the patch). Once all of the addresses
have been generated, as in Amnon Wolman’s New York patch, the
urn refills its collection and turns off the metro. While the addresses
are being produced, they retrieve new triads from the coll file and
set these into a note list. The notes are associated with velocities
through a table and played out, along with a copy that is transposed
by 0—6 semitones. The transposition is not random but linear, gener-
ated by the counter object at the left of the patch. The counter is
banged only every six seconds, meaning that the transposition level
changes slowly relative to the quick successions of triads.

Figure 7.22 is included on the CD-ROM under the name “C
Chords” and is written to operate independently. In her composition,
Kimura interacts with the C Chord generator by turning the metros
on and off and changing their speeds interactively based on certain
pitch triggers. Here again we see her technique of using quasi-
random texture generators that are activated and influenced by her
onstage improvisation.
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We have seen now a number of examples of controlled random
textures used as a backdrop for interactive improvisations. The urn
object is well-suited to the task as it exhaustively explores a given
range of values and can refill itself or turn off an associated pro-
cess once all have been used. Another Max object that works well
for such textures is drunk, which performs a random walk within
limits defined by the inputs. In a random walk a step of a determ-
ined size is made in a random direction from the current position,
much as a human drunk will make steps of the same size but with
no particular heading. “Brownian motion” is another name for this
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type of random behavior, and the Brownian subpatch developed
by Gerhard Eckel packages the Max drunk object in a way that pre-
sents the user with somewhat different controls (figure 7.23). In
Brownian, the inlets from left to right receive a bang to generate a
new value; the minimum value to return; the maximum value to re-
turn; and the degree of variation between the minimum and maxi-
mum to generate, expressed as a floating point value between zero
and one.

Karlheinz Essl’s Lexicon-Sonate is an extensive Max environment
and composition that has been made available by the composer on
the Internet. The library supporting the composition (RTC-lib) in-
cludes many valuable and well-documented sub-patches that fit the
discussion here. The Brownian sub-patch, for example, plays a
prominent role in Essl’s work. One of the distinguishing characteris-
tics of the urn object, relative to Brownian and other random pro-
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cesses, is that it does not repeat any value until all possible values
have been output. The RTC-lib includes a small filter called anti-bis
that can add this functionality to other kinds of random objects as
well (figure 7.24).

The anti-bis subpatch protects against repetition of the integers
presented to its inlet. When an integer arrives, it is compared against
the number last input to the right inlet of the expression object. If
the two numbers are different, the new input is fed through to the
left outlet of anti-bis and stored in the int object above the right
inlet of the expression. When the number reaches the int, it is both
stored there and transmitted through to the expression. Because the
expression is only evaluated when a number reaches its left inlet,
the number from the int simply waits to be compared to a subse-
quent new input whenever it arrives. If the expression finds the two
values to be the same, it outputs a bang from its right outlet. This
bang can be used to elicit another value from the process sending
inputs to anti-bis, thereby running it continually until it does not
repeat.

Figure 7.25 demonstrates how anti-bis can be used in conjunc-
tion with Brownian to provide random walk outputs without repeti-
tions. The metro continually bangs out values from Brownian.
Whenever one of its outputs proves to be a repetition, the bang from
the right outlet of anti-bis is fed back into Brownian, eliciting
other values until one is generated that is not a repetition of the last.
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The same technique can be used with any random generator that pro-
duces output on receiving a bang.

The CD-ROM includes Brownian, anti-bis, and their combina-
tion. The reader is referred to Karlheinz Essl’s clear and instructive
RTC-lib and the Lexicon-Sonate itself for more examples of their use.

7.5 Ensemble Improvisation

Every interactive system we have examined in this chapter is built
around the scenario of one improviser playing with one program.
This is by far the most common application of these ideas and the one
most easily conceptualized. Though he is not speaking of algorithmic
improvisation, Philippe Manoury points to the problems of program-
ming for a larger ensemble when he states:

One can connect a computer with a flute, a soprano, or a piano in
a way that is profound and even quite practical. One can detect very
subtle elements and make use of them. But one can’t do the same
thing with a collective such as an orchestra. It would be unmanage-
able to put a sensor on every instrument. I am, at best, an experi-
menter in this discipline. Experimentation is more difficult when one
is faced with a large collective. (Derrien 1995, 17 [my trans.])

Despite the difficulties involved, there are many environments that
allow algorithmic improvisation as an ensemble. David Berhman de-
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scribes some of his early work: “In the live electronic pieces | com-
posed in the 1960s and early 1970s . . . it seemed to make sense to
double, triple or quadruple the amount of hardware for use in perfor-
mances. The sound textures were enriched and several performers
could play together. The “scores’ consisted of general instructions,
rather than of specific commands governing moment-to-moment ac-
tions. Inevitably a kind of counterpoint would result as the perform-
ers pursued their individual paths while listening to one another”
(Kuivila and Berhman 1998, 15).

One of the oldest and best-known collectives is The Hub, a
group of six programmer/improvisers who have developed various
strategies for performing interactively with composing computers
(Gresham-Lancaster 1998). The development of MIDI allowed them
to formulate a fully interconnected network arrangement in which
the computer of any member could communicate MIDI messages to
the computer of any other. Tim Perkis devised the piece Waxlips
(1991) for this configuration: “Waxlips . . . was an attempt to find
the simplest Hub piece possible, to minimize the amount of musical
structure planned in advance, in order to allow any emergent struc-
ture arising out of the group interaction to be revealed clearly. The
rule is simple: each player sends and receives requests to play one
note. Upon receiving the request, each should play the note re-
quested, then transform the note message in some fixed way to a dif-
ferent message, and send it out to someone else” (Perkis 1995). The
rule applied by each member remained constant during each section
of the piece. One lead player could change sections by sending a
message to the other players, and simultaneously kick the new sec-
tion into motion by “spraying the network with a burst of requests”
(Perkis 1995).

Another collective is Sensorband, three improvisers (Edwin van
der Heide, Zbigniew Karkowski, and Atau Tanaka) who have special-
ized in the use of new controllers. some of which require the manipu-
lations of all three. One of these is the Soundnet, a very large web
of ropes in which sensors are embedded. Sensorband performs on
the instrument by actually climbing on it—the resulting sound is
produced from their combined movements on the net.
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The rope, the metal, and the humans climbing on it require infense
physicality, and focus attention on the human side of the human-
machine interaction, not on mechanistic aspects such as interrupts,
mouse clicks, and screen redraws. Sensorband has chosen to work
with digital recordings of natural sounds. The signals from Soundnet
control DSPs that process the sound through filtering, convolution,
and waveshaping. Natural, organic elements are thus put in direct
confrontation with technology. The physical nature of movement
meeting the virtual nature of the signal processing creates a dynamic
situation that directly addresses sound as the fundamental musi-
cal material. Through gesture and pure exertion, the performers
sculpt raw samples to create sonorities emanating from the huge net.
(Bongers 1998, 15)

The problem with ensemble improvisation, beyond the basic tech-
nical difficulties mentioned by Manoury, is one of designing an ap-
propriate control structure., As with many of the analytical systems
discussed in this text, arbitration between competing sources of in-
formation becomes harder as the number of discrete sources in-
creases and their interaction becomes more complex. In the case of
Soundnet, the integration of three “information sources” is accom-
plished by the interface itself. The input to the sound-producing al-
gorithm is simply the output of the web as a whole.

7.5.1 Multiple Cypher
[ have developed several control structures for ensemble improvisa-
tion that work with Cypher, a program [ wrote for real-time analysis
and improvisation. Because of the extensive discussion of Cypher in
my book Interactive Music Systems (1993), [ will provide only a cap-
sule description of the architecture of the program here. Moreover,
the objects for algorithmic analysis and composition described in the
present text can be used to build Cypher and Cypher-like programs
directly. The CD-ROM contains a full implementation of Cypher and
a listing of the source code.

The program comprises two large conceptual components, the lis-
tener and the player. The listener applies a number of feature ana-
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lyzers to incoming MIDI events and stores the classifications
produced by each of them. The features analyzed are register, inter-
onset-interval rate, vertical density, loudness, articulation, and har-
mony. The program responds to these classifications by channeling
the input through some number of transformation processes in the
player. A user of Cypher configures the player to apply certain trans-
formations when particular combinations of feature classifications
are received. For example, one rule might specify that when low,
loud, chords are found at the input, the player should respond
by transforming that material through deceleration and thinning
processes.

A higher level of the listener segments incoming events by looking
for simultaneous discontinuities across several features. Within the
current group, the listener typifies the behavior of each feature indi-
vidually in terms of its regularity. That is, if a feature is invariant
within the current group (e.g., always loud) it is called regular, but
if the feature changes frequently (e.g., alternating loud and soft) it is
called irregular. These regularity/irregularity judgments can also
form the conditions of rules that the user specifies. For example, the
user might require that irregular articulations within a group should
trigger a drone note in the player.

In one multiple player strategy, each individual player is analyzed
by a separate copy of the Cypher listener. Single streams are identi-
fied by MIDI channel number, so each performer must take care to
set their instrument to a unique channel. Each player can elicit a
distinct set of responses from the program based on the characteris-
tics of her individual performance. The interface offers different
screens for each player to manage the correspondences between anal-
ysis and response. Figure 7.26 illustrates the strategy under discus-
sion: each performer is analyzed by a separate listener. Listener
messages are passed to several players, all contributing their individ-
ual responses to the output of the program as a whole.

The problem with this model is readily apparent: the program is
responding to several individuals as if they were not all playing to-
gether. Cypher’s contribution to the whole, therefore, is the sum of
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its reactions to each part and is likely to be far too dense to be useful
in an ensemble setting. Given the problems inherent in simply prolif-
erating copies of the program with each additional player, the second
strategy was to employ a critic. The Cypher critic is a separate copy
of the listener that reviews output from the program before it is
played. If the critic finds certain conditions are true of the incipient
output, it can change the material before the actual performance. In-
structing the critic to reduce the density of response when several
players are active improves the contribution of the program notice-
ably. Figure 7.27 illustrates this revision to the architecture.

The computer is a better member of an ensemble when it has a
sense of what the group as a whole is doing. The next strategy of
Multiple Cypher, then, was to develop a meta-listener that compares
the analyses of individual players within an ensemble to arrive at a
global characterization of the performance.

Figure 7.28 shows how the meta-listener fits in the architecture of
the program as a whole. As before, each player is tracked by a sepa-
rate copy of the Cypher listener. Now, these individual listener
reports are passed to the meta-listener, which compares and
summarizes the individual reports before passing the information on
to a single player. The user of the program determines how the player
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Figure 7.28 Meta-listener



Chapter 7 314

will react to meta-listener messages. The range of messages transmit-
ted, however, has grown to reflect the diversity of input. The individ-
ual listener classifications are tagged with an identifier showing
which performer corresponds to which analysis. This player 1D
allows a user to make the program respond in different ways to differ-
ent individuals., A correspondence using this type of message might

look like this:

if (Speed(Player 2) == kSlow)
Accelerate (Input (Player 2)) ;

Along with characterizations of each player individually, the
meta-listener sends a global characterization of the ensemble perfor-
mance as a whole.

Let us consider how feature analyses from individual players can
be combined to arrive at an ensemble classification. An obvious pos-
sibility is what T will call the mean-value strategy. To arrive at a mean
loudness classification, for example, one would sum the loudness
values of all members of the ensemble and divide by the number of
players. While the mean loudness is certainly useful, it can also mis-
lead the program as to the musical nature of the performance. For
example, if one member of a three-player ensemble is playing an ex-
tremely loud solo, the mean-value strategy would still find that the
group as a whole was playing softly (because the other two perform-
ers are not playing at all).

To compensate for this type of confusion, the meta-listener sends
as part of its global report a continually updated analysis of the play-
ers’ relative levels of activity. A player who is not performing is cer-
tainly considered inactive. Moreover, the program takes players who
are al significantly lower levels of loudness, speed. and density to
be less active as well. Now a mean loudness for all active players can
be computed and sent as a message distinct from the overall mean
loudness report. A rule using some of these messages might be:

if { (Loudness (activePlayers) ) ==kLoud)) &&
{(Number (activePlayers) >1) )

Silence ()} ;
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Such a rule would instruct the program to stop playing entirely if
more than one partner in the ensemble is already playing loud and
actively.

The proliferation of information available when an ensemble is
under analysis means that the meta-listener must be available for
queries. The single-player listener always makes the same report
with every event. The meta-listener has a standard report format as
well, as we have seen: the ID-tagged individual reports plus mean-
value feature analyses and indications of relative activity. In many
situations, however, the player can usefully ask the meta-listener for
more specific information. For example, a rule might ask whether
players 2 and 3 are playing loudly but with an average speed below
that of the entire ensemble. Such a state can certainly be found by
the meta-listener, but the information is not generally useful enough
to be included in a standard report.
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8 Interactive Multimedia

We have looked at ways in which analyses of an ongoing perfor-
mance can be used to shape an algorithmic musical response that
becomes part of that same performance. Now we will examine how
such analyses can affect responses realized through media other than
the production of more music. Changing the display of imagery, such
as video or animation, is one of the most common forms of interactive
multimedia. Another well-developed approach is to interpret visual
or gestural input in such a way that it can be used to generale music
interactively. Motion sensors tracking dancers (Siegel and Jacobsen
1998) or the movement of viewers before an installation (Ritter 1996)
are common in such works. A general problem in composing for in-
teractive multimedia is that the cross-modal interpretation of musi-
cal information can be difficult to make clear to an audience. This
chapter will consider both the technology and the aesthetic questions
arising from the use of music to control image, and vice versa.

Interactive multimedia environments are those in which more
than one medium is used either as input to a computer system gather-
ing information from sensors and producing a related response or as
output from such a system. Examples would include sending MIDI
input (musical sensors) to an interactive system controlling the
movement of an animated figure (image output), or using the gestures
of dancers (motion sensors) to change the onstage lighting. In this
chapter we will be exclusively concerned with systems that use mu-
sic as one or more of the input or output media.

Using analysis of music to control or influence the generation of
additional musical material calls on compositional craft that has
been developed through centuries of polyphonic writing. Musical
training naturally leads to the ability to create relationship rules such
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as: “If the input material is in F major, generate a response in F ma-
jor,” or even, “If the input material is in F major, generate a response
in Db major.” We know from experience that the first relationship
would entail a response that is consonant to the extent that it shares
the same key, while the second would create a response more disso-
nant but still related because F is the third degree of Db major.

Operating from a predominately musical background, or even a
predominately visual one, it is more difficult to imagine the effect of
relationships such as: “If the input material is in F major, make the
ball spin faster.” One can imagine how this would look easily
enough, but it is more difficult to predict whether an observer would
recognize the relationship simply by watching it.

In his text Analyzing Multimedia, Nicholas Cook describes differ-
ent ways of relating media compositionally: “Kandinsky conceived
intermedia relationships as triadic; a colour corresponds to a sound
inasmuch as both correspond to an underlying emotional or spiritual
meaning. We can, then, distinguish this triadic variety of confor-
mance from what might be called the unitary and dyadic varieties.
Dyadic conformance means that one medium corresponds directly
to another, in the way that the faster luce part of Prometheus corre-
sponds to the sequence of ‘mystic chord’ roots. (The term ‘dyadic’
does not, of course, mean that there can be only two constituent me-
dia; it means that there is a direct, pair-wise relationship between
each medium and each of the others). Unitary conformance, by con-
trast, means that one medium predominates, and that other media
conform to this” (Cook 1998, 101).

In this chapter we will see examples of both dyadic and unitary
conformance. (The extent to which Kandinsky’s triadic conformance
is operative depends on one’s emotional or spiritual lexicon). Essen-
tially Cook’s distinction marks the level of symmetry between two
media: either both contribute more or less equally to the artistic
whole, or one leads the aesthetic argument and is augmented by the
other. When multimedia becomes interactive, another aspect of the
relationship comes to the fore: the degree to which computational
relationships between media are experienced by observers.
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8.1 Intimate Immensity

Composer Morton Subotnick’s large-scale work for interactive multi-
media, Intimate Immensity, was premiered as part of the Lincoln
Center Festival in New York in the summer of 1997, The work has
four performers: three humans (He, She, and the Cyber-Angel) and
one projected image (the Hand). The music consists of stored sound
files and live generation played on two MIDI-controlled pianos. The
lighting, laser disc projection, and music are all affected by interac-
tion with the human performers.

The work is a meditation on our love affair with technology. In our
quest to be empowered, lo be in control of our destinies and to be
free of the constraints of nature, we are constantly creating new lools.
The hand was the first tool and thus takes on a prominent role
in the work. We invenled magic and our gods lo empower us as
well. The Cyber-Angel represents magical empowermen!t [(Subotnick
1997).

The Cyber-Angel guides the audience through a technological
journey from the earliest tool (the hand) to “a world without
time . . . a world without space.” The role of the Cyber-Angel
is played by a traditional Balinese dancer (I Nyoman Wenten),
who makes his technological revelations through mysterious control
of the music, video, voices, and lights. The opening of the work
is a dialog between the Cyber-Angel and the Hand, whom the
Cyber-Angel calls to life and gradually teaches to talk and play music
(figure 8.1).

The composition’s software is able to randomly access video im-
ages on five laser discs. Any frame can be called up at any point.
Once a frame is loaded, it can be displayed in a frozen state (still
image), or used as the starting point for video playback either forward
or back at any speed. This kind of real-time control enabled interac-
tive choreography of the images as part of the composition, for exam-
ple. when the movements of the Gyber-Angel direct the animation
of the Hand coming to life.
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Figure 8.1 Cyber-Angel and the Hand

The program notes suggest the intricate interaction between
the live performers and the computer environment: “He and She
sit at their work tables. He is reading; She is writing. Both move in
and out of a daydream state [[ntimate Immensity] from which they
eventually do not return. With arm gestures they trigger light, video
and sound events. They are seen and heard as if in different loca-
tions (futuristic telephonic ‘sites’), each performing a meditation on
His/Her sense of Intimate Immensity, a duet of parallel perfor-
mances. We hear what they sing and speak mixed with what they
‘think” through amplified computer versions of their voices” (Subot-
nick 1997).

The interaction of Intimate Immensity is carefully composed
and controlled, with an evident attention to the salience of the re-
lationship between the performers’ motions and the machine-
generated audio and video responses. The video Hand is considered
a fourth performer in an ensemble with three humans, but its range
of behavior and connection to the Cyber-Angel in particular is made
clear in the performance itself through the opening ‘“‘teaching”
segments.
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8.1.1 Interactor

The entire application of Intimate Immensity was written in Inter-
actor, a graphic interaction programming environment for Apple
Macintosh computers. Interactor was designed by Mark Coniglio and
Morton Subotnick and implemented by Coniglio. Interactor pro-
grams process several types of events, including most notably MIDI,
timing, and Macintosh events. Statements in Interactor generally fol-
low an if-then logic flow, where attributes of incoming events are
evaluated to determine whether they match some conditions listed
in the if part of a statement. When a condition is found to be true,
additional operators (the then part) are executed. Such if-then se-
quences can occur several times in a single statement; whenever a
conditional operator returns a false value, the current statement ends
and the next one begins.

Figure 8.2 shows a scene edit window. Three statements, made up
of operators, from the basic building blocks of Interactor. Operators
evaluate conditions or execute actions. One operator in the first state-
ment will evaluate true when the scene (collection of statements) is
opened, but not again until the scene is restarted. Indicated by the
small x at the side, this kind of operator is used to initialize various
conditions in the scene. In this case the statement simply informs
the user that the rest of the scene is now active.

In the other two statements, the first operator is a conditional look-
ing for a MIDI note on message within a particular velocity range.

M1 MIE C3 wel 64:127 H M1 C3ES G 120/64 dur=T1/1.0

Figure 8.2 Interactor example
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The box below the operator is a comment showing the values of the
operator’s parameters. These parameters can be modified simply by
double-clicking on the operator, which brings up a dialog box
wherein parameters values can be textually modified. In the figure
we see that statement 2 will react to a middle C played on any MIDI
channel with a velocity between 0 and 63. The first operator of state-
ment 3 evaluates true when the same pitch is playved but with a veloc-
ity between 64 and 127. In effect, statement 2 is the “soft C” handler,
while statement 3 is the “loud C” handler.

In both cases, an action operator (send note) that outputs a triad
engages next. Action operators are always true—that is, any addi-
tional operators after an action will be executed until a conditional
operator is encountered that tests false, or the end of the statement
is found. Notice that the “soft G send note operator will trigger an
Ab-major triad just below middle C played with a velocity of 64 and
a duration of one beal. The “loud C” handler triggers a G-major triad
with a velocity of 120.

Interactor supports eight simultaneous multi-channel sequencers.
There are also eight independent timebases so that each sequencer
can have its own temporal behavior. Scheduling operators use the
timebases as well, e.g., the Delay Timer which postpones the execu-
tion of subsequent operators in a statement by some number of ticks.
Time is expressed in measures, beats, and ticks, where 480 ticks
equal one quarter note. This allows tempo to be varied while individ-
ual events maintain their relationship to an underlying metric struc-
ture. We see a timebase in operation in the send note operators of
statements 2 and 3 in figure 8.2: the duration of the triads is specified
relative to the first timebase (11) and given a value of 1.0 beats. The
actual duration in milliseconds of the triads, then, depends on the
speed of T1 and will change as T1 changes.

Interactor shows some obvious similarities to Max, in both its
graphic orientation and the kinds of interactive applications it was
written to support. There are important differences as well: (1) Inter-
actor’s left-to-right statement construction enforces a particular
graphic convention that is consistent and clear. What graphic regu-
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Figure 8.3 Cyber-Angel/Hand interaction

larities exist in Max arise from the execution order, namely that con-
trol flows from top to bottom and from right to left. Any consistency
beyond that is left up to the user. (2) The use of registers and lists
to store input information and pass data between operators is a sig-
nificant departure from Max’s patchcords. (3) The combination of
sequencers and timebases in Interactor provides particularly power-
ful support for the interactive performance of sequenced material.
Max’s seq and mt can be used to accomplish the same things that
Interactor does, but the environment itself is not organized around
them to the same extent that Interactor is based on its sequencers.

Figure 8.3 shows a characteristic Interactor statement from the
opening sections of Intimate Immensity. This is the 26th statement
in a collection of 63 contained in one scene, all simultaneously com-
paring their start conditions with the state of the onstage perfor-
mance. In figure 8.3, the first operator tests the contents of the r100
register. If r100 contains the value 2, execution advances to the fol-
lowing operator. This looks for any Note On event coming from the
“infrared” channel, corresponding to one of the motion sensors that
transmits information to the computer by way of MIDI messages. The
infrared sensing is so acute that even the blinking of the Cyber-
Angel’s eye (figure 8.4) can be used to trigger events.

When such an event from the infrared channel is found, it is sent
through a “time filter” (the third operator). The time filter performs
the same function as Max’s speedlim; in other words, it filters out
repetitions of events that occur before a certain duration has passed.

When a note passes the time filter, operators 4 through 10 per-
form the following actions: (4) continuous controller 64 is changed
from 127 to 0 over a duration of 4 beats; (5) a random number be-
tween 1 and 6 is stored in register 22; (6) the first sequencer (S1) is
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Figure 8.4 Cyber-Angel's eye

stopped; (7) S1 is reset to a new location; (8) playback from S1 is
started; (9) a delay of 0.478 beats of the first timebase passes; after
which (10) the playback is stopped again. This combination of effects
demonstrates how Interactor can describe a complex series of actions
in a compact and clear notation.

The use of the sequencers, so prominent in figure 8.3, is part of
an approach to the music of the piece that combines the computer
performance with that of the human players onstage: “The music
plays two roles. The music of the performers, which includes the
live piano music, supports the ‘narrative’ development on the stage.
There is also music, played by the computer, which is a collage of
modifications of pre-recordings of the piano (including inside piano
sounds), the two vocalists and the Balinese dancer. This music acts
like an interior dialogue. It is the world of the inner self, or perhaps,
the Intimate Immensity. Sometimes the two musics act alone and
sometimes are juxtaposed” (Subotnick 1997). The CD-ROM includes
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audio excerpts with some slide shows that demonstrate visual as-
pects of the composition.

8.2 A Flock of Words

A Flock of Words was a collaboration between video artist/hologra-
pher Doris Vila and myself, with programming and animation design
by Eric Singer. It was premiered at New York University in the spring
of 1995, and a subsequent installation version was shown in Berlin
in the fall of 1996. A Flock of Words was based on some musical
ideas and the visual imagery of bird flocks. particularly the large
swarms that appear to perform swirling aerial acrobatics in northern
Furopean skies in the fall. Some video shot by Doris Vila of such
flocks formed one of the initial guides to the composition. We were
struck by the similarities between that image and the descriptions of
large collections (of wheal, water, birds, and people) written by Elias
Canetti in his masterwork Crowds and Power (1984). Doris Vila had
the idea of making Canetti’s words fly in flocks the way the birds do
in the video, and the work began to assume its ultimate shape.

The media used in A Flock of Words incorporated real-time ani-
mation, video. lighting, large-scale holograms, and algorithmically
generated computer music. These were interactive because their be-
havior was controlled by a machine analysis of the performance of
an instrumental ensemble consisting of violin, viola, cello, MIDI key-
board and two percussionists. The elements of the technical setup
of the piece were as follows: 3 Apple Macintosh computers, 3 video
projectors, 3 robotic lighting elements, a MIDI-controlled light board,
a laser, 2 large holograms and sound synthesis equipment. The gen-
eral equipment arrangement is shown in figure 8.5. Two of the com-
puters were used to cue up and play back video clips and to generate
animations in real time. One of these (video computer 1) sent an
identical signal to two video projectors, each projecting onto large
scale holograms on either side of the instrumental ensemble. The
second video computer projected a different set of videos and anima-
tions onto a large screen at the back of the stage.
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video computer 1

MIDI machine controller

large projection scrtleen
1

video

video projector 1 projector 2

robot light 1

|
robot Jight 2

hologram 1 | | | | hologram 2

video computer 2

| ‘ master computer

video projector 3

Figure 8.5 Stage setup for A Flock of Words

All of the software for A Flock of Words was written in C by Eric
Singer and myself. Performance information from the ensemble was
analyzed by a program running on the master computer that looked
at musical attributes such as register, density and articulation. Soft-
ware on the video computers was responsible for receiving control
messages from the analysis machine and sending video and anima-
tion to the display projectors. The analysis and video software com-
municated through MIDI connections and a set of MIDI messages we
redefined. The master computer also generated a stream of MIDI-
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encoded music that was sent to a synthesizer and effects processor
to accompany the live ensemble and control lighting effects through
a dedicated show controller. Video, animations and lights were pro-
jected onto the screen behind the ensemble as well as onto the holo-
grams flanking the ensemble, changing the holograms’ appearance
as the piece progressed.

Displayed video consisted of prerecorded video clips and real-time
animation. The video clips were stored and played back from
(QuickTime movie files. The animation was based on Craig Reyn-
olds’s Boids algorithm (1987), adapted from an implementation by
Simon Fraser. Reynolds’s work was an early and influential algo-
rithm in the field of artificial life. Boids are graphic objects that travel
in groups and plot their movement based on characteristic relations
they wish to maintain with the other Boids around them. These rela-
tions include things like preferred distance from other members in
a group, preferred speed of movement, a tendency to move toward
a particular point on the screen, and so on. The motion of the group
asawhole is not specified directly but emerges from the local interac-
tions of each individual with all of the other Boids. The resulting
group movement is strikingly similar to that of bird flocks, schools
of fish, and other collections of natural organisms.

To create the Flock of Words animation, a set consisting of 10 to
30 words was selected from Crowds and Power and animated using
the Reynolds algorithm. The center point of each word (or “Woid”)
was treated as the center of a Boid and animated under real-time
control. Numerous parameters were used to change the flocking attri-
butes and thereby influence the look of the flock. These included the
speed and acceleration of the Woids; their tendency to stay close to
the center of the flock: to avoid each other; to follow a point on the
screen; and to avoid the edges of the screen.

Figure 8.6 shows four characteristic Woid flocks in mid-flight. The
flock in the lower left, for example, is moving toward a point of at-
traction centered near the bottom of the screen. The flock above
shows the Woids in a pattern of greater dispersal due to a change of
direction or increase in neighbor avoidance. Because the objects are
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Figure 8.6 Screen displays of Woid flocks

words, they continually enter into new grammatical relationships
with each other as they fly, sometimes aligning as in the original
text, and at other times garbling the syntactic order entirely. This
continual fluctuation between sense and nonsense was one of the
motivations for this approach: the force of Canetti’s original text is
always preserved through the normal-order presentation in the video
clips and balances with the nonlinear presentation in the animation.

The analysis software sends MIDI messages to the video programs
to control their display. (MIDI communication between machines is
indicated by the thick black lines in figure 8.5.) Various MIDI mes-
sages were defined to be interpreted as control messages. For exam-
ple, note on messages were used to initiate playback of QuickTime
video, with the note number selecting the particular video clip to
be played. Continuous-controller messages were used to change the
values of flocking parameters. Video control messages were sent by
the analysis software based on cue points in the musical score, as
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well as musical gestures and playing attributes of the live perform-
ers. In this manner, the displayed video is guided by the musical
performance.

Because various flocking parameters are linked to messages sent
by the analysis software, which are in turn derived from musical ges-
tures of the performers, the behavior of the flock is effectively con-
trolled by the performers. The full set of video controls available to
the analysis software includes selection of video clips, selection of
word sets from the text, color of the Woids and background screen,
and twelve flocking parameters. The QuickTime video clips com-
bined footage of flocking birds, animation of flying phrases and close-
ups of hands and mouths pronouncing vowels. After-effects were
applied to make sparks fly out of the mouths (figure 8.7).

Doris Vila created two large rainbow holograms (22"H X 42"W) for
the piece. Triple-exposure images on the hologram mix the spectral
colors into bright fields filled with found objects, words and

Figure 8.7  Still from Alock of Words video clip
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diagrams. Ordinarily, holograms are displayed by shining a point-
source of light on the plate at the reconstruction angle. However, in
A Flock of Words, video projectors illuminated the hologram. The
holographic surface became a diffractive screen for the Woids anima-
tion. As the color of the Woids changed, it filtered the color in the
holographic reconstruction. In the piece’s second movement, robotic
controls drove mirrors that altered the apparent location of the recon-
struction light, making the holographic imagery cross and turn in
response to the music.

Another implementation of the project was developed for presen-
tation at the Musik + Licht exhibition in Berlin in the fall of 1996.
For this application, a screen was set in front of an active floor
equipped with pressure sensors. The motion of the Woids across the
screen corresponded to the position of viewers on the floor. Simi-
larly, parameters of a compositional algorithm generating music
through a synthesizer were tied to the presentation of the Woids and
controlled by the placement of the viewers. [n this case, the analysis
of musical performance was replaced by position mapping of partici-
pants in front of the screen, which directed both the flight of the
Woids and the production of the music.

8.2.1 Woids

The CD-ROM includes two applications with source code, one called
Woids and the other Flock, Woids animates word sets from the Ca-
netti text using parameters set in a dialog box, while Flock performs
animation and launches video clips from an analysis of a perfor-
mance arriving over a MIDI line. In this section T will briefly intro-
duce some of the calculations that produce the flocking behavior
demonstrated by the Woids. The code is my C++ port of Eric
Singer’s Woids program, itself adapted from Simon Fraser’'s imple-
mentation of the Boids algorithm by Craig Reynolds.

The AvoidWalle function is typical of the routines that collec-
tively compute the direction and speed of a Woid’s motion (figure
8.8). The velocity struct records how much horizontal and how
much vertical movement each Woid should make at the end of a



typedef struct Velocity {
float h;

float v;

} Velocity;

// horizontal movement

// vertical movement

Velocity Woid::AvoidWalls (void)

Rect
Point

Velocity tempVel

testPoint.h = oldPos.h + 0ldDir.h

testPoint.v = oldPos.v + oldDir.v

/7

if

if

/7

if

change horizontal direction if

(testPoint.h
tempVel.h
(testPoint.h

tempVel .h

flyRect

<

>

testPoint;

flock->FlyRect () ;

flyRect.left)

fabs (oldDir.h);

flyRect.right)

fabs (oldDir.h) ;

* speed *

else

* gpeed * flock->EdgeDist();

flock->EdgeDist () ;

outside screen

change vertical direction if outside screen

(testPoint.v

tempVel .v

(testPoint.v

tempVel.v

return tempVel;

<

>

flyRect. top)

fabs (oldDir.v);

flyRect.bottom)

fabs (oldDir.v);

Figure 8.8 Avoidwalls () function

else
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calculation cycle. A flock does have certain global parameters that
are not simply the sum of the behaviors of its members. For example,
the flyRect is a specification of the screen rectangle within which
the Woids are allowed to move. Avoidwalls first calculates a
testPoint that shows where the Woid would end up if it contin-
ued in its current direction at its current speed. If the testPoint
shows the Woid flying off the screen, its current motion in that direc-
tion is reversed.

The code fragment in figure 8.9 demonstrates how the
Avoidwalls () function is used within the full calculation of a
Woid’s movement. The velocity returned by Avoidwalls () issaved
in a variable, avoidwallsvel. Each of the determining tendencies

avoidWallsVel = b->AvoidWalls(); // move away from walls

/* compute resultant velocity using weights and inertia */

b->newDir.h = inertiaFactor * (b-»o0ldDir.h) +
(centerWeight * goCenterVel.h +
attractWeight * goAttractVel.h +
matchWeight * matchNeighborvel.h +

avoidWeight * avoidNeighborVel.h +

wallsWeight * avoidWallsVel.h) / inertiaFactor;
b->newDir.v = inertiaFactor * (b->oldDir.v) +

(centerWeight * goCenterVel.v +

attractWeight * goAttractVel.wv +

matchWeight * matchNeighborvVel.v +
avoidWeight * avoidNeighborvVel.v +

wallsWeight * avoidwWallsVel.v) / inertiaFactor;

Figure 8.9 Velocity calculation
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(motion toward the center, attraction to other Woids, matching the
motion of other Woids, avoiding other Woids, and avoiding the
walls) is multiplied by its corresponding computed velocity. This
sum then is used in an equation with the old direction and an inertia
factor to compute the new horizontal and vertical displacement of
the Woid.

The Woids application on the CD-ROM provides a dialog box with
which the various tendency weights can be adjusted manually. En-
tering different weights by hand gives a direct impression of how
these values affect the movement of the flock. The Flock application,
on the other hand, changes the tendency weights (and several other
parameters) through an analysis of the performance arriving in a
MIDI stream. Flock is best viewed while improvising on a MIDI in-
strument, when the correlations between the musical texture and the
behavior of the flock can be experienced most readily.

The routine MatchHeavy () is an example of the functions called
by Flock when certain configurations of musical features are found
in the input (figure 8.10). Both the matching weight and the centering

void Flock: :MatchHeavy (void)

{

matchWeight = 100.0; // tendency to match neighbors
centerWeight = 100.0; // tendency to fly to center
avoidWeight = Ti0u0% // tendency to avoid neighbors
attractWeight = 10.0; // attraction to attract point
accelFactor = 50.03 // acceleration

inertiaFactor = 10.0; // inertia

prefDist = 2L

prefDistSqr = 2Ly, * 2Lg

}

Figure 8.10 MatchHeavy() listing
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weight are set to the maximum while avoidance and attraction to a
point other than the center are minimized. This produces a distine-
tive behavior in the flock in which all of the Woids are shouldering
each other aside, as it were, to get as close as possible to the center
of the screen. Such extreme behaviors are easily recognizable and so
contribute to a visible relationship between the musical performance
and the graphic output.

8.3 In Transit

Roger Dannenberg’s composition In Transit is an interactive multime-
dia work in which the performance of the composer on trum-
pet influences and is influenced by the simultaneous generation of
computer music and real-time animation. As Dannenberg plays the
trumpet, his audio signal is captured by a microphone and sent to a
pitch-to-MIDI converter, producing a stream of MIDI messages corre-
sponding to his improvisation. Software written by the composer ana-
lyzes these messages and outputs commands affecting algorithmic
composition routines and the animation engine. The images are pro-
jected on a large screen behind the performer as he plays, while the
compositional algorithms output MIDI messages destined for synthe-
sis gear that produce the sounding output to accompany the trumpet.

The animations are produced using the system Bomb, developed
by Scott Draves in collaboration with Roger Dannenberg (Bomb is
now available as a Max external). The particular images of In Transit
arise from “heat-diffusion models and iterated function systems to
create pulsing, organic forms that both respond to and initiate musi-
cal ideas” (Dannenberg 1998, 69). We will examine two primary fac-
ets of the musical processing here: on the analysis side, a statistical
style recognizer; and on the compositional side, a method for chord
selection and voicing.

8.3.1 Style Recognition

In his text, fazz Improvisation, David Baker suggests that there are
“three basic tune types found in jazz up through the post-bebop era:
(1) vertical tunes, that is, tunes which are essentially concerned with
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chords or vertical alignments, i.e., “Tune Up’ and ‘Giant Steps,
(2) horizontal tunes, that is, compositions which have few chord
changes or compositions in which the chord changes move very
slowly, i.e., ‘So What’ and ‘Maiden Voyage.” and (3) tunes which are
a combination of vertical and horizontal, i.e., ‘Speak Low,” ‘Dear Old
Stockholm,” and the blues” (19823, 19).

Baker’s classification system basically entails a measurement of
the average speed of harmonic change. Though we will not build it
now, the germ of a “tune type classifier”” can be found here: a combi-
nation of chord detection (chapter 2) and meter induction (chapter
3) produce an evaluation of rate of harmonic change. A division of
the evaluations into three classes according to Baker’s scheme can
group slowly changing tunes into the horizontal class, intermediate
speeds into the combination class, and quickly changing tunes into
the vertical class.

This simple sketch suggests that there are techniques for the algo-
rithmic analysis of style, even in real time. Though it is a relatively
new development, current research is directed both to the algorith-
mic analysis and synthesis of style. On the synthesis side, Brad Gar-
ton and his colleagues have written several style generators. Garton’s
models are organized as layers of rules that ultimately control the
parameters of sound synthesis algorithms. The physical layer mimics
the kinematic constraints of performing on an instrument—requiring
a slight delay between the attacks of successive strings in a strummed
guitar sound, for example. “The [inflection] layer codes information
about performance inflections appropriate to a given musical style.
The manner in which pitch bends occur, the types of vibrato used,
grace notes and quick rhythmic figurations are all examples of these
inflection rules” (Garton and Suttor 1998, 484).

Figure 8.11 illustrates the six rule layers involved in Garton's
model. Though they are laid out hierarchically in the figure, the in-
teractions between the layers are not so strictly regulated in prac-
tice. “When assigning parameter values to a synthesis algorithm, the
rules do not function in a hisrarchical manner. Instead, rules are ac-
corded precedence in a context-dependent, probabilistic manner.
Finding the exact locus of ‘compositional decisions’ or ‘performance
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harmonic

physical

Figure 8.11 Garton Style Rule Layers

decisions’ in one of our models is nearly impossible because the rules
all function interdependently in making musical choices” (Garton
and Suttor 1998, 484).

The Garton style synthesis work is already operative as an interac-
tive system. The rule sets and underlying sound production algo-
rithms are implemented in RTcmix, a real-time version of the
venerable cmix software synthesis system (Garton and Topper 1997).
All of the code for RTcmix and the style synthesis rules can be found
on the Columbia Computer Music Center website.

The style recognition algorithm described by Dannenberg, Thom
and Watson (1997) was designed to recognize any of four improvisa-
tion styles during performance within five seconds. The four initial
syncopated,” and “pointillis-

35 ¢

style types were “lyrical,” “frantic,
tic” (other styles were added later). The goal was to make the com-
puter identify the style that corresponded to the player’s intention.

Rather than hand-code recognizers, the group recorded a number
of training sets and used them as input to supervised learning pro-
cesses. To gather the training sets, a computer screen would prompt a
trumpeter to improvise in one of the target styles. The improvisations
were recorded and later rated by the improviser to identify how well
they represented a particular style. Five-second segments of the im-
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provisations together with the assigned ratings yielded 1200 training
examples. An example could be rated as representative of more than
one style: e.g., a segment might have a high “frantic” rating and a
moderate “syncopated” score as well.

Of particular interest for the feature-based analysis systems under
discussion in this text is the collection of features extracted from the
training examples that were used as parameters for learning: “To
build a classifier, we first identified 13 low-level features based on
the MIDI data: averages and standard deviations of MIDI key number,
duration, duty factor, pitch, and volume, as well as counts of notes,
pitch bend messages, and volume change messages. (Pitch differs
from key number in that pitch-bend information is included. Duty
factor means the ratio of duration to inter-onset interval)’” (Dannen-
berg et al. 1997, 345).

The ListenProp analysis style provides for some number of fea-
ture analyzers to be called with each incoming MIDI event. We can
easily amend the design to provide averages over the preceding five
seconds by consulting the time fields of Events in the buffer. In this
way we could construct 13 ListenProps corresponding to each
of the Dannenberg group’s parameters, or one large Averager
ListenProp that would keep track of all 13 simultaneously.

The supervised learning techniques used in the study included a
naive Bayesian classifier, a linear classifier, and a neural network.
Wae have already investigated neural networks, though the net Dan-
nenberg’s group used was of a different type from the ones imple-
mented in chapter 3: the Cascade-Correlation network begins with
only input and output nodes and then adds successive hidden layers
(of one node each) as learning progresses (Bishop 1995).

The naive Bayesian classifier learns a mean feature vector for each
target class. Then new vectors are classified by finding the target vec-
tor that is closest to it, using a “‘normalized distance.” ““The ‘normal-
ized distance’ is the Euclidean distance after scaling each dimension
by its standard deviation” (Dannenberg et al. 1997, 345).

The linear classifier computes a weighted sum of features. The
learned feature weights change for each class to be identified. All
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three techniques resulted in classifiers with a high degree of accuracy
in identifying the target styles. With four targets, the Bayesian classi-
fier correctly identified the style 98.1% of the time. Using eight tar-
gets, the identification accuracy was 90%.

Machine learning makes it possible to recognize styles using corre-
lations of features that may not be readily apparent. “Casually guess-
ing at good features or combinations, plugging in ‘reasonable’
parameters and testing will almost always fail. In contrast, machine
learning approaches that automatically take into accounta large body
of many-dimensional training data lead to very effective classifiers”
(Dannenberg et al. 1997, 347).

The goal of the Dannenberg group’s study was to train a classifier
that could be used in an improvised performance. In that they mani-
festly succeeded, as the Bayesian classifier was actually used as part
of the software for In Transit. High-level gestural characterizations,
then, can not only be learned but also recognized onstage.

8.3.2 Chord Selection and Voicing
Roger Dannenberg uses a pre-defined collection of chords to generate
the harmonies of In Transit. The collection is maintained in a text
file (chords.dat) that is read into the program prior to performance.
The chords are typed into six groups { major, minor, augmented,
diminished, suspended, dominant } and are associated with a
frequency of occurrence that determines their relative probabil-
ity. Dannenberg derived a statistical profile of chord transitions
from an analysis of jazz standards: chords in the originals were
reduced to the six classes listed above. A transition is defined by the
type of the first chord, the type of the second chord, and the inter-
val between their roots. Using an intervallic representation means
that only one V7-1 progression is identified (for example) rather than
twelve related progressions corresponding to the twelve possible
root combinations.

In the In Transit application on the CD-ROM, the chords.dat collec-
tion is used to initialize an array of IntervalChord objects. Fields
in the IntervalChord class include the chord’s frequency, root,
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class IntervalChord {
private:
enum ArraySizes { kIntervalMax = 8 };
int frequency; // probability of selection per type
int root;
int bass;

int intervals [kIntervalMax] ;

public:
IntervalChord(void) ;

IntervalChord(const IntervalChord& rhs);

friend class ChordGenerator;

Yi

Figure 8.12 IntervalChord class

bass note, and a list of intervals (figure 8.12). The root is a pitch class
and forms the lower member of all of the intervals recorded in the
intervals list. That is, if root is 5 it represents the pitch class F (5
semitones above C). An interval of 10 in the intervals list, then,
would be mapped to Eb, 10 semitones above F.

The intervals list is zero-terminated. There may be up to kInter-
valMax-1 intervals in any IntervalChord, but following the final
interval in the list there must be a zero.

The frequency values in a chord collection are normalized such
that the sum of frequencies for each chord type is equal to the con-
stant value kCertain. The function Select () uses these frequency
values to determine which chord of a given type to choose (figure
8.13). The first operation is to generate a random number between 0
and kCertain-1. Select () then scans through all of the chords of
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void ChordGenerator::Select(int type, int inRoot, IntervalChord* chord)

(

// choose a random number from 0 to kCertain-1, inclusive:

ink m = fastrand(0, kCertain-1);
int sum = 0;
long 1 = chordTable[type];

long last = chordTable[type+l];

// scan all chords, find the one whose probability spans r
while (i < last) {

sum += chordDatal[il~>frequency;

if (sum > r) break; // found it
}
if (i == last) // if failed to find a chord
i = chordTable[type]; // take first of type
(*chord) = (*chordbatalil]);

// add input root to root of chord

chord->root = (inRoot + chord-»root) % 12;

Figure 8.13 ChordSelect () function
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the requested type, adding the frequency associated with each chord
to sum. Once sum exceeds the random number, the chord currently
reached in the search is chosen and returned. In this way, the fre-
quency associated with a chord corresponds to the likelihood that it
will be chosen with Select (). Finally the root of the output chord
is determined by adding inRoot to the root of the chord selected
from the collection.

The full selection process used for In Transit combines the Markov
selection with a constraint that tries to harmonize predicted pitches
against a chord to be played. When the program is about to complete
a chord transition, learned from a series of jazz standards, it assumes
that the performer will move up a half-step when the second chord
of the transition is played. Therefore it tries to select a chord that
contains or is consonant with the pitch one halfstep above where the
performer currently is. In this way the actual chord selected will be
affected by both the probabilities and the influence of the player,
who can direct the harmonization to a certain zone by leading to the
desired pitch.

The chord identification processes developed in chapter 2 reduce
achord to a collection of pitch classes in which the relative and abso-
lute locations of the component notes are discarded. Certainly one of
the most critical aspects of chord performance in jazz piano playing,
however, is voicing. Voicing refers to the distribution of the constit-
uent pitches of a chord across the keyboard. When we move from
chord analysis to chord synthesis, therefore, we quickly encounter
the necessity of describing the voicing that will be used to perform
any particular abstract type.

Roger Dannenberg represents chords in two different ways in the
In Transit software. The first is an IntervalChord, shown in figure
8.12, and is used for the calculation in Select (). The second repre-
sentation is a VoicingChord (figure 8.14). A VoicingChord main-
tains the pitches of the chord as MIDI note numbers, not as intervals
above a root. There are two arrays of note numbers, one for the “left
hand” (Ih) and one for the “right” (rh). Both lists are zero-terminated
and each is assumed Lo record note numbers in ascending order. The
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class VoicingChord {
private:
enum ArraySizes { kNoteMax = 8 };
int lh[kNoteMax] ;

int rh[kNoteMax] ;

public:
VoicingChord(void) ; // constructor
VoicingChord(int intl, ...); // constructor with initialization

friend class ChordGenerator;

Figure 8.14 VoicingChord class

VoicingChord constructor takes a variable number of note names
with zeroes marking the end of the left- and right-hand lists.

The allocation new VoicingChord (36, 42, 46, 0, 63, 70, 75,
0), then, will produce a VoicingChord with C2, G52, and Bb2 in
the left hand and Eb4, B4, and Eb5 in the right. Once an Inter-
valChord has been chosen with Select (), it is changed into a
VoicingChord to prepare it for performance. The function

VoicingChord*Voice (VoicingChord+* last, IntervalChord* next)

takes the previous VoicingChord and a newly selected Inter-
valChord as arguments and returns a new VoicingChord generated
with the intervals from next using appropriate voice-leading from
last.

Dannenberg’s technique is ideally suited to real-time improvisa-
tion because it does not depend on information about the future to
work. In jazz harmony texts, however, chord voicings and substitu-
tions are often described with reference to the immediately following
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context: “players may choose to precede a major, minor, dominant,
or half-diminished chord in a progression by a dominant chord
whose root is either a fifth or a half step above that of the structural
chord or by a diminished chord whose root is a half step below it”
(Berliner 1994, 86).

The technique of chord insertions that Berliner describes is algo-
rithmic in its formulation. That is, given a chord progression we can
write a program that will make the insertions Berliner suggests at the
appropriate points. To realize the insertions in performance, how-
ever, the program would need to know the progression being played,
just as a human musician would. Human players have access to the
progression because it is written on a lead sheet on their music stand,
because they are told the name of the progression before the band
begins to play, or because they recognize it as it is being played.

We would like to assume as little as possible about the composi-
tion-specific information available to the program. The pattern pro-
cessing techniques of chapter 4, however, may make it possible for
a machine musician to recognize chord progressions as they are un-
derway. Once a known progression is found, planning for Berliner-
style substitution could be carried out based on the anticipated
continuation of the series.

8.4 Multimedia Improvisation

Italian computer scientist and composer Leonello Tarabella has been
working for years with a team of programmers, musicians, and visual
artists on new programs and interfaces for real-time multimedia im-
provisation. Their project has been carried out under the auspices of
the CNUCE, a branch of the Italian National Research Council, in the
Computer Music Research laboratory in Pisa.

8.4.1 Controllers

The most striking aspect of performances by this group is their use
of several original and highly expressive controllers. Tarabella’s very
definition of the term interaction suggests the degree to which their
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work is involved with the development of novel interfaces: “The
term interaction has referred to the activity of a performer on a
controller which detects gesture[s] and translates them into data
that a computer uses for controlling synthesizers” (Tarabella 1993a,
180).

One of their best-known controllers is called the Twin Towers, in
which a pair of infrared rectangles projected up from a base unit are
played by a human performer who moves his hands through the
beams (figure 8.15). The changing orientation of the performer’s

Figure 8.15 The Twin Towers
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hands relative to the device can be calculated from the reflection of
the beams back to the base. This results in a controller with (in the
simplest case) six degrees of freedom: the height, side rotation, and
front rotation of each hand. When the timing of gestures is included,
many more possibilities arise: for example, the speed of motion
through the beams could be used as a control parameter as well.

In the composition Flexible Links written for the NYU New Music
and Dance Ensemble, Tarabella used the Twin Towers to control the
recording and processing of sounds from the ensemble. Microphones
were used to make hard-disk recordings of the musicians as the piece
progressed. The composer could start and stop recording at will by
making predefined hand gestures over the Twin Towers. Once a large
chord of material was accumulated, it was played back through
effects processing whose parameters were also changed with the
controller. Tarabella’s hand gestures manipulated filter cutoffs, re-
verberation, and other effects applied to material recorded earlier in
the performance.

The group has produced several other controllers that are used in
dedicated performances or together with the Twin Towers in large-
scale interactive multimedia shows. These include the Light Baton,
PAGe, the UV Stick, and the Imaginary Piano. All of them use video
tracking in some way, a technology that the group has developed to
a high degree of flexibility. The Light Baton, for example, is a con-
ducting baton with a light emitter in the tip. A video sensor tracks the
motion of the baton inreal time and derives a number of fundamental
conducting gestures whose recognition can be used to control the
speed of playback of standard MIDI files or to send parameter values
to compositional algorithms.

In PAGe (Painting by Aerial Gesture), another video-detection
based system, a performer moves his hands through the active video
area. The software tracks the hand motions and generates color
graphics on a large screen behind the performer. Algorithmic com-
puter music is generated at the same time under the influence of the
hand movements to accompany the graphics. A more recent system
performs Fourier analyses of hand images to detect different postures
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(fist, splayed fingers, etc.) used as inputs to interactive graphics and
sound synthesis algorithms (Tarabella et al. 1998).

The UV Stick employs, as the name suggests, a stick lit by an ultra-
violet lamp. Video tracking calculates the three-dimensional rota-
tions of the stick, which control real-time synthesis parameters and
interactive graphics. Finally, the Tmaginary Piano tracks hand mo-
tions in the video field and interprets these as piano-playing gestures.
The software translates the detection into control parameters for an
algorithmic composition process sounding through piano samples.
The effect is of someone playing on an invisible piano.

Tarabella has designed and implemented a number of computer
languages for interactive programming, the most recent of which is
GALileo (Graphic Algorithmic music language) (Tarabella and Ma-
grini 1998). GALileo uses a graphic interface to programming objects,
like Max, but can also open a text editing window to allow users to
modify the underlying code. Both high-level constructs and sound
synthesis, using a csound-like protocol, can be programmed and
combined into patches for real-time performance.

8.4.2 Composition Techniques
As a composer, Leonello Tarabella writes a new sel of composition
functions for each new work. A number of techniques, however, find
repeated use in his pieces. One of these is the generation of rhythmic
textures based on random numbers. To produce these rhythms, a
constant (short) duration is specified. Then a random number is gen-
erated with anumber of bits equal to the length of the desired pattern.
A bit mask moves along the random number, and if a bit is on (equal
to one), a note is produced with the constant duration. If the bit in
the random number at the location of the mask is off (equal to zero),
a rest with the same duration is produced. The code in figure 8.16
demonstrates a version of this process that was used in Tarabella’s
work, Algorithm Blues. In this instance the rhythm generator per-
forms patterns on cymbals as part of a blues combo.

Mark Coniglio, composer for the interactive dance company,
Troika Ranch, uses a similar procedure. In Coniglio’s version, ASCII
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characters instead of random numbers generate the rhythmic pat-
terns. The drum patterns he produces, then, can actually “spell out”
words composed of strings of characters played by the generator in
a kind of computer-age Morse code.

The Algorithm Blues application on the CD-ROM provides a sim-
ple interface to the Cymbals() procedure listed in figure 8.16.
Whenever the Make Pattern button is pushed, Cymbals () is called
with a pattern size of eight. The OMS output menu can be used to
select the desired recipient of the generated MIDI messages. All of the
source code is included with the application; the reader may wish
to vary the operation of the example by changing the pattern size

void AlgorithmBlues::Cymbals{(int pattern)

{

It

long dur 150L; // constant duration

int Piattol = 63; // pitch number of cymbal sound

// generate a random number with # of bits equal to the pattern length
int n = rand ()% ((int)pow(2.0, (float)pattern));
int mask = 1;
for (int j=0; j<pattern; j++) {

// if the mask finds a bit in the random number is set

// then generate a new note

if (n & mask)

Nota (j*dur, Piattol- (rand{)%2), (rand()%80)+40,0,0.90,dur) ;

mask <<= 1; // shift the bit mask left

Figure 8.16 Algorithmic rhythm generator
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randomly every time the button is pushed, for example, or by using
different output pitch numbers. Note that Algorithm Blues as it
stands will only sound like a cymbal if note 63 on channel 0 is a
cymbal sound.

Tarabella’s Nota (} sound output function is interesting because
of the care with which it treats the Note0ff () call for a MIDI note.
The MIDI standard requires two messages to be sent for a complete
note: one when the note goes on, and another when it is to go off.
A full MIDI note process makes a single conceptual unit of these
with one routine that handles the scheduling of both MIDI trans-
missions. An advantage of this message structure is that a full
note has a duration attached to it, whereas a simple MID[ note on
has no concept of time and does not know when it will end. Many
full MIDI note processes (including my own Event::Play () and
the MakeNote object in Max) treat the note’s duration as an un-
differentiated span of time. The Nota ()} function, on the other
hand, implements the idea of a duty cycle within the overall
duration of the note. Rather than simply scheduling the note off
message to be sent when the duration of the full note has elapsed,
the note off will be sent at the end of a duty cycle within that
duration.

Figure 8.17 lists the code for a version of Tarabella’s Nota () func-
tion using the Machine Musicianship library’s Event representation.
The duration of the event is given in milliseconds as a long integer,
and the duty cycle as a floating point value. The note on is called
after onset milliseconds, and the note off scheduled to occur
duty * duration milliseconds after the onset.

There are two primary uses for the duty cycle concept. First, syn-
thesized or sampled sounds are often designed with a decay phase,
a part of the sound that is to be produced after its release. The duty
cycle allows the composer to think of the duration of the note in
terms of its total length, while still allowing time for the decay to
occur. Durations might be expressed as a series of quarter notes, con-
ceptually, while the duty parameter could force each duration actu-
ally to be shortened by 20%. thereby leaving time for the decay
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void AlgorithmBlues::Nota(long onset, int pitch, int velocity, int

channel, float duty, long duration)

Event event, *e = &event;

e->SetIOI(onset);
e->SetChans (1, channel);
e->SetChordSize(l);

Note *n = e->Notes(0);
n->SetPitch(pitch);
n->SetVelocity(velocity);
n->SetDuration(duration*duty) ;
outPort->Play(e);

}

Figure 8.17 Nota () listing

phase. Certainly this requires that the synthesis method be tuned to
the duty cycle, so that the sound actually has a decay to fill the requi-
site time.

Another application of a duty cycle is to add articulations to MIDI
notes. If the release time is not being filled by a decay phase, it simply
will be heard as a shortening of the note, as in staccato. A composer
can determine the degree of staccato by changing the duty parameter
while keeping the duration equal to the conceptual length of the note,
much as a dot is placed over a quarter note in traditional notation.
In fact the duty cycle can be much more precise than a notated dot,
as the composer can specify exactly how much of the conceptual
duration a performed note should fill. Duty cycles with a value
greater than one produce legato, with the end of a note extending
beyond the presumed duration.
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pitch duration
velocity duty

multiply duration by duty

Nota

pitch velocity

Figure 8.18 Nota Max object

turn on/off

metro 1000

bang every second

vary duty from
0.7 to 1.0

noteout 1

Figure 8.19 Nota Max patch

Figure 8.18 shows Nota, a Max object implementing the duty cy-
cle parameter. It is simply makenote with a multiplication added to
the duration inlet that changes the length of the note according to
the duty value. The duty is initialized to 1.0, so that it will have no
effect until it is changed. Nota retains the most recent duty value
whenever one is sent. The outlets of Nota are normally sent to a
noteout object.

Figure 8.19 shows Nota being used to vary the articulation of ran-
dom notes. With every bang from the metro object, the counter
will increase the duty parameter linearly from 0.7 to 1.0. (The
counter uses integer values, so we divide integers ranging from 70
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to 100 by 100.0 to derive floating point duty values.) Whenever the
counter reaches the upper bound (100), it jumps back down to 70
and begins counting up again. This results in a series of notes with
steadily increasing durations that snap back to their shortest staccato
form every thirty notes.

8.4.3 Continuous Controls

A large part of the compositional order developed in Tarabella’s pro-
grams centers on continuous control of synthesis parameters. Essen-
tially the technique involves the production of breakpoint line
segments over specified durations of time. Max/msp is particularly
well suited to such continuous controls: a combination of a 1ine
object with ctlout accomplishes what is needed for MIDI devices.
The patch shown in figure 8.20 will change the volume of a MIDI
synthesizer to off or full over a span of five seconds whenever the
corresponding button is pushed.

The function CtlLine () will continually update the value of a
MIDI continuous control from some beginning value to a target value
over a specified duration (figure 8.21). The variables needed to ac-
complish this behavior are:

= id The number of the MIDI continuous control
= from The begin value

= duration The time within which to change

= to The target value

= channel The MIDI channel number

send volume to full  send volume to zero

[t27 5000 100] [0 5000 100

Figure 8.20 Max control change
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void CtlLine (int id, ...)

va_list args;
18t from, to, channel;

long duration;

va_start (args, id);
from = va_arg{args, int);
duration = va_arg(args, long);

to

va_arg(args, int);
channel = va_arg(args, int);

va_end(args) ;

if (outport->controlTask) scheduler->AbortTask (outport->controlTask):;
outport->CtlOut(id, from, channel);
if (duration <= kGrain) ({
outport->controlTask = scheduler->Schedule_Task (Now+duration, 0,
2, 0, CLiner, 0L, to, 0, 0, channel, id);

return;

steps = duration/kGrain;

if (steps == 0) return; // avoid division by zero
range = to - from;
inc = range/steps;

if (inc !'= 0) {

from += inc;

Figure 8.21 Control change routine
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outport->controlTask = scheduler->Schedule_Task(Now+kGrain, 0, 2,

0, CLiner, kGrain, from, inc, steps-1, channel, id);

} else {
inc = (range>0)?1:-1;
steps = abs(range);

duration /= steps;
outport->controlTask = scheduler->Schedule_Task (Now+duration, 0,

2, 0, CLiner, duration, from, inc, steps-1, channel, id);

Figure 8.21 Continued

CtlLine () is called initially by the application program, and
thereafter by itself. Because calls to CtlLine () are usually run
through the scheduler, they must follow the variable argument con-
ventions described in <stdarg.h>. Conformance to the variable
argument conventions means that any function can be scheduled for
later execution—the scheduler does not enforce any particular limit
of the number or types of arguments.

CtlLine () calculates the increment needed for each step of the
continuous control change and schedules CLiner () for repeated ex-
ecution to actually transmit the necessary MIDI messages. The OMS
output port (outPort) keeps track of the scheduler record associ-
ated with the continuous control process. This makes it possible
for the outPort to abort the control change at any time. In the ex-
ample there is only one controlTask, which means that only one
continuous control process can be active at a time. In more complex
applications this can be replaced by an array of task pointers, imple-
menting an unlimited number of simultaneous controllers.
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9 Installations

Beyond stage presentations, musically aware installations provide
another venue for interaction between humans and machine per-
formers. In many cases, the humans interacting with such machines
need not be trained musicians themselves—the musicianship of
the system can respond to input from the users in such a way that
they are able to use simple physical gestures to control or influence
complex musical results. Installations often make a visual, as well
as an audible response to the visitor. As such, they resemble most
closely the interactive multimedia environments presented in chap-
ter 8.

Artists creating such installations are again faced with the problem
of cross-modal influence—how to make the relationship between vi-
sual, audible, and physical gestures meaningful. In some ways, these
relationships are exposed more directly in installations than they are
in the types of staged multimedia presentations discussed in chapter
8. When watching a performance, observers deduce relationships be-
tween the humans onstage and their machine partners. When faced
with an installation, observers must explore the nature of the rela-
tionship by interacting with the environment themselves.

9.1 Multimedia Installations

The traditional form of multimedia installation is a location where
machines and visitors interact. Motion, force, or video sensors that
can locate the placement and movement of visitors in the space typi-
cally provide input. Video, animation, lighting, and motorized ob-
jects are possible output modalities, though we will be most
concerned with such environments that also involve sound.
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9.1.1 Audio and Imagery

Felt Histories (re: the fact of a doorframe) is an interactive video and
sound installation designed by Thecla Schiphorst. The installation
projects a video image of an old woman’s body onto a screen of raw
silk suspended within a doorframe. “As the visitor approaches the
doorframe, the image within the frame responds very slightly to the
proximity of the visitor. The image quivers and waits. As the visitor
touches or caresses the image within the frame, the visitor’s own
hands and perhaps their face, appear momentarily reflected within
the image they caress. This mirroring occurs only during the mo-
ments of contact. As the visitor caresses the surface of the image, a
very small breeze (controlled by miniature fans embedded within the
frame) moves very slightly over the face of the visitor, the image
within the frame moves in response to the caress, and a complex
sound environment is constructed in direct response to the gesture
and movement of contact” (Schiphorst 1996).

By design, Felt Histories confronts visitors with questions about
their own aging, decay, and sexuality. Because the piece responds
to touch, visitors must overcome their reluctance to caress the body
of another, albeit video, person. The technology of the installation
uses proximity and force detection sensors to notice when a visitor
has approached the doorframe or touched the silk screen. Informa-
tion from the sensors is interpreted by a Max patch to control four
types of response: (1) movement of the video, (2) sound. (3) mixing
of the stored video with live video of the visitor, and (4) manipula-
tion of small fans in the doorframe.

The audio is stored in sound files that are played back as an ambi-
ent background, as a function of the user’s interaction. What the user
does determines both which sound files are heard and the level of
their playback within the overall mix: “The soundscape is con-
structed in such a way as to create an intimate local sound response
based on movement of the hand over the surface. The movement and
proximity of the participant’s body literally mixes the sound. The
interface invites whole body movement which ‘falls into’ the work.
The local sounds trickle outward and affect the ambient soundscape
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depending on the level of activity that occurs on the surface of the
work” (Schiphorst 1996).

The Max patch, programmed by Ken Gregory, Grant Gregson, and
Norm Jaffe, receives and parses sensor inputs and distributes their
signals to the appropriate response algorithms. One of the subpatches
that does this is Dominant Zone (figure 9.1). Dominant Zone uses a
clever combination of objects to change the primary zone of reaction
within the doorframe. The send/receive variable zones sends lists of
two values to Dominant Zone, the first of which is a zone number
and the second a controller.

The control passes through Bucket, a Max object that implements
a bucket brigade message passing regime in which incoming mes-
sages are sent incrementally out the outlets from left to right as new
messages arrive. The patch uses only one outlet of Bucket, so the
output from the object will be the previous input received each time
a new value arrives. This delayed value is sent to the right inlet of
Peak, a Max object that detects when a new value has been received
that is higher than some peak threshold. Values sent to the right inlet
change the threshold variable without triggering any output.

Now the original input to Bucket is passed to the left inlet of Peak.
Because we are comparing the original input with the previous one
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(comparing input n to input n-1), Peak will only be true when the
current input is higher than the last. In that case the gate on the left-
hand side of the patch is opened and the new zone value allowed to
pass through to the DoorZoneDom transmitter.

The Liner patch (figure 9.2) performs an operation similar to but
more general than that of Dominant Zone. The input to Liner is
information from the iCube device merging all of the sensors trained
on the visitors. Any sensor that changes sends its ID number and new
value to the zones send/receive pair. The expression object then
calculates a new position in a line between the two zones tracked
by a given instance of Liner (which two IDs are tracked depends on
the arguments #1 and #2 used to instantiate the object). This position
is sent through the left outlet together with a trend that tracks as-
cending or descending motion of the expression value, similar to the
ascending sensitivity of Dominant Zone. The trend is determined
by Bucket, this time connected to a Trough object. Trough com-
pares input n to n-1 and outputs a zero if n is greater than n-1 and
a one if it is not.

Thecla Schiphorst’s installation work not only encourages the visi-
tor to explore the relationship between their actions and the techni-
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cal environment but causes them to confront their habitual forms of
interaction with other people, and their own bodies as well. The CD-
ROM includes a sample Max patch that tracks the “trend” of mouse
movements over a surface.

Don Ritter has produced a number of interactive multimedia in-
stallations, including Fif (1993) and Intersection (1993-95). Intersec-
tion deals with the interaction between people and machines:

Visitors to the installation encounter the sounds of speeding cars
travelling across a completely dark room, tvpically 13 by 8 metres.
The illusion of traffic is created through digital audio devices and
eight audio speakers arranged to create four invisible lanes of traffic.
If a visifor stands in the lane of an approaching car, this car will
“screech” to a halt and remain “stopped” with its engine idling. Traf-
fic will continue in the other lanes. When a visitor leaves a lane con-
taining a “stopped” car, this car will guickly accelerate and continue
travelling across the space. When a visitor remains in a lane with a
“stopped” car, however, subsequent cars travelling down that lane
will “smash” into the “stopped” car. Like an actual freeway, “safe
areas” exist between each lane where a visitor may stand without
affecting the flow of traffic. An unlimited number of visitors can be
accommodated by the installation at one time. [Rilter 1996)

The purely audio relationship between the visitors and their dark-
ened environment often provokes a quite visceral reaction. The
threatened violence of the aural situation even makes it impossible
for some to cross the space.

Fit produces another kind of physical reaction: the work consists
of a video image of an aerobics instructor. “When a viewer moves
in front of the image, music begins and the instructor starts exercis-
ing. When a viewer stops moving, the instructor also stops exercising
and the music becomes silence. Hach time a viewer begins moving
his or her body, the instructor begins a new exercise with music. If
a viewer moves non-stop, over time the instructor will exercise faster
and change every 6 seconds to increasingly quicker routines. If a
viewer exercises for 30 seconds non-stop, the instructor and music
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are presented at a dizzying rate” (Ritter 1996). Though the visitor
controls the presentation of the instructor, many become engaged
enough to follow the video image into wearying exertions. The CD-
ROM includes a video clip of Intersection and of a human interacting
with Fit.

9.1.2 Large-Scale Interaction

Tod Machover’s The Brain Operg (1996) was, among other things,
an attempt to combine the staged and installation types of interaction
in one work: “The Brain Opera is an attempt to bring expression
and crealivity to everyone, in public or at home, by combining an
exceptionally large number of interactive modes into a single, coher-
ent experience. The project connects a series of hyperinstruments
designed for the general public with a performance and a series of
real-time music activities on the Internet. Audiences explore the
hands-on instruments as preparation for the performance, creating
personal music that makes each performance unique” (Machover
1998).

Before the performance of the staged part of the work, audience
members interacted with installations that stored their material
and brought it back later during the onstage performance. Websites
collected further input from participants away from the concert
hall and weaved this into the performed presentation as well. The
design of The Brain Opera introduces another element into the
contrast between performed and installed interaction: by collect-
ing material from installed interaction and recalling it in perfor-
mance, the audience is able to experience the genesis of the music
firsthand and recognize it later as an observer. The work engages the
audience’s memory as well as its ability to see immediate relation-
ships.

The Brain Opera’s interactive material was collected in a large in-
stallation, named the “Mind Forest’” or “Lobby.” The environment
comprised 29 separate interactive components powered by circa 40
networked computers. The components were conceptually part of
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several groups, each typified by its own interface and outputs. For
example, a device called the Singing Tree used a microphone to sam-
ple the voice of a visitor. A dedicated PC analyzed 10 features of the
singing voice: as these indicated an increasingly stable tone at a sin-
gle pitch, a resynthesis of the visitor’s voice became more “pleasing,”
and an animated image appeared on a monitor before them. “When
the voice falters, the animation rewinds into a set of simpler images.
The audio and video feedback on the singing voice has proven quite
effective; the tonal and visual rewards encourage even poor amateurs
to try for a reasonable tone” (Paradiso 1999, 133).

Another large component was the Rhythm Tree, a collection of 320
drumpads grouped into 10 strings of 32 pads each. Hach drumpad
detected when it was struck by a visitor’s hand and identified the
type of stroke used. (See the CD-ROM for a video clip of visitors inter-
acting with the Rhythm Tree.) The information generated by visitors’
input controlled percussion sounds and illumination of the pads
struck.

Material sampled from the interactive environment was woven
into the staged composition. itself performed using a group of three
interactive hyperinstruments. The Brain Opera was a groundbreak-
ing experience in the organization and performance of very large-
scale interactive works: beyond its impressive technical prowess, the
piece explored several aesthetic issues surrounding the integration
of input from non-musicians and the synthesis of unrelated amateur
performances.

The Brain Opera’s musical mappings and parametric sequences ran
independently on each Lobby instrument. Although this satisfied in-
dividual players (many of whom were acoustically isolated by wear-
ing headphones or were near appropriate speakers), the overall
sound of The Brain Opera Lobby guickly dropped to the familiar,
stochastic level of an arcade. .. . In general, future research is needed
to address the balance befween overall and local experiences, e.g.,
selecting and coordinating the audio responses over a network
to enable large installations Iike The Brain Opera fo sound more
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musically coherent to an outside observer while still retaining
encough deterministic action-to-response musical feedback to satisfy
individual participants. (Paradiso 1999, 147)

The CD-ROM includes diagrams and video clips of the interactive
part of The Brain Opera, and more can be found in The Brain Opera
section of the Media Lab website (www.media.mit.edu).

9.2 Animated Improvisation

The combination of computer music and real-time animation is a
natural manifestation of interactive multimedia that has been real-
ized in several guises. In this section I will concentrate on the Infer-
active Virtual Musicians (IVM) system. New York University’s
Center for Advanced Technology developed IVM through collabora-
tion between music and animation programmers. The complete envi-
ronment consists of two major software subsystems: IMPROV and
the IVM control software.

Developed by Ken Perlin, AThomas Goldberg, and others, the IM-
PROV system creates animated characters with individual personali-
ties (Perlin 1995; Perlin and Goldberg 1996). Characters in IMPROV,
known as virtual actors, are autonomous and directable. They are
endowed with a library of animated actions, movements and gestures
as well as individual personalities crealed by a programmer or ani-
mator using a scripting system. Characters are then able to generate
their own animation sequences based on external information and
influences (such as user input, musical analysis software, and the
actions of other characters) and in accordance with their personality
traits.

The IVM control software extends the functionality of the virtual
actors to include music performance, thereby turning them into vir-
tual musicians (Rowe and Singer 1997). IVM is responsible for re-
ceiving and interpreting the various forms of input, generating and
playing the musical performance, and directing the graphical perfor-
mance of IMPROV. The rasults of real-time musical analysis are com-
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municated to the virtual musicians and influence their performance.
Characters are controlled on several levels simultaneously. Low-
level commands specify physical actions of the characters, such as
movement of the virtual saxophonist’s fingers. Higher-level com-
mands communicate information about the musical performance,
user input and other environment variables. This information influ-
ences the animated performance in various ways based on each char-
acter’s programmed personality.

The ability to endow characters with personalities is one of the
major innovations of IMPROV. A scripting system enables authors
to create decision rules which use information about an actor and
its environment to determine the actor’s preferences for certain ac-
tions over others. The author specifies which information is relevant
and how the information is weighted in making each decision. For
example, an author might define a nervousness attribute for an actor
that increases as other actors get closer. Furthermore, the author
could specity that an increase in nervousness will cause the actor to
choose fidgeting actions, such as shuffling its feet or biting its finger-
nails. Then, as other actors move closer, the character will appear to
fidget more. IMPROV’s personality scripting gives the virtual musi-
cians a “body language,” a set of actions that reflect various moods
of playing, and “musical personalities” to select and control these
actions. Among their many capabilities, virtual musicians can groove
along to the music, tap their feet in time and raise their horns in the
air during their solos.

Figure 9.3 shows an interactive virtual saxophone player named
Willy (in recognition of Clilly Castiglia. author of his animation
scripts). Willy is able to improvise solo lines above chords played
on a MIDI keyboard, using the chord identification process described
in section 2.1. Eric Singer developed the improvisation algorithm,
which is based on a collection of pentatonic scales. In the flow of
control during a performance, MIDI information arrives at the chord
analysis module, which informs the improvisation process (called
Scales) as to the root and type of the current input chord. Scales
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Figure 9.3  Willy, interactive virtual musician

selects intervals from one of a number of stored scales and adds these
to the found chord root. Rhythmic constants specified by the user
determine how many notes may be played per beat and what percent-
age of the possible beats will actually be articulated by performed
notes.

As the musical improvisation is being generated, messages are sent
to IMPROV that influence the animated behavior of Willy on the
screen. Typical messages include instructions to turn right, turn left,
lean back, tap foot, and so on. The system currently runs on two
computers: music analysis and generation is written in C++ and per-
formed on an Apple Macintosh, while IMPROV is implemented in
Java and VRML and runs under any VRML2-compliant browser (cur-
rently, the CosmoPlayer on an SGI). Communication from the analy-
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sis machine to the animation engine is accomplished using Telnet/
TCP and UDP connections across a local-area network.

9.2.1 Improvisation with Scales

Eric Singer’s improvisation algorithm generates solo saxophone lines
using a number of stored scales. Particular scales are linked with
chord types such that when the identification process recognizes an
input chord of the corresponding type, its associated scale is acti-
vated. Figure 9.4 lists the definition of the Scales class.

The scaleList is a collection of scales used by the process in
generating melodic lines. AddPattern lakes a scale and stores it in
scaleList at the position indicated by the chord type. Rather than
restrict the length to pentatonic scales, AddPattern uses the C/C++
variable argument conventions to allow scales of any length (see sec-
tion 5.1).

The following is a typical call to AddPattern ():

AddPattern{(kMaj, 5, C, D, G, A, B);// Major

This call associates a pentatonic scale with the chord type kMa3j.
Any number of pitch classes up to kScaleMax can be specified. The
pitch names describing the scale are a convenience for the reader—
in practice they specify a series of intervals above the first member.
If this scale were to be played above a D-major chord, for example,
the pitches used would be D, E. A, B, Cj (the same sequence of inter-
vals based on D instead of C). Beyond the scales themselves, the algo-
rithm maintains a set of paths to read through any given scale. An
example of a set of paths:

int path[kNumPaths] [kPathLen] =
{{1, 1, -2, 1}, {2, 1, -2, 1}, {1, 1, 1, 1}};

These paths are used to step through a scale. An index into the
chosen path picks each step size in turn, which is added to another
index pointing into the scale. Whenever the calculated index goes
past the end ofthe scale, it is wrapped around back to the beginning.
For example, if the third path in the list above is chosen (1,1,1,1),



class Scales {
public:
enum ToneNames { C=0, Cs=1, Db=1, D=2, Ds=3, Eb=3, E=4, Es=5,
Fb=4, F=5, Fs=6, Gb=6, G=7, Gs=8, Ab=8, A=9,
As=10, Bb=10, B=11, Bs=12, Cb=11 };
enum ChordType { kMaj = 0, kDom9, kDoml3, kMin7, kMaj7, kDomsll,

klLast, kNumChords };

enum { kNumPaths = 3, kPathLen = 4, kScaleMax = 11 };
private:

long beatDuration; // length of a beat in ms

int beatNumber ; // which beat in the bar

int beatsPerBar; // how many beats per bar

int chordRoot ; // pitch class of root

ChordType chordType; // type: one of ChordType

int lastIndex; // last index into scale

int lastNote; // last pitch output

int notesPerBang; // subdivisions per beat

int pathIndex; // index into path

int pathNum; // which path

15 path[kNumPaths] [kPathLen]; // paths

int rangeHi; // high note of output range

int rangeLo; // low note of output range

int scaleList [kNunChords) [kScaleMax] ;

int scaleSize[kNumChords]; // size of scale per type

float swingness; // swing regulator

float timeAd]; // timing deviation variables

Figure 9.4 Scales class
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float timeDev;
float velBase; // velocity deviation vars
float velDev;
float velPush;
class EventBlock* events; // output events
public:

Scales (void) ;

~Scales(void) ;

int Bang (long bangTime, long beatDuration);
private:

void AddPattern(int chordIndex, ...):

void SetNotesPerBang (int notesPerBang) ;

Figure 9.4 Continued

each note from the scale will be taken in order. No matter which
member of the path is selected, the scale index will always be incre-
mented by one. If, instead, the first path were chosen (1,1,—2,1), the
scale would be read in order except once every four notes, when the
scale reader would jump back two places instead of ahead one. Taken
with the scale G, D, G, A, B, the first path would produce C, D, E, C,
D,E, F,D,E F, G, E, etc.

The FindIndex () routine is the first step in finding the address
of the scale member to be used at any given moment (figure 9.5).
It begins by calculating the distance between the last scale degree
produced and the first degrees past the end or before the beginning
of the scale. This is to cover the case in which a scale should be
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/*
* FindIndex: find the closest member of the scale, wrapping around
* beginning or end of the scale
)

int Scales::FindIndex(int* scale, int lastDegree, int length)

{

int toneDiff; // find closest tone, accounting for wraparound
int tonelndex;

int extendUp = abs(scale[0] + 12 - lastDegree);

int extendDown = abs(lastDegree + 12 - scale[length-1]);

if (extendUp < extendDown) {

toneDiff = extendUp;

toneIndex = length; // set the index past the end of the list
} else {

toneDiff = extendDown;

toneIndex = -1; // set the index before the start of the list

for (int i=0; i<length; i++) {
int newDiff = abs(lastDegree - scalel[il]);

if (newDiff < toneDiff) ({

toneDiff = newDiff;

toneIndex = 1i;

return toneIndex;

Figure 9.5 FindIndex () method
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continued in another octave. Consider a C-major scale that is to be
played in order: when the B at the top of the scale is played, the scale
index will loop back around to zero in order to point at the C that
initiates the scale. The C that should be played, however, is the one
found one half-step above the B, not the C a major seventh lower.
FindIndex () will notice that the half-step C is closer to B and re-
turn an octave-switching index accordingly.

The combination of FindIndex () with a collection of scales will
produce endlessly meandering melodies that fit with particular
chord types and roots. To give them more of a shape and direction
in time, however, they must first be joined with a rhythmic presenta-
tion. One of the functions with which this is done in Scales is
GenRest (), which generates a rest in the output according to a fixed
set of probabilities (figure 9.6).

bool Scales::GenRest (int subdivision)
{

switch (subdivision) {

case 0: return RndPosFloat() < 0.55;
case 1: return RndPosFloat () < 0.55;
case 2: return RndPosFloat () < 0.43;
case 3: return RndPosFloat() < 0.16;
case 4: return RndPosFloat() < 0.29;
case 5: return RndPosFloat() < 0.35;
case 6: return RndPosFloat() < 0.51;
case 7: return RndPosFloat() < 0.30;
default: return RndPosFloat() < 0.05;

)

Figure 9.6 GenRest() method
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The subdivision argument refers to the position of the output note
within a measure. The values 0-7 represent eighth note positions
such that zero is the initial eighth note of the measure, one is the
second half of the first beat, two is the first eighth note of the second
beat, and so on. RndPosFloat {) is a macro that returns a floating
point random number between 0.0 and 1.0, The fixed probabilities
of the GenRest (} method make it most likely that a note will be
played on the first, second, or seventh eighth note of a 4/4 bar. In
other words, both halves of the first beat and the first eighth of the
last beat are the most probable subdivisions to be articulated. The
least likely position is the second eighth of the second beat.

The Scales application on the CD-ROM implements the melodic
improviser outlined here. A control panel allows the user to change
parameters such as notes per beat, percentage of rests, elc. Scales
will improvise against chords played either on a MIDI keyhoard or
entered in the control panel.

9.2.2 Improvising Melodic Lines
David Baker's Juzz Improvisation (1983) teaches beginning improvis-
ers some basic techniques of melodic and rhythmic elaboration in
the jazz idiom. In it he discusses three approaches to improvising
melodic lines above chord changes: “We may approach any composi-
tion in a number of ways, three of which follow: (1) The first ap-
proach is a scalar approach where we reduce each chord or series of
chords to basic scale colors. . . . In this approach we are less con-
cerned with outlining the particular chords than with presenting a
scale or mode that would sound the key area implied by the chords.
(2) In the second approach the player articulates each chord. He
might simply use arpeggios and seventh chords in a rhythm of his
own choosing or he might use what I have labeled root-oriented pat-
terns such as 1-2-1-2, 1-2-1-2; or 1-2-3-1, 1-2-3-1; or 1-2-3-5, 1-2-3-5,
etc. . .. (3) The third approach involves the use of patterns either
predetermined or spontaneously conceived” (Baker 1983, 19).

The scales algorithm can directly model Baker’s first approach.
The stored scales “sound the key area implied by the chords™ and
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CMaj7 Fmin7 Bbmin7

Figure 9.7 Scales against Tune |

will be transposed correctly by the root delivered from the analysis.
The second approach is readily implemented as well. Using the pen-
tatonic scale C, D, G, A, B, we can define simple paths to realize
Baker’s root-oriented patterns. The path (1,—1) will output 1-2-1-2,
the path (1,1,—2) will output 1-2-3-1, 1-2-3-1, and so on.

Jazz Improvisation goes on to show several examples of using ap-
proaches (1) and (2) against a simple tune (Tune I). Let us use the
Scales algorithm to reproduce these examples. Tune I is a four-bar
chord progression: two bars of C-major 7th, followed by one bar each
of F minor 7th and Bb-minor 7th. Baker’s first example recommends
playing a major scale against the major seventh chord, followed by
a 1-2-1-2 root-oriented pattern over both minor seventh chords (fig-
ure 9.7).

To realize this example, we can use a major scale for all the recom-
mended patterns. In this case, we need to associate a path number,
and not the scale itself, to the type of the chord being played. A func-
tion similar to AddPattern can be used to initialize the paths array
and place the desired path in the location corresponding to a given
chord index. These two calls will produce the behavior required by
Baker’s example 1:

AddPath (kMaj7, 1, 1); // Major Seventh
AddPath (kMin7, 2, 1, -1); // Minor Seventh

Baker’s third melodic improvisation approach—*“the use of patterns
either predetermined or spontaneously conceived”—calls to mind the
pattern processing techniques of chapter 4 and in fact represents one
of the strongest motivations for pursuing such techniques in the first
place. In his description of an algorithmic improvisation program,
Philip Johnson-Laird calls into question the pattern-based mode: “A
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common misconception about improvisation is that it depends on ac-
quiring a repertoire of motifs—‘licks’ as they used to be called by mu-
sicians—which are then strung together one after the other to form an
improvisation, suitably modified to meet the exigencies of the har-
monic sequence. There are even books containing sets of ‘licks’ to be
committed to memory to aid the process” (Johnson-Laird 1991. 292).

Johnson-Laird is right to question the pattern-chaining model as
an explanation of all that occurs during improvisation. That there is
an important element of pattern repetition and variation, however,
is echoed in a wide range of scholarly writing on the subject: “Charlie
Parker, like all improvisers, built his solos from a personal collection
of melodic building blocks of various lengths. In his best work, he
employed these melodic units creatively as connective components
and as raw material for creation. In his more routine work (especially
in the 1950s), he used them more mechanically, in lieu of real discov-
ery’” (Woideck 1996, 57). Here Woideck even uses the degree of lit-
eral repetition as a gauge of the creativity involved in a solo.

Lewis Porter’s analysis of the solos of the young John Coltrane re-
veal clear instances of this strategy in the playing of the budding
genius: in two recordings made on July 13, 1946, when Coltrane was
19 years old, the saxophonist repeatedly employs a motive that
Porter labels “lick c.” “Coltrane uses certain figures or ‘licks,” as mu-
sicians call them, repeatedly on this session. For example, his short
chorus on ‘Sweel Miss” . . . employs a little phrase-ending figure
(marked a on the example) four times, and figure ¢ is used to begin
three phrases. In fact ¢ and a are teamed up two of those times” (Por-
ter 1998, 45). Though Johnson-Laird’s point is well taken, the truth
lies somewhere in the middle—improvisers do use a repertoire of
learned licks, but the good ones modify these in unpredictable ways
through the course of a performance.

9.3 Multimodal Environments
Antonio Camurri and his colleagues have spent several years re-

searching and building interactive multimodal environments (MEs)
“conceived of as an audio-visual environment which can be used to
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communicate with other humans and machines, other actors partici-
pating in the same event (including autonomous robots) or external
spectators of the action” (Camurri and Leman 1997, 496).

Multimodal environments can adapt their behavior to interaction
with a human partner or other machine agents. The system extracts
information about the actions of other agents in the environment (hu-
man or machine) by reading a collection of motion sensors. In one
application, a software agent tracked the motion of a human dancer
and generated computer music in response. “We can imagine that
the agent is trying to identify features of the ‘style of movement’ of
the dancer. If the latter starts moving with a given nervous and rhyth-
mic gestures in roughly fixed positions in the space, therefore evok-
ing the gestures of a percussionist, the agent, after a few seconds,
initiates a continuous transformation toward a sort of ‘dynamic
hyper-instrument’: a set of virtual drums located in points of the
space where the dancer insists with his/her movement” (Camurri
and Ferrentino 1999, 33-34).

There are two important points to notice about this example: first,
that the agent is able to recognize a particular style of gesture; and
second that it can calculate an appropriate response to that move-
ment and adapt it to the placement in space initiated by the dancer.
The environment continually adapts to the motion of the human
agent: if a particular drum is not played for some time, it begins to
“fade away,” changing its sound or intensity. Alternatively, the
dancer may animate virtual agents onstage and, once they are con-
structed and playing, move on to create others while the previous
ones continue with the actions they were given.

The role of the designer (or composer) in such a complex system
is one of describing modes of interaction and degrees of freedom
within and between multiple agents. “The designer of the perfor-
mance introduces into the system the sound and music knowledge,
the compositional goals, the aspects of integration between music
and gesture (including a model of interpretation of gestures), and
decides the amount of (possible) degrees of freedom left to the agent
as concerns the generative and compositional choices™ (Camurri,
Ricchetti, and Trocca 1999).
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The complexity of the environments in which MEs are situated is
handled by a hybrid approach, combining symbolic and sub-symbolic
components as required by different aspects of the problem. The sym-
bolic and sub-symbolic parts are coordinated in a knowledge base,
organized as shown in figure 9.8. In the notation of the figure, concepts
are represented by ellipses, double arrows designate IS-A links, and
boxes indicate roles. An IS-A link represents a hierarchical relation
between objects or concepts: a robin IS-A bird, for example, and in
Camurri’s ontology, navigation 1S-A type of action.

The two large symbolic categories of the knowledge base are ac-
tions and situations. These two subsume all other categories that are
characterized by a duration and/or point in time. Situations repre-
sent relatively static states of the environment. An action always has
an initial situation, from which is it begun, and a final situation that it
produces. There may be identifiable intermediate situations between
these as well. That all of these relations are true of navigation is con-
cisely represented by figure 9.8 (taken from Camurri et al. [1995]).

An action on the symbolic level is executed sub-symbolically by
an agent. An agent is a class that is expert in some domain and able
to perform actions within it. In the dance interpretation application
outlined above, the system architecture trains a number of observer

initial

intermediate

navigation

Figure 9.8 Knowledge base fragment
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agents (OAs) on the output of a double video camera sensing device.
The task of the OAs is to recognize and interpret the gestural and
emotional content of the dancer’s movements onstage. OAs are im-
plemented using a variety of techniques, depending on their special-
ization. The posture analysis agent, for example, is a neural network,
trained by users of the system to recognize certain postures of human
figures. The input to the network is the low-level visual information
from the video cameras, generating an output classification of the
posture type.

Camurri deals with the coordination of multiple agents thus: “OAs
can read concurrently the data produced by the preprocessing mod-
ule. OAs can communicate [with] each other to cooperate or compete
to analyse and understand high-level movement and gesture parame-
ters. For example, a posture analysis OA can provide a gesture analy-
sis OA with the recognized posture time marks on the input stream:
then, the gesture OA can use them as candidate segmentation points
to start gesture recognition processes” (Camurri, Ricchetti, and

Figure 9.9 Multimodal environment children's robot
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Trocca 1999). Camurri’s group has used multimodal environments
in live performance, video production, and museum installations.
They are designed for implementation on several parallel computers,
which means that they can execute real-time sound synthesis, anima-
tion, and robotic control simultaneously using a network of dedi-
cated machines.

Figure 9.9 shows a multimodal robot that is permanently installed
in a children’s science museum in Genoa, Ttaly (Citta dei Bambini).



10 Directions

This volume has demonstrated ways to implement some of the fun-
damental concepts of musicianship in software and shown how this
knowledge level can be used to support real-time performances, im-
provisations, and interactive installations. In conclusion T would like
to review some of the main themes of the text and suggest both imme-
diate and longer-term ways in which these could be projected into
future research.

10.1 Research Synergy

Practitioners recognize that there is a significant pooling of interest
in the fields of computer music composition, algorithmic analysis,
and music cognition. Tt is normal to see researchers specialized in
one field presenting work at a conference nominally devoted to a
different area. There is an awareness of cross-disciplinary research
in centers ranging from psychology laboratories to music production
facilities. Within individual lines of work, however, the reigning
strategy remains one of “divide and conquer.” For example, algo-
rithms for pitch rarely consult thythmic aspects of the material and
vice versa. Symbolic processes rarely are written to interact with sub-
symbolic ones and vice versa. Even within one division. further sim-
plifications may lead to powerful but limited results: key induction
programs, for example, are often written to address only monophonic
or only chordal input. Beat trackers may assume only slowly chang-
ing tempi or previously quantized inputs.

The “divide and conquer” approach has led to notable successes
and accounts for much of the progress in these fields to date. [t is an
old and honored scientific tradition and certainly represents one of
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our most productive methodologies. [ hope to have established, how-
ever, that so much strong work has now been accomplished from a
reductionist standpoint that the field has become ripe for more syn-
thetic research. We all know—and reductionist researchers are the
first to point out—that humans experience music as a whole, not as
the simple concatenation of independent and mute processes.

The reductionist impulse is strong because scaling systems to ad-
dress a more complete musical context is difficult. Without such
breadth, however, even some restricted problem areas may remain
intractable. At the end of an article describing several attempts to
separate the voices of a polyphonic composition using production
system techniques in Prolog, Alan Marsden writes: “It seems clear,
though, that deterministic production-system-like models are too
rigid for modelling the complex interactions which underlie lis-
tening to, or even analysing, music. . . . But even if we use a more
flexible framework, whether a constraint system, network or hybrid
system . . . a full and faithful model of any one domain is unlikely
to arise without also being a model of the full musical domain (and
possibly beyond) because the interactions between domains appear
to multifarious—the modeller must be humble in his or her objec-
tives” (Marsden 1992, 262).

Marsden points out a phenomenon well known from artificial in-
telligence research, that after an initial period of great success, re-
stricted problem domains have a tendency to run up against
obstacles that cannot be easily overcome without consulting a wider
context,

10.2 Research Directions

The best way to address a larger context in music modeling, in my
view, is to coordinate the operation of multiple processes. Synthesis
of existing research can be realized by implementing published algo-
rithms within a common framework. Groups of such processes must
then be coordinated to make their individual outputs contribute to
the emergence of higher-level structures.
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This line of research evokes the agenda of multi-agent systems, and
a number of agent architectures have already proven the viability of
these techniques for interactive music systems. The NetNeg program,
Camurri’s EyesWeb project, the Beat Tracking System and others
have established a promising foundation for multi-agent systems in
music and multimedia performance.

Isolating components of the system into relatively autonomous
agents will help smooth the transition from MIDI or performance-
based sensing to auditory inputs. As reviewed in chapter 4, adding
an auditory component to interactive systems brings them much
closer to the human experience of music. One of the primary impedi-
ments to auditory systems has been the relative expense of the input
hardware. Now that digital signal processing has migrated to the CPU
of even laptop computers, that boundary has fallen away. Though
the additional information ofan audio stream should greatly enhance
the responsiveness of machine musicians, we should not lose the
functionality already achieved by analyzing performance data. Com-
bining dedicated components as necessary can aid the design of anal-
ysis and composition systems that approximate as closely as possible
the desired behavior.

Finally, I believe there is important work to be done in realizing
the potential of these systems by pursuing a much wider range of
interaction with human musicians. They can and have assumed a
critical role in music education, as well as in analysis, performance,
and composition. Commercially, the term “interactive music” de-
scribes systems that make music without any musical input from the
user at all, providing audio that changes in synchrony with game-
playing—a byproduct of joystick movement, for example. If ma-
chine musicians are to encourage human musicmaking, a motivation
explored at some length in chapter 1, we need to find better ways
to employ them as assistants and teachers rather than simplistic
prostheses.

In this text I concentrated on the modeling of the classical reper-
toire, particularly when testing analysis systems. | think there is
much to be gained by demonstrating the power of these systems in
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situations where their performance can be readily gauged by a wide
population, particularly when that population may have little prior
experience with them. An equally important compositional stand-
point holds that computers should be used to construct previously
unknown musical worlds: “Perhaps a musical relativity admitting
multiple points of view, frames of reference and operating models is
what we require. We must educate the populace to understand that
music making can involve creating entire musical universes, each
built on its own unique assumptions and provided for inquiring
souls to explore” {(Rosenboom 1997, 39).

In these pages I have demonstrated a variety of tools, and some
strategies for combining them. There are relatively few ready-to-run
solutions here, but many templates for development. Ultimately,
tools are only useful for building something else; the attraction of
computational tools is that they can be used equally for emulating
known worlds or devising completely new ones. [ hope that T have
provided readers with something more valuable than a collection of
useful applications: ideas to catalyze new creation.
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