EEEE RS SRS E SRR SRR R RS EEEEEEEEEEEEEEE RS E R EEEEEEEEEEEEEEE R EESESEEEEESEEEEE SRS

EEEEE SRS E SRR SRR EE RS EEEEEEEEEEEEEEE RS E RS EEE RS E R EESESEEEEESEEEEE SRS

EEEEE SRS E SRR SRR E SRR RS EEEEEEEEEEEEEEE R E R R R R LR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEESEEEEESESEEEEESEEEEE SRS

*ok ok ok ok ok L R
*k%*k*x* ANTITHESIS: THE DIALECTICS OF SOFTWARE ART Khkkkhkkhhhkhhkhhkhhkkhhkhhkhd > *kkhkkhhkhhk *okkkokk kK
%%x argues that software art praxis can offer Kkkkhkkhhkhkhhkhhkhhhkhhkhhkkx 5 Kkkkkkkkkhkk *okkkokk kK
%%* new critical forms of arts practice by Kkkkhkkhhkhhhhkhhkhhhkhhkhhkkx ; Kkkkkkkkkhkk — u *okkkokk kK
*kkkkKk embodying contradictions in the interplay Khkkhhhhhhhhhkhhhkhhhhhhhhhhhhk E khkkkkhkkkkkhk - *hkkkkkkk
*k**** between code and action. Contradiction is KAKKKKKKKRKRKAARRARARARARAAR 0 AR AR Ak *kokkokkokk
*k*x*k** aglso embodied in the form the text itself Khkkhkhkkhhkhkhhkhhkhhkkhhkhhkkk E R *okkkok ok kK
%%x takes, as both a conventional piece of Khkkhkhkkhhkhhhhkhhkhhhkhhkhhkkx g R *okkkokk kK
%%%x% gcademic writing and a script written in Khkhkhkkhhhhhhkhhkhhhkhhkhhkkx E R — *okkkokkokok
%x%x Perl. Together, it presents an argument Khkkkhkkhhhhhhkhhkhhhkhhkhhkkk g R *okkkokkokk
%%*% about software art that is simultaneously Kkkhkhkkhhkhhhhkhhkhhhkhhkhhkkk g R *okkkokkokok
%%* an example of software art. Crucially, Khkkkhkkhhkhhhhkhhkhhhkhhkhhkkx g Khkkhkkkhkkkhhkkhhkkk *okkkok ok koK
**%%%x%*% Dboth the thesis and the program can be Khkkhkhkkhhhhhhkhhkhhhkhhkhhkkx 3 Kkkkkkhkkkhkkkhkkk f—‘\ *okkkokk kK
%%%x interpreted and acted upon. Khkkkhkkhhhhhhhhhkhhhkhhkhhkkk % Khkkkkkhkkkhhkkhkkk = *okkkokkokk
* ok k ok ok ok Khkkhkhkhhkhhhhkhhkhhhkhhkhhkkk g Kkkkkkhkkkhhkkhhkkk \ , *okkkok ok koK
%%%x% GEOFF COX is currently Researcher in Digital r**kxkkkkskkrkhhrkhhrhhrrhhss* % Kkkkkkhkkkhhkkhhkhkk *ok ok okok ok ok ok
*%%x%x**% Aesthetics in the Department of Information rk**xxkkkkkkrkhhkrkhhshhrkhhs* z B) *okkokokk koK
%x%x and Media Studies at Aarhus University Khkkhkhkhhhhhhkhhkhhhkhhkhhkkk E R X *hkkkkkKhk
%x%x% (DK), Associate Curator of Online Projects, Khkkhkhkhhhhhhkhhkhhhkhhkhhkkk R X jr— *kkkhkKhk
*#%%%x%% Arnolfini (UK), Adjunct Faculty, Transart EE R e) *hkkkkkKhk
**%%%* Institute (DE/US), and Reader in Art & LR R R T X kkkkkk kK
**%%%* Technology, University of Plymouth (UK). hkkhkkkhkhkhkhkkkhkkkhhkkhkkhkkkhhkkhkkhhkkhkkhkkkhkkhk k& kkkkk kKK
*kkkkk hkkhkkkhkhkkhkhkkkhkhkhhkkhkkkkkhhkkhkkhhkkhkkhkkkhkkhk k& kkkkk kKK
D R T f— j— kkkkk kKK
L R R T kkkkk kKK
D e] *kkkk kKK
B R o kkkkkk kK
B R *kkkk kKK
D R *kkkk kKK
D R o *kkkk kKK

Kohkkkkhkkhhkkkhkkhkkhhkkhkkkhkkhkkhhk ok hh ok ok hkkhkkhhk ok hkkkhkkhkkhhhk ok hkkkhk ok hkkkhkkhkkkhkhhhkhhhkhhkkkhkhhkkhhkkhkkhhkkhhkkkkkkhkkhkkhhkkkkk k% *okkokokk ok
Kohkkkkhkkhhhkhkkhkkhhkkhhk ok hk ok ok hk ko k ok k ok k ok ok k ko k ok ke ok ok k ok ok k ok hkkhhkkhkk ok k ok hkkhhk ok hk ok ok kk ok hkkhhkkhkkhkk ok hk ok hkk ok hkkhkkhhkkhhkk ok hkkhkkhhkkhkkkhkkhkkhhkkhkkkhkkkkkkkkkk k%
Kohkkkkhkkhhkkkhkkhkkhhkkhhkk ok hkkhkk ok hk ok ke k ok k ok ok k ok k ok hhk ko k ok ok ke ok ok hkkh ke ok ok k ok ok k ok ok sk ok khhk ok hk ok ok kk ok hkkhhk ok hk ok ok kkhkkhkk ok hkkhkkhhkkhkk ok hkkhkkkhkkhkkkhkkhkkhhkkkkkkhkkkkkkkkkk k%
Kohkkkkhkkhhkhkhkkhkkhhkkhhk ok k ok ok k ok hkkkhkkhkk ok ke ok ko k ok k ok k ok ok ke ok ok hkkhhkkhkk ok k ok hkkh ok k ok hk ok ok ke k ok hk ok ko k ok k ok ok k ok hkkhhkk ok hkkhkkhhkkhkk ok hkkhkkkhkkhkkkhkkhkkhhkkkkkkhkkkkkkkkkk k%
Kohkkkkhkkhhkkkhkkhkkhhkkhkkkhk ok ok ke k ok ke ok ok ke ok ok hk ok ok ke ok ok ko k ok ke k ok k ok ok k ok hk ok hhk ok k ok ok k ok h ok khhkk ok hkkhkk ok hkkh ok k ok hk ok ok ke ok ok hkkhkk ok hkkhkkkhkkkkk ok hkkhkkkhkkhkkkhkkhkkhhkkkkkkhkkkkkkkkkk k%
Kohkkhkkhhkhkhkhkkhkkhhkkhkkkhkkhkk ok hkk ok ke k ok hk ok ok ke ok ok ko k ok ke ok ok hk ok ok ke ok ok h ok ok h ke k ok hk ok ok ke ok ok hk ok ok ok k ok hk ok ok k ok hkkh ok k ok hk ok ok kk ok hkkhkk ok hkkhkkkhkkhkk ok hkkhkkhhkkhkkkhkkhkkhhkkkkkkhkkkkkkkkkk k%
Kokkhkkhhkhhhkhkkhkkhhkkhkkkhkkhkkhhk ok ok ke k ok hk ok ok ke ok ok h ok kh ke ok ok ke ok ok ke ok ok k ok ok ke k ok hk ok ok kk ok hkkhhk ok hk ok ok ke k ok hkkhkkkhkkhkkhhkkhkk ok hkkhkkhhkkhkk ok hkkhkkkhkkhkkkhkkhkkkhkkhkkkhkkkkkkkkkk k%
Kohkkkkhkkhhkkhkkhkkhhkkhhkkhkkhkk ok hk ok ok hk ok hk ok ok ke k ok hkkhhkk ok k ok ok ke ok ok hk ok hkk ok hk ok ok kk ok hk ok ok ke k ok hk ok ok kk ok hkkhhkkhkkhkkhhkkkkkkhkkhkkkhkkhkk ok hkkhkkhhkkhkkkhkkhkkhhkkhkkkhkkkkkkkkkk k%
Khkkkkhkkhhkkkhkkhkkhhkkhkkkhkkhkkhhk ok ok ke k ok hk ok ok ke ok ok hk ok h ke k ok hk ok ok ke ok ok h ok ok ok ke k ok hk ok ok kkhhkkhhk ok hkkhkk ok hkkhhkkkhkkhkkhhkkhkk ok hkkhkkkhkkkkkkhkkhkkkhkkhkkkhkkhkkhhkkkkkkhkkkkkkkkkk k%
*%%%k%% Digital Aesthetics Research Center *#kkkkkkkkhhhhhhhhhhhrhhhhhhhhhhhrhhhhh ok k % Kk khkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkxkxkxkxkxkxkxdxdx* GEOFF COX **x*x*xx**
%k%x%x%% http://www.digital-aestetik.dk khkkkkkkkhkkhhkkhkkhkkhhkkkkkkhkkhkkkkkkkkx hhkkkhkkkhkkhhhkhkkkhkkhkkhhkkhkkkhkkhkkkhhkhhkkhkkhkkhhkkhkkkhkkhkkkkkkhkkkkkkhkx

R R R R R R R R R R R R R R R EEEEEEEEEEEEEEEREEEE R R R R R R R R R R R R R R E R EEEEEEEEEEEEREEEE R

O
m
M
O
R R R R R R R R R R R R EEEEEEEEEEEEEEEEEEE R g R R R R R R R R R R R R R EEEEEEEEEEEEREEEREEEE R R
*kkkkx ISBN 8? 91810 15 9 LR R R R R R RS R R RS R R R R R R R R R R SRR R R R R EEEEEEEEEEEEEEERE RS

*kkkkx

*kkkkx LR R R R R RS R RS R R R R R R R R R R R SRR R R EEEEEEEEEEEEEEERE R
LR R R R R S RS R RS R SRS R R R R R R R SRR R R R EEEREEEEEEEEEEEEEERE RS

*kkkkx LR R R R R RS R RS RS R R R R R R SRR R R R R EEEEEEEREEEEEEEEEEE RS

ANTITHESIS: THE DIALECTICS OF SOFTWARE ART

GEOFF COX

Antithesis: the Dialectics of Software Art

® 2010, Geoff Cox

Published by Digital Aesthetics Research Center, Aarhus University, DK
First written in 2006, Doctoral thesis, University of Plymouth, UK
Printed by Print-on-Demand-Worldwide

ISBN 87-91810-15-9

This publication has been made possible through the Digital Urban
Living Research Center, partly funded by the Danish Council for
Strategic Research grant number 2128-07-0011

@ NARC
DIGITAL AESTHETICS
RESEARCHCENTER

GNU Free Documentation License. Version 1.3, 3 November 2008
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.
http://www.gnu.org/licenses/

A PDF of the book is available at http://darc.imv.au.dk/
Other reference materials available at http://www.anti-thesis.net/

ANTITHESIS: THE DIALECTICS OF SOFTWARE ART

GEOFF COX

Digital Aesthetics Research Center
http://www.digital-aestetik.dk/

preface
introduction

software art
2.1 working definitions
2.2 software materialism
2.3 software art history

emergent history
3.1 historical materialism
3.2 negation
3.3 emergence

complex technology
4.1 technological development
4.2 dynamic processes
4.3 complexity and dialectics

complex labour
5.1 complex workers and machines
5.2 work after work
5.3 software work

software praxis
6.1 software art work
6.2 software action
6.3 coda

references
7.1 end notes
7.2 bibliography
7.3 projects cited

009

011

016
018
032
042

057
058
067
076

081
083
093
102

110
111
120
131

144
146
153
161

167
167
199
227

It is one of the assertions of the book that software
art praxis can offer new critical forms of arts practice
by embodying contradictions in the interplay between
code and action. Contradiction is also embodied in the
form the text itself takes, as both a conventional piece
of academic writing (referred to herein as thesis) and

a script written in Perl. Together, it presents an
argument _about software art that is simultaneously an
example _of software art. Crucially, both the thesis
and the program can be interpreted and acted upon.

The book, derived from my Doctoral thesis completed in
2006, includes references to a number of other essays
written during the time of study, as well as some

key collaborative projects: notably the exhibition
Generator , the publication Notes Towards the Complete
Works of Shakespeare , and the project _The UK Museum of
Ordure_ (details of all can be found in the ‘references’
section at the end of the book). Although referred to in
the text, the projects do not illustrate the thesis but
embody its argument. Similarly, the text is not a linked
narrative to these projects but an example of software
art practice in itself. In form and content, the thesis
aims to express a dialectics of software art; expressing
a move from in-itself to for-itself.

Finally, I would like to thank Roy Ascott and Andreas
Broeckmann who supervised the thesis. Thanks also go to
all those who have helped in its preparation and the
production of related projects: Stuart Brisley, Rowan
Green, George Grinsted, Joasia Krysa, Lau Thiam Kok,
Mike Lawson-Smith, Alex McLean, Hugo de Rijke, Victoria
de Rijke, Tom Trevor, and especially Adrian Ward. The
publication of the book has been generously facilitated
through the Digital Aesthetics Research Center, Aarhus
University, following initial support from the Faculties
of Art and Technology at the University of Plymouth for
the research stage. As the text was first written in
2006, some details are a lttle outmoded in places, but I
do hope its subsequent publication is not too late to be
useful in some way to its readers.

GC

#!/usr/bin/Perl

print <<antiTHESIS;

the dialectics of software art

Geoff Cox

1. *introduction¥*

‘Beyond the words being read, others lie in wait to
subvert and perhaps surpass them. Nothing any longer can
be taken for granted; every word has become a banana
peel. The fine surface unity that a piece of writing
proposes is belied and beleaguered; behind it, in

the realm of potentiality, a dialectic has emerged.’
(Mathews, in Motte 1998: 126)

An underlying assumption of this thesis is that software
is not simply a functional tool but expresses wider
cultural and technological processes that extend the
critical potential of arts practice. In this way, the
approach taken follows a critical tradition that aims
to challenge the usual relations of production when
making art using computers, where the efforts of the
programmer are often hidden, and remain subordinate to
that of the end-product or artist. Like the programmer,
the source code that lies behind a software artwork also
remains relatively hidden and consequently difficult to
consider as an integral part of the work. The approach
advocated in this thesis, in contrast, emphasises the
process rather than the end-product - literally the
‘work’, not the object of art. Clearly this is not
without precedence, but in the case of ‘software art’
the activity of work can be applied to both programming
and the program (and even the result of these processes
that in itself might be a further generative process),
as well as the other material required for the program
to run (which together is referred to as software).
Indeed, software art might draw attention to any one

or combination of these activities, but in general

is considered to be not the artwork resulting from
software, but software as artwork.

1

12

The thesis begins with a general overview of software
art and culture (chapter 2), including some of the
historical influences such as arts practice that have
developed in the conceptual tradition and that draw upon
systems theory. The chapter pays particular attention to
the currency for the term software art, in contrast to
the term ‘generative art’ associated with algorithmic
and computer-based practices that tended towards an
emphasis on more formalist concerns. Contemporary
definitions of software art express both lines of
continuity and discontinuity from these previous modes
of creative production, but in general tend towards an
emphasis on social context. Hence a critical practice in
software art demonstrates the potential to be developed
relative to the interactions of technical, cultural and
political processes. Software art appears to be well-
suited to comment upon the ways in which these processes
increasingly utilise software but also ‘act’ like
software. A critical practice in software art (something
this thesis argues for) arises from these reflexive
conditions, in which the form the work takes and its
subject matter are entwined.

Software is always about itself in the sense that its
source code both expresses what it will do, and does
it, at the same time. That software appears to express
this dual state of being and becoming, is analogous to
a dialectical understanding of historical processes
(chapter 3). These processes are thereby understood

as dynamic and emergent phenomena that are analogous

to the inner workings of software, and to systems in
general that express ongoing processes of development
and feedback. Historical materialism, rather than
expressing a historical continuum, conceptualises the
relation of the past to the present as a dialectical
relation of ‘what-has-been’ to the ‘now’. To furnish
this discussion, the dialectical method is described

in more detail, and a position is adopted that stresses
the importance of negation and the retention of
contradiction, rather than any reconciliation at the point
of synthesis. Like software, the approach suggests that
nothing is finished or resolved but is in a continual state
of becoming, appropriate to its emergent properties.

Building upon this dialectical understanding, the
historical development of informational technologies
can also be seen to express lines of discontinuity

and continuity from previous modes (chapter 4) -
discontinuity of technical form but continuity of
capitalist logic. The contemporary network structure,
for instance, although arranged in dynamic and
distributed forms, can be seen to express control and
feedback like any other system. A critical tradition
that pays attention to systems, informed by both
dialectical materialism and cybernetics, can be useful
in revealing some of the new antagonisms that emerge. A
problem arises in that the control expressed in complex
systems remains relatively hidden, as it is expressed
in ever more complex and ‘immaterial’ formations that
obscure historical and material conditions, as well as
the social consequences. Rather than an understanding
of complexity and immateriality legislating against

a dialectical approach (as is the case with much
post-Marxist thinking), this thesis draws together

a simultaneous understanding of complex systems and
dialectical materialism, to take account of these new
formations and provide critical insights into the power
relations at work. This represents an optimistic turn
for a critical art practice through software art, by
drawing attention to the ways in which disorder can lead
to a new sense of order (which leads to further disorder
and so on).

In this way, dialectics is applied to an understanding
of the conditions in which both the programmer and
program can be seen to work, and produce artwork as
software (chapter 5). Such attention to formations of
labour derives from an understanding of its potential
to express deeper social antagonisms, developed as a
result of the increased collective and communicative
nature of labour, and the recognition that social
relations are embedded in humans and machines. The
‘machinic’ production of software presents a suitable
case study in this respect, and the contradictions that
arise from the open source movement and production

of free software are particularly revealing as

both a condition of, and reaction to, contemporary
network social forms. Like the drudgery of work in
general, the production of software is taken to be

a negative condition under capitalism. Therefore a
number of oppositional tactics are proposed, such

as the refusal to work (non-executable code) or by
working in a negative mode or unruly manner (dirty or
messy code) outside the orthodoxy of passive working

13

14

(analogous to proprietary models of clean and pure
code). The argument is that software art holds the
potential to make apparent contradictions within the
relations of production, as well as be programmed to
act in a disruptive manner itself, by calling upon its
dialectical properties.

This way of working rejects determinism associated

with software, for something far more speculative

(and ‘artistic’ even). The final part of this thesis
(chapter 6) examines the deployment of software in an
artistic context, by concentrating on the work involved
in writing code and the work that the code performs

when executed. In the spirit of critical practices

that seek to transform the technical apparatus, it
further emphasises how dialectical thinking remains
productive to understand how transformation is inherent
to software. As a consequence, it is suggested that a
critical practice in software art seeks to reveal these
contradictions, with particular attention to source code
as an expression of potential action. This performative
dimension of code is important, as it emphasises the

way that coding practices can break out of the ‘means-
end’ chain of traditional software production and arts
practice. In this way, a focus on coding practices,
code, and the execution of code represents the
privileging of potential - the potential that remains
within and is ready to come into being. Therein lies the
possibility of a critical practice in software art - and
this is referred to as ‘software praxis’.

As well as taking the form of a conventional research
study, the thesis is simultaneously presented as
software. The suggestion is that the critical potential
of software art is demonstrated by the integration of
theory and practice, in parallel to the way in which a
practice-based submission for PhD is informed by theory.
An understanding of software as art is extended to the
presentation of a thesis as software, as something that
can be read and that can be executed. Thus, this text
aims to exemplify coding or programming as something
that is to be executed or that embodies action, making
a parallel between the production of the work itself
(as both artwork and thesis) and the potential for its
transformation. The text is both about software art and
an example of software art.

On a technical level, this thesis has been produced
using TextEdit 1.3 (v202) on a Macintosh PowerBook

G4, running Mac OS X software (version 10.4.2) and
saved as Plain Text (.txt).[1l] It is simultaneously a
Perl script or program. The program that interprets

or compiles Perl code is typically called ‘/usr/bin/
Perl’ - hence the enhanced title of this thesis. Perl
programs are generally stored as text source files such
as this one, then translated or compiled into machine
language by other programs (interpreters or compilers)
at run-time.[2] The Perl script can be executed by
typing ‘perl’ and the name of the file into a Unix
command line shell (for more precise instructions on
this, see note [3]). If run, the script will change
text characters in the thesis and reposition them. Once
the text has reached a critical state of disorder, the
thesis will be published on the project web site and
this version will be released under the Libre Commons
License so as not to legislate against - and indeed to
invite - its further development.[4] In the running of
the program, this thesis expresses labour, action and
new knowledge. In collapsing form and content, the aim
is to position the thesis in terms of its reflexivity,
and to exemplify the speculative potential of software
art practice, rejecting fixed definitions or outcomes.
Indeed the program performs, is thoroughly ‘write-able’,
and reflects its intrinsic contradictory and potentially
disruptive qualities, in the dynamic interplay between
source code and action.

The thesis ends with a deliberate mistake. The last
sentence contains no full stop, leaving the argument
with an indeterminate ending. This is important on a
functional level, as a full stop here would prevent the
program from running. It also provides a dialectical
composition that makes further reference to creative
practices that employ constraints and then introduce an
‘anticonstraint’ to break the symmetry of the system.
[5] The quote by Harry Mathews at the beginning of

this introduction exemplifies this position, and how
algorithms can be used to compose and decompose texts so
as to demonstrate their latent dialectical potential.
Such examples can be seen to inform the approach taken
with this thesis, both in the absence of a full stop

and more importantly by using the ‘anticonstraint’
software (antithesis) to break the system of constraints
established by the finished work (thesis).

15

16

2. *software art*

‘Earlier much futile thought had been devoted to the
question of whether photography is an art. The primary
question - whether the very invention of photography

had not transformed the nature of art - was not raised.
Soon the film theoreticians asked the same ill-considered
question with regard to film.’ (Benjamin 1999d [1936]: 220)

Software is not simply a functional tool but expresses
wider cultural and technological processes and as

such, holds the possibility of extending the critical
potential of arts practice. In saying this, a contiguity
is struck with previous technologies that threatened
some of the founding principles of what constitutes art,
how widely available it should be, and what purpose it
serves. But whether software art is art is the wrong
question to ask. Rather, contemporary practices and the
emerging discourse in software art reveal not only how
the nature of art may be subject to transformation but
also that transformation is inherent to software culture
itself. Accordingly, this chapter presents a general
overview of software art and culture. In doing so, it
stresses the ways in which technical, cultural and
political processes increasingly utilise software but
also can be seen to ‘act’ like software.

First of all, the term software needs some further
description. Software refers to a computer program and
the resources related to it that act upon the hardware
of the physical machine components and machine. In

more detail, this means software includes not only the
instructions written in a particular language (such

as Perl) as the program, but also the other materials
required for it to run, that are usually combined for
distribution. As a more general description, software is
useful in this respect as it refers to the wider context
within which the program runs. But it is also important
to stress that it is the program itself as the source
code that the computer executes. These instructions

are loaded into memory, interpreted and then executed
(or ‘run’) following the instructions as programmed
until termination or an error is detected. Hardware is
worked upon, and software performs the work. This link
to performance also clarifies something about the use

of the term ‘software art’, in describing not merely
software used to produce art (a means to an end), but
the software itself as the artwork (and this issue is
something that the final chapter will return to in more
detail). In other words, the programmers put the pre-
existing hardware to work, in a similar way to artists
producing concepts and manipulating materials in more
traditional forms. There is little new in placing
emphasis on process rather than end-product, but the
assertion of this thesis is that software art exemplifies
process-orientated practice in a way that lends itself
to critical work appropriate to contemporary conditions.

Section 2.1 of this chapter defines the contemporary
practice of software art, in comparison to the
historical influence of ‘generative art’ and ‘computer
arts’ practices of the 1960s and 70s. Clearly there

have been many previous examples of artists and writers
generating creative work in an algorithmic manner, using
instructions and contraints, whether using computers

or not. These principles have been especially explored
in the parallel between program code and literature,
suggesting an analogy with the linguistic distinction
between syntax and semantics. Rules underpin all
software practices, even those that seek to undermine
these rules. Despite this, a general view seems to

have emerged that older definitions associated with
‘generative art’ stress the formal rule-based and
syntactical properties of software, and thus do not
place sufficient emphasis on semantic concerns and social
context. Although in general this thesis subscribes

to this position and so adopts the term software art,

it also retains formal concerns that are essential to
understand the more cultural aspects and the generative
or transformative aspects of software. It is argued that
taken together, the terms generative art and software
art emphasise contradictions inherent to both and
between the two.

17

Section 2.2 elaborates upon the cultural aspect of
software, emphasising some of the relatively hidden
material concerns of software production; evoking a
tradition of literary criticism and cultural studies.
A closer engagement with culture reveals it to be

an emergent, even generative, phenomenon that any
criticism should address to utilise and develop
appropriate methods that in themselves can adapt to

18

changed circumstances. What might broadly be referred
to as software criticism attempts to do this, in
recognition of practices that acknowledge dynamic
processes, structures and events that take place when
software runs. Both operational understanding and
more speculative inquiry are required to open up the
possibilities for a critical practice in software art
and culture - both following and breaking rules as the
previous section suggested - that is critical of itself
and that understands the historical conditions of its
production. Examples are introduced here to establish
software art as a coherent field of practice.

These practices build upon previous practices, and
section 2.3 situates software art in the context of

a broader art history and culture. There are many
parallels to non-computer-based practices and this
demonstrates the value of a historical perspective
(but is not meant as a comprehensive history of
software art). For example, in the 1970s and in
parallel to the increasing visibility of computer
technologies in culture, the term software was
employed as a cultural metaphor to indicate a shift
away from an emphasis on the (hardware) object of art.
In this way, software art can be seen to operate in a
conceptual tradition by placing emphasis on code as
well as its execution, just as conceptual art’s
articulation of the ‘dematerialisation’ of the art
object previously threw emphasis on the ideas and
process of the artwork. Another clear historical
influence on software art practice are Dadaist tactics,
presenting a negation of the dynamic, transformational
potentialities of technology and culture. However,
these once radical practices now appear commonplace.
For instance, techniques such as montage are now
typified by computer techniques, and oppositional
tactics ever more appear to run the risk of easy
recuperation. It is suggested that the challenge for
a dialectics of software art is to maintain
contradiction in the process of transformation,

for this is where politics is evident and where
re-invention takes place.

Practices that combine the fields of art and technology
have a complex history and employ a contested range

of terms. The term software art has become popular to
describe the contemporary artistic preoccupation with
software production. Certainly ‘media arts’ is far too
broad a description and one that would focus attention
too heavily on the ‘medium’ and ‘mediation’ of software
rather than emphasise its dynamic properties, processes
and metaphors. Software art is clearly not just media
art, as it expresses more complex processes than simply
something mediated between sender, apparatus and
receiver.[1] To contest whether the term or category
software art is applicable, or useful even, illustrates
part of the process of how terms that combine art

and technology enter the public realm, and become
normalised by festivals, conferences, publications,

PhD submissions, and so on. This recuperative process
is echoed in Alexei Shulgin’s comments about the term
‘net.art’, which became useless once it gained wider
acceptance (1997). Whilst recognising this danger, the
intention of this thesis is to stress that software

art can remain useful as a practice and discourse, in
revealing a range of contradictory tendencies in both
art and software. The argument relies on the inherent
character of software to express potentially disruptive
qualities in the dynamic interplay between source code
and action.

The recent attention given to software art is partly
due to a range of cultural events that have provided
critical consideration of the activity of programming
and the materiality of code. Of particular importance
are the _Readme_festival and its associated _Runme_
software art repository in Moscow, Helsinki, Aarhus,
Dortmund (2002-2005), and the transmediale media arts
festival in Berlin. Until recently, the transmediale
festival included a category ‘artistic software’, and
the jury statement of 2001 has become a key reference
point for any definitions that have since emerged. For
what was at that time a new festival category, jurors
Florian Cramer and Ulrike Gabriel carefully drew
attention to the structures of programming that lie
behind the work (200la). They argued this was part of a
historical lacuna that tended to overlook the material
and aesthetic aspects of software, predicated on the
fact that programming code is inevitably a part of all
art that is digitally produced, whether acknowledged

19

20

or not. Elsewhere too, Cramer has insisted that all
digital art is software art in as much as it relies

on, or is assisted by, other software to run, be it a
browser, operating system, or network protocols (in
Goriunova & Shulgin 2003). In this broad sense, if all
digital art is software art, it could also be argued
that all software is generative, in that it runs a set
of processes and on execution a basic element is made to
generate other forms and processes. The 2004 festival
definition of software art written by Andreas Broeckmann
and Cramer provided a useful description in this
respect:

‘Software > Generative Art: The Software category
includes projects whose main artistic material

is program code, or which deal with the cultural
understanding of software. Thus, software is not
understood as a functional tool serving the “real”
artistic work, but as a generative means for the
creation of “machinic” and social processes. Software
art can be the result of an autonomous and formal
creative practice, but it can also refer to the cultural
and social meaning of software, or reflect on existing
software through strategies like collage or critique.’

Interestingly both generative and software practices

are included here, as this is an open call for festival
submissions. Distinctions can be made between these
terms, although Olga Goriunova pragmatically states

that software art and criticism is justified in its very
usage, by the fact that people find it a useful focus for
discussion and to grant exposure to emergent practices.
This is certainly the intention of the Readme_ software
art festival that she co-organised (with Shulgin); more
particularly it aims to draw attention to works that

lie outside mainstream festival culture and thus build
an alternative community and discourse (in keeping

with Shulgin’s earlier comments on the fate of net.
art). For instance, many examples of practice associated
with the free software movement would not normally be
considered within an artistic frame of reference. The
festival therefore presents an alternative curatorial
strategy, one in which people can submit works to an
‘open’ repository that is not selected or juried in

a conventional manner. The associated _Runme.org_
software art repository is built upon an open database.
Submitted works are contextualised, and this is not
without difficulties particularly around categorisation,

but in general the festival’s openness attracts a wider
constituency than most, including demo-coders for
instance, and those that subscribe to an open source
ethos. As a result it suffers from a confusion of art
and non-art codes but productively so. The working
principles of free software are simply applied to its
exhibition in the spirit of shared and collective
development, in a manner that challenges the commodity
status of art. The conventions of intellectual property,
fees and prizes are substituted for the symbolic capital
of the open source world.

Software art can be seen to challenge many of the
precepts of arts practice, in the spirit of Walter
Benjamin’s claim about how new techniques transform

the very nature of art. In Bill Nichols’s ‘The Work of
Culture in the Age of Cybernetic Systems’, this line of
argument has been adapted to respond to issues around
artificial life. He says ‘a presumption is made about

a fixed, or ontologically given nature to life or art,
rather than recognising how that very presumption has
been radically overturned’ (1988: 37). His statement is
no simple call for an end-of-art or end-of-life, but a
redefinition of the terms and possibilities on offer. In
any new definitions that emerge, there is some danger of
making fixed definitions in a way that contradicts the
very principles of software as something generative and
non-definitive: work in progress. What is required is the
constant redefinition of the terms and possibilities on
offer.

software either/or generative art

There are a number of competing definitions for
generative art that establish correspondences between
systematic and procedural approaches to production,
across a variety of old and new media. In seeking

to clarify what constitutes generative art, Philip
Galanter’s definition is much cited and positions
generative art as broadly rule-based:

‘Generative Art refers to any art practice where

the artist uses a system, such as a set of natural
language rules, a computer program, a machine, or other
procedural invention, which is set into motion with some
degree of autonomy contributing to or resulting in a
completed work of art.’ (2003)

21

22

In a general sense, there is broad agreement that
generative art is a term applied to artwork that is
automated by the use of instructions or rules by which
the artwork is executed. The outcome of this process

is thus unpredictable, and could be described as

being integral to the apparatus or situation, rather
than a direct consequence of the artist’s intentions.
Importantly, the description recognises that other
agencies are at work, including human agency as an
integral part of the production process in setting

the rules. It is this line of thinking that informed
the curation of the exhibition _Generator_(2002/3),
combining the work of artist-programmers and artists
from a conceptual tradition who employ rules and
instructions in their practice. The work of Alex McLean
and Adrian Ward were presented in parallel to Sol LeWitt
and Yoko Ono amongst others (the website contains more
details on the exhibition [2]). All work was considered
‘live’ or performative in the sense that the artwork
was generated from a process. To stress the point about
agency, two examples are offered: Ono’s _Mend Peace for
the World (2001), consisted of broken dishes from around
the world and materials to mend them. The instructions,
to be executed by those visiting the exhibition, were:
‘Keep adding more crockery as it gets fixed. Keep wishing
while you mend.’ In contrast, McLean’s _forkbomb.pl
(2001), was a Perl script designed to take a computer
to its operational limit. A computer under such

high load causes unpredictable results that pattern
differently depending on the operating system it runs
upon. Both examples - one tending towards reparation

or reconstruction, the other towards destruction

- emphasise a rejection of what one might refer to

as ‘software-determinism’. They demonstrate how the
producer can concede control to some extent - and this
is an important qualification - over the production of
the work but that human intervention is paramount to
(software) production. In other words, the artwork is
necessarily programmed - with or without the aid of a
computer. Whether the artist was involved in the writing
of the software or not is beside the point. Someone was.

In contrast to what has been said about these examples
from _Generator_, much of the work in the field of
generative art stresses issues of unpredictability and
autonomy rather differently.[3] Defining generative art
in 2003, John McCormack adds the influence of biology

and emergent behaviour, and in particular the terms
‘genotype’ and ‘phenotype’. He argues that software

can be seen in terms of ‘genotypes’ (DNA in cells) as
machine code, and ‘phenotypes’ (the higher level form of
behaviour) as what happens when it runs. The programmer
would set the parameters that defined the fitness, and

the software would evolve ‘autonomously’. Put simply,
McCormack generalises that the authoring process is
directed towards a genotype as the specification of a
process, and when this process is executed it generates
the phenotype as the ‘experience of the artwork’ (in
Brown 2003: 5). It is worth noting the position of the
artists in this description as responsible for the DNA
of the artwork in the perpetuation of a ‘creationist’ myth
(which chapter 4 will dispute, along with biological
determinism in general). Clearly other external factors
are at work in creative production in art and life.

In his essay ‘What is Generative Art? Complexity Theory
as a Context for Art Theory’ (2003), Galanter also
refers to generative systems as displaying emergent
behaviour, but interprets ‘autonomous systems’ at far
too literal a level when he claims: ‘Generative art

is ideologically neutral’ (2003). This simply cannot

be the case if such a process is already seen to be
programmed. Any claims of neutrality ironically only
serve to prove the point of how ideology works, even in
the descriptions that deny its very presence. Galanter’s
definition of generative art is an eclectic one,
contributing to wider discussions around ‘not just art’
and cultural practices which allows for the inclusion of
algorithmic composition, as well as practices that do
not necessarily involve computers at all. But to Inke
Arns, this is part of the problem as the definition is
far too inclusive, applied across many fields of practice
that focus attention on the end-product of a process.
She quotes Tilman Baumgartel’s article ‘Experimental
Software’ (from 2001) to stress the distinction between
earlier work using computers and software art, where the
latter is:

‘... not art that has been created with the help of a
computer, but art that happens in the computer, software
is not programmed by artists in order to produce autonomous
artworks, but the software itself is the artwork.

What is crucial here is not the result but the process
triggered in the computer by the program code’ (in Arns
2004: 184-5).

23

24

Both Galanter and McCormack’s statements do appear

to verify an emphasis on end-product as opposed to
Baumgartel’s emphasis on process. Arns is additionally
thinking of statements such as: ‘the aesthetic value

of code lies in its execution, not simply its written
form’, and takes this to foreground execution (see

Cox et al 2001). Admittedly there is a danger of
emphasising the formal and syntactic aspects in using
the term generative art. This statement was intended

to emphasise the interaction between source code and
its executed form. The emphasis on execution is thus a
description of process, wherein the end-product remained
a by-product. An example cited was McLean’'s _forkbomb.
pl (2001, described earlier in this section), to

argue for the aesthetic appreciation of source code in
parallel to a visualisation of the process when run.
This is in fact how it was exhibited as part of the
_Generator show, with the source code as an integral
part of the work. Nevertheless, the criticism Arns is
making is that the privileging of execution, even if in
combination with source code, avoids some contemporary
practice associated with software art. She is thinking
of programs that are not necessarily executable, or
executable only on a conceptual level. Following these
remarks, the earlier statement that all software is
generative should be further qualified by adding that
this applies in the most abstract of ways (for instance,
with a concept). Any definition of generative art
requires improved description to shift emphasis from
the object generated to the process of generation. To
describe this generative or transformative aspect and
in order not to dismiss it out of hand, more historical
detail is required to stress its importance to an
understanding of cultural activity using software, and
of course to an understanding of software art.

generative grammar

To generate something accounts for most creative
activity in a very general sense. A more specific use

of the term in relation to arts practice can be traced
to a lecture ‘Generative Art Forms’ (presented at the
Queen’s University, Belfast Festival) in 1972, by the
Romanian sculptor Neagu (who also founded a Generative
Art Group).[4] A more common reference is Noam Chomsky'’s
Syntactic Structures(1972), first published in 1957,
often cited as the source of the concept ‘generative

grammar’ (sometimes referred to as ‘transformational
grammar’). Chomsky assumes that somehow grammar is
given in advance (‘hard-wired’) and therefore human
consciousness contains innate grammatical competence
that is pre-social (1972: 85).[5] This explains his
interest in ‘syntactic structures’ by which sentences
are constructed in particular languages to understand
the properties that underlie successful grammars (1972:
11). This is an abstract endeavour to discover broad
principles that can be applied to languages in general
and thereby provide a method that can be applied to
specific languages.

These concerns have also been the inspiration for much
artistic experimentation using computers, as it lends
itself to the procedural qualities of programming as
an expression of transformative grammar.[6] An example
is Bill Seaman’s _The World Generator_ (1996) that
generates emergent meanings by enabling users to make
choices from a spinning interface of different media-
elements and processes (including objects, images,
texts, music and movies). His claim is that this
‘techno-poetic mechanism’ generates a poetics that is
extended by computer-based technologies, becoming what
he calls ‘recombinatory poetics’. As a consequence,
Seaman asks whether this constitutes a new form of
writing or a ‘new form of evocative exchange which
cannot be defined in terms of past linguistic discourse?’
(1999). Like Chomsky’s work, this approach might be
seen to suffer from universalism. Both the machine and
consciousness in these examples are taken to follow
rules at the risk of diminishing other factors, such as
social interaction that is essential to the expression
of action in the world.[7]

More commonly cited in connection with recombinatory
work is the ‘Ouvroir de Littérature Potentielle’
(OuLiPo), a group of writers and mathematicians founded
in 1960 by Raymond Queneau and Frangois Le Lionnais.
Their concerns were syntactic rather than semantic,
concerned with contraints ‘brought to bear on the formal
aspects of literature: alphabetical, consonantal,
vocalic, syllabic, phonetic, graphic, prosodic, rhymic,
rhythmic, and numerical constraints, structures, or
programs’ (Le Lionnais, in Motte 1998: 29). An example
of automatic transformation of text is Jean Lescure’s
‘S+7’ method in which a text is taken and each word (‘s’

25

26

for substantive) is replaced by the seventh following it
in a dictionary. Queneau points out that if a 2000 word
dictionary is used, the ‘S+2000’' method would produce

an exact copy of the original (Motte 1998: 61). In this
sense, and according to Georges Perec: ‘the Book is a
cryptogram whose code is the Alphabet’ (in Motte 1998:
96). Rather than a chance operation (such as in the work
of John Cage), Oulipean texts are generated through

the use of constraints or rules, wherein any ideas
associated with freedom of expression is undermined.

A further Oulipean example that lends itself to
computation is Queneau’s Cent Mille Milliards de
Poemes_ [one hundred thousand billion poems] (1961) in
which ten sonnets can be arranged according to formal
rules. To each of the ten first lines, the reader can add
any of ten different second lines, and so on. The sonnet
has fourteen lines, so the possibilities are of the
order of 10 to the power of 14, or one hundred trillion
sonnets. Le Lionnais makes a claim for the significance
of this in terms of technical superiority: ‘the work
you are holding in your hands represents, itself alone,
a quantity of text far greater than everything man

has written since the invention of writing’ (Motte
1998: 3). Potential writing in this sense implies the
impossibility of its potential reading - and both are
exponentially bound. The full potential of this work
lies unrealised for practical reasons, perpetually in a
suspended state of its further reading. In an experiment
to exploit the potential of the computer, Paul Braffort
was commissioned to program some of the OuLiPo works,
such as Queneau’s _Cent Mille Milliards de Poemes_. In
describing this enterprise as ‘algorithmic literature’,
Paul Fournel argues that the machine allows the author
to dominate the existing relations of computer, work
and reader in new ways (Motte 1998: 140-2). Originality
is clearly not the point in this work; originality is
mentioned in connection to mark a distinction from
other practices such as the work of the ‘algorists’
(associated with Roman Verostko) who explore the ‘form-
generating’ possibilities of algorithms but at the same
time their originality, in a way that parallels the
conservative paradigm of originality in arts practice
(2004).

Creative endeavour is seen to be programmable, and
is considered in terms of its execution. But far

from a deferral of authorship, the computer offers

new potentialities in this way. In ‘Prose and
Anticombinatorics’, Italo Calvino demonstrates the
potential of the computer in serving this purpose,
proposing that:

‘... the aid of the computer, far from replacing

the creative act of the artist, permits the latter
rather to liberate himself [sic] from the slavery of a
combinatory search, allowing him also the best chance of
concentrating on this “clinamen” which, alone, can make
of the text a true work of art’ (in Motte 1998: 152).[8]

Thus, the potential for permutations or ‘combinatorics’,
what Le Lionnais calls a ‘combinatory literature’, is
expanded greatly by the computer and its systematic
compositional structure. This is further developed by
Cramer’s web site _Permutations_ (1996-2000), which
reproduces combinatory text systems, such as those of
Queneau, in digital form. Many programmers would deny
the ambiguity of expression in their work - it either
works or does not in logical terms - but clearly there
are poetic elements in code. The programmer Donald Knuth
makes this apparent by pointing to programming as an
‘aesthetic experience much like composing poetry or
music’ (1981l: v). In The Art of Programming , he draws
analogies to formal experimentation in literature when
he produces codes to guide the reader through a series
of workshop exercises. In the section ‘Procedures for
Reading This Set of Books’, the instructions for reading
the book are arranged in an algorithmic form that
directly addresses the reader:

‘l. Begin reading this procedure, unless you have
already begun to read it. Continue to follow the steps
faithfully; [...] 5. Is the subject of the chapter
interesting you? If so, go to step 7; if not, go to step
6. 1l4. Are you tired? If not, go back to step 7; 15. Go
to sleep. Then, wake up, and go back to step 7.’ (1981:
XV-xvi)

Work, such as this, using executable formal
instructions, makes explicit the idea of software as
potential literature, whether running on a computer or
not. The analogy to language is further expressed in
terms of input-output of data (abbreviated to ‘I/0'),
with the input often referred to as reading and output
as writing - hence the common use of the description
‘read me’ for explanatory texts). This is a similar

27

28

approach to Calvino’s ‘How I Wrote One of My Books’,[9]
referring to his own novel If on a Winter’s Night a
Traveller (1981), in which he produces an algorithmic
description of the book’s structure:

‘The reader who is there (L) is reading the book that is
there (1); The book that is there relates the story of
the reader who is in the book (L’); The reader who is
in the book does not succeed in reading the book in the
book (17); The book that is there does not relate the
story of the reader who is there; The reader who is in
the book claims to be the reader that is there [...].’ (1995)

It reads like a source code to the earlier novel. It is
worth emphasising that an engagement with this thesis
operates overtly in terms of reading and writing: it is
a ‘read me’ (the text) but also carries the invitation
to ‘run me’ (the program). Indeed all conventions of
writing and reading, of both text and code, have in
common that they are part of a set of abstract (coded)
systems of input and output. In so-called natural
languages , this is limited by the numbers of phonemes
(letter-sounds), arranged in strings (which may be a
sentence) or finite sequences with sentences - although
the sentences are infinite. In other formalised systems
such as programming, the logic adheres to rules and

so can be considered a language like other artificial
languages, with its own particular grammar that
generates its grammatical sequences. What is significant
about the work of the OuLiPo group is their tendency

to follow an algorithm to the rule and then break it,
introducing a flaw in the system to disrupt the symmetry:
‘because when a system of constraints is established,
there must also be anticonstraint within it. The system
of constraints - and this is important - must be
destroyed.’ (Motte 1998: 20)

Programming languages can clearly be seen in terms of
their grammar and syntax but also their poetic spatial
arrangements, sometimes referred to as ‘code literature’
or ‘code poetry’ (typified in 2004 by an exhibition to
assess the aesthetic implications of digital poetry:
_pOesls: Digitale Poesie , held at the Kulturforum
Potsdamer Platz, Berlin). The Perl programming language
has often been used to ‘port’ other poems, such as

Eric Andreychek’s _Jabberwocky as seen in the Perl
Poetry contest of 2001. While the output of the poem

is not significant, the three characters of the poem

are represented by three dysfunctional processes if
the program is executed. It does not exactly crash the
system it runs on, but does express the potential of
algorithms to both compose and decompose texts.

generative both/and software art

In the many comparisons between software art now and
the older practices associated with generative art,
McCormack explains one key difference was that in the
1960s and 1970s artists simply had to write (or ask
someone to write) their own software in order to
generate the outcomes (in Brown 2003). The now wide
availability of authoring software has changed the
conditions for the production of software art by the
artist-programmer. It is with some of these issues in
mind that Richard Wright traces the ‘divergence between
programmers and program users’, based around the issue
of whether a computer is considered a medium or a tool
(2004). In a hierarchy of programming languages, Wright
points out that not all programming practices are
equal. He is thinking of the predominance of scripting
languages such as Flash Actionscript (but also Lingo,
Perl, MAX, JavaScript, Java, C++, as well as other
programming and scripting languages) that use libraries
of functions and a certain shared, if not prescribed,
vocabulary of styles.[10] For Wright, this changes

the terms of the discussion from a general issue of
artistic programming to one of what kind of programming
is being used. He cites the historical shift in Harold
Cohen’s practice from a painter to developing software
to automate his artwork, through the use of what

Cohen refers to as ‘autonomous machine (art making)
intelligence’. Developed from 1973 onwards, the _AARON
program represents to Wright the historical transition
towards contemporary culture, where the use of computers
has become pervasive. As a result, the terms of practice
have fundamentally changed for the artist-programmer.
His argument is that:

‘In a world where artists use software to write
software that will be seen by virtue of other

software, questions about the “aesthetics of the code”
become a symptom of not being able to see the wood

for the trees. Programming is not only the material

of artistic creation, it is the context of artistic
creation. Programming has become software.’ (Wright
2004)

29

30

The distinction refers back to earlier practices that
were characterised by artists working at the meta-

level of programming - and there is even a certain
amount of nostalgia here that somehow the early ‘avant-
garde’ of computer arts has been forgotten or not fully
appreciated. Alan Kay refers to artists working at the
level of the ’‘metamedium’. The idea that artists using
computers should engage with programming at a deep

level is a position that many computer art education
programmes propagated in the 1970s and 1980s - for
instance, at the Slade School of Art and Middlesex
University in the UK, with which Paul Brown and Wright
were associated.[l1l] However programming in Cohen’s work
operates in a rather ambiguous relation to the overall
artwork. Clearly in a general sense it is part of the
artistic output but more in terms of a representation of
his skills and technique, rather than as a constituent
part of the artwork as such. The emphasis tends towards
the completed work of art rather than the program or
programming being a work in itself.

In contrast to Cohen’s work, a more contemporary
reference that situates software art overtly in terms
of programming is the exhibition _CODeDOC_, first for
the Whitney Museum of American Art’s ‘artport’ web
site (2002), and later at Ars Electronica (2003).

The curator, Christiane Paul, set the invited artist-
programmers an instruction to ‘connect and move three
points in space’ in a language of their choice (Java,
C, Visual Basic, Lingo, Perl) and to exchange the code
with the other artists for comments. For example, in
Rainer Mandl and Annja Krautgasser'’s _Pedigree (2003b),
the Oedipal drama is revealed in the source code of the
work. The three points connected in space represent
the three protagonists of the myth - father, mother
and child - who play their parts in the generative
narrative. The viewers of all the works in CODeDOC
were invited to first read the written code and then
see the executed work. This raised some controversy on
mail lists at the time, for deliberately obfuscating
or aestheticising code to non-programmers, rather than
demystifying the creative process. Yet the significance
is that code is taken to be part of the work and not
simply meant to assist interpretation. The curatorial
statement contains a number of useful comments on

the intentions of the experiment and reiterates the
potential of software itself as artwork:

‘In software art, the “materiality” of the written
instructions mostly remains hidden. In addition, these
instructions and notations can be instantaneously
activated; they contain and - further layers of
processing aside - *are* the artwork itself. While one
might claim that the same holds true for a work of
conceptual art that consists of written instructions,
this work would still have to be activated as a

mental or physical event by the viewer and cannot
instantaneously transform, transcend, and generate its
own materiality.’ (Paul 2003b)

This parallels some of the earlier curatorial decisions
for the _Generator_ show, in particular McLean'’s
_forkbomb.pl_where the source code was exhibited as

an integral part of the artwork (see section 9.1).
Whereas formerly artists had to engage with programming
in early computer arts practice, the lack of necessity
now allows for other social issues to be engaged (just
as previously the invention of photography freed
painting from figurative representation). In linguistic
terms, artist-programmers appear to have shifted

their attention from an engagement with the syntax of
programming to semantic concerns.[12] This is indeed
how Cramer makes the distinction between generative art
and software art, by associating the former with syntax
and the latter with semantics (2003). But this is not
simply a shift from one to the other. Syntax, although
not concerned with meaning in itself, certainly has
implications for semantics, and both are required to
inform an overall theory of language. The programmer
Larry Wall clarifies this in relation to the programming
language Perl and the wider cultural concerns that
arise: ‘A language is not a set of syntax rules. It is
not just a set of semantics. It’s the entire culture
surrounding the language itself.’ (in Flor 2002) Yet
what Cramer is trying to emphasise is a shift in
software art from ‘pure syntax’ to ‘something semantic,
something that is aesthetically, culturally and
politically charged’ (2003). It is not a choice of one
or the other but a change of emphasis.

Therefore, although this thesis adopts the term software
art, it aims to retain the implicit generative aspect

as an evocative technical and cultural process. The
apparent dualism between generative art and software art
is also something that Mitchell Whitelaw disputes in

31

32

questioning the binary relation of formalism (associated
with generative art) and culturalism (associated with
software art). Rather than seeing this as an impasse, as
Troels Degn Johansson does in ‘Mise en Abyme in Software
Art’ (2004), Whitelaw suggests a ‘complementarity’ of
positions that leads to alternative modes of being

and relation (2005: 138). He calls this ‘critical
generativity’ to stress the emergent and transformative
properties that reflect social complexity and software’s
latent cultural agency (2005: 152).

The dialectical approach of this thesis also argues for
new critical forms, but rather than seeking Whitelaw’s
complementarity or fusion, argues for a contradictory
relation. That said, the competing definitions matter
little in themselves but only in as much as they operate
in terms of an overall contribution to a critical
discourse around the practice of software art. Software
includes, if only on a conceptual level, a generative
process in which something is always ready to come into
being, however latent. It is for convenience only that
this is referred to as software art. It does so in
recognition that these debates are appropriately in flux,
and entirely open to contestation as part of the ongoing
development of a critical discourse in software art and
culture.

2.2 - software materialism

It is clear that software is a thoroughly cultural and
not simply technical phenomenon. But in discussing
‘software culture’ and its critical potential, the
term culture is far from uncontested territory.
Culture is a notoriously ambiguous concept and even in
terms of its scientific usage describes both a process
(artificial development of microscopic organisms) and
product (the organisms produced) (Williams 1998).

[13] An understanding of culture as both process and
product is useful for software culture, as it stresses
the issues introduced in the previous section and some
of the criticisms of practices that privilege product
over process. Any cultural product such as this thesis
cannot be divorced from the materials and institutions
that produce and disseminate it. Otherwise the final text
is privileged over the cultural form that it takes,

separating it from the reality of its social production
and material conditions. This principle underpins
subsequent chapters and the overall form this thesis
takes.

This section aims to introduce software production as

a cultural and material activity, and provide some
examples of software art that are produced with these
ideas in mind. This description is in keeping with

what Raymond Williams called ‘cultural materialism’

(as an elaboration of ‘historical materialism’ that
chapter 3 introduces in detail) to emphasise that
cultural production is itself material, as much as

any other human activity. Rather than simply see
culture as influenced by its underlying system of
production (as in orthodox Marxism), cultural work is
taken to be political because social processes are
always embedded in it - in the most ordinary aspects

of everyday life and in cultural practices. This is
important as it suggests that cultural activity has
transformative possibilities, of not just understanding
social processes, but of an active involvement in their
potential transformation. This transformational aspect
relates to Pierre Bourdieu’s concept of ‘cultural
reproduction’, describing both the determinacy of social
structures in which dominant values are reproduced but
also the agency inherent in the practice of social
action. To Chris Jenks, interpretations of reproduction
have tended to over-concentrate on the determining
aspect of the metaphor at the expenses of its
regenerative properties (1993: 2). The dynamical aspects
of culture and of cultural production are in danger of
being overlooked.

In engaging with software culture, this section engages
with the dynamic technical processes associated with
software, whilst at the same time recognising that
culture and criticism are themselves dynamic. This is
clearly an important criticism for the production of
software art, or any form that strives to make explicit
the operating system in which it runs. What is required
is an understanding of cultural aspects, as well as the
complex interactions and processes at work at a deeper
level of operation that does not privilege execution or
end-product. This calls for a ‘software criticism’ that
takes account of practice rather than operating at an
abstract theoretical level.

33

34

software cultural criticism

A working principle has been established in the previous
section: that any terms of reference are not definitive
but only function as ideas in progress for further
development. Criticism of the terms under discussion is
an expected part of any critical work. The parenthesised
subtitle of Matthew Fuller’s essay ‘Behind the Blip’
suggests as much, reading: ‘some routes into “software
criticism,” more ways out’ (2003). Stressing software
criticism that does not operate at a distance from
practice but that takes account of practice, Fuller
offers three categories towards a strategic definition.
The first of these is ‘critical software’ designed

to undermine normalised understandings, operating
through two key modes: ‘by using evidence presented by
normalised software to construct an arrangement of the
objects, protocols, statements, dynamics, and sequences
of interaction that allow its conditions of truth to
become manifest’; and ‘in the various instances of
software that runs just like a normal application, but
has been fundamentally twisted to reveal the underlying
construction of the user, the way the program treats
data, and the transduction and coding processes of

the interface’ or even by adapting or hacking into
existing software (2003: 23). He sees this as extending
ambiguities built into the software itself, and perhaps
all software is contradictory in this way.

An example of critical software, and one much discussed,
is Signwave’s _Auto-Illustrator (2000), that defies
user expectation as a parody of the vector graphics
design software Abode _Illustrator . It looks like and
indeed works like conventional commercial software,

but carries some extra auto-generative functionality
that render designs outside of the direct control or
creativity of the user. Cheekily included in early
releases was a license agreement that indicated that
any designs were necessarily co-authored by the company
Signwave who supply the software (aka Adrian Ward).
Here, the parody operated particularly effectively, as
some users were outraged that a company would insist on
such a clause in a direct assault on their creative and
intellectual rights. It highlights the issue that full
authorship is rarely acknowledged in making art using
software, as is the labour of all those involved in the
process. The software was released as a boxed version

for the exhibition Generator with a ‘User’s Manual’
that contained both technical detail and critical
essays (2002). In this way, the commercial packaging
added a further layer to its ironic critique of the
commodification of art, and software as art.

The second of Fuller’s categories is ‘social software’
built by and for those excluded from commercial
software production, providing a subculture of software
production with a different agenda. Related to this

is software developed and changed through social
networks of users and programmers, that emerges from

a different set of social relations than the orthodoxy
of software production. It is this separation from the
mainstream that situates Fuller’s use of the term,
outside the usual description of software that simply
connects people or allows for collaboration (such as
the ‘social software’ group at MIT's Media Lab for
instance). His example is Mongrel’s Linker (1999),
that might be updated to the more recent Nine(9)
(2003). Both allow communities of users to form online
collaborative archives (or ‘knowledge maps’). In these
examples, sociality goes beyond the software itself

to the communities and individuals who use it, and

who further develop it as a project. In a more general
sense, the free and open-source software movement are
examples where developers form ‘a socio-technical pact
between users of certain forms of license, language,
and environment’ (2003: 24). In this scenario, open
source software development and relations of production
present new configurations and contradictions of labour-
power and criticism. The labour invested in producing
the software is made public, unlike proprietary software
but the control of the means of production is still
managed according to capitalist principles. Also in this
way, software is developed by a fairly closed community
of ‘co-producers’: those actually using it and with the
ability to make and change it. But do they mistakenly
continue to exploit their own labour by not selling it?
Clearly this is a much longer discussion about the
politics of free software and its take-up by large
corporations (an issue that will be returned to in chapter 5).

For Fuller, the problem lies in the closed loop (what
he calls ‘open-source internalism’ 2003: 25) between
developers and users: only when they are one and the
same does this system actually work for mutual benefit,

35

36

and therefore it needs to be expanded to be more widely
available to other users. This point could be applied
to the use of the operating system Linux, where the
benefits of free software simply cannot be entertained
without adequate instruction. The ‘culture of experts’
needs to be broken down, as Fuller puts it (2003: 26).
Having stressed this point, there are numerous examples
of projects that directly address this issue of access
to skills and technologies. For instance, the Redundant
Technology Initiative are an example of many groups that
recycle redundant computers, install Linux and free
software and train people to use them. Related to this
but offering even more specialised open source knowledge
are the Unix workshops as part of the free education
initiative of the Faculty of Unix at the University of
Openness, in London. Both examples stress that social
software needs to ensure it operates inclusively and
only then can genuinely be seen to be ‘open’ and ‘social’.
To do this, a critical approach needs to be developed
that takes account of the layers and processes involved
on a technical level and in relation to social context.

Exploring the potential for new forms of software,
Fuller’s third category is ‘speculative software’

that creates new connections between data, machines,

and networks. He describes this as the ‘reinvention

of software by its own means’, in using software to
make software about software: ‘Software whose work is
partly to reflexively investigate itself as software,
software as science fiction, as mutant epistemology.’
(2003: 30) By breaking with conventions of production
and criticism, some of the antagonistic social relations
between the different agencies involved in software can
be made visible. Fuller describes these potential spaces
as ‘blips’, and this is where politics lies (behind

the blip). As has been demonstrated in the previous
section, the structural qualities of code lend itself
to poetic forms, but speculative software offers the
additional potential for new forms of critical practice.
Written in 2001, Harwood'’'s translation (or ‘porting’)

of William Blake'’s poem London_ (of 1792) into Perl,

is a notable example of software art that is more

than simply a formal exercise (2005: 151-8). In both
old and new versions, statistics and the modulation

of populations are used for social comment, but in
Harwood’s version material conditions are registered
more overtly as both content and form. The politics of

Blake’s poem describing the social conditions of London
are translated to a contemporary cultural and technical
reality in which people are reduced to data.

The example demonstrates the potential to extend the
expressive potential of programming and to develop
critical forms that are reflexive - both being and
becoming software. It is speculative software that
arguably comes closest to what can be understood as an
artistic approach to software (according to Broeckmann
2003), and one that particularly informs the approach to
this thesis in revealing practices that use the formal
qualities of programming to express how structures can
be manipulated and reconfigured. Perl poetry such as
_London.pl indicates how the concept of change might
be embedded in the process of making programs. This
speculative approach to software art and criticism
makes reference to earlier critical modernist practices
that engage with the apparatus of production and the
materiality of language.

code materiality

The formal qualities of language have influenced
subsequent approaches to software art. The assumption is
that language constitutes the determining model of all
other signifying systems, as it is inherently rule-based
and contains a finite number of elements. There is a
history to this ‘formalist’ position typified by Vladimir
Propp’s ‘Morphology of the Folktale’ (1927) that
demonstrates a structural analysis or an algorithmic
approach to criticism in which a universal formula is
proposed.[14] Formalist experimentation in literature
also follows this logic in which a text can be seen to
be autonomous from the act of writing - a situation in
which writing writes, not writers. Tzvetan Todorov in
_Littérature et signification (1967) explains:

‘Every work, every novel, tells through its fabric of
events the story of its own creation, its own history
[...] the meaning of a work lies in its telling itself,
its speaking of its own existence’ (in Hawkes 1986:
100).

The quote describes a situation where language itself
has autonomy over the writer, where words are arranged
in such a way that subjective intention does not appear
to figure. This formalist or structuralist position

38

is further developed by Roland Barthes’s essay ‘The
Death of the Author’ (1977) wishing to make the reader
no longer a consumer but a producer of the text. The
‘death’ is a metaphoric gesture: ‘the birth of the
reader must be at the cost of the death of the Author’
(1977: 148) as an expression of the author’s inability
to claim the privileged source of meaning or value of a
work of art.[15] But where does authorship lie in all
this? It has not simply disappeared but is recast in
recognition of its own constructedness. To state the
obvious, even Barthes is the author of his own position
on the author’s disappearance.[16] Text and code are
both written and write.

Furthermore, the programmer or writer is intimately
connected to the writing machine - be it book or
computer. The material form this thesis takes is an
attempt to draw attention to these issues as both a

text and program script. This is also what N. Katherine
Hayles attempts in Writing Machines_ (2002), a book
that draws attention to its material properties.[17] The
production of literature is both material and immaterial
in other words, expressing both the physical reality of
writing and reading the book, as well as the imaginative
world that the book depicts. A written text can bring
into view the technical apparatus or writing machine
that produces it, such as in the case of something
typewritten, where the marks of the letters are
imprinted in the paper. Working with code goes further
than this sense of reflexivity associated with written
forms. Cramer explains this as ‘a recursive loop, in
which literature writes its own instrumentation’ (in
Goriunova & Shulgin 2003: 54). He is interested in the
ways that notation and the execution of a concept or

of code are collapsed into one event. His key example
(and what he considers to be a seminal software art
work) is the Fluxus performance score of La Monte
Young’s _Composition 1961 No. I, January I , a piece of
paper with the instruction: ‘draw a straight line and
follow it’. Clearly code cannot be separated from an
understanding of the overall structure of which it is
part, that includes its writing and execution. This is
even more the case with the self-replicating source code
of a ‘Quine’ - a program whose output is exactly the
same as its complete source code.[18]

In treating a work of art in terms of itself, the

influence of the art historian Clement Greenberg is often
cited and his position that each art must isolate and
make explicit that which is unique to the nature of its
medium (1992).[19] The problem is that this suggests a
description of ‘pure form’ outside of social context,
or one in which the work of art is autonomous. This
criticism is often levelled at formalist experimentation
with software, in which process and hence the social
implications are underplayed, especially in generative
art according to Arns (2004, and mentioned in the
earlier part to this chapter). However, there is
evidently an ambiguity here in the descriptions of
formalism. Russian formalism (associated with the

above references to Propp and Todorov) rejects the

idea of pure form. A hard distinction between form and
content is undermined. In software art too, there are
plenty of examples of practices that reject pure form,
and express far messier forms of critical engagement
that signal a broader context outside of itself. For
instance, messy (or dirty) code would suggest code that
does not necessarily compile or be machine or human
readable. Harwood’s _London.pl is an example of this,
as a formal experiment that follows the syntax of Perl
but is not intended to be, nor is, executable. There
are many examples of artists working with ‘pseudo-
code’ in this way, such as Mez, who writes in a hybrid
‘creole’ of English language and ‘pseudo-code’ that

she calls ‘mezangelle.pseudo.codework’ (in Block et al
2004: 254).[20] Using a phrase from Mez, the title of
Cramer’s essay ‘exe.cut[up]able statements’ exemplifies
the creative potential of mixed language forms, using
both a filename for sourcecode that is executable (.exe)
and making reference to cut-up poetry such as in the
work of William Burroughs (2003: 98). Texts that combine
so-called natural and artificial languages can be seen
to play with signification and undermine the semiotic
categories of signifier and signified (a literal and
metaphoric understanding of signification). In such
examples, meaning and authorship remain in question

(as does the dubious distinction between natural and
artificial language).

It is entirely possible for software art to contain
formal elements and at the same time social critique.
However, in much practice an assumption is made that an
engagement with formal elements and self-referentiality
somehow equals political engagement. This is an issue

39

40

that Yvonne Volkart describes as similar to the debates
around net-art in the late nineties, that:

‘... as soon as software is used as a tool in a manner
for which it was not intended, so that it at best
generates and reveals its own regulatory mechanisms,

it is interpreted as artistic, critical and political’
(2004).

To Volkart, abstraction and what she calls ‘code
fetishism’ are simply assumed to be radical and outside
of commercial imperatives. For instance, JODI’'s _Jet Set
Willy Variations_ (2002) is an example of the tendency
to use very simple programs and assembly languages that
seem to express the raw materiality of code - such as in
their modification of the 1984 game _Jet Set Willy_ first
designed for the ZX Spectrum computer. The significance
is that low-level languages are seen to have a close
proximity to the mechanics of the hardware and so evoke
an engagement with the apparatus at a deeper level. But
what is the significance of this engagement?

In examining open source culture and software arts
practice, Josephine Berry Slater describes the practice
of hiding source code as narrowing its creative
potential, and enforcing a series of mythologies around
creativity and property rights (2005). With a rejection
of private property in mind, 010010111010110l1l.o0rg’s
project _life sharing rendered the data on a networked
computer public property. The logic of open source

was extended to the ‘laying bare’ of the apparatus
associated with Russian Formalism [26] in what the
artists refer to as ‘data-nudism’: ‘It sets its kernel
free and all the functions that concern it, in the same
way as a programmer who frees the source code of their
software.’ (2001)

For Berry Slater, the approach of 0100101110101101.0rg
confirms the engagement with code and the relations of
production that are expressed in the shared production
of free software. This allows her to question that

if ‘net artists use proprietary software to produce
their work, to what extent can they be said to be
transforming the apparatus of production?’ She is asking
what constitutes a radical work of software art in

the context of previous claims for engaging with the
technical apparatus. Berry Slater makes an explicit
reference to Benjamin’s essay ‘The Author as Producer’,

first presented as a lecture in April 1934 at the
Institute for the Study of Fascism in Paris, to clarify
the potential problem. In this essay, Benjamin claimed
that:

‘An author who has carefully thought about the
conditions of production today [...] will never be
concerned with the products alone, but always, at the
same time, with the means of production. In other words,
his [sic] products must possess an organising function
besides and before their character as finished works.’
(1992b: 98)

The significance of the engagement with the means of
cultural production lies in requiring the producer to
act as an active agent in the production process, to
transform the apparatus and thereby effect a change in
the relations of production. For Benjamin, it is not
enough for cultural producers to express political
commitment, however radical it may seem, ‘without at
the same time being able to think through in a really
revolutionary way the question of their own work,

its relationship to the means of production and its
technique’ (1992b: 91). The cultural producer must
reflect upon his or her position within the production
process like a technician, demonstrating expertise
alongside solidarity, acknowledging whose interests

or more particularly class interests the producing
serves. This is an issue of property not least, in
taking control over the means of production, and in the
case of software production opening it up to potential
transformation.[22]

41

This position will be developed in subsequent chapters
but is one that relies on an engagement with software
that is not separate from the materials and institutions
that produce it. The approach goes some way to counter
the criticisms levelled at software art that it provides
the appearance of political engagement but without
substance (privileging form over content, or product
over process). Self-referentiality is not enough in
itself - it must be combined with an improved apparatus
if the materialist position of Benjamin is followed.
Predating 0100101110101101.0rg’s _life_sharing and with
similar intentions, was the browser Manifest (1999) by
46liverpoolst.org (now offline).[23] Using the browser
rendered the user’s hard drive public in the spirit of

a rejection of private property (advocated by Karl Marx

42

and Friedrich Engels in The Communist Manifesto , first
printed at 46 Liverpool Street, London in 1848). In this
way, the hardware were made open source in addition to
software. The user’s guide was simply a reprint of _The
Communist Manifesto_ in the form of screen shots of the
text in the browser. The suggestion of this section and
the selected examples of projects, is that a materialist
approach comes close to an understanding of ‘speculative
software’ that reflexively investigates the conditions in
which it operates. Through an engagement with the means
of production, some of the antagonistic social relations
involved in software production can be made more visible
and open to change. This is inherent to a critical
practice that recognises its material and historical
foundations.

The contemporary artistic preoccupation with software
production clearly has a history.[28] In addition to

a history of literature, it can be traced through

an art historical lineage that would include Dada,
Conceptualism, and other practices such as performance
that have sought to challenge art’s commodity form.
Software art has an ambiguous relation to use-value in
this respect,[25] and manages to challenge some of the
precepts of what constitutes art. Combining software
art and performance practices, The Museum of Ordure
(URKMO) exploits this ambiguous relation to value by
collecting ordure (rubbish, shit, waste), aiming to draw
attention to what and how cultural systems assign value
to objects. Operating in the spirit of artists dealing
with the material of shit (such as Piero Manzoni, and
Stuart Brisley who is also a trustee of UKMO), objects
submitted to the museum archives in the form of data
files are subject to a destructive process running on its
server that corrupts these files. Statements on the web
site suggest that the museum sees itself as a reflection
of the destructive tendencies of capitalism itself. The
museum implies that the best kind of ordure resists
commodification.

Some of the examples of software art mentioned so far
in this chapter represent a further development of
radical practices in art prone to recuperation. This

section will chart some of these histories, without
intending to be a comprehensive historical or systemic
account - it is far too selective and partial to make
this claim. The key argument is that rather than
software art representing a further art historical
genre, it offers the potential to rupture this sense

of continuum (the following chapter 3 will introduce
historical materialism that underpins this claim). In
terms of a comparison to previous practices, like ‘the
work of art of the Dadaists became an instrument of

ballistics’ according to Benjamin (1999d: 231), software

art might similarly be deployed in explosive tactics.
For instance, in JODI’'s website wwwwwwwwww.jodi.org
(1995) the source code behind an abstract arrangement
of characters on screen reveals a diagram of a hydrogen
bomb. JODI ‘turn software inside out’ according to
Julian Stallabrass (2003: 38), revealing something of
the hidden ideological nature of the system in clearly
materialist terms.

Despite the grand claim to explode the continuum of
art history, firstly a more straightforward historical
approach is taken.[26] It is also worth noting that
‘newness’ is historically bound, and this is what
Charlie Gere suggests with his paradoxical title

‘When New Media was New’ (in Kimbell 2004: 46-63) -
derived from Carolyn Marvin’s _When 0ld Technologies
were New_ (1990). This principle underpins Gere's
historical work on early computer arts (some examples
of which were mentioned in the first section of this
chapter) that weaves together information theory and
artistic experimentation, and retains a belief in the
radical potential of art.[27] To stress the importance
of history in relation to emergent arts practices goes
against the grain of the tendency for forward-looking
theories associated with technology. The paradox is
that much historical work tends towards futuristic
theories, such as the ‘visionary work’ of Roy Ascott
and other futurologists like Buckminster Fuller or

the futurist Filippo Marinetti.[28] These figures are
taken to be pioneers (as well they may be) or part of
an ‘avant-garde’. However the avant-garde has failed to
deliver what it promised - both Dada and Conceptualism
are perceived examples of art’s inability to deliver
social transformation. Is software art doomed to the
same fate?

43

44

The suggestion of this section of the chapter is that
art should deal with the central issue of transformation
rather than representation reflecting the properties of
software (whether used directly or not). On the surface
this sounds like a very contemporary position, supported
by the curator Nicolas Bourriaud’s claim that the image
is now defined by its ‘generative power’, and that art
can be seen to be a program(me) for the generation of
forms and situations (2002: 70). His term ‘relational
aesthetics’ describes a practice that involves human
interactions, social context and the new aesthetic and
cultural concerns that arise from this. He is referring
to artwork that is a programme to be followed, a model
to be reproduced, or an encouragement to do something

- and points to the parallel activities of artists
engaging in ideas of interaction and sociability, set
against the hype of interactive computer systems. To
Bourriaud, artwork not using the computer has as much
potential to make work about its effects. This may well
be the case, but his statements appear to take their cue
from systems thinking. They could easily be paraphrased
from Gregory Bateson’s 1971 position on art (from _Steps
to an Ecology of Mind) that focuses attention not on
the message but the code (2000: 130). Working across
multiple disciplines including anthropology, social
science, linguistics and cybernetics, Bateson considers
the production of art, and art as product, in terms of
behaviours or rules that are embodied in the machinery
that then generates transformations (2000: 271-2).

For art historian Edward Shanken, the emphasis on
behaviour points to the ‘paradoxical nature of
knowledge and the contradictions inherent in formal
epistemologies’ (2003: 5), predicated on Bateson’s
critique of scientific method that combines strict and
loose thinking (2000: 75). Bateson’s cybernetic ideas
were influential on Ascott’s radical art pedagogy of the
1970s, in which art and the teaching situation were seen
to be subject to feedback loops that produce creativity.
To the artist and teacher Ascott, the production of

art and learning were mutually supportive, becoming a
‘force for change in society’ (2003: 98).[29] Thus the
potential for change in the system exists in the sense
that: ‘out of the flux, a many-sided organism may evolve’
(2003: 102). This is a reference to _La Plissure du
Texte (1983), one of Ascott’s pioneering distributed
authorship artworks that used early telecommunications

networks - or what he calls ‘telematic art’. The project
extended his interest in cybernetics to the use of
emerging pre-Internet network technologies that seemed
to exemplify ‘connectivist’ thinking,[30] together with
the post-structuralist reference to Barthes’s _The
Pleasure of the Text (1975). Text is taken as tissue,
behind which lies the realm of meaning. Ascott quotes
Barthes to this effect:

‘the generative idea that the text is made, is worked
out in a perpetual interweaving; lost in the tissue

- this texture - the subject unmakes himself, like a
spider dissolving in the constructive secretions of its
web’ (2004: 198).

From this perspective, symbolic information systems
containing numbers, text or code might be seen to be
artistic material, to be rearranged accordingly. In the
case of La Plissure , a distributed nonlinear narrative
or improvised ‘planetary fairy tale’ was generated over
the network, in the manner of weaving a textile with
multiple authors. To some art historians, this is the
beginning of ‘interactive art’ and of course ‘Internet
art’.[31] If software art presents the possibility of
software itself as art, then Ascott’s statement lays the
historical ground in 1966: ‘The computer may be linked
to an artwork, and the artwork may in some sense be a
computer.’ (2003: 129) It is this line of thinking that
underpins how software characterises arts practices

that privilege the idea, code, process, system and its
transformational qualities. Whether using a computer or
not, art has become like software.

software as cultural metaphor

Clearly there is a history to software art and a canon
appears to have emerged. Andreas Broegger is one
researcher amongst many who situates the contemporary
term software art in the historical context of the _
Radical Software journal published by the Raindance
collective (launched in 1970), and Jack Burnham’s
exhibition Software, Information Technology: Its
Meaning for Art at the Jewish Museum, New York (also
1970). Broegger describes the ways the term software
was used as a metaphor for arts practice at that time,
to stand for the transmission of information using
available communications technologies, in contrast

to the ‘hardware’ of object-based art (2003a).[32]

45

46

Although any discussion of software requires an
understanding of its relationship to hardware (even

if it is accepted that software can exist without
hardware), it is clear that the term software is being
used in a rather different sense in the 1970s. In the
field of art at least, the description runs in parallel
to conceptualism and its associated shift away from the
end-product at that time. A contemporary use of the
term software reflects an emphasis on process, that has
become the orthodoxy in contemporary cultural practices.
In the light of this, Broegger insists on the need to
inquire whether to accept software art as art or not.
Again, this is the wrong question to ask (according to
Benjamin); software is more than just art and expands an
understanding of art’s possibilities.

In Benjamin’s artwork essay, the meaning of art changes
with the character of its technical reproduction. As

a result, he insists ‘the total function of art is
reversed. Instead of being based on ritual, it begins to
be based on another practice - politics’ (1999d: 218).
It is this line of thinking that appears to influence
the Radical Software Jjournal. A statement from the
first issue gives some idea of its agenda to engage
overtly with politics: ‘Power is no longer measured in
land, labour or capital, but by access to information
and the means to disseminate it’ (Ross 2003).[33] On a
technical level (in tune with the democratic potential
that Benjamin attributed to technical reproducibility),
it was the widespread availability of the video
portapak that inspired the belief that this could
contribute to social transformation, through people
gaining increased access to the means of production and
becoming producers. In the context of its publication
in the United States, the position of the journal was
influenced by the rise of the civil rights movement, a
general mistrust of the communications media on offer,
requiring more independent and alternative media and
cultural practices, combined with ecological concerns
(according to Ross 2003). Those associated with this
project ‘imagined a world in which the contest of ideas
and values could take place freely and openly’ outside
of the existing institutional and ideological frameworks
of commercial telecommunications. They proposed ‘a new
information order in which the very idea of hierarchical
power structure might be transformed or even eliminated’
(Ross 2003). In this sense, what is radical about

software is that it acts upon hardware. It operates as
a metaphor for an emphasis on social processes that
involve an engagement with relations of production

and ‘radical’ transformation. In a sense, Benjamin’s
call for a politics of representation is upgraded to a
politics of transformation.

In parallel to the Radical Software Jjournal, ‘software
as a metaphor for art’ was explored in Burnham’s
Software exhibition. The show can be seen as a

product of its times with its overt structuralist

and conceptualist concerns, and its aim to focus
attention on the technical apparatus. It corresponds

to what has since become commonplace in looking to the
‘dematerialisation’ associated with the conceptual arts
tradition and the ‘immaterialisation’ of information and
communications technology. In his essay ‘The House that
Jack Built’ (1998), Shanken traces Burnham’s concerns
with particular reference to his book Beyond Modern
Sculpture: The Effects of Science and Technology on the
Sculpture of this Century_ (1968a) that ends with an
account of ‘systems aesthetics’.[34] By an aesthetics

of systems, Burnham refers to non-object based art

and time-based based practices such as performance,
interactive and conceptual art, but also public interaction
that breaks down the false distinction between the
operating systems of art and non-art. This is software
metaphorically-speaking, the abstract ‘internal logic’
of a program receiving feedback from human subjects. For
example, works in the exhibition included Hans Haacke’'s
_Visitor’s Profile where personal information was
entered into a system, and Sonia Sheridan’s _Interactive
Paper Systems_ where visitors were encouraged to engage
with the artist and a photocopy machine. Clearly neither
of these artworks correspond to formalism but exemplify
what Burnham refers to as examples of ‘post-formalist
art’ (to include the influence of an understanding of
subjectivity). The term ‘post-formalist’ (more commonly
called ‘post-structuralist’) is used with reference to
some of the influences on his thinking - such as Claude
Lévi-Strauss’s structural anthropology and Thomas Kuhn's
critique of scientific objectivity, as well as Barthes’s
semiotic distinction between readerly and writerly texts.

In summary, the exhibition _Software_ was an attempt
to reveal some of the contradictions between object
and non-object, art and non-art, artist and non-

a7

48

artist, evident in art’s organisational and systemic
logic. In this respect, particularly important to the
development of Burnham’s writing and the _Software
show are the influences of information theory associated
with Claude Shannon and Warren Weaver, systems theory
associated with Ludwig von Bertalanffy, and cybernetic
theory associated with Norbert Wiener. An interest in
cybernetics and ideas of feedback had already been
tested in Jasia Reichardt’s exhibition _Cybernetic
Serendipity_at the ICA, London, in 1968, which is
widely regarded as an historical marker for first
combining art and cybernetic ideas. This approach
arguably takes an even earlier cue from Ascott’s
interest in cybernetics and behaviour, encapsulated in
the following quote from ‘The Construction of Change’,
published in 1964:

‘To discuss what one is doing rather than the artwork
which results, to attempt to unravel the loops of
creative activity, is, in many ways, a behavioural
problem. The fusion of art, science and personality

is involved. It leads to a consideration of our total
relationship to a work of art, in which physical moves
may lead to conceptual moves, in which Behaviour relates
to Idea [...] “An organism is most efficient when it
knows its own internal order”.’ (2003: 97)

dematerialisation and conceptual traditions

The Ascott quote exemplifies an approach to arts practice
that rejects the hardware of the physical object for
process. Therefore, it is no accident of history that

it also introduces Lucy Lippard’s _Six Years: The
Dematerialisation of the Art Object from 1966 to 1972
(1997). Lippard’s concept ‘dematerialisation of the art
object’, first introduced in 1968 with John Chandler,
characterises arts practice of this time in two ways

- ‘art as idea and art as action’ (Lippard 1997: 43) -
and of course not art as object. This approach departs
from arts practices of preceding years and its perceived
‘anti-intellectual, emotional intuitive processes of
art-making’, replacing it with ‘an ultra-conceptual art
that emphasizes the thinking process almost exclusively’
(Lippard 1997: 42). Dematerialisation in this sense
serves to de-emphasise not simply art as object but

the related orthodoxies of originality, permanence,

and beauty into an ‘anti-form’ or ‘process art’ or
‘concept art’.[35] Its influences were derived more

from Dada-ist ‘poem-objects’ or ‘found-objects’ such

as Marcel Duchamp’s ‘ready-made’ to shock people into
new understandings of the material world. For instance,
Tristan Tzara had advised aspiring poets to cut a
newspaper article into words and make a poem by shaking
them out of a bag at random, revealing the hidden
possibilities of language, and clearly undermining
notions of creativity and genius by providing a way

for anyone to work with words. With scissors and glue,
words could be made to appear as arbitrary patterns,
rhythmical noise, mere chance arrangements of words

and sounds, reflecting the confusion and emptiness of
the world and renouncing the language of the mass
media. In this procedure, there is a consistent concern
with everyday objects challenging the judgement of
originality and authority, through the Duchampian
‘readymade’ and montage techniques. In a similar way,
conceptual art established an attack on the conventions
of the art-world and the commodity status of the work
of art - what in a contemporary setting would be called
‘hacking the art operating system’ (Sollfrank 2001).

Conceptualism has been particularly influential in
attempts to draw software art into an art historical
register. Referring to Lippard’s portrayal of
dematerialisation, software art is clearly both idea

and action, and on a conceptual and technical level
embodies a description of source code and its execution.
The generative approach of conceptual artist LeWitt is
evocative of software in this connection: ‘The idea
becomes a machine that makes the art’. (in Lippard 1997:
xiv)[36] The quote was used in the publicity materials
for the _Generator show with this connection in mind.
LeWitt provided explicit instructions for the production
of artworks that are then executed by other people.

[37] For instance, the program for Wall Drawing #69
(1971) reads: ‘Lines not long, not strait, not touching,
drawn at random using four colors, uniformly dispersed
with maximum density, covering the entire surface of the
wall.’ (in Reas 2004: 277)

Casey Reas'’s _{Software}Structures (2004) takes these
instructions for wall drawings as the inspiration

for software, writing source code that generates
software drawings. Examples such as this demonstrate
how it has become commonplace to position software art
within a conceptual tradition as a continuation of the

49

50

‘dematerialisation of art’, treating code as artistic
material in a similar way to taking ideas or concepts as
material. Jacob Lillemose develops the parallel between
programming and conceptualism by defining linguistic,
political and performative modes. Firstly, he describes
‘linguistic conceptualism’ (associated with LeWitt, Art
& Language and Joseph Kosuth), that considers art as a
‘self-reflexive logistic system composed by writing and
ideas, and a language in which form and content tended
to merge’, and the work of art as a set of instructions
or composition (associated with La Monte Young and Cage
in particular), ‘as a purely mental, non-physical,
phenomena’ (2004: 139). In addition to this, there is

a more cultural or political dimension (associated

with Haacke, Victor Burgin, and Gordon Matta-Clark),

and a more performative one (associated with Vito
Acconci, Bruce Nauman and Chris Burden), according to
Lillemose. Clearly it is possible to cast software art
in these terms but the point for Lillemose is that both
an internal logic and wider social issues are evoked.
Paraphrasing Sarah Charlesworth’s ‘A Declaration of
Dependence’ of 1975 (that Lillemose adapts for the title
of his essay ‘A Re-declaration of Dependence’), he

says: ‘the contextual nature of conceptual art points
towards an aesthetics based on the relationship between
the internal structure of the work of art and external
non-artistic structures’ (2004: 140). Featured in the
Runme.org software art repository, one example selected
by Lillemose that makes context explicit is Anti-
Capitalist Operating System attributed to ‘Together we
can defeat Capitalism’ (2003).[38] It is a platform for
anti-capitalist activities that takes on the appearance
of a conventional operating system, and a working
prototype in this respect for full development. With
‘browser art’ and software art in general, the context
for the work is an integral part of the work - the frame
as part of the artwork. This conceptual attitude gained
some legitimacy when the GNU/Linux operating system was
awarded a prize at the Ars Electronica festival in 1999.

By historicising these software practices, Lillemose
is trying to avoid describing emergent practices as
‘avant-gardist’ (2004: 145). Instead, he argues for a
contextual understanding of software art and ‘software
not-just art’ (like Burnham in _Software). Adopting
Peter Weibel’s thesis that proposes three generations
of artists interpreting the legacy of conceptual art,

Lillemose proposes software art as a fourth generation.
This is speculation perhaps (or ‘speculative software
art history’), as he does emphasise that art history

is not an exact science but an interpretative form.
However, it seems a mistake to simply place software
art in an art historical continuum in this way. In the
context of the argument of this thesis, software art
holds the potential to break this continuum. This is an
important point of emphasis.

from representation to transformation

If art holds radical potential at all, the issue remains
how to produce art that resists its seemingly inevitable
commodification and how to reconcile the apparent

failure of the avant-garde to deliver its promises
(evident in Conceptualism and Dada). Do the historical
tactics of radical art require complete overhaul

or better implementation? Whereas Eric Kluitenberg,

in ‘Transfiguration of the Avant-Garde/The Negative
Dialectics of the Net’ (2002), sees the opportunity for
avant-garde tactics to be deployed in the larger context
of the network society, Duna Mavor is highly skeptical
of such claims.[38] Mavor is bitingly cynical about

the interventions of art-activist groups, regarding
their strategies as tired repetitions of obsolete
dialectical logic leading to inevitable recuperation.
She is thinking of art-activist groups such as the anti-
corporate corporation RTmark. Perhaps it is right to

be suspicious of RTmark’s work if it invites interest
from the commercial art world but also their rejection
and auction of their invitations to take part in the
prestigious Whitney Biennial is a blatent attempt to
resist this. It is worth quoting Mavor at length for her
ideological verve (and despite her opposition to the
dialectical approach of this thesis):

‘Dialectics never died. It lives every time another
tired exhibit of the relics of dada or situationism
opens at the houses of culture across the world. It
lives when the hackers who haunt the net repeat the
slogans and gestures of the dead and then congratulate
themselves when they are finally inducted into the halls
of power of the Venice Biennale or Ars Electronica.

It lives when the theorists and cartographers of new
deterritorialized flows of desire sell their interests

by entering a classroom to become functionaries of the
empire of production, offering packaged knowledge to

51

52

students who eagerly produce whatever stupidity is asked
of them in exchange for the general equivalent of a
grade. It lives when the anti-globalization “multitude”
faithfully ascend to the stage of negation to recite
their memorized roles, proudly displaying the garments
of an ideology that long ago betrayed its exhaustion.
Dialectics consumes the desire of life as it beats its
wings against the limits of the impossible.’ (2002)

Mavor’s position is in keeping with Peter Biirger’s
notion of the ‘post avant-garde’ (1984) with which he
describes the failure of the historical avant-garde.
This is also a trajectory reworked in Eric Hobsbawm’s
Behind the Times (1998), on the failure of visual
arts to deal with reproducibility and hence remain
radical. But rather than give up on the tactics of

the avant-garde altogether or indeed dialectics as a
positive force, Jiirgen Habermas’s suggestion is to
learn from past mistakes and from previous attempts at
negating modernity. The radical potential of newness

is associated with modernity and the avant-garde has
encapsulated this revolutionary potential. This position
is informed by a dialectical understanding of modernity,
representing a transitional state between the old and
the new - it remains an ‘incomplete project’, to use
Habermas’s phrase (1991 [1980]). He says:

‘The avant-garde understands itself as invading unknown
territory, exposing itself to the dangers of sudden,
shocking encounters, conquering an as yet unoccupied
future. [...] The new value placed on the transitory,
the elusive and the ephemeral, the very celebration

of dynamism, discloses a longing for an undefiled,
immaculate and stable present.’ (1991: 5)

In this way, Habermas accounts for the interruption

of the continuum of history (drawing upon Benjamin'’s
concept of history, which the following chapter explains
in more detail) in articulating the present as a moment
of revelation. Taking this interventionalist view of
history, it is possible to ‘make the continuum of
history explode’, in Benjamin’s words (1999c: 253). He
also refers to the inherent violence in Dada, such as
the use of explosive and destructive tactics directly
applied to the work of art as a metaphor for change in
the social realm. In the 1960s, ‘Auto-destructive’ art
associated with Gustav Metzger was similarly conceived
as a way of transforming people’s thoughts and feelings

about art and hence society, using an ‘aesthetics of
revulsion’ including acid, ballistics, corrosion,
radiation, and such like as artistic material (1996:
27).[39] Like Dada, the artistic tactic is one that
appears irrational but is intended to be a rational
response to the irrationality of society - particularly
in response to the emerging ‘potential-probable
destruction’ of nuclear, biological, and chemical
weapons (1996: 28), just as Dada responded to the First
World War. In Metzger'’'s view, artists should develop
techniques in response to discoveries in science and
technology (and clearly an understanding of entropy). He
quotes L&szlé Moholy-Nagy'’s prophetic Vision in Motion
of 1922 to stress the point:

‘Carrying further the unit of construction, a dynamic
constructive system of force is attained whereby man
[sic], heretofore merely receptive in his observation

of works of art, experiences a heightening of his own
faculties, and becomes himself an active partner to the
forces unfolding themselves.’ (1996: 37-8)

Whilst recognising that growth was a further possibility
in the form of what Metzger called ‘auto-creative

art’ (a term introduced in 1960) (1996: 55), the
ideological position of auto-destructive art remains
rather different, with its social agenda to negate

the destructive tendencies of the social world.[40]

A more contemporary example of destructive tendencies
entering the art world is the biennale.py virus that
contaminated the Venice Biennale’s web site (produced by
0100101110101101.0rg with epidemiC, for the Slovenian
pavilion of 2000).[41] The cultural form of a virus
appears to embody the principles of auto-destructive art
and negation. A virus describes the self-reproducing
activities of a program that can simply spread and effect
other programs, and thereby reflects the structural
properties of the computer and the Internet it operates
through. For Jaromil, the source code of a virus is
potential lyrical poetry. Related to this, the elegance
of his Unix shell _forkbomb_ (2002) encapsulates

this aesthetic approach in presenting only thirteen
characters to dramatic effect.[42] Once entered into

the command line of a Unix shell and run, the program
exhausts the system’s resources, causing the computer to
crash. It was included in the exhibition _I Love You:
Computer, Viren, Hacker, Kultur (held at the Museum fiir
Angewandte Kunst, Frankfurt am Main, in 2002), referring

53

54

to the I Love You_ virus (of 2000) that spread through
the communities of the Internet. Opening the message
‘love letter for you’ would activate a program that
would erase documents from your hard drive and then
propagate itself by sending new copies of itself
through the address book of your mail program.[43] The
destructive potential of a virus operates in the spirit
of auto-destruction and Dadaist tactics.

The comparison of software art to earlier avant-

garde movements, and particularly the avant-garde
activities of the 1920s in Russia and Germany, provides
an historical understanding of radical forms and
strategies. In the contemporary situation, it appears
that many of the claims of the historical avant-garde
have become:

‘... embedded in the commands and interface metaphors
of computer software. In short, the avant-garde vision
became materialized in a computer. All the strategies
developed to awaken audiences from a dream-existence
of bourgeois society [...] now define the basic routine
of a post-industrial society: the interaction with a
computer.’ (Manovich 1999)

The once radical technique of montage has become
commonplace. On the surface, it seems that what was

once a radical aesthetic vision to reveal the social
structure behind the visible surfaces, has become

a standardised form through the use of computer
technology. Lev Manovich discusses these perceptions of
change, and the ways in which ideology naturalises these
changes. This reflects contemporary culture’s reliance

on appropriation, wherein recycling, re-working, and
re-combining media are the standard techniques.[44]

He concludes that ‘the avant-garde becomes software’
(1999) and that it continues to introduce revolutionary
techniques but the terms are different:

‘software does not simply adopt avant-garde techniques
without changing them; on the contrary, these techniques
are further developed, formalized in algorithms, codified
in software, made more efficient and effective’ (1999).

Whereas the ‘old media avant garde’ was concerned
with vision and representation, the ‘new media avant
garde’ is concerned with the manipulation, generation
and transformation of data (a position in keeping with
Bateson’s, discussed earlier). Maurizio Bolognini’s

installations under the series name Sealed Computers
(1992-) exemplify this interest in generative and
transformational processes. Computers are networked
together, positioned across the floor of a space, but
there is no way to access what processes are running,

as the monitor ports are sealed with wax. Although
society is saturated with images, in this work there
appears to be no way to penetrate the inner world of
the computer, in the way that radical practices have
previously sought to make these processes transparent.
If, as Manovich thinks, software has naturalised montage
techniques, how can software be further developed as a
radical project in revealing the ideological processes
at work? In Montage-Transformation-Allegory , Wright
argues that transformation operates in the spirit of
montage, inducing new shock effects for the digital age
(1998). This is a rather different position to Manovich,
who emphasises a non-dialectical ‘anti-montage’ of
digital compositing, in which elements are blended

into a whole rather than brought into collision (2001:
143). For Manovich, it is the database that forms the
‘new symbolic form of the computer age’ (2001: 219) and
his concept of the ‘data-base movie’ derives from this
logic. In contrast, Wright draws directly upon Sergei
Eisenstein’s ‘A Dialectical Approach to Film Form',
written in 1929, in which reality is not described directly,
but must be reconstructed to reveal the hidden structure
that otherwise remains obscured by ideological preconceptions.

Rather than seeing digital imaging in terms of smooth
and normalised transitions and imperatives, Wright
argues for the possibility of a digital aesthetic that
amplifies the dialectical method. Even a stockpile

of fragments, such as a database, could be seen as

a site of conflict in this way, and one where hidden
structures should be revealed. Indeed, the ‘tendencies
of the montage method are not opposed by any unifying
tendencies of the transformation but by its particular
dynamics of dispersion’ (Wright 1999). Wright's
assertion is informed by Benjamin’s concept of allegory,
in which new understandings emerge through the bringing
together of historical fragments.[45] Exploring some of
these ideas, Wright’s project The Bank of Time (2001,
produced under the name Futurenatural), is a screensaver
that makes an allegorical comment on idleness and
growth.[46] Wright notes how the germinating plant

is a recurring metaphor in financial and investment

55

56

advertising, as well as in Baroque imagery. The user’s
idle time is directly proportional to the rate of growth
of the plant on their desktop from seedling to fully
grown plant through to its decay. In _The Bank of Time ,
the more idle the user, the faster the plant grows,
suggesting idleness at work as a creative force.

In dialectical allegories such as this, objects are
brought together through montage to disrupt the continuity
of historical and ideological conceptions. Through montage,
the objects that constitute ‘the material world could be
rearranged out of their conventional, found or “natural”
order so that the forces which shaped them would become
visible, manifest and accessible to the senses’ (Wright
1999). The principles of montage thus take on a wider
political status in the context of a history of art, and
even more so with respect to artwork that uses software
- that in itself is transformative. Is it possible

to apply the principle of software to history in a
similar manner, by paying attention to its processes

and events? This is the challenge for software art and
for the argument of this thesis that aims to develop a
dialectical approach. In Das Passegen-Werk , Benjamin
applies the principle of montage directly to his
writing: ‘This work has to develop to the highest degree
the art of citing without quotation marks. Its theory is
intimately related to that of montage.’ (1999a: 458)

Unfortunately the protocols of PhD submission legislate
against taking such an approach with this thesis. The re-
appropriation of existing materials presents Benjamin
with the concept of applying materialist principles

of montage to history, in order to understand its
construction.[47] Crucial to this method is the retention
of contradiction. The challenge for a critical practice
in software art is to maintain contradiction in the
process of transformation, for this is where politics

is evident and where re-invention takes place. This
assertion is carried over in the rest of this thesis. In
terms of the legacy of previous radical arts practice,
the lessons of art history verify the point that Lippard
makes: that in a contemporary situation where conceptual
strategies have become the orthodoxy of contemporary art
and effectively recuperated, radical art can be found in
social energies not yet recognised as art (1997: xxii).
Perhaps software art and culture represents such an
instance - for now at least.

3. *emergent history*

‘There is an irony deep laid in the very relations of
life. It is the duty of the historian as of the artist
to bring it to the surface.’ (Trotsky [1938], in Mosley
1972: 11)

The previous chapter’s argument for contradiction in the
production of software art is extended in this chapter,
by introducing a dialectical approach to history itself.
In this way, it develops an argument against ideas of
universal history, in favour of a process of unfolding
contradictions that are emergent and indeterminate.

By adopting this approach to the conceptualisation

of historical processes, an analogy is made to the
emergent properties of software. It is also important

to reinforce the argument that software art should not
simply be placed within an art historicisation - for
instance as a further example of previous work or as a
new genre - but that it should be seen as an opportunity
to rupture the continuum.

Section 3.1 begins by introducing some of the principles
of historical materialism, that treat history as
material which can be reconstructed like montage to
reveal its inner workings, its constructedness and the
inherent distortions in which technology plays no small
part. It is human agency that is obscured in these
processes and this is clearly one influence among many,
in relation to ideas of emancipation and strategies for
political action. This section describes dialectical
thinking as a technique to reject causality or over-
determinism, for an ongoing process of unfolding
contradictions of development and feedback. What is
important in this is the retention of contradiction, so
as not to treat dialectics itself as a deterministic
method, as it is often conceived. Thus, the inner
potential and outside influences of an object are
continually held in contradiction, between what is
possible and what exists, the recognition of which
reveals the possibility of further transformations.

In addition to this principle of an ‘incomplete
synthesis’, section 3.2 provides more detail on the
dialectical method to explain how complex arguments are

57

developed. The concept of ‘negation of negation’ is
crucial here, to understand how dialectics is not simply
a method that proposes a reversal of one thing with
another but a deeper engagement. Much of the skepticism
over dialectics has failed to engage fully with this
concept, in which negation can be seen to operate twice
- once, and then again upon itself in a reflexive manner
(that evokes ‘speculative software’, as described in
chapter 2). Like political action, software remains
written in advance of its action.

According to this position, things are decided before
they are enacted in actuality, but there is a delay
that forms a part of the dynamic of history. Section
3.3 develops an understanding of dialectics to reveal
this relatively hidden relation between the past and the
possibilities for future transformation. An openness
of dialectical method is substantiated by the concept
‘transformative praxis’ (Bhaskar 1998) to reject
‘endism’ and to emphasise human agency. Historical
processes are thereby articulated as dynamic and
emergent phenomena, subject to feedback. The approach
suggests that nothing is finished or resolved but in a
continual state of change, appropriate to the emergent
properties of software itself. The concept of software
praxis arises from this, and is expounded in the final
chapter of this thesis.

Software, like history, reveals the possibilities

for change in the present. Both can be seen to be
dynamic and unsettled in this way. This approach draws
particularly upon Benjamin’s essay ‘Thesis on the
Philosophy of History’ of 1940 (‘Uber den Begriff der
Geschichte’, sometimes translated into English as ‘On
the Concept of History’, 1999c). The German compound
word ‘Geschichtsphilosophie’ demonstrates how the

two concepts come together as montage to suggest the
reconstruction of historical material, in order to
construct not a philosophy of history but a philosophy
out of history (Buck-Morss 1995: 55). In contrast to
traditional approaches to history, Benjamin rummages for
truth in the ‘garbage heap’, in the ‘ruins of commodity
production’ (Buck-Morss 1995: 217-8). He describes

his method as: ‘literary montage. I needn’t _say
anything. Merely show. I shall appropriate no ingenious
formulations, purloin no valuables. But the rags, the
refuse - these I will not describe but put on display.’
(Benjamin 1999%a: 860)

The suggestion of this chapter is that this materialist
approach might be applied to software in a similar
manner, to reconstruct new understandings of software
out of existing material and source code. This is common
practice in general terms, but it is less common to
think of software in terms of historical materialism,
where what is present demonstrates its potential

for further transformation, and where human agency

is foregrounded. Historical materialism describes

the application of Marxist thinking to historical
development, to stress the importance of ideas or

the active role of individuals in history. In ‘The
Eighteenth Brumaire of Louis Bonaparte’ of 1851-2, Marx
claimed that:

‘Men [sic] make their own history but they do not

make it just as they please; they do not make it

under circumstances chosen by themselves, but

under circumstances directly encountered, given and
transmitted by the past.’ (1980: 96)

59

In other words, there are social forces that intervene
in the process of history, and the critical impulse of
the historical materialist, according to Benjamin, is to
brush received history against the grain, in order to
‘make the continuum of history explode’ (1999c: 253).
For Benjamin, the Angelus Novus_ image by Paul Klee
(1910)[1] captures history’s capacity for progression
and regression:

‘There is an image by Klee called Angelus Novus . On

it an angel is depicted who looks as if he is about to
distance himself from something that he is staring at.
His eyes are wide-open, his mouth is agape, and his
wings are spread. This is how the angel of history must
look. He has turned his face towards the past. Where,

in front of us, a chain of events appear, he sees one
single catastrophe. This unrelentingly piles rubble on
rubble and flings it at his feet. He would really like to
stay, awaken the dead, and repair the smashed pieces.
But a storm is blowing over from paradise, and it is
tangled in his wings and is so strong that the angel can
no longer close them. This storm forces him irresistibly

60

into the future to which his back is turned, while the
pile of rubble in front of him grows skyward. This storm
is what we call progress.’ (Leslie [translating Benjamin
from the German] 2000: 202)[2]

The angel wants to gather up the wreckage of terrible
past events, wasted lives and worthless objects to
make things better but cannot, because of the dominant
forces at work. This is the catastrophe of the ‘status
quo’.[3] What is crucial to this approach is that any
moment in time can be traced historically in order

to reveal its constructedness, and hence reveal the
possibility of change in the present. Benjamin calls
this ‘Jetztzeit’ (the presence of the now): ‘History is
the object of a construction, whose site is not that

of homogeneous and empty time, but one filled with now-
time’ (Leslie [translation of Benjamin] 2000: 198). The
significance of the materialist presentation of history
forces the present into a critical state: ‘It is the
present that polarizes the event into fore- and after-
history’ (1999a: 471) It is as if time stands still,
and the past and the future converge not harmoniously,
but explosively. The suggestion is that software might
be similarly conceived as filled with now-time, held

at a critical state where its past construction and
future execution remain in dialectical tension (see final
chapter for more detail).

History, and the history of technology, is full of the
use of trickery to make it seem natural and beyond the
scope of human intervention. Leslie cites a statement
by Theodor W. Adorno (in a radio lecture of 1962) to
insist that the angel of history is not only the angel
of history but the angel of the machine. Benjamin argues
that any conception of history changes with the times,
as does its analysis in accordance with changes in the
material mode of production:

‘It is the particularity of _technological forms

of production (as opposed to art forms) that their
progress and their success are proportionate to the _
transparency of their social content.’ (1999%a: 465)

Although Benjamin is referring to glass architecture,
the formulation can be applied to other technologies
to emphasise the availability of either open or closed
social content (like open source and proprietary models
of software production). A Marxist view of history is

informed by an understanding of the material factors in
production and the relations of production. According
to this position, capitalism is simply a temporary
organisational form that is neither fixed nor desirable.
It is therefore subject to change and influence by those
involved in the material, productive forces, and social
relations where class antagonism and consequently social
transformation derives. Historical materialism (or what
Marx himself called ‘the materialist conception of
history’) indicates an understanding of the growth and
development of human history founded on these principles.

fake history

At the beginning of Benjamin’s ‘Thesis on the Philosophy
of History’, there is a short passage by means of
introduction:

‘The story is told of an automaton constructed in such
a way that it could respond to each move in a game of
chess with a countermove that ensured him victory. A
puppet in Turkish attire, and with a hookah in his
mouth, sat in front of a chessboard placed on a large
table. A system of mirrors created the illusion of a
table transparent from all sides. Actually a hunchback
dwarf, who was an expert chess player, sat inside and
guided the puppet’s hand by means of strings. One can
imagine a philosophical counterpart to this device.

The puppet known as ‘historical materialism’ is always
supposed to win. It can easily be a match for anyone if
it ropes in the services of theology, which today, as
the story goes, is small and ugly and must, as it is,
keep out of sight.’ ([translation by Leslie] 2000: 172)[4]

The critical method of historical materialism is
introduced as the figure of the automaton, that relies

on the services of a dwarf hidden from view. The dwarf
further evokes the labour of the operator, or even
consciousness according to Esther Leslie (2000: 173).
The success of the automaton is contingent on the
recognition that the dwarf has to gain control of the
technology, rather like taking control of the means

of production. The reference is to a chess-playing
automaton, built by the Hungarian mathematician Wolfgang
von Kempelen in 1769, that subsequently received
widespread attention. There was much speculation as to
whether the machine was driven by magic or by some other
illusory device - a spectre or demon. By the time it

61

62

was exhibited in London in 1783-4, a parallel interest
sought to expose it as an illusion in another sense,

as a trick based on a disbelief that a machine could
demonstrate intelligence sufficient to play chess. Part
of the theatre of the presentation was for Kempelen to
show the audience the clockwork mechanism beneath the
automaton, opening doors to compartments of the desk
one by one and revealing what lay beneath the Turkish
attire. On the one hand, Karl Gottlieb von Windisch
described this as the ‘automaton stripped naked’ (as if
making its source code open) and thereby its workings
shown to be authentic.[5] On the other hand, Joseph
Friedrich Freiherr zu Racknitz in a pamphlet of 1789
suggested that someone was hidden in the desk: ‘the
Automaton chess player is a man within a man; for
whatever his outward form be composed of, he bears a
living soul within’ (in Wood 2002: 66). This is the
dwarf that Benjamin refers to, first suggested by Henri
Decremps, and embellished by Racknitz, who described the
hiding place in detail and how the dwarf would operate
the chess pieces by the use of magnets and a duplicate
board hidden inside the machine. In engravings, the
scenario is imagined in such a way that the dwarf looks
like a puppet of the Turk rather than the other way around.

After Kempelen’s death, Johan Nepomuk Maelsel bought the
machine in 1818 and added some improvements including
speech - the announcement of ‘Echec’ (check) by means of
bellows. It is this version that Wiener refers to as a
‘fraudulent machine’ in his note on the accomplishment
of artificial intelligence (2000: 165). This version is
also referred to in Edgar Allan Poe’s essay ‘Maelzel’s
Chess Player’ (1836), in which he makes direct
comparison to Charles Babbage’s calculating machine, in
asking:

‘What should we think [of a machine that operates]
without the slightest intervention of the intellect of
man? It will, perhaps, be said in reply, that a machine
as we have described is altogether above comparison

with the Chess Player of Maelzel. By no means - it is
altogether beneath it - that is to say, provided we
assume (what should never for one moment be assumed)
that the Chess Player is a pure machine, and performs
its operations without any immediate human agency.’ (in
Wood 2002: 72)

The link between technology and human agency is

made explicit in such descriptions. The illusion is
that human agency is not involved in these machine
operations, and that they are somehow autonomous (as
with artificial intelligence). In Benjamin’s application
of the chess-playing automaton, the illusion relates

to received history that is also not autonomous and

can be corrected by human intervention, assisted by

the historical materialist approach. This concurs with
Leslie’s account of the story in that the dwarf has to
gain control of the technology to reveal the otherwise
hidden relations of production. It is the perceived
autonomy of technology and history that are revealed to
be fake. The theatrics show the lengths that proprietary
interests and manufacture goes to in order to mask the
operating system and source code of any mechanism.
Pretending to reveal this through trick mirrors has
become part of the illusion of the history of computing.

Much software production operates in this way too,
giving the impression of access but one that often hides
a more detailed understanding of the mechanism at a
deeper level. For instance, the graphical user interface
of operating systems reveals only a very partial view.
Under the surface of the interface lie other complex
technical procedures that are kept out of view. The

task of the historical materialist is to reveal these
inner workings in order to develop a counter strategy to
received history. A historical materialist understanding
of software would similarly be engaged in developing
counteractions to received notions of historical and
technological processes, so that these might be changed
through collective action.

63

dialectical and historical processes

The operations of history, like operating systems in
general, are far more complex than surface impressions
suggest. Certainly historical processes cannot be simply
described in terms of progress from one point in time
to another. If a more complex formulation is upheld
that rejects teleological approaches, then the position
of Georg W.F. Hegel is questionable: that history

is no mere accident but happens ‘necessarily’: ‘The
history of the world is none other than the progress

of the consciousness of freedom’ (1953: 19). This
belief in history as an unfolding of meaning towards
freedom does not appear to account sufficiently for the

64

complexities of human subjectivity or societies. This
is certainly the view of Gianni Vattimo, who argues
that the ‘ideal of emancipation’ needs upgrading to
accommodate ‘oscillation, plurality and, ultimately
[...] the erosion of the very “principle of reality”’
(1992: 7). However, he does not reject the idea of
emancipation altogether but maintains that emancipatory
potential lies in the ‘relative chaos’ of a ‘society

of communication’ (see section 4.3 for more detail on
this). Or even, bearing in mind the previous section,
‘our images of the present do not identify agencies and
processes of change’ sufficiently (Levitas 1995: 265),
so that any lingering possibilities of emancipation or
social change remain hidden or consigned to fantasy.

Unashamedly utopian in spirit, Hegel’s concept of
history is predicated on the ‘necessity’ of progress, in
as much as historical change and positive development
can take place in the human condition and consciousness.
In The Phenomenology of Mind (1967[1807]), he points
to the ways in which the mind itself appears to the
observer; this is inextricably linked to history and
progress towards a consciousness of freedom. In other
words, to Hegel, history is the development of the
mind. This presents a conceptual paradox that involves
the complexity of consciousness, in that to study the
mind is to study the way the mind appears to itself.[6]
Knowledge of something is only what appears to be known
to the mind, adding another level of consciousness,

and so on, in a developmental and generative process

of learning. Although the goal of such a method may be
absolute knowledge, this clearly remains impossible

in practical terms. What this dialectical description
suggests is a process of critical reflection, where a
thesis is posed only for an antithesis to be counter-
posed that reveals inadequacies in the first concept,
and the pursuit of new knowledge to make up for these
inadequacies. Any synthesis can only be temporary in
this way, and part of an ongoing critical process.

With more reflection the synthesis will reveal itself

to be a new thesis in some other respect, and so
require the same dialectical treatment, and so on, in
order to continue a chain of knowing something better,
rather than towards a final resolution (as commonly
attributed to Hegelian dialectics). The idea of
synthesis as complete follows the influence of Christian
doctrine (thus Marx, and other ‘young Hegelians’

such as Ludwig Feuerabach, rejected Christianity

and thereby the determinism of the approach). The
principle of ‘progressive unification’ is grounded by
Engels by emphasising matter and materiality in the
concept ‘dialectical materialism’. For Engels, without
contradiction nothing would exist at all, let alone be
able to develop or change.[7] Historical materialism
stops short of applying the concept as universally as
this. The cultural-historical dialectical methodology is
explained by Benjamin:

‘It is therefore of decisive importance that a new
partition be applied to this initially excluded,
negative component so that, by a displacement of the
angle of vision (but not of the criteria!), a positive
element emerges anew in it too - something different
from that previously signified. And so on, ad infinitum,
until the entire past is brought into the present in a
historical apocatastasis’. (1999a: 459)[8]

For Marx too, the dialectical process of contradictory
forces are accounted for in history itself. But this

is where Vattimo identifies the problem of assuming a
unilinear history and whether there is an ultimate
‘reconciliation’ that he identifies with both Marx and Hegel.
This issue of closure is a complex and contentious

one, with many competing interpretations (whether
Hegelian, neo-Hegelian, or anti-neo-Hegelian). However
in this account of the dialectical method, it should be
emphasised that any harmonising dialectical synthesis
must be rejected for an ongoing critical process that
retains contradiction at all stages of the development.

incomplete synthesis

Against the popular interpretation of Hegel'’'s work
(exemplified by Vattimo in the above comments), Slavoj
ZiZek stresses Hegel’'s ‘tarrying of the negative’ to
describe the retention of contradiction rather than the
perceived false harmonising at the point of synthesis

- what is sometimes called ‘higher-order synthesis’
(1999a). The principle behind this is that the system
becomes stale, unless it is continuously challenged. In
other words, herein lies the necessity of contradiction,
and the impossibility of achieving full synthesis on
both practical and conceptual levels. In Hegel’'s terms,
this is a move from ‘in-itself’ to ‘for-itself’ - from
‘ground’ to ‘conditions’ (where ground is the essence

65

66

and the conditions are what brings this about). The

two opposing factors must be combined without losing

the antagonism between them, between the inner essence
and the external circumstances that gives rise to that
essence. ZiZek stresses Hegel'’s position as a radical
anti-evolutionary approach to dialectic synthesis in
this way:

‘The simultaneous reading of these two aspects
undermines the usual idea of dialectical progress as a
gradual realization of the object’s inner potentials, as
its spontaneous self-development. Hegel is here quite
outspoken and explicit: the inner potentials of the self-
development of an object and the pressure exerted on it
by an external force are strictly correlative; they form
the two parts of the same conjunction.’ (1999%a: 228)

The antagonism between internal and external factors
means that the human subject exists within an ‘absolute
unrest of becoming’ (ZiZek 1999a: 239). This is an
evocative emergent state that is thoroughly embedded in
historical process, which raises the issue of whether
human subjects create the external world from within, or
as a result of external circumstances expressed by Marx
(quoted earlier in this section) that they:

‘... make their own history but they do not make it just
as they please; they do not make it under circumstances
chosen by themselves, but under circumstances directly
encountered, given and transmitted by the past’.

(1980: 96)[9]

Hegel, as ZiZek points out, would reject the view

that human subjects make their own history as far too
deterministic. The statement does not take account of
the ways in which inner essence can be transformed into
external conditions and vice versa. Yet, seen from a
different perspective, Hegel’'s work can be understood as
deterministic. For example, Hegel’'s view of the State
is that which holds society together as the culmination
of human achievement. This is the Hegelian assertion

of the ‘end of history’ - a history that culminates in
the present, that Francis Fukuyama appropriated for

his The End of History and the Last Man (1992) to
insist on the triumph of neo-liberalism over Marxist
‘materialist economism’, thus expressing a false
totality.[10] To Marx, the State holds society together
but is also subject to historical conditions, hence
cannot be complete and so requires continual dialectical

attention. Marx simply insists that human consciousness
is seen as a ‘succession of changing stages and shifting
moments’ (becoming) and sees a contradiction in Hegel’s
insistence on the end of history (Lefebvre 1968: 28).

Marx both continues Hegel's project, and at the same
time breaks with him. His ‘Postface to the Second
Edition’ of Capital of 1867, makes this clear:

‘My dialectical method is, in its foundations, not only
different from the Hegelian, but exactly the opposite to
it. For Hegel, the process of thinking, which he even
transforms into an independent subject, under the name
of ‘the Idea’, is the creator of the real world, and

the real world is only the external appearance of the
idea. With me the reverse is true: the ideal is nothing
but the material world reflected in the mind of man, and
translated into forms of thought. [...] The mystification
which the dialectic suffers in Hegel’s hands by no

means prevents him from being the first to present its
general forms of motion in a comprehensive and conscious
manner. With him it is standing on its head. It must

be inverted, in order to discover the rational kernel
within the mystical shell.’ (1990: 102 & 103)[11]

Dialectics is thus reinterpreted in a non-idealist
manner, to assert the contradictory and dynamic nature
of the material world, outside our perception of it. The
dialectical process is marked by stages and there is no
limit to further development, following an open-ended
process rather than a set of received truths or towards
an ultimate truth. The point of this section is not to
assert the importance of one thinker over the other or
to make an undialectical claim for authentic meaning,
but to use these differing positions to substantiate the
claim that a dialectical approach to history is not
deterministic. As with historical materialism, these
dialectical principles allow for an understanding of
software in historical terms: between what is possible
and what actually exists.

As the previous section demonstrates, the dialectical
movement is not from one extreme to its opposite
extreme (from yes to no) and from there to ‘higher

67

68

unity’, but rather a ‘radicalisation’ of the first
position (ZiZek 1999b: 71). Zi¥ek quotes Wendy Brown’s
_States of Injury to make this point more clearly of
how dialectical arguments are posed. Brown describes

a familiar scenario where an oppressed group imagine
themselves in a future better world with the oppressor
removed (1996: 36). She then describes how this logic is
problematic, as it fails to recognise how one identity
position is infiltrated and mediated by the other (as

a result of the capitalist production process). ZiZek
likens this to the misunderstandings at the root of the
Hegelian idea of ‘negation of negation’. He explains:
‘... its matrix is not that of a loss and its
recuperation, but simply that of a process of passage
from state A to state B: the first immediate ‘negation’
of A negates the position of A while remaining within
its symbolic confines, so it must be followed by another
negation, which then negates the very symbolic space
common to A and its immediate negation [...]. Here the
gap that separates the negated system’s “real” death
from its “symbolic” death is crucial: the system has to
die twice.’ (1999b: 72)

As Zizek puts it, negation of negation presupposes no
magical reversal (1999b: 77). Explained further but

in different terms, the Hegelian terms ‘abstract’ and
‘concrete’ universality relate to this - something

only becomes ‘concrete’ when it reintegrates with

its primary state. This logic underpins the Hegelian
principle that it is only through ‘abstract negativity’
that ‘concrete universality’ can be attained. One can
easily see how the relationship between the universal
and the particular is an entirely political struggle,
and as such the basis of representational democracy and
its distortions. ZiZek expands on this idea of post-
politics describing the traditional relation between the
particular and the universal that underpins politics.
In this way, the detail on how a single issue becomes
representative of a wider struggle is foreclosed and
kept in the realm of the particular (1999b: 204). So-
called socially-engaged arts practice runs into similar
problems by failing to see how it is often left at the
level of the particular, and infiltrated and mediated by
the wider culture and economy it is part of, and yet
that it seeks to challenge. Recent cultural policies
that address ‘social inclusion’ are a case in point,
where the particularity of the focus fails to address

the wider issues that lead to exclusion. Furthermore,
the identification of the issue in itself paradoxically
leads to a perpetuation of the same logic of exclusion.
This relates to what ZiZek calls the failure of
identity politics, that casts multiculturalism as

a ‘disavowed, inverted, self-referential form of
racism which empties itself of all positive content’
(1999b: 216) wherein the ‘Other’ takes on an assumed
superiority - or the ‘privileged empty point of
universality’, in Hegelian terms. The multiculturalist
vision of hybrid, fluid identifications or ‘unity in
difference’ (endorsed by what Arif Dirlik calls the
‘intelligentsia of global capitalism’, 1997: 77), is
really a tolerance of the Western capitalist world order
in which all alleged differences are not differentiated
but ultimately homogenised. In summary, it can be said
that oppositional identities are essential parts of
oppressive systems.

The role of negation, and its negation, in this context
is important to understand some of the ways in which
dominant ideas attempt to reproduce themselves, even
when an oppositional stance is taken.[12] So where does
this leave oppositional tactics? Clearly negation is
only one part of a dialectical strategy and should be
used with full knowledge of how the ‘expropriators are
expropriated’ as Marx puts it (1990: 929). A politics

of software requires similar attention to detail. One
might envisage software that negates software, and then
negates the wider operating system of which it is part.
The negation of negation is crucial in this respect. For
example, the production of free software first negates
proprietary software, but still remains within the
confines of private ownership, so an attempt must be
made to further negate the whole principle of private
ownership of the means of production, to avoid being
appropriated. Expressed in Hegelian terms, free software
needs to operate through ‘abstract negativity’ in order
that ‘concrete universality’ can be achieved, based on
inherent cooperative labour and its founding principles
of common property. The difficulty of course is that
these principles have been appropriated by capital,
making the production of free software not simply an
alternative to capitalism but an expression of new forms
of labour tied to cultural production (see section 5.2
for more detail).

69

70

problem of totality

In orthodox Marxist terms, the proletariat stands

for human universality, partly because it is the most
exploited class but more importantly because it is a ‘living
contradiction’, revealing the inherent antagonism in the
capitalist system (based on the theft of labour power).
The logic of this relies on the belief that the exploited
class can express free will or autonomy sufficiently.
Hegel thought the process of history involved the human
spirit becoming conscious of its alienated conditions.
In History and Class Consciousness_(1976[1922]), Georg
Lukéacs describes any positive change of consciousness
as synchronous to the (false conception of) reality it
seeks to change. ‘False consciousness’ is a description
of the lag between the way things are and the way we
know. However, it does not take sufficient account of
the fact that when we know something it has already
transformed into something else by the act of knowing
it (‘’self-knowledge’). Lukécs proposes that a ‘true’
recognition is the social whole, within which the
proletariat can be seen to be positioned oppressively

- what he calls ‘the problem of totality’ (1976: 151).
[13] The proletariat alone holds the potential for
emancipation because the bourgeois class cannot see

the whole. In this way, Lukécs’s concept of totality
evokes the concept of universality in Hegel (described
in the previous section) at the expense of other
contradictions. It is worth adding here that Lukéacs’s
work is criticised heavily for being ‘essentialist’,

in as much as it centres everything on the Hegelian
idea of totality at the expense of other contradictions
(Eagleton 1997: 185).[14]

The social whole is treated somewhat differently by Louis
Althusser, who challenges some of the central tenets of
classical Marxism and the centrality of the economic
base (that it determines the superstructure) by adding
levels of feedback. To Althusser, writing in 1969,

the superstructure (that contains culture) is both
relatively autonomous and exerts a reciprocal action on
the base (1997: 105). This is important as it stresses
the politics of culture, and the effectiveness of what he
calls the ‘ideological State apparatuses’ to describe
the mechanism of ideology to make things appear natural.
[15] Through this ‘naturalising’ of certain dominant
ideas, what is presented to the human subject, and

internalised, is an imaginary representation of the real
conditions of production and their place within these
structures. However, these ideas are clearly formed as a
result of:

‘... material actions inserted into material practices
governed by material rituals which are themselves defined
by the material ideological apparatus from which derive
the ideas of that subject’ (1997: 127).

From this, Althusser asserts that there is no ideology
outside subjectivity, and he includes himself and the reader
in this scenario as both thoroughly ‘in ideology’. To
Althusser, we are ‘always-already subjects’ practising
the rituals of ideological recognition: ‘all ideology
hails or interpellates concrete individuals as concrete
subjects’ (1997: 130). It interpellates or recruits
subjects by hailing ‘Hey, you there!’ (1997: 131).
Althusser further explores the Freudian connections in
the construction of the human subject and in the willing
acceptance of this condition, in that:

‘... the individual is interpellated as a (free) subject
in order that he [sic] shall submit freely to the
commandments of the Subject, i.e. in order that he shall
(freely) accept his subjection, i.e. in order that he
shall make the gestures and actions of his subjection
“all by himself”. There are no subjects except by and
for their subjection.’ (1997: 136)

Drawing upon Althusser, but also the work of Hegel and
Jacques Lacan, allows ZiZek to formulate a critique of
neo-liberalism and its ideological project, based on
free market principles and the illusion of free choice.
This is what ZiZek calls the ‘vulgar liberal notion’ of
freedom, as ‘not a choice between a series of objects
leaving my subject position intact, but the fundamental
choice by means of which I “choose myself”’ (1999b: 18).
In other words, the human subject is interpellated and
imagines him/herself to be a free agent. This is a
paradoxical scenario where choice presents itself as no
choice at all in effect, rather like the impoverished
choices of ‘yes’ or ‘no’ in an interactive game (that
remains ‘interpassive’ but without the user’s realisation).
The Internet operates in this way too: ‘it hails you,

it connects to you and gives you an IP number; it
interpellates you into Imperial ideology’ (Holmes 2003).
The choices offered are spurious ones.

71

72

However, this is given a more positive interpretation
by Zi%ek in his defence of Hegel, and the idea of
totality. In the case of political action, the subject
is called by history to act in the right way and make
the right choice of action. In other words, this is not
ideological manipulation but what is almost preordained
- it exists outside the subject’s knowledge of it but
it exists all the same. ZiZek quotes Bertrand Russell
to illustrate the point: ‘I did not know I loved you
till I heard myself telling you so’. It was not that
love existed without the subject’s knowledge but that
the subject loved all along (1999b: 54). There is a
delay between an event in-itself and for-itself. The
influence of Lacan is clear when he describes how this
‘retro-active’ response often works with speech, in the
shift from a virtual language to actual language - it
is speech-in-itself, or speech that pre-exists itself,
‘speech before speech’ (1999b: 54). Things are decided
before they are enacted in actuality. The connection
between the past and the present relates to human
action. As with speech, software operates in the same
way too, in as much as it is programmed in advance of
its action (see section 6.2 for more detail).

In contrast to the Hegelian idea that the social whole
or totality will eventually be conceived of as the
truth, Adorno sees this as largely realised in negative
terms and therefore the whole must be conceived of as
false. In the preface to Negative Dialectics_ (2000
[1966]), Adorno describes how the ‘negation of negation’
has been conventionally taken to achieve something
positive by means of negation. In Adorno’s view, theory
and criticism had to be combined as negation responding
to this apparent failure of political philosophy to
realise its aims, or to put its claims into practice.
[16] Positive criticism leads to nothing, as history
appears to have demonstrated, and has become a self-
serving commodity (art criticism is notoriously
uncritical in this way and mostly serves the interests
of the art market). The collective Adilkno accuse
contemporary criticism of operating an ‘ego trip of a
better world that starts and ends with oneself’ (Adilkno
1998: 57). This is not least a sobering thought for the
production of academic work such as this thesis.

dynamic history

In The Dialectic of Enlightenment (1997 [1944]),
Adorno and Max Horkheimer reject the view of historical
process as the recognition of false consciousness,

as it makes too many assumptions about consciousness
and subjectivity. Skeptical of the central role of
class conflict, they argued that critical theory had to
take account of how domination was being expressed in
cultural forms rather than simply economic ones, which
had led to the proletariat being thoroughly integrated
into the system and no longer able to recognise their
historical calling.[17] The revisionary Marxism of the
Frankfurt Institut in general, of which they form a
part,[18] draws together Marx and Freud, replacing the
centrality of class conflict with a dynamic approach

to history. According to Martin Jay these influences
operate in a dialectical fashion: ‘For Marx, the past
is pregnant with the future [...]. For Sigmund Freud,
the future is pregnant with the past [...]’ (1996: 86,
quoting Philip Rieff). To rely on change taking place
at the level of the means of production did not go

far enough, according to Horkheimer, and change could
only come about through a ‘rupture in the continuum of
history’ (echoing Benjamin’s phrase from ‘Theses on
the Philosophy of History’). The rupture is necessary
because the past is perceived as being false.

To Benjamin, the representation of history operates like
a series of dream images, that possess the potential

to awaken consciousness that is otherwise fixed in a
dream-state. These dream images, or indeed nightmares,
operate like unprocessed montages, like source code,
that reflect the conditions in which dreaming individuals
find themselves. In this sense, political consciousness
is ‘slumbering in the “once upon a time” of classical
historical narrative’ (Tiedemann 1999: 933).[19] Rolf
Tiedemann elaborates on this to explain that if history
is dream-like:

‘... past objects and events would not then be fixed
data, an unchangeable given, because dialectical
thinking “ransacks them, revolutionizes them, turns
them upside down”; this is what must be accomplished by
awakening from the dream [...]’ (1999: 935).

Being awakened from this dream-like state refers to
the idea of the human subject ‘not-yet knowing’ their
role in history. According to Tiedemann, Benjamin is
using the work of Ernst Bloch as a model (for instance,

73

74

in his Spirit of Utopia) by applying the ‘theory

of not-yet conscious knowing’; the ultimate test for
dialectics in penetrating former contexts to realise
present actions (Tiedemann 1999: 936). This conception
of not-yet conscious knowing was introduced earlier in
the chapter by ZiZek, who explains ‘class consciousness’
not as awakening as such but as the change from ‘class-
in-itself’ to ‘class-for-itself’ (1999a: 231). The
knowledge required for any sense of freedom is self-
referential. In contrast to a view of consciousness

as too complicated or too determined to allow humans

to act as free agents, }i~ek asks: ‘Is the status of
consciousness basically that of freedom in a system of
radical determinism?’ (1999b: 60). The human subject is
clearly not an autonomous agent that simply processes
information through the senses like a computer. For
Zi%ek (combining Marx and Lacan), the unconscious
remains a useful framework for thinking, as it provides
productive cracks that give rise to contradiction. ZiZek
is not seeking truth in this respect, but change.

The unconscious haunts consciousness in a similar way
to how historical ideas can be seen to haunt current
thinking. Trying to exorcise his ghosts and reconcile
his ‘post-Marxist’ position, Jacques Derrida’s _Spectres
of Marx demonstrates how Marxism continues to haunt
contemporary theorising (and politics).[20] Derrida
likens the spirit of Marxism to Hamlet'’s ghost and the
sense in which ‘being’ raises the question ‘to be or
not to be’ (1994: 10). That Marx, on his own admission
was not a Marxist (as he allegedly confided to Engels),
is a further example of the ways in which ideas are
historically bound and open to problems of translation:
‘How is one to receive, how is one to understand a
speech, how is one to inherit it when it does not let
itself be translated from itself into itself?’, Derrida
asks (1994: 34). And how could Marx be a Marxist? It

is clear to Derrida that Marx could not both be a
follower of his own thought without becoming a ghost

of his former self. Dialectical thinking encourages

such reflexive moves, and Marx stresses the need for a
continual reassessment of ideas (Engels too, in the 1888
preface, explicitly talks of the ‘aging’ process of the
text). Derrida is impressed by this self-critique:

‘What other thinker has ever issued a similar warning in
such an explicit fashion? Who has ever called for the
transformation to come of their own theses? [...] so as

to take account there, another account, the effects of
rupture and restructuration? And so as to incorporate
in advance, beyond any possible programming, the
unpredictability of new knowledge, new techniques, and
new political givens.’ (1994: 13)

Past ideas continue to have effects, and like the return
of the repressed, re-emerge at unexpected moments.
Against the relativism of postmodern theory with its
tendency towards openness to anything, contradiction
provides productive cracks. To Marshall Berman, the

lack of recognition of contradiction in contemporary
thinking accounts for the stagnation he observes, in
which: ‘Open visions of modern life have been supplanted
by closed ones, Both/And by Either/Or.’ (1999: 24) Open
forms and conjunctions are key to this.[21] Crucial

to Berman’'s position, is the retention of history as
inherently unstable, restless, contradictory, dynamic
and dialectical force. In titling his book _All That is
Solid Melts into Air , he is specifically referring back
to _The Communist Manifesto_ of 1848, to argue that what
appears solid is fundamentally subject to change and
influence:

‘All fixed, fast frozen relations, with their train of
ancient and venerable prejudices and opinions, are swept
away, all new-formed ones become antiquated before they
can ossify. All that is solid melts into air, all that
is holy is profaned, and man [sic] is at last compelled
to face with sober senses, his real condition of life,
and his relations with his kind.’ (Marx & Engels 1985: 83)

The quote reads as a truism now. Difficulty lies in the
fact that constant change and almost instantaneous
obsolescence have become mainstays of contemporary
culture. If all new forms ossify, then how can
alternatives emerge without being condemned to the

same fate? The process of transformation itself

clearly contains contradictory tendencies. As much as
providing positive potential, crisis appears to serve
the vested interests of capital, even strengthening it.
Catastrophes are turned into lucrative opportunities
for redevelopment and as an integrating force for the
renewal of capital (one only has to look at current
economic activities around ‘cultural regeneration’ for
verification of this, or the re-development of countries
after war by the same parties that destroyed them). This
sense of paradox is evident in Marx too, in that crisis

75

76

is both the motor for the renewal of capital and the
means of its demise. As a consequence of these worries,
there exists a tendency to reject the strategies
associated with dialectics, such as negation, as no
longer able to respond to current conditions. In Marxist
dialectics, this is where the concept of negation of
negation is crucial. Berman for instance, does not want
a way out of these contradictions but a deeper way into
them.

This section has attempted to give detail to the
dialectical method, to suggest how complex arguments

can be posed to respond to complex situations, and to
understand the potential of the human subject in history
to exert influence on the dynamic relation between

what exists and future possibilities. The parallels

of historical processes and contemporary ways of
understanding transformation are introduced here, to add
weight to the suggestion that reinvention is possible,
and that reinvention is an intrinsic part of dialectics.

Historical development expresses predictable and
unpredictable tendencies. Its unpredictability makes
history full of emergent potential, and not simply

a series of repetitive cycles or a straight line of
progress, as some descriptions would have it. In very
general terms, emergence describes a process by which
complex patterns are formed from simple rules. This can
be a dynamic process occurring over time, but to be considered
emergent it should generally be unpredictable.

Emergent phenomena can be explained through systems
theory, and more particularly through an understanding
of adaptive behaviour. For instance, society is an
emergent system that is self-organised, able to
demonstrate adaptive behaviour. Steven Johnson in
Emergence (2001), presents an example of the software
program _Tracker_ that uses genetic algorithms to
simulate the behaviour of an ant colony of sixteen
thousand ants. The software does not simply follow
instructions but responds to the principle that simple
instructions might lead to complex behaviour. In effect,
an antagonistic balance emerges from feedback (Solé &

Goodwin 2000: 100). The system appears to demonstrate

a dialectical relation between feedback and control. A
common conclusion of this type of work is that despite
our tendency to look for a controlling mechanism:

‘... we are starting to think using the conceptual

tools of bottom-up systems. Like dialectical logic of
the nineteenth century, the emergent worldview belongs
to this moment in time, shaping our thought habits and
colouring our perception of the world’ (Johnson 2001: 66).

The world-view Johnson has in mind is one based on an
understanding of complex adaptive systems, and clearly this
has an impact upon an understanding of history. Although
conceptual thinking can be situated historically, a
rejection of dialectics, based on its correspondence

to the industrial revolution, does not recognise the

way that conceptual models are also subject to change.
Johnson’s rejection of dialectics also comes without
reference to its emergent properties. The final section
of this chapter attempts to address the concept of
emergence in relation to dialectics. Wider issues

around the social implications of systems thinking will
be introduced but also returned to in the following
chapter, as will a more detailed discussion on the
relation between complexity theory and dialectics. What
follows will try to establish the connection between
emergence and dialectics in as much as it has a bearing
on an understanding of historical processes in general.

77

transformative praxis

A more complex understanding of emergence that takes
into account dialectics is something that ‘critical
realism’, associated with Roy Bhaskar, attempts to achieve.
The objectives are ambitious (to say the least) in
developing a general theory of dialectics that extends
beyond Hegelian thinking, to form a critique of Western
philosophy. In general, critical realism suggests that the
realms of physics and history share a false perspective
on natural science, in as much as one tends towards a causal
explanation (positivism) and the other an interpretive
understanding (hermeneutics). Instead, Bhaskar proposes a
‘critical and non-reductionist, naturalism, based upon a
transcendental realist account of science and, as such,
necessarily respecting (indeed grounded in) the specificity
and emergent properties of the social realm’ (1998: xiv).
This position is informed by a number of historical

78

sources including Karl Popper, who argued that it was
falsification not verification that laid the foundations
of scientific method;[22] historians and sociologists

of science such as Kuhn, who emphasised the social
processes involved in scientific endeavour; and Ludwig
Wittgenstein, who emphasised the mutable character of
facts in science. In this way, scientific discovery can
be seen to follow a dynamic logic that is revealed
progressively, underpinned by generative mechanisms

or laws. As a result (and pertinent to the preceding
section of the chapter), Bhaskar considers society

as both the condition and outcome of human agency,

and that human agency both reproduces and transforms
society. He explains: ‘Social structure, then, is

both the ever-present condition and the continually
reproduced outcome of intentional human agency.’ (1998:
xvi) In a dialectical conjunction, human agents are
described as actively able to transform society and yet
simultaneously constrained by society.

Bhaskar’s revisionist position (particularly in his
Dialectic: Pulse of Freedom of 1993) is based on the
view that Hegelian thinking is closed rather than open-
ended, and that Marx never fully described scientific
realism. His description of the dialectic in Marx as
scientific, explains the contradictions in society in
terms of the contradictory relations generating them as
historical (rooted in the changes of the circumstances
described), critical (demonstrating historical
conditions) and systematic (tracing the historical
conditions back to the mode of production) (1998: xxi).
As for Hegel, Bhaskar explains the ‘rational kernel’

as a process of better knowing or learning through

the dialectical process of greater critical depth: it
generates what is already implicit but not explicitly
articulated and by repairing some inadequacy as part

of the ongoing critical process. The interpretation is
close to }i~ek’s defence of Hegel'’s ‘tarrying of the
negative’ but with a very different set of references.
Where for ZiZek it is the unconscious, for Bhaskar

it is the concept of absence that is crucial to an
understanding of negation. He is supplementing what
Hegel calls the ‘grasping of opposites in their unity or
of the positive in the negative’ (in Bhaskar 1998: 580).
The negative does not simply cancel the positive but
reveals the logic that:

‘a genus always contains, explicitly or proleptically,

its own differentiae; [...] negation always leads to

a new richer determination - this is transformative
negation - so imparting to categories and forms of life
an immanent dynamic and to their conflict an immanent
resolution rather than a mutual nullification’ (Bhaskar
1998: 580).

The immanent dynamic is what Bhaskar refers to

as ‘transformative praxis’, where contradiction
remains active, open and ongoing. Without this open-
ended approach, endism and other ‘fundamentalisms’
will dominate, in what Bhaskar calls ‘irrealist
dialectics’. Whereas dialectics, in terms of critical
realism, permits the gradual elimination of absences
characterised in terms of emergence.

dialectical emergence

Emergence, for Bhaskar, is the generation of new
possibilities, a ‘quantum leap: matter as creative

or autopoietic’ (1998: 564). It is contradiction

that allows connections to operate both separately

and as part of a whole or totality. Echoing earlier
descriptions of historical materialism, the ‘here and
now’ is characterised by the influence of the outside

and the past, in such a way that social phenomena can

be seen to contain emergent properties. Emergence in
this way describes the creative, autopoietic operation
wherein new properties are generated out of pre-existing
material forms (as with montage). The quantum leap is
one that goes beyond Hegel and Marx. Bhaskar interprets
the dialectical materialist position as teleological
(too causal) in its characterisation of progress towards
a better society.[23] In contrast, he describes society
obliquely as an ‘open-systemic entropic totality, in
which results [...] are neither autogenetically produced
nor even constellationally closed, but the provisional
outcome of a heterogeneous multiplicity of changing
mechanisms, agencies and circumstances’ (1998: 600).

An understanding of adaptive systems informs this

view, and undermines the teleological understanding

of history. A teleological position is what Ilya
Prigogine and Isabelle Stengers call ‘one time-directed
evolution’, that does not take sufficient account of the
complexity of systems. They ask the question: ‘What is
the specific structure of dynamic systems that permits

79

80

[others] to “distinguish” between past and future?

What is the minimum complexity involved?’ (1985: 16)
Prigogine and Stengers are extending Hegelian thinking
that rests on the ‘qualitative difference between the
simple behavior described by mechanics and the behavior
of more complex entities such as living beings’ (1985:
89). They assert that at each iteration of a level in
the dialectical hierarchy, there is a corresponding
increase in complexity in nature.[24] The relationship
to history is important too, where the oscillation between
input-output is a consecutive relation of past-future
(as is the case with computation of course). According
to Wiener in Cybernetics_ (2000 [1948]) in the chapter
‘Newtonian and Bergsonian Time’, the modern conception
of automata conforms not to a Newtonian model but to a
Bergsonian one, in keeping with the description of living
organisms. The reference to Henri Bergson emphasises the
inadequacy of a Newtonian description of biology: ‘the
difference between the reversible time of physics, in
which nothing new happens, and the irreversible time

of evolution and biology, in which there is always
something new’ (Wiener 2000: 38).

Duration has been much misunderstood according to Bergson,
as a linear movement of an object through space, such that
the non-linear complexity is avoided in favour of a
convenient solution that best suits easy comprehension.
Thus movement, to Bergson - referring to Zeno’s paradox
that if an arrow [time’s arrow] has to pass through an
infinity of points, how will it ever reach its target)

- is not simply the passage between points but ‘a
qualitative becoming that affects both the arrow, the
archer and the overall context’ (Terranova 2004: 50). In
dynamical systems, time and space work together to produce
motion. Describing this added complexity, emergence

is a useful concept, as it suggests non-causal, non-
teleological formations reflecting a historical materialist
approach. Emergence also allows Bhaskar to conceptualise
human agency in terms of incompleteness or absence, that
propels the dialectic as an ongoing transformative process.
It is Bhaskar'’s concept of ‘transformative agency’ that
characterises his work as ‘extra-Hegelian dialectics’
(1998: 638). He claims ‘for emancipation to be possible,
knowable emergent laws must operate’ (quoting _Scientific
Realism and Human Emancipation_, in Goodwin 1997: 121).

The concept of emergence, in as much as it informs

systems theory and complexity, will be developed in the
next chapter. In terms of what has already been covered,
emergence extends an understanding of historical
materialism to deal with contemporary understandings of
transformation. An ‘extra-historical materialism’ is
implied in the way that transformative agency stresses
the importance of ideas and the active role of people
in historical development - recognising that people do
not simply make their own history nor are determined by
history, but both. As far as it develops the overall
argument of a thesis about software, this chapter
establishes an understanding of transformative praxis to
introduce what will be later referred to as ‘software
praxis’ (chapter 6) to stress the future possibilities
of emergent action.

4. *complex technology*

‘Technology is neither good nor bad, nor is it neutral’
(Kranzberg, in Castells 1996: 65).

Building upon the dialectical understanding of history
set out in the previous chapter, the historical
development of informational technologies can be seen to
express both lines of discontinuity and continuity from
previous modes of production. Concepts are stored in
memory and then processed. This chapter examines dynamic
forms associated with computer technologies and, by
drawing upon complexity theory, suggests a currency for
dialectical thinking.

Section 4.1 provides a description of technological
development through its interaction with both

history and society, thus rejecting any sense of
technological determinism (confirming that technology
does not determine society but is embodied by it). With
reference to the economist Ernest Mandel’s ‘periodising
hypothesis’, wherein each period of technological
innovation builds upon the previous one rather than
making a distinct break, it argues that development is
non-teleological, combining emergent and residual forms.
The contemporary phase of development, characterised

by a network model, is no different in this respect.
Despite the appearance of a lack of hierarchy, control
is exerted through distributed rather than centralised

81

82

forms. Detail on the nature of the processes running
remains relatively hidden (like source code or DNA),
expressed in ever more complex and ‘immaterial’ formations
that obscure their historical and material conditions.

An understanding of computational processes and networks
reveals more detail on the dynamics of control and
feedback within these systems. Section 4.2 presents a
brief and partial history of these dynamic processes,
paying particular attention to the concept of feedback,
and the social and ethical dimension of cybernetics

and systems theory. It seems clear that many of the
concepts relating to self-regulating systems have been
used to justify free market logic, at the expense of

the use of systems theory for social critique. Computer
processes and their interpretation operate as both a
metaphor and description in this way, leading to a
discussion of ‘digital dialectics’ that traces the
binary underpinnings of machine code, in parallel to
speculation on the potential of dialectical thinking for
computer criticism.

The complexity of systems such as were briefly described
in the previous chapter, far from legislating against a
dialectical approach, can be seen to demonstrate what
has been referred to as ‘orderly disorder’, wherein deep
structures of order exist within seemingly unpredictable
and disorderly phenomena. Building on an understanding
of emergence introduced in the previous chapter, section
4.3 elaborates on the way in which emergent order has
social and political significance, in as much as these
systems are open to change from both external and
internal factors. What is developed in the chapter is

an approach that combines systems theory, and in turn
complexity theory, with dialectical materialism. This is
referred to as ‘systems dialectics’ and a more detailed
description of this is presented with particular
reference to an emergent view of dialectics, described
in the previous chapter. In the combination of systems
theory with dialectical materialism, the importance

of negation is supplemented by disorder that can give
rise to a new sense of order, and thereby gives rise to
further disorder and so on (what might be referred to as
‘the tarrying of disorder’ in ‘extra-Hegelian’ terms).
An argument for transformative praxis associated with
software art arises from this conceptual approach in the
final chapter.

Many commentators have tried to characterise the so-
called ‘information technology revolution’ in similar
terms to the impact of the industrial revolution.
Manuel Castells is sympathetic to this, describing it
as ‘a pattern of discontinuity in the material basis of
economy, society and culture’ (1996: 30), but is keen to
emphasise that _The Rise of the Network Society_ needs
to be understood through the dynamic intersections of
technology, society and historical change. It is this
basic point that this first section will introduce, in
keeping with a dialectical understanding of historical
processes that this chapter aims to extend to
technological processes.

In general terms, capitalism has evolved into its contemporary
form by embracing technological change, and done so
whilst making sure it continues to protect its own
interests. It can thereby be regarded as discontinuous
from the industrial mode but its overall logic remains
continuous. In dialectical style, Castells says:

‘The rise of the network society [...] cannot be
understood without the interaction between these two
relatively autonomous trends: development of new
information technologies, and the old society’s attempt
to retool itself by using the power of technology to
serve the technology of power.’ (1996: 52)[1]

83

Castells characterises these simultaneous conditions
in his phrase ‘informational capitalism’ (1996: 18).
The phrase avoids the danger of imposing too severe

a model of change associated with terms like ‘post-
industrialism’, or what Daniel Bell contentiously
called ‘postindustrial society’ to assert that new
social formations no longer obey the laws of industrial
production (Jameson 1991: 3). The lines of continuity
are stressed by using the term ‘late-capitalism’ (as
Jameson does) to reject too harsh a distinction and
emphasise that this is more like a modification of
capitalism than a new form as such. Related to this
(though more extreme) is Mandel’s proposition ‘senile
capitalism’, that suggests the irrationality of its
continued logic (alluding to ‘senile-dementia’, 1990).
The various choice of terms points to some of the

84

ideological issues that arise from the descriptions of
the force of change.

The discontinuity to which Castells points is the
change in the ways in which technological processes
are organised: from a mode of development focussed on
economic growth and surplus-value (industrialism) to
one based on the pursuit of knowledge and increased
levels of complexity of information. Industrial
production has been supplemented by information,

and capital regenerated in a new form that reflects
technological innovation. ‘Informationalism’ as
Castells calls it, is the result of the restructuring
of capitalism, and the new crucial material resource
of informationalism is knowledge. In terms of the
continuity of capitalist logic, Castells states:
‘Indeed, we observe the parallel unleashing of
formidable productive forces of the information
revolution, and the consolidation of black holes of
human misery in the global economy.’ (1996: 2)

That wealth and power is ever more concentrated in

a small number of giant industrial and financial
corporations, lends weight to the Marxist position

of Mandel, who observes that contemporary society
reflects the model presented in Capital (1990) in a
‘purer form’ than when it was first composed in 1867.
He is writing this in 1976, and points to various
examples of late-capitalism’s crises at that time

(for example, from the student and workers’ riots in
Paris of 1968, to ecological concerns as a result of
nuclear power). He claims that contradictions continue
to manifest themselves in all aspects of capitalism’s
workings, however latent they may appear, such that
impetuous growth is combined with its negation. Both
Mandel’s position and the one adopted in this chapter
are historical in scope, in order to situate the
specific mode of production in the context of previous
modes. The lines of continuity are easily overlooked
in descriptions that rush to dramatise technological
change and forget the lines of continuity. As much as
technology might itself contribute to these changes, it
does not determine them. Contradictions are inherent to
the historical development of technology.

third stage of development

Technological development can be characterised in terms
of generation and feedback. Castells refers to this

as ‘a cumulative feedback loop between innovation and
the uses of innovation’. He charts ‘The Historical
Sequence of the Information Technology Revolution’
(1996: 32 & 40-46) beginning with the invention of

the telephone in 1876, and the invention of the first
programmable computer after the Second World War.
According to Castells, development only enters a
significantly revolutionary phase by the 1970s with

the interrelated fields of microelectronics, computers
and telecommunications, and adds that biotechnology
contributes a further phase that might well constitute
a revolution in itself (but this remains unproven in his
view, as with nanotechnology in a more current context
no doubt).

The historical sequence used by Castells is an overt
reference to Mandel’s ‘periodising hypothesis’ of
expanding and stagnating economic cycles (in _The Long
Waves of Capitalist Development , 1978), a model further
adapted by Frederic Jameson to chart trends in cultural
production (in _Postmodernism, or, The Cultural Logic

of Late Capitalism , 1984).[2] The importance of the
principle is that each period is seen to build upon

the previous rather than making a distinct break, in
emergent and residual forms. Clearly influenced by a
dialectical materialist understanding of history, Mandel
thus accounts for the evolution of technology:

‘The fundamental revolutions in power technology - the
technology of the production of motive machines by
machines - thus appears as the determinant moment in
revolutions of technology as a whole. Machine production
of steam-driven motors since 1848; machine production of
electric and combustion motors since the 90s of the 19th
century; machine production of electronic and nuclear-
powered apparatuses since the 40s of the 20th century

- these are the three general revolutions in technology
engendered by the capitalist mode of production since
the “original” industrial revolution of the later 18th
century.’ (in Jameson 1991: 35)

The so-called ‘third phase’ has been supplemented by
networked and interactive computer systems. In parallel,
social and organisational structures and interactions
have changed to a network model, made possible by
telecommunications technologies enabling the interactive

85

86

‘real-time’ broadband networks of the present Internet
and mobile cellular technologies - what is often
referred to as ‘ubiquitous computing’ (computing that
is omnipresent and everywhere).[3] At the core of
technological revolutions, changes are ‘characterised
by pervasiveness, that is by their penetration of all
domains of human activity’ (quoting Kranzberg & Pursell
1967, in Castells 1996: 31). Biotechnology seems to
encapsulate this pervasiveness in the recognition that
organic and technical processes contain self-organising
functions that genetic algorithms aim to replicate.

The machine is seen to work like an organism, and as a
result seem life-like. As Donna Haraway puts it in ‘The
Cyborg Manifesto’:

‘But basically machines were not self-moving, self-
designing, autonomous. They could not achieve man’s
dream, only mock it. They were not man, an author of
himself, but only a caricature of that masculinist
reproductive dream. To think they were otherwise was to
be paranoid. Now we are not so sure [...]. Our machines
are disturbingly lively, and we ourselves frighteningly
inert.’ (1991: 194)

Quite literally, the ‘dead labour’ of the machine has
become reanimated by its comparison to biological
systems (see chapter 5 for more detail). Such a view
is typified by the position of Kevin Kelly, who enthuses
about the technological future as one informed, if not
determined, by biology (sometimes called the ‘post-
biological era’ to indicate the force of change). The
software program _Tracker_ mentioned in the previous
chapter, is an example of simulating the complex
behaviour of an ant colony. The study of ant colonies
is a popular example to explain the lack of a
discernable organisational hierarchy.[4] As opposed

to mechanical systems or the factory assembly line,
distributed systems have no obvious chain of command
and represent what Kelly calls a ‘swarm model’ (2003:
39). However, such an enthusiastic reception avoids the
ideological implications, making the lack of control
somehow appear as ‘natural’ as an ant colony or swarm
of bees, masking new forms of control that operate a
distributed approach.[5] Control within distributed
systems can be partly explained by the mathematical
expression called a ‘power law’, that describes how
few events manifest most of the action, reflecting the
existence of large numbers of nodes but few hubs.

Albert-L&szl6 Barabdsi uses this understanding of power
to understand the ‘laws behind complex networks’ (2002:
73). He quotes the work of the Italian economist,
Vilfredo Pareto, who observed the ‘universal law’ that
80 per cent of peas (or property) were produced (or are
owned) by 20 per cent of pea pods (2002: 66). Although
this ‘80/20 rule’ seems rather generalised, it does offer
some insight, not to universal laws of nature but to the
politics of networked systems.

The revelation that Barabédsi’s thinking was influenced by
an economist strikes a historical parallel to the detail
that Charles Darwin’s theory of evolution was influenced
by the economic theory of Thomas Malthus, who researched
population growth and the efficient management of scarce
resources. The ideological dimension of Darwinism (or
what Sherry Turkle calls ‘unnatural selection’ 1997:
149) emphasises how scientific claims are developed in
parallel to the cultural narrative of the time. As a
further example, Sarah Kember describes how the neo-
Darwinist position of Richard Dawkins’s _The Selfish
Gene_ (1976) can be read against the discourse around
subjectivity during the 1970s, under the influence of
post-structuralist thinking.[6] Hence the cultural
narrative can be seen to be ‘about displaced agency,
about a subjectivity that has the illusion of control
while the real locus of control lies with another agent
who inhabits the subject and uses him for its own ends’
(quoting Hayles, in Kember 2003: 18). Following this
narrative, the human is correspondingly characterised as
an autonomous ‘selfish’ machine. It is precisely to avoid
genetic determinism that Dawkins proposes ‘memes’ to
characterise the cultural aspect of evolution (a hybrid
term combining the Greek word for imitate ‘mimeme’ and
gene). These memes, according to Dawkins, are ideas

that pass from human to human but still subject to the
laws of natural selection. There may be some degree of
human agency but only in a selfish sense (like the gene)
in response to the scarcity of resources and survival.
Kember sees a paradox and weakness here:

‘Free will, it would seem, simultaneously counters

and legitimises determinism. Metaphors of genetic and
memetic agency and the ideological loop-hole which
Dawkins constructs within them permeate the creation

of artificial life worlds which are, to this extent,
biologically determined.’ (2003: 39)

87

88

In contrast to Dawkins’s deterministic view of human
agency, the neurobiologist Steven Rose argues for an
active human subject that is capable of acting not only
in, but upon the world. Paraphrasing Marx’s statement
from the ‘The Eighteenth Brumaire of Louis Bonaparte’
(1980), Rose claims ‘we have the ability to construct
our own futures, albeit in circumstances not of our

own choosing’ (in Kember 2003: 22). He wishes to
characterise human agency in terms of ‘auto-poiesis’
(from ‘poiesis’ meaning creation), adapted from the work
of Humberto Maturana and Francisco Varela (1973) who
state:

‘An autopoietic machine is a machine organized (defined
as a unity) as a network of processes of production
(transformation and destruction) of components which:
(i) through their interactions and transformations
continuously regenerate and realize the network of
processes (relations) that produced them; and (ii)
constitute it (the machine) as a concrete unity in space
in which they (the components) exist by specifying the
topological domain of its realization as such a network.
(1980: 78)

Human agency in terms of auto-poiesis offers an argument
against what Evelyn Fox Keller calls the ‘end-game’

of molecular biology’s quest to discover the ultimate
code or secrets of life (in Kember 2003: 25). As with
Bhaskar’s concept ‘transformative agency’ (in the
previous chapter), human agency is not merely encoded

or determined but is auto-poietic. Therefore, although
descriptions of complex behaviour within distributed
networks tend towards biological determinism, human agents
express emergent behaviour that is transformative.

networked production logic

With a historical perspective, networked informational
production continues to make a calculation not in human
terms, but by forcing together humans and machines to
extend the productivity of labour at all costs.[7] In
the industrial period, Marx refers to the worker who
performs repetitive tasks coming to embody ‘the living
mechanism of manufacture’ (1990: 458). This is even
more the case with informational production, wherein
constant networked interaction is required between
workers, management and machines (see chapter 5 for more
on ‘machinic’ relations). Systems must be networked and

integrated in order to process information efficiently,
arranged in decentralised and centralised working
relations. This is all part of the shift from single
entities of computer processing units, to systems served
by computers that form complex and flexible networks. The
network logic now deploys informational technologies and
reflects the complexity of interactions and the unpredictable
patterns of development arising from these interactions.
For Kelly, rather than entrenching (or globalising)
exploitation as Castells describes, this network logic
‘revolutionises’ social practices under the conditions
of what he calls ‘network economics’ (2003: 236). Under
these conditions, companies take on the character of
software (2003: 244). Kelly’'s example is Microsoft’s

new operating system (at that time), pointing to the
ways in which companies invest heavily in developing the
manufacturing process rather than the product. Perhaps a
better example (and indeed business model) would be the
development of open source software, where many in the
community of users are also involved in developing the
software for free. However, in both network and previous
economic frameworks, efficient development is contingent
on bugs and errors in the system, making the analogy to
software of further use in demonstrating how distributed
production is combined with its negation.

89

These are the conditions of the networked ‘factory
without walls’, as a self-perpetuating system which
exhibits distributed, decentralised, and adaptive
behaviours, evoking the working organism that

Marx described in the industrial period, in which
inherent human sociability is forced to turn against
itself. These are the technical foundations of the
industrial revolution, that the information revolution
develops further. Quoting Andrew Ure’s ‘Philosophy of
Manufactures’ (of 1835), Marx describes the automatic
factory as a fully integrated system:

‘a vast automaton, composed of various mechanical and
intellectual organs, acting in an uninterrupted concert
for the production of a common object, all of them being
subordinate to a self-regulating moving force’ (1990: 544).[8]

Acknowledging these earlier descriptions, Castells claims that
automation comes of age with information technology,

and labour is transformed by the need for the required
knowledge to operate it, offering new relational patterns
in the performing of tasks (1996: 244). He characterises

90

this new labour force as ‘networkers’ and ‘flextimers’,
in terms of the increased individualisation of work and
the fragmentation of society in general (1996: 201).

New employment patterns correspond to the modes of
development outlined at the beginning of this section -
broadly, in relation to interlocking historical stages
that reflect the agricultural, industrial (what could

be described as post-agricultural) and informational

(or post-industrial) forms. The necessity of the continued
supply of cheap labour is an essential part of
globalisation, as it has been since the sixteenth century
when capitalism first sought to expand its operations on
a global scale. What distinguishes the global economy
now is that: ‘it is an economy with the capacity to work
as a unit in real time on a planetary scale’ (Castells
1996: 92). Networked technologies serve this purpose.

Consistent with earlier phases of technological development,
the networked computer combines contradictory impulses
in encouraging highly socialised forms of labour. It
would be plainly ridiculous to deny the possibility of
technology, and of collective effort, increasing the
social productivity of labour and contributing to

social transformation. However, in the global economy,
contradictions unfold:

‘Ironically, it is the very people whose labour is so
carefully hidden inside the hygienic white boxes on the
desks on the wired world [...] who will be left outside
in the world their work creates. In this way, the
production of the material infrastructure for the Internet
is itself erased under the sign of the universality of
its language, its claim to speak for all and with every
voice [...] representation, in both the democratic

and the semiotic senses, is in question in cybernetic
technologies of communication’ (Cubitt 1999: 6).[9]

To a large extent, in the ‘over-developed world’, the
assembly lines have been replaced by the network as the
organisational model and metaphor for production in
general. Castells thinks that increasingly:

‘... the multimedia world will be populated by two
essentially distinct populations: the interacting and
the interacted, meaning those who are able to select
their multidirectional circuits of communication and
those who are provided with a restricted number of
prepackaged choices. And who is what will be largely
determined by class, race, gender and country’ (1996: 371).

He formulates class distinctions on this basis too:
between the networkers, who set up connections on their
initiative; the networked, who are online but without
any control over decisions; and another category of the
switched-off who are tied to tasks and operate through
non-interactive, one-way instructions. This indicates
greater social stratification rather than the reverse:
class divisions based on the difference between the
information rich and poor.

network control

There has been a tendency to think of networks as
equitable systems, viewed as fundamentally random
simply because they are too complex to comprehend how
power is distributed in them (Barabasi 2002: 24). In
social systems, nodes gather together in clusters.
Nodes with a large number of links or connections are
present within diverse systems - from society to the
cell (or cellular systems that includes genes, proteins
and other molecules). This further accounts for the
inappropriateness of a term such as randomness, as well
as the perceived lack of democracy within systems.
Despite the appearance of disorder in networks, clearly
there is an underlying order - all nodes are not

equal by any means (or some nodes are more equal than
others). In Empire , Michael Hardt and Antonio Negri
claim ‘the new paradigm is both system and hierarchy’,
that demonstrates the structural logic of ‘governance
without government’ (2000: 13, 14).[10] That any

node connects to an exponential number of others is
deceptively simple, and the historical development of
the Internet reveals more detail on this. In 1964,
searching for a robust communications infrastructure
that could withstand attack, Paul Baran discovered that
both centralised and decentralised models were too
vulnerable, and so a distributed ‘mesh’ architecture
was proposed, such that if any one node was attacked
the distributed architecture of the network would
compensate. This distributed structure is the basis

of the Internet.

91

There is clearly more critical work to be done in this
area of network theory, that requires an understanding
of how the network works on a technical level,

without losing sight of politics. For instance, and

in the context of networked computing, Alex Galloway

92

describes the Unix operating system and in turn TCP/IP
(Transmission Control Protocol/Internet Protocol). He
adopts the concept of the ‘protocol’ as more than just
a metaphor - although clearly it is a compelling one
all the same in suggesting correct or proper behaviour
or social practices - to describe how computers in

a network agree technical standards of action, by
following the protocols that ‘govern’ their usage at
the level of code (2004: 7). Protocols thus operate
ostensibly as a distributed management system coding
packets of information, documents and communication.[11]

The crucial issue remains about how power is articulated
in a distributed model and and how power might be
redistributed. Although the Internet is largely
nonhierarchical in structure, conforming to the way TCP/
IP connects one machine to others, it is also subject

to the DNS (domain name system) information stored in
decentralised databases but organised in hierarchical,
inverted tree-structures. For example, in the current
model the Internet’s address structure (DNS), which
enables communication between the world’s computers, is
managed by the California-based, not-for-profit Internet
Corporation for Assigned Names and Numbers (ICANN) under
contract to the US department of commerce (Wray 2005).
In question is the centralisation of control and whether
other countries should be allowed more control over
their Internet domains.

This is not to say that control is bad of course,

and certainly protocols have no vested interest in
themselves. The issue lies in the fact that standards
are set according to certain ruling interests - and is
therefore a political issue. Certainly control might be
exerted to undermine these interests. For instance, peer
to peer networks are one obvious example of principles
based on a different set of social practices, that simply
optimise the existing open structure of the Internet.
Technical detail here also reveals some of the cracks

in the system. The Internet may be relatively robust

as a result of its distributed topology, but it also
displays elements of vulnerability if attention is paid
to technical detail. For instance, ‘cascading failures’
are well known explanations of a situation where a local
failure redistributes responsibilities to linked nodes,
cascading through the system sometimes to disastrous
effect, depending on how central the role of the node is

within the system as a whole. This can be demonstrated
with a wide variety of systems: failed routers within
the Internet, or species within an eco-system, or

in economics with the collapse of a certain company
(Barabasi 2002: 120).

Technical detail such as this is clearly of use to
those wanting the system to become more robust, or
those wishing to bring about its destruction. The more
advanced the capitalist economy becomes, Marx argued,
the greater the contradictions and the more it sows

the seeds of its own destruction in that it creates

its grave-diggers: the working class. Perhaps the

seeds of destruction, that Marx thought to be internal
to the production of the commodity, are now evident

in code. Closer attention to computational processes
might reveal some of these internal contradictions and
the ways in which capitalism has sought to overcome
these contradictions (what Castells calls ‘the
recapitalisation of capitalism’, 1996: 85). Capitalism
evidently contains the seeds of its own destruction but
knows it - aware of its immanent crisis, in other words.
An understanding of the interactions between history and
the development of technology seems to confirm the point.

In considering the development of informational technologies
and the ways in which they are embedded in society, a
long history of mechanisms that relate to ‘computation’
is invoked - mechanisms that perform logical or physical
processes of generation. A more detailed understanding
of these mechanisms requires the linking of computational
machines to the development of logical thinking (that
would include Blaise Pascal’s adding machine of 1642,
Gottfried Wilhelm von Leibniz’s multiplication machine
of 1671, Babbage’s analytical machine of 1835, as well
as von Kempelen’s chess-playing automaton mentioned in
the previous chapter). For instance, a logic derived
from the ‘clockwork’ mechanism has been particularly
influential in setting mechanical production and thinking
to the imperial standard of Greenwich Mean Time.

[12] Where and when invention arises is distinctly
unreliable, as a result of the ways in which ideas
emerge rather than occur at discrete times in history.

93

In a history of computing, Babbage’s ‘Analytical Engine’
is generally considered the first device that might be
considered to be a computer in the modern sense of the
word. However, it is Ada Lovelace who describes the
engine as able to ‘compose elaborate and scientific
pieces of music of any degree of complexity or extent’
(in Hofstadter 2000: 25). It was Lovelace who first
envisaged an engine as not merely calculating numbers
but arranging and combining letters and other symbolic
systems - not as a calculator but as a logic machine.
Adapting mechanical ideas of data storage and processing
from Babbage, the von Neumann machine of the mid 1940s
first presented a single structure to hold both the

set of instructions on how to perform the computation
and the data required or generated by the computation.
This is the first modern computer in most accounts.[13]
For Bolter, the combining of the program instructions
and the data into the same code also represents the
ultimate ‘assembly line’, and becomes an archetype

for industry that requires specialised collective
labour and knowledge (1984: 34). The resulting system
can be described as self-regulating, in parallel to
Marx’s description of the nineteenth-century factory
as a ‘self-regulating system in embryonic form’ (1990:
503).[14] The description also lends itself to an
understanding of the development of ideas through the
simultaneous storing and processing of information.

As the previous section discussed, the computer is

not merely a part of these cybernetic processes but
also a metaphor for them, and as such it expresses
ideological issues. In relation to cybernetic systems,
Nichols refers to ‘the negative dominant tendency
towards control and positive latent potential towards
collectivity’ (1988: 23). Making explicit reference

to Benjamin’s ‘Artwork’ essay, in which the technical
apparatus was an essential part of the critical
process and what he calls ‘the equipment-free aspect
of reality’, Nichols argues that this equipment-free
aspect is even more pronounced with cybernetic systems,
deeply embedded in code and operating systems. It is
no longer merely about suspension of disbelief but of
our absorption into code, as our interest is diverted
from products to processes. This section of the chapter
introduces some key concepts related to computational
processes such as feedback and recursion, to stress
transformative possibilities of systems, and in order

that in the last section these can be further described
in dialectical terms. The histories of computing
mentioned above demonstrate some of the dialectical
principles of development and feedback expressed in
systems, as a series of actions similar to historical
processes that execute past results for future
operations.

systems theory and social critique

Feedback is either positive or negative, and most
systems require both (positive feedback increases the
change that brought it about, negative feedback reduces
it). The classic example of the principle of feedback

is the thermostat, switching on or off depending on the
temperature of a particular space at a point in time.

If all works well, the temperature remains constant.

The governor of a steam engine is a classic example of

a mechanical version of the same principle, regulating
velocity depending on the load the machine bears and
keeping its operations constant. In such a scenario, a
‘compensator’ (something that can be controlled from the
outside because the load fluctuates) is required as well
as an ‘effector’ (the input-output relations), in order
to compensate for the faulty information feedback and to
reinstate control (Wiener 2000: 113). This is a rather
oversimplified description but the overall principles
clearly hold relevance to both living organisms and
artificial mechanisms, as exemplified by the full title of
Wiener’s book _Cybernetics: or Control and Communication
in the Animal and the Machine , of 1948. However, the
human brain and the computer are clearly not reducible
to one another, despite some operational similarities.
In very general terms, both process information to
execute actions by combining ‘structure [hardware] with
the instructions given it at the beginning of a chain

of operations [software] and with all the additional
information stored and gained from outside in the course
of this chain [feedback]’ (Wiener 2000: 146). Systems
with long chains of instructions (such as the human
brain) are particularly prone to errors, malfunctions
and disorders, even breakdown. Complexity is one factor,
but also some systems are just inefficient.

Free competition is a particularly inefficient system,
according to Wiener. He calls it a simple-minded theory,
in which the individual capitalist is regarded as a public

95

96

servant who deserves the profits gained from his actions,
as opposed to a selfish individual who steals surplus
profit and disrupts the social equilibrium (2000: 158).
According to Wiener, in the pursuit of profit certain
tendencies emerge that lead to:

‘... the elimination of the less profitable means for
the more profitable; the fact that these means are in
the hands of the very limited class of wealthy men,

and thus naturally express the opinions of that class;
and the further fact that, as one of the chief avenues
to political and personal power, they attract above all
those ambitious for such power. That system which more
than all others should contribute to social homeostasis
is thrown directly into the hands of those most
concerned in the game of power and money, which we have
already seen to be one of the chief anti-homeostatic
elements in the community. [Tragically] the State is
stupider than most of its components.’ (2000: 161-2)

This moral dimension is an interesting aspect of Wiener'’s
work on cybernetics. In the context of the free market,
he relates this to a theory of games and a situation
where there are winners and losers (no doubt, drawing
upon John von Neumann and Oskar Morgenstern’s general
theory of games, in their Theory of Games and Economic
Behaviour , 1944). Wiener provides numerous examples,
including the idea of the automatic factory, in which a
workforce of mechanical slaves performing human labour
is imagined.[15] He remains open as to whether this is

a good thing or a bad thing, but thinks any assessment
cannot simply be formed in terms of the market; it must
also include an understanding of the conditions of labour.
To Wiener, any level of ‘competition’ between machine
slave labour and human labour is a certain acceptance of
the conditions of slave labour, even if on the surface
it appears to decrease human suffrage. This is why the
direction a society takes cannot be left to the market.
Otherwise, development is determined by ‘business cycles
of boom and failure, in the successions of dictatorship
and revolution, in the wars which everyone loses, which
are so real a feature of modern times’ (Wiener 2000: 159).

To Wiener, the solution lies in a better understanding
of behaviour within social systems. In this way, his
understanding of technical systems informed his critique
of the social function of science and technology. For
instance, the term homeostasis is taken from physiology

and then applied to social and political systems. Small
groups are efficient (where relative homeostasis can be
discerned) and self-organise into relatively equitable
conditions. In contrast, larger communities protect
their interests by exerting inequitable property rights
and individualism. Implicit to the idea of homeostasis
(self-regulation) is that the results of any changes in
the system’s organisation are available as input to the
system (such as recursive feedback).

recursive transitions

The very structure of the system is reactive to its

own actions, which includes the interaction of the
scientist with the subject of study (Wiener 2000: 191).
A reflexive approach in arts practice is commonplace

but also has some currency in scientific practices,

in recognition that to study something is distorted

by the act of studying it. Additionally, any data on
offer for study is not the equivalent of actual objects
but representations of these objects, and therefore a
certain transformation or recoding takes place between
the object and the scientist. Furthermore, the selection
of data is determined by what is possible to observe
(or indeed, the vested interests of funding, and other
outside influences). The data is therefore never ‘raw’
or pure, but subject to transformations by the human
subject and the instruments used. It is from this
position of skepticism over the verification of findings
that the scientific process should proceed. What Bateson
calls a ‘critical faculty’ is required on the part of
the scientist to balance this ‘mass of quasi-theoretical
speculation’ (2000: xxviii). In Bateson’s work,

this reflexive approach is referred to as ‘recursive
epistemology’ (adopting Peter Harries-Jones'’s phrase)
to incorporate processes of knowing that include the
relationship between the knower and the known (2000:
xiii). Clearly other non-verifiable and non-scientific
work must also be taken account of in any analysis
undertaken. It has become quite common to recognise the
ways in which subjective elements impinge upon objective
method (for instance, in contemporary anthropology that
considers the subjectivity of the observer).

Knowledge, like the efficiency of cybernetic machines,
is constructed for its transformative qualities in
later usage (Latour 1999: 59). Thus, according to Bruno

97

98

Latour, science should be understood as a practice that
is produced both in a social context and as a result

of the technical and institutional apparatus. It is a
‘disorderly mixture’ revealed ‘in action’ rather than an
‘orderly pattern of scientific method and rationality’
(1999: 15). Scientists have tended to work on the
reductionist assumption that by taking something apart
we will gain an understanding of how it works from its
constituent parts. But as with Humpty-Dumpty, from the
knowledge of the pieces it does not necessarily follow
that we understand how to put the pieces together or
indeed how these parts operate together as a system
(what Christopher Scholz refers to as the ‘humpty-dumpty
effect’ of not being in a position to fully join two
broken pieces back together again, in Gleick 1998: 106).
The parts remain incomplete, according to the principles
of fractal geometry.[16] Although at a gross scale, the
broken crockery of Ono’s Mend Peace for the World
(mentioned in chapter 2) appears to fit together, at a
smaller scale it remains incomplete (or something to be
continually strived for perhaps).

Facts appear to be held in dialectical contrast to
speculations. For Bateson, advances in scientific thought come
from a ‘combination of loose and strict thinking’, in
which looseness is measured against ‘rigid concreteness’
(2000: 75) - evoking the Hegelian principle that ‘concrete
universality’ can only be attained through ‘abstract
negativity’. Applied to the understanding of human
societies based upon the analogy between society and
organism as complex systems, Bateson sees social change
as a slippage of the system, in which there is the
possibility that a variable may reach a point of crisis.
This reflects the dialectical method of contestation,
although admittedly Bateson’s concerns are more ecological.

Relays of ‘on’ and ‘off’ work as a series of actions,

as part of a set of iterative processes that include
‘memory’ (the ability to use past results for future
operations). For instance, Babbage'’s ‘Difference Engine’
rested on the logic of the ‘method of differences’ and
employed the principle of the ‘strange loop’, capable
of altering its own stored program (able ‘to eat its
own tail’ in Babbage’s words, cited in Hofstadter 2000:
25). Strange loops suggest rules by which new rules
will emerge, rules that change themselves in self-
organising structures. What was once a clean, linear

and hierarchical structure has become a strange loop,

or ‘tangled hierarchy’. Douglas Hofstadter further
illustrates the strange loop by referring to M.C. Escher’s
lithograph Drawing Hands_ (1948) where ‘that which
draws, and that which is drawn - turn back on each other’
(2000: 689). In these examples, some aspect acts upon
the system as if it were operating outside the system.
It is both simultaneously outside and inside the system,
acting and being acted upon, both subject and object. As
with the principle of feedback, it endlessly acts upon
itself like a computer program running an infinite loop.
[17] In terms of software art, an example mentioned in
chapter 2 is McLean’s _forkbomb.pl (2001): a program
that exhausts the system resources on which it runs and
causes the computer to crash.

digital dialectical logic

Instructions for computing operate in a binary mode of 0
and 1 - combining contingencies by using algorithms that
follow this logic. One of the simplest expressions of this
logic is ‘Boolean’, based on the dichotomy between ‘yes’
and ‘no’ (and in turn true or false, and so on [18]). Data
follows both an arithmetical and logical binary form, as

a set of choices between two conditions - for instance,

in the case of switching between ‘on’ or ‘off’ in a series
of relays. However, computation can also be extended to
include more complex and conditional formations such as
‘or’, ‘and’, ‘not’, as well as rules about contradiction,
consistency and implication (Bolter 1984: 69).

Further complexity relates to what has become known as
‘artificial intelligence’ (what Marvin Minsky described
as ‘the science of making machines do things that
would require intelligence if done by men [sic]’,

in Bolter 1984: 193).[19] The term ‘artificial life’
also is relevant here (as a development of artificial
intelligence), derived from von Neumann’s experiments
in constructing self-replicating automata. A computer
program can model these behaviours using self-
replicating algorithms such as the example of Ray’s
Tierra software, in which synthetic organisms have
been created based on a computer metaphor of organic
life and evolution. The idea of software evolving or
‘learning’ becomes the way out of the paradox that

an automated process, working on a repetitive cycle

of answering ‘yes’ and ‘no’, would never arrive at an

99

100

equilibrium. Through feedback, a computing machine might
display ‘conditioned reflexes’ as a ‘nervous computing
machine’ - more than simply a machine in action, which
combines relays and storage mechanisms. This is clearly
a description of a learning machine that might arrive
at a solution but only (as with dialectics) as a result
of an ‘iterative process of successive approximations’
(Wiener 2000: 130) - if indeed a final resolution is
desirable at all (as with dialectics). This is the
approach that Richard Levins and Richard Lewontin

adopt in their dialectical approach to biology (1985).
They focus on the relationship between the whole and
its parts, and develop a less deterministic view of
evolution following an open-ended dialectical process.

The parallel between digital and dialectical processes
is what Peter Lunenfeld attempts in his introduction

to The Digital Dialectic_ (2000). However, he is
cautious of too easy a conflation between the two.

He claims that the on-off switching of cybernetic
calculation does not create a synthesis, and merely
reflects the contradictory condition of thesis and
antithesis. This is a very generalised position and
does not account for a deep understanding of negation
or of incomplete synthesis. Lunenfeld is not dismissing
the dialectical method altogether but drawing attention
to its limitations. He sees its strength in the central
dialectic of theory and practice, and in its application
to detail in pursuit of the general (the difference
between the particular and the universal, for Hegel).
It is therefore ironic that Lunenfeld appears to
overlook detail on the dialectical method itself.

Also in _The Digital Dialectic_, Michael Heim distances
himself from a dialectical materialist interpretation,
instead concentrating on what he calls the ‘joke or
paradox that propels all dialectical thinking’ (in
Lunenfeld 2000: 26). He argues that an ongoing

exchange between competing positions is a useful
analytical strategy, and rejects deeper antagonisms
related to power.[20]

There are plenty of detractors of the dialectical method,
who are more systematic. Some commentators simply see
the method as too crude to account for the ways in which
communications are organised and dispersed in complex
systems.[21] A challenge to Boolean logic comes from
quantum computing (Bone & Castro 1997). Rather than

considering a ‘bit’ in one of two states (0 or 1), a
‘qubit’ (quantum bit) can exist in three states (0 or 1 or
both). Thus a layer of complexity is added to the description
of a computer, suggesting possible directions of development
that are less deterministic and more transformative. New
ways of codifying and processing data might be envisaged
as a result. The difference lies in that standard computing
follows Newtonian physics and only allows a bit to be
any one determined state at a time - on or off. Whereas

a quantum computer ‘exploits the possibility of quantum
states of atomic particles to store digital registers in
a definable but still undetermined quantum superposition
of two states at the same time’ (Floridi 1999: 189).
Might this suggest a ‘quantum dialectics’?

In _Philosophy and Computing , Luciano Floridi suggests that
Hegelian dialectics might help explain this principle of
quantum superposition, whereby contradictory positions
are reconciled in a higher unity by both being annulled
and preserved in temporary synthesis (1999: 190). Although
Floridi describes dialectics in ‘absolute’ terms (the
example provided is the synthesis of the finite and infinite
making the absolute, 1999: 190), synthesis might still
be thought of as incomplete (it is explained that special
logic gates would have to be developed to control the
interactions between qubits and to generate coherent
change). The potential is vast but largely speculative.

In other words, the achievement of the absolute is only a
potential state, and as such synthesis remains incomplete.

The suggestion in the context of this thesis is that
digital-dialectical processes operate reflexively:

as both a technical description of a system and a
suitable critical method for its analysis. A well-
formed theorem contains both the theorem and negations
of theorems, as Hofstadter puts it (2000: 71). He
points to the significance of recursion within computer
science, in moving from level to level in an operation
whilst storing in memory all previous levels such

that operations might be returned to in ‘recursive
transitions’ (2000: 128).

Following the dialectical principles described, this
section has tried to introduce some of these technical
principles, in order that they can be employed in the
development of the overall thesis. As with recursion, it
is hoped this is evident in the interlocking structure

101

102

of any written thesis (such as this), and the way it
returns to previous arguments at various points along
the way, just as in programming parenthesis is used
to produce sub-clauses, whilst retaining the overall
flow of logic. Systems theory describes these dynamic
interactions at both a technical and cultural level of
understanding.

The recent interest in complexity theory derives from

an understanding of dynamic systems. That a relatively
small input can have massive consequences suggests
analogies between complexity and social phenomena, even
with history. In the concluding section of this chapter,
the intention is to draw together an understanding of
complexity theory and dialectical materialism - and

the way both engage with systems - to stress their
openness to ideas of transformation. Despite inevitable
confusions, the suggestion is that together complexity
and dialectics can help to identify some of the material
working conditions within systems and networks. Although
some of these principles have been introduced in the
previous chapter through emergence, more detail will be
added in this section to stress the possibilities of
social transformation through disorder. The significance
for dialectics is that the role of negation is upgraded
to disorder, and that new order can be created out of disorder.

The contradictory phrase ‘orderly disorder’, taken from
Hayles’'s ‘Chaos as Orderly Disorder’ encapsulates the
phenomenon for the purposes of this thesis (1989: 305-
22). Evidently, the relationship between order (that
which can be classified and rationalised) and disorder
(that which cannot, because it is too chaotic and
generalised) does not lie simply in opposition but

in more complex formations. What has been discovered

by the science of complexity is that within the
unpredictability of chaotic systems lie deep structures
of order. In complex systems, what may appear to be
unpredictable and closed, remains open to influence

from internal and external factors.[22] The scientific
basis for this can be explained by the notorious
unpredictability of the weather. In Edward Lorenz’'s 1963
paper ‘Deterministic Nonperiodic Flow’, it was shown

that very simple and small differences of input could
have overwhelming consequences in terms of output. This
has become known as the ‘butterfly effect’ in ‘popular
science’ literature to describe the possibility of
changes in weather conditions resulting from the
movement of the wings of a butterfly in one part of the
world stirring the air and thus potentially transforming
the weather into storm conditions in another part of the
world (from Lorenz’s essay ‘Predictability: Does the
Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in
Texas?’' of 1979). This effect was further explained and
visualised in the ‘Lorenz Attractor’ of 1963 that became
known as the ‘strange attractor’ (that coincidentally
looks like the wings of a butterfly), in which an ordered
structure can be seen within a disorderly stream of data
(Gleick 1998: 150-1).[23] The behaviour is so complex
that conventional mathematical methods cannot adequately
account for these processes.

Clearly there are implications here for wider social and
ethical issues. In _Emergence_ (2001), Johnson describes
the development of the industrial city of Manchester,
revealing its chaotic emergence at the centre of the
industrial revolution. He does so to make reference to
Engels’s description of 1845, in ‘The Condition of the
Working Class in England’, witnessing its:

‘... filth and disgusting grime, the equal of which is
not to be found [...] a planless chaos of houses, more
or less on the verge of uninhabitableness, whose unclean
interiors fully correspond with their filthy external
surroundings. And how can people be clean with no proper
opportunity for satisfying the most natural and ordinary
wants.’ (1978: 580, 582)

103

Engels is not observing chaos or an entirely
unpredictable phenomenon. The city emerges according to
an underlying order related to class interests. But how?
Engels sought to explain this by the dialectical laws
in nature but also the capitalist lust for profit, ahead
of the welfare of people. In contrast, Johnson does not
develop emergence as an ideological issue, but instead
chooses to explain it as a ‘systematic’ complexity, and
as ‘a strange kind of order, a pattern in the streets
that furthered the political values of Manchester’s
elite without being planned by them’ (2001: 40). Both
explanations are productive. The final section of the
chapter introduces the idea that systems theory extends

dialectical logic. Both systems theory and dialectics
share a common interest in conceptualising the material
world in terms of processes, as the interaction between
parts of the system and the development of the whole
system that expresses dynamic interactions.

systems dialectics

In _Systems Dialectics_ (1996), Wu Jie attempts to
combine systems theory with dialectical materialist
thinking, citing von Bertalanffy’s _General Theory of
Systems (1968) as a precedent for his approach. Von
Bertalanffy’s work is important in the development of
‘second-order cybernetics’, which sought to uncover some
common principles that govern open, evolving systems;
and he refers to ‘dynamic transformation’ in the case
of the social realm. Wu also recognises systems theory
reflects new pluralistic structures, that have replaced
the post-cold war period of bipolar antagonisms - what
Hakim Bey elsewhere calls the ‘tweedledum/tweedledee
clash of Capitalism and Stalinism’ (2003: xi). That

Wu is writing from the paradoxical political context

of contemporary State Capitalism of Communist China,
suggests that antagonisms have been internalised under
free market principles (and the free market, according
to Wiener, is a particularly inefficient system). Wu’'s
position is similarly paradoxical in developing Marxist
philosophy in the context of a recent history of

China: reading Joseph Stalin’s ‘Four laws’ alongside
engineering physics in Russia in the 1950s, reading Mao
Tsetung’s work on contradiction whilst imprisoned as
part of the ‘cultural revolution’, and then studying
modern management science and systems science in the
United States in the 1980s. To Wu, the time is right

to argue that systems dialectics is to informational
capitalism what dialectical materialism was to
industrial capitalism, and this is what he refers to as
its ‘historical summons’ (1996: 368).

104

Dialectical materialist philosophy can be seen to
operate in parallel to the understanding of the
transformation of systems, but requires a series of
upgrades: from ‘material object-centered theory’ to
‘contradiction-centered theory’ to ‘system-centred
theory’ (Wu 1996: 51-2). Constituent parts of systems,
as well as the overall system itself, are continually
in a state of change. Wu makes explicit reference to

Engels’s ‘Introduction to Dialectics of Nature’ (1980
[1875-6]1) that outlines the defining characteristics

of the dialectical laws of motion. Echoing the phrase
‘all that is solid melts into air’ (in _The Communist
Manifesto_), Engels summarises motion in the following
terms:

‘all rigidity was dissolved, all fixity dissipated, all
particularity that had been regarded as eternal became
transient, the whole of nature shown as moving in
eternal flux and cycles’. [As a result:] ‘All nature from
protista to man, has its existence in eternal coming
into being and going out of being, in ceaseless flux, in
unresting motion and change.’ (1980: 346)

That the dialectic is applicable to all nature is a
highly contentious position. For instance, according

to Herbert Marcuse, Engels had been wrong to assume

he could apply dialectical thinking to nature as he
would to history - that nature has a history but is not
history (Jay 1996: 73).[24] However Engels’s description
of motion does sound uncannily contemporary, and Wu
asserts that nature arises from differentiation and does
so historically, making reference to systems theory for
verification. Systems theory also confirms the truism that
a system is more than the sum of its interconnecting
parts. Wu quotes Hegel on this principle, that ‘a
severed hand is no longer a hand’, to emphasise that a
part is only a part in terms of its overall relation

to the larger whole system (1996: 77). This applies

to matter, but also in the case of information, where

a node is not a node if it is disconnected from the
network as a whole, and in which the interactions are
expressed towards an optimisation of the whole network.
Wu explains:

‘So when the system is under self-organization, self-
reproduction and self-catalysis, and is receiving
feedback and exchanging mass, energy and information
with its environment it may move and develop toward
decreasing entropy and increasing order. In the end, it
will gradually arrive at the optimum state of the whole
system. This is what Hegel and Aristotle meant when
they talked about “thesis, antithesis and synthesis”
and “movement of the whole”. In Hegel’s view, the third
category, synthesis, is the truth of the two former
categories.’ (1996: 81)

Although it should be added that the description of

105

106

the Hegelian position in terms of the completeness

of synthesis in a universal concept like truth is
misleading - in as much as continual improvement

is necessary for the system not to stagnate - in
preference, the synthesis should remain incomplete

and open (as has been stated earlier in the thesis
[25]). The development of human societies works in this
way too, but is distinguished by the added element

of subjective critical reflection in the optimisation
process. The law of optimisation, according to Wu, is
characterised by the self-perfecting process of negation
of negation, part of the movement from disorder towards
order and improved organisation, laying open the nature
of hierarchy and diversity. He explains the logic as
follows:

‘This upgrades the law of negation of negation to the
domain of the disordered - ordered - newly disordered -
newly ordered, which is a more extensive and penetrating
domain than the former.’ (1996: 88)

Disequilibrium produces change in this way. It affects
the equilibrium of the system, partly explaining the
shift to what Wu refers to as ‘synergetic equilibrium’,
where ‘the whole system comes into a stable state in
the ordered structure’ (1996: 172). This is an explicit
reference to Prigogine’s theory of ‘dissipative
structure’, more common in systems that are complicated
and that express ‘advanced motion forms’. In dialectical
terms, systems express a cyclical development of
equilibrium to disequilibrium to new equilibrium - or
from order to disorder to new order. This explains his
revision of dialectical materialism to account for an
understanding of complexity theory:

‘The birth of a system is a negation of nature disorder.
The orderly system again contains disorderly factors,
and the development of an orderly system with disorderly
factors again leads the system into disorder, thereby

a new orderly system is produced. [...] Without
orderliness, there would be no processes, without the
nature of disorder, there would be no development

of processes. [...] The rule is that order conquers
disorder, and disorder negates order, thus reaching a
new orderly process. [...] The motional process of the
whole world of systems is exactly the dialectical unity
of order and disorder.’ (Wu 1996: 53-4)

It is a description of emergent behaviour, in which new

order might indeed be generated through disorder. This
is verified by Prigogine and Stengers, who maintain that
all systems contain sub-systems, and that within these
systems and sub-systems, positive feedback loops might
generate the further development of a process, to the
point of causing a fundamental and unforeseeable change of the
existing system (1985). This is an important principle,
as it emphasises the constructive role that disorder
might play in creating order, rather like the positive
role that negation plays in dialectical materialism.

radical uncertainty

A living system such as society, although determined

by rules, is emergent and unpredictable at the same
time. Like Wu, Sue Owens has also adopted theories
associated with self-organising systems, to explain

the possibilities of social transformation. In her
essay ‘Chaos Theory, Marxism and Literary History’, she
explains how bifurcation theory is a common explanation
for how ordered structures can arise from disorder:

‘At a bifurcation point, chance takes over, and it is
impossible to predict what will happen; but in between
times, determinism takes over again, until fluctuations
force the new system into far from equilibrium
conditions and a new bifurcation point is reached.’
(1996: 88)

107

By ‘bifurcation’ she means splitting, the point where
within a system, one path or another must be followed
(as in Boolean logic). Although the choice is limited to
one of two, the decision is thoroughly unpredictable.
With increased frequency, bifurcations can lead to
extremely complex systems. The link between bifurcation
and literature here would suggest a number of examples
such as Jorge Luis Borges’'s ‘The Garden of Forking
Paths’ (1941), but also the tree structure of Queneau’s
‘A Story As You Like It’ in which the reader is provided
with two choices of how to proceed at each stage of the
story (Motte 1998: 156-8).[26] Computer programs follow
this logic of bifurcation too. The bifurcation point is
‘revolutionary’ in the sense that dramatic change takes
place but it remains impossible to predict the direction
change will take, and whether it will fall into a higher
level of order or disintegrate into disorder. That the
collective behaviour cannot be predicted at a global
level, is analogous to the workings of society.[27] The

108

issue of unpredictability leads Prigogine and Stengers
to explain history in terms of ‘radical uncertainty’
(citing André Neher). In _Order Out of Chaos , they
describe the emergent order within unstable systems such
as societies, as:

‘... immensely complex systems involving a potentially
enormous number of bifurcations exemplified by the
variety of cultures that have evolved in the relatively
short span of human history. We know that such systems
are highly sensitive to fluctuations. This leads both to
hope and a threat: hope, since even small fluctuations
may grow and change the overall structure. As a result,
individual activity is not doomed to insignificance. On
the other hand, this is also a threat, since in our
universe the security of stable, permanent rules seems
gone forever.’ (1985: 312-3)

Despite the skepticism of many in the scientific
community, Hayles describes the importance of
Prigogine’s work to validate ‘the dialectic between
order and disorder by finding analogous processes in
physical systems. Moreover, it imparts an optimistic
turn to such processes by positing them as sources

of renewal [...]’ (1991: 14). The description of the
dialectic of order and disorder allows for the unpacking
of deterministic or totalising theories and the
possibility of conceiving positive change. This is in
marked contrast to other contemporary cultural theories,
that tend to deemphasise order in favour of randomness.
[28] Many scientific theories fall into the same trap.
For instance, Hayles points to the mistaken ‘belief that
the science of chaos opposes globalising theories is,
then, a misapprehension about how these theories work’
(quoted in Owens 1996: 90). The same can be said of

the manner in which postmodernism became a totalising
theory on the subject of anti-totalising theory. If
every attempt to provide an anti-totalising theory
becomes a totalising theory in itself, one response is
to emphasise contradiction. Contradiction between parts
is required for the complex whole to adequately describe
the ways in which these parts express both disorder and
order. Thus a postmodern discourse around fragmentation
is rejected for an ‘ordered complexity’, that is neither
ordered nor disordered but both. Along these lines of
thinking and in general terms, orthodox postmodernism
(deconstruction, post-structuralism et al) rests on ‘bad
science’ and ‘bad history’, claims Owens (1996: 94) -

and bad politics of course.

This is a forceful argument but one not without
difficulties. Clearly, disorder is not necessarily
conceived of in these dialectical terms.[29] Many
critics of dialectics think it too mechanistic. For
instance, Prigogine and Stengers are no supporters of
dialectical materialism, and despite recognising the
undoubted similarities to the new science, think it

too extreme in its rejection of determinism (1985:
252-3). However, this is a misunderstanding in the
broader sense, as dialectical materialism does not see
everything as entirely fluid and in flux but simply more
so than conventional deterministic systems, according
to Owens (1996: 105).[30] Paradoxically, she supports
this claim for the coexistence of determinism and flux
by quoting Prigogine and Stengers: ‘being and becoming
are not to be opposed one to the other: they express two
related aspects of reality’ (1996: 102). Determinism
and unpredictability are held together in a manner that
reflects open systems and a more open view of dialectics.

It is worth emphasising that the combination of systems
theory and dialectics challenges the pessimism of

much contemporary critical theory, by suggesting the
possibility of transformation coexisting with a tight
structural framework. It encapsulates the idea of
‘orderly disorder’, wherein positive change remains a
possibility. In keeping with these explanations, this
chapter has argued that dialectics continues to remain

a useful conception and model of change, particularly

to describe systems that appear to contain the same
logic. Whether it is a law of nature, as Engels and Wu
argued, seems debatable but an understanding of both
complexity and dialectics manages to draw together the
interconnections of nature, history, society, technology
and politics. It also affirms that human subjects are
constituted through their relationship to society and
institutions, and that society cannot be described
simply as a collection of individual subjects. Rather,
it is a far more complex system that takes account of
individual differences but also of collective actions and
counteractions. The constructive role of disorder is
consistent with Tiziana Terranova’s position in _Network
Culture , in which she describes informational dynamics
as ‘creative destruction, that is a productive
movement that releases (rather than simply inhibits)

109

110

social potentials for transformation’ (2004: 3).

The suggestion is that software releases the social
potential for transformation too. The following chapters
add detail to this claim, first by focussing on work
(chapter 5) and later action (chapter 6) to establish a
better understanding of the dialectics of software art.
This approach provides the possibility of change through
human agency - at the point of bifurcation where two
paths are possible.

5. *complex labour%*

‘Work is no longer work, it is work which is liberated
from work.’
(Negri 1991: 160)

Attention to labour relations was, in the industrial
period, the foundation for a dialectical materialist
methodology. Clearly circumstances have changed since then and
so various updates are required. However the importance
of labour has not disappeared but has been transformed.
In section 5.1, the labour of people and machines is
articulated to take account of complex interactions,

in what has been called ‘machinic integration’. This
integrated labour extends social relations from the
interaction of workers to their interaction with
machines. Consistent with the principle that the site

of production remains where social antagonisms are
expressed, the suggestion is that these new interrelations
of humans and machines also presents new possibilities
for operating in a disorderly manner. Rather than reject
dialectics, as has been the case with much post-Marxist
commentary, this thesis argues that contradiction needs
to adapt to the times, to take account of the ways

in which social relations are expressed in complex
formations. This is how ideas introduced in the previous
chapter become significant in practice.

In section 5.2, these new forms of work are further
explained by making reference to ideas developed by
autonomist Marxism, and in particular through the
concepts ‘immaterial labour’ and ‘general intellect’.
These ideas result from the perceived importance of
communicative interconnections in what the autonomists

call the ‘social factory’ to describe the way in

which the mode of production has been extended to

the whole of society. What was once considered the
living contradiction of labour relations in the factory
has been been extended by collectivity and networked
communications technologies. The concept of general
intellect, drawn from Marx’'s early writing, is considered
to be particularly useful. For instance, the open source
movement is organised in collective and open forms, to
allow for the sharing of source code and expertise.

These developments present new contradictions expressed
in the complexity of labour, characterised not least by
the prevalence of free labour in the cultural realm,
and the production of free software in particular.
Section 5.3 also raises issues over the effectiveness of
oppositional tactics that aim to respond critically to
these conditions, such as the refusal to work. Negri'’s
quote at the beginning of the chapter is suggestive of
the possibility of work that rejects the conditions
under which work is currently performed. The discussion
of work is allied to software work in a deliberately
ambiguous way - to indicate both the work involved in
making software, as well as the work that software does
itself. The chapter ends by arguing for the continued
relevance of dialectics to respond to these working
contradictions, by drawing upon ideas introduced in the
previous chapter.

m

Classical Marxism would maintain that the relations

of production constitute the base from which the
superstructure is derived, at any point in human
history. All social relationships for Marx lie in
social production and relationships between people

in production. These ideas are predicated on the
understanding that there is a dialectical relationship
between nature and human society integrated through
labour. Human production emerges from nature, then
utilises it and abuses it. In addition, technology
energises the labour force, and hence the force of social
development, combining human and machine labour working at
local and global levels of complex interaction.

112

In Chaosophy (1995), Félix Guattari refers to
‘systematic disorganisation’, that plays an important
part in understanding both individual and collective
forms of subjectivity. Although working from the
assumption that subjectivity is constructed according
to social and economic conditions, Guattari is breaking
with Althusser’s Marxist structuralism (as well as
Lacan’s psychoanalytic structuralism) that stressed

the determining role of language and communication.
Rather than simply taking technology as part of a
process of interpellation, something far more complex is
articulated, that involves the interaction of the labour
of people and machines. So rather than the dead labour
of machines replacing human labour, he states:

‘On the contrary, I think that machines must be used -
and all kinds of machines, whether concrete or abstract,
technical, scientific or artistic. Machines do more than
revolutionize the world, they completely recreate it.’
(1995: 19)[1]

According to this position, any concept of social
production and the relations of production must take
account of more complex and disorganised interactions
between people and machines - what Guattari calls
‘machinic agency’. The disorganisation, or what he

also refers to as ‘craziness’ in systems, is accounted
for in his reference to chaos (in the term ‘chaosophy’).
Central to this idea is that change does not simply
happen on a large-scale socio-economic level or in
ideology but from mutations at a micro-scale molecular
level. Here the link to complex systems would verify
that a relatively small input can have massive consequences.

The first section of this chapter investigates the
possibilities for social transformation, in the
‘machinic integration’ of the processes of production,
circulation and information. Guattari would suggest
that ‘a mutation like that introduced by microprocessors
changes the actual substratum of human existence and,
in reality, opens up fabulous possibilities for
liberation’ (1995: 47-8). In other words, there is a
dynamic tension between micro-politics and the body
politic in general - integrating life and politics

at all scales of operation. Guattari describes this
reorientation of thinking as moving from ‘dream to
social reality, from poetry to science, from the

most violent social reality to the most tender daily

relations’ (1995: 50).

In forging new ways of conceptualising these issues,
Guattari calls himself an ‘idea-thief’. Concepts are
taken to be tools, not fixed or universal ideas, but
ideas in flux, open to influence from other fields of
interest - such as combining the seemingly heterogeneous
fields of chaos theory and philosophy in the case of
‘chaosophy’.[2] The combining of the heterogeneous fields
of complexity theory and dialectics to open up new
critical possibilities, was introduced in the previous
chapter in a similar way.

desiring production

The spheres of production, distribution and consumption
have been considered relatively autonomous in classical
Marxism. Guattari, with Gilles Deleuze, argues that this
is predicated upon Marxist description of the division
of labour and the idea of false consciousness. To them,
the distinctions collapse, making everything production:
the ‘production of productions, of actions and of
passions’ (1990: 4). Therefore when Deleuze and Guattari
claim that nature is now experienced as a process of
production, they are arguing something quite different
from Engels or Wu (described in the previous chapter).
Their understanding incorporates the production of
subjectivity itself, machine production and consumption,
making the human subject a ‘producer-product’.

Like the work of the Frankfurt Institut that preceded
them, Deleuze and Guattari are drawing together Marx and
Freud to open up new possibilities for the unconscious
to be seen as productive and not simply ‘false’,
although their emphasis is on desire rather than
history. For instance, in Anti-Oedipus: Capitalism and
Schizophrenia (1990 [1972]), the unconscious is cast as
a factory not a theatre (and thereby they aim to reject
the oedipal drama[3]). This is a reference to the work
of Antonin Artaud, who described the body as a factory,
or more accurately the sick body as an ‘overheated
factory’ (Guattari 1995: 75). In Artaud’s ‘Theatre and
the Plague’ (2001 [1964]), disorder in the form of the
plague demonstrates the potential for transformation of
the body and body politic:

‘The plague takes dormant images, latent disorder and
suddenly carries them to the point of the most extreme

13

14

gestures. Theatre also takes gestures and develops

them to the limit. Just like the plague, it reforges
the links between what does and what does not exist

in material nature. [...] It restores all our dormant
conflicts and their powers, giving these powers names we
acknowledge as signs. Here a bitter clash of symbols
takes place before us, hurled one against the other in
an inconceivable riot.’ (2001: 18)

For Artaud, the plague disrupts human progress (order)
and encourages irrationality (disorder), unleashing the
potential for radical change. For Deleuze and Guattari,
the liberation of creative social expression is bound
up with desire, as it is capitalism that represses
desire (precisely because desire is where the potential
for transformation lies). There is a further link to
the work of the Frankfurt Institut here, in the work

of Marcuse in particular, who speculated on the power
of sexuality to unsettle the repressive work ethic

that sustains capitalism (in _Eros and Civilisation_,
1972).[4] In Marcuse’s terms, non-work or play allows
the freeing of desire. Art is part of the potential
solution for Marcuse, as it contains both a critical
and anticipatory function that ties it to politics.
According to Deleuze and Guattari too, the failure to
liberate desire sufficiently accounts for the failure

of social revolutions thus far. In fact, to Deleuze

and Guattari, all ideologies, even oppositional ones,
mask desire, or repress it, and so as not to replace
one repression with another, it is desire that requires
liberation.[5]

As such, desire can be seen to be potentially
revolutionary, especially when promiscuous and outside
the ‘Mommy-Daddy’ family circle of traditional
‘bourgeois psychiatry’.[6] This reference again draws
upon the work of Artaud, who says: ‘I don’t believe in
father/in mother,/got no/papamummy’ (quoted in Deleuze &
Guattari 1990: 14). The critique of the Freudian Oedipal
drama forces the analysis out of the family, to the
wider mechanism of power that would include other social
norms, many of which are irrational. This position owes
something to the anti-psychiatry movement of Ronald D.
Laing:

‘In the context of our present pervasive madness that

we call normality, sanity, freedom, all our frames of
reference are ambiguous and equivocal. A man who prefers

to be dead rather than Red is normal. A man who says he
has lost his soul is mad. A man who says that men are
machines may be a great scientist. A man who says he is
a machine is ‘depersonalized’ in psychiatric jargon.
[...] Thus I would like to emphasize that our ‘normal’
state is too often the abdication of ecstasy, the
betrayal of our true potentialities, that many of us are
only too successful in acquiring a false self to adapt
to false realities.’ (1965: 11-2)

Indeed the capitalist machine is a rational framework
under an irrational impulse, according to Guattari:
‘Everything is rational in capitalism, except capital

or capitalism itself’ (1995: 54). Capital can simply

be diagnosed as demented and at an advanced stage
(similar to Mandel’s description of capitalism as senile
dementia), hence Deleuze and Guattari s use of the

term schizophrenia. The solution is not to impose an
alternative ideology but liberate desire, what they call
‘desiring-production’. Desiring machines follow rules of
association, and are networked:

‘The productive synthesis, the production of production,
is inherently connective in nature: “and...” *“and
then...” This is because there is always a flow-
producing machine, and another machine connected to

it that interrupts or draws off part of this flow (the
breast - the mouth). And because the first machine is

in turn connected to another whose flow it interrupts

or partially drains off, the binary series is linear

in every direction. Desire causes the current to flow,
itself flows in turn, and breaks flows.’ (1990: 5)

115

These breaks and flows evoke information networks

and this is made explicit in Deleuze and Guattari’s
reference to code. They say that every machine has

code built into it: ‘The data, the bits of information
recorded, and their transmission form a grid of
disjunctions of a type that differs from the previous
connections’ (1990: 38). This appears to describe

the differences between centralised, decentralised

and distributed networks (described in the previous
chapter). Desiring-production is networked, in that
every machine is connected to another machine. Deleuze
and Guattari proceed to draw a parallel between
desiring-production and social production, allowing them
to assert that capital is the ‘body without organs’ of
the capitalist (from Artaud’s phrase). The body without

16

organs lies in opposition to desiring machines, in

the realm of ‘antiproduction’ rather than desiring-
production: ‘The genesis of the machine lies precisely
here: in the opposition of the process of production of
the desiring-machines and the non-productive stasis of
the body without organs.’ (Deleuze & Guattari 1990: 9)

In comparable terms to the opposition between labour
and capital in classical Marxism, desiring-machines can
be seen to operate in parallel to labour in opposition
to capital. Similarly, the body without organs can be
seen to appropriate desiring production, just as the
capitalist extorts value from labour. It is not simply
labour that is stolen but desire too, or more precisely
the energy associated with desire that is central to
this extortion and its opposition (although it should
be added that Marx also regarded labour as a living
energy). What is distinctive in this formulation is that
desire creates flows between units of production, and
like the unconscious, fears it ‘lacks’ something and so
strives for connectivity. However, it is not wholeness
that is sought (for instance, as with the mother in a
Freudian scenario), but something far less unified and
multiple. This leads Serge Leclaire to think that the
desiring machine is a ‘partial object’ in the sense that
psychoanalyst Melanie Klein introduced. Klein explains
that humans pretend that things are perfect and whole,
to avoid the reality that they are flawed and in parts.
She says: ‘It is a ‘perfect’ object which is in pieces’
(1988: 270). Deleuze and Guattari seem to concur:

‘We believe only in totalities that are peripheral.

And if we discover such a totality alongside various
separate parts, it is a whole of these particular parts
but does not totalize them; it is a unity of all these
particular parts but does not unify them.’ (1990: 42)
But this does not really address Leclaire’s observation
that Deleuze and Guattari’s theory is too ‘perfect’. He
thinks it does not demonstrate flux sufficiently.[7]

In the context of this thesis, it is useful to

stress the description of the desiring-machine as

a system of interruptions or breaks, and one that

works paradoxically by breaking down and becoming
dysfunctional to Capital (in Guattari 1995: 103). As

a consequence, the theory comes closer to systems
dialectics, where disorder can be seen to be a catalyst
for changes to the system. The machine can be seen to

possess two characteristics, according to Guattari:
the power of continuum and the rupture in direction

or mutation. The machine, therefore, is a ‘break-flow’
process of connections and their rupture (1995: 126-
7), in parallel to the idea that change takes place
through a rupture in the continuum of history. Desiring-
machines operate in this disruptive manner, and one
might speculate upon desiring-software that represents
a break-flow process, or indeed orderly disorder.
Software, in these terms, might rupture the continuum,
by doing something other than expected, perhaps simply
by refusing to work or remaining non-executable, or
crashing the machine it runs upon. These ideas will be
developed later in this chapter.

marx after marx

The concept of ‘machinic agency’ is one way to take
account of desire and extend an understanding of
production. Neither machine nor software simply acts on
its own. In themselves, they demonstrate no sense of
agency in promoting desire or repressing it. This is
why Guattari would regard technology acting on its own
(technological-determinism), under a sense of autonomy,
as necessarily expressing a fascist tone in oppressing
desire. Yet Guattari thought Marx mistaken in thinking
social relations lie outside of the tool or machine.
The issue can be traced historically, by the evolution
of the tool into a machine that becomes more and more
independent of the worker. To clarify this, Guattari
reiterated Marx’s distinction between machines and
tools, in that machines are a factor of communication,
whereas tools merely extend control through direct
contact. This is a much misunderstood distinction
between tool and machine, and one often repeated in
connection to the computer. Marx claims: ‘the tool is
a simple machine and the machine is a complex tool
[...] therefore, is a mechanism that, after being set
in motion, performs with its tools the same operation
as the worker’ (1990: 492, 495). The machine extends
the limits of human effort, and becomes part of a wider
scheme of machines working together collectively, as
part of an extended industrial (machinic) apparatus.
The ‘machinic’ relations between worker and machine,
although prefigured in Marx’s description, does not go
far enough for Guattari, who describes the worker and
tool as part of the machine (1995: 142) - indeed both

17

118

are engineered ever more overtly.

Building upon the thinking of Deleuze, Negri sees this
conceptual trajectory evident in Marx’s early work.

[8] The complexity of the argument is exemplified by
Negri’s book title Marx Beyond Marx: Lessons on

the Grundrisse , paradoxically expressing that what

lies beyond Marx is in itself a return to Marx. This
represents a return to the Grundrisse of 1857-8 (1981)
for its conceptual openness and rawness. Thus it is
considered ‘beyond’ _Capital_ in conceptual but not
historical terms - as the Grundrisse notebooks predate
and inform the argument of Capital of 1867 (1990).

An orthodox historiography would find this ‘beyond’ yet
simultaneously ‘before’ problematic, but the paradox
reflects processes of renewal and rupture.[9]

The preface to Marx after Marx is written in the form
of a dialogue between a prisoner and free man, reflecting
Negri’s lengthy imprisonment. Clearly this is not simply
autobiographical but allegorical: working in the factory
is to be seen as equivalent to a jail sentence, to break
out of jail is to break from capital (1991: xvi). The
free man (Negri’s former and future self) states: ‘To

be a communist today means to live as a communist’; to
which the prisoner (Negri’s present self at the time of
writing) responds: ‘This, I think, is possible even in
prison. But not outside, until you free us all’ (1991:
xvii). Here the dialogue evokes the dialectical Hegelian
master-slave relation, in that it is only the slave who
can become truly free. That is to say: ‘here, domination
and reversal can only be accomplished by those who
participate in an antagonistic relation’ (Negri 1991: 9).

When Negri uses the term antagonism, it is worth
mentioning that he is a militant, exemplified in his
views on the necessity of violence: ‘To suppress the
violence of this process can only deliver it - tied
hand and foot - to capital’ (1991: 173). Negri’'s
uncompromising position is bound up with the specific
political context of Italy in the 1970s and the failures
to engender social transformation (particularly the
major strikes around the Fiat Factory of 1970). His
position corresponds with the ‘Workerism’ movement

[“Operaismo’], that paradoxically, was against work in
the sense they did not want it re-appropriated, but
simply reduced. Rather than celebrating workers’ labour,

the influence of Simone Weil (who experienced the factory
production line first hand) is evident in questioning
whether it was possible at all to conceive of production
that was not oppressive (explained by Sylvére Lotringer,
in Virno 2004: 8).

But Negri would not merely resort to dialectics here.
Rather than see the critique embedded in its internal
contradictions, Negri also points to another non-
dialectical dimension. In addition to the imposed unity
of dialectical relations between worker and capitalist,
there is another logic of ‘separation’ from forms of
domination. Like the revisionist work of the Frankfurt
Institut, the principle here is that capitalism as

an irrational system cannot be replaced by anything
that employs the same logic. For Negri, dialectics is
the temporary logic of capitalist times and part of

its internal contradictions to be overthrown, along
with its domineering class in the ‘transition’ from
socialism to communism. Nevertheless, if one resorts to
dialectics, this might be described as the negation of
negation, in that the dialectical method once employed
is further negated (as described in chapter 3). In other
words, to the dialectician the issue of whether this is
dialectical or non-dialectical appears as a dialectical
conjunction in itself (this issue will be developed

in the last section of this chapter). Although not
following this logic himself, Negri is anxious to find

a method that can respond to a power base that is ever
more complex.

119

This is where Negri finds Michel Foucault’s concept

of ’‘biopower’ productive, as a concept of power that
is multiple and adaptive. Foucault’s description of
biopower is a significant intervention, operating in
the tradition of materialist production and the ways
in which subjectivities are constituted in complex
and interactive relationships. To Negri, the idea of
globalised biopolitical production does not mean that
class antagonism has disappeared but is present in
the wider social realm, and in everyday life: ‘life
is made to work for production and production is made
to work for life’ (Hardt & Negri 2000: 32). He argues
that antagonism grows stronger as a result of these
changes but stresses that Marx does not go far enough
in describing the dynamic of capital. What is missing
in Marx is an understanding of power in relation to

120

systems theory, and the importance of the machine that
encapsulates production:

‘The machine is self-validating, auto-poietic - that is,
systemic. It constructs social fabrics that evacuate

or render ineffective any contradiction; it creates
situations in which, before coercively neutralising
difference, seem to absorb it in an insignificant play of
self-generating and self-regulating equilibria.’ (Hardt
& Negri 2000: 33-4)

The description of contemporary power as an adaptive
system also encourages the view that alternatives

can adapt too. In Negri’s view, power operates not
through contradiction but through separation and it
does this currently through ‘the world market’ (or
what is commonly known as globalisation). He argues
that the critical strategy of contradiction needs

to be reinstated in the realm of production, as

this remains where social inequalities are revealed
and where alternatives arise. The potential for
transformation lies in identifying and acting upon
these contradictions. This section has tried to outline
some of the concerns that any reconceptualisation of
work must take account of. Importantly, the complexity
of social relations operates through interactions of
machines and people, as does any sense of machinic
agency involved in the transformation of these
relations. It is clear that machines cannot simply

be regarded as ‘dead labour’ but are integrated

into ‘living labour’, and involved intimately in
disseminating creative human energies more openly and
widely - for better or worse.

In orthodox Marxism, the capitalist mode of production
simultaneously produces and reproduces the antagonistic
social relations between labour and capital. This
situation is based on the need for workers to sell
their labour and the corresponding need for capital to
‘extort’ value from the workers. The antagonism that
arises from this is expressed particularly directly

in the German language: ‘Arbeitgeber’ (labour-giver)
and ‘Arbeitnehmer’ (labour-taker). As the previous
section makes clear, labour is no longer contained by

the factory walls, and as a consequence this serves to
dislocate class antagonism.

This process of dislocation is what Marx referred

to as ‘real subsumption’, to conceptualise the way
that class exploitation is dispersed and subsumed

into the wider (global) social realm.[10] This is
clearly more evident under contemporary conditions
than in the mid-nineteenth century, but the logic is
consistent. What Negri referred to as ‘separation’, at
the end of the previous section, is another example of
dispersion, in which capitalism restructures itself

to avoid dissent and to diminish contradiction. For
example, the dissent of the 1960s and 1970s (notably
the student and worker movements in Italy, and Paris
in 1968) was acted upon in the 1980s and 1990s by
spreading class antagonism far and wide, and undermining
its potential for collective action. At the same

time, real subsumption, assisted by informational
technologies, has transformed labour and made it more
shared, collective, and communicative. This second
section of the chapter introduces these ideas in
relation to the concept ‘general intellect’, drawn from
Marx’s early writings, that refers to the combination
of socialised labour and technological expertise that
has become important to production. Any critique of
exploitation therefore must recognise social relations
in terms of what the autonomists call a ‘social
factory’, to describe the way the whole of society is
turned into a site of production.

121

For capitalism to continue to produce surplus value,

it has to construct not simply commodities, but also
the appropriate subjectivities to do so. Subjectivities
are constantly being generated and corrupted in the
‘factories of subjectivity’, claim Hardt and Negri
(2000: 197), in a phrase that echoes an understanding
of biopower described in the previous section. In the
‘social factory’, subjectivity as well as labour value
is stolen from the worker (or ‘autonomous subjectivity’
is denied, in the terms of autonomous Marxism). Negri
explains that two oppositions are at work: between use
value and exchange value of orthodox Marxism, and in
addition ‘objectified labor against subjective labor’
(1991: 68). In this latter opposition, Negri draws on
a passage from Marx’s _Grundrisse to characterise
labour in terms of the subjectivities of ‘worker and

122

capitalist, collective worker and collective capitalist’
(1991: 77).

Oppositional subjectivities reflect these conditions of
the social factory (often referred to as the ‘multitude’
in contemporary commentary[ll]). The term ‘proletariat’
as the subject of labour and revolt continues to be
relevant but requires redefinition to stress more
collective and communicative forms.[12] The redefinition
is further explained by its original meaning, describing
someone who only has the ability to reproduce
themselves, according to Peter Linebaugh, extending the
Marxist interpretation applied to someone with

only their labour to sell (Dyer-Witheford 1999: 107).
Hardt and Negri define the term to include all those
whose labour is directly or indirectly exploited, and
argue that labour is becoming ever more proletarianised.
Negri goes further, and drawing upon an understanding

of machinic subjectivity, claims that capital tries

to capture the communicative capacity of the socialised
labour force and turn it into information - even into
software. From this, it can be deduced that subjectivity
and technology are also becoming proletarianised.

Consequently, the control of communications, and the
labour related to communications, have become key sites
of antagonism.[13] For instance, in software production,
the contradictions that arise from open source
principles are bound up with the way society responds by
both encouraging and limiting software development: on
the one hand, by employing the technical possibilities
of the Internet that facilitates free and easy
information sharing, and on the other, by exploiting
the commercial benefits through proprietary licensing.
This second section of the chapter draws upon an
understanding of the concept ‘general intellect’ to
reveal some of the contradictions in the relations

of production between networked machines and collective
human labour. The issue of property is at

the core of this.

general intellect

The source of the concept ‘general intellect’ is

a section in the _Grundrisse_called ‘Fragment on
Machines’ written in 1857-8, in which Marx describes
that at a certain point in capitalist development, real

wealth will be measured not on labour time in production

but on technological expertise and organisation

(1981: 705-6). In summarising the concept, Nick Dyer-
Witheford stresses the importance of what Marx calls
‘general powers of the human head’, ‘general social
knowledge’, and ‘social intellect’, all resulting
from the increasing importance of machinery (1999:
220). Marx predicts that the productive forces of

the intellect, of human knowledge and skills, will

be incorporated into capital itself - into what has
since become known as the ‘knowledge-based economy’.
Marx was thinking of the developing importance of
automatic systems for production and the networks of
the world market. The crucial issue, both then and now,
is that general intellect unleashes contradictions by
combining technical knowledge and social cooperation.
For instance, increasingly socialised labour and the
replacement of labour by machines undermines existing
hierarchical structures that protect private property,
wage structures and class exploitation.

It is in this context too, that the concept ‘immaterial
labour’ is introduced by Maurizio Lazzarato and Negri
to describe the nature of work, in a scenario where
information and communication dominate the process of
production. Immaterial labour is that which produces
immaterial goods such as services and knowledge. It
follows that as commodities and wealth have become

less and less material and more defined by cultural,
informational factors and knowledge, so too has labour.
According to Lazzarato, labour constitutes itself in
forms that are collective and, in terms of the network
and flows, no longer just confined by the walls of the
factory in a ‘mutation of “living labour”’ (1996). The
productive labour of the industrial factory is becoming
replaced by intellectual, immaterial and communicative
labour, making everything like a factory and changing
the social relations therein (this is where the term
‘social factory’ applies). Furthermore, the concept of
immaterial labour describes a rupture in the continuity
of production, that breaks away from the centrality of
waged labour in orthodox Marxism. Lazzarato says:

‘A polymorphous self-employed autonomous work has
emerged as the dominant form, a kind of “intellectual
worker” who is him- or herself an entrepreneur, inserted
within a market that is constantly shifting and within
networks that are changeable in time and space.’ (1996: 139)

123

124

As a consequence of more emphasis on intellectual and
creative work, the concept of immaterial labour accounts
for the ways in which new management techniques appear
to emphasise innovation, enterprise and problem-solving.
All the same, these new techniques, such as ‘participative
management’ may appear ‘flat’ rather than hierarchical
but are still ‘techniques of power’ (Lazzarato 1996:
134). As with the discussion of network control in

the previous chapter, power is exerted through _
facilitation_rather than direct repression. Lazzarato
thinks participative management techniques are more
totalitarian than the production line, as they involve
the willing subjectivity of the worker in the process
(1999: 224). However, conflict still arises between
capital’s objective control and the relatively autonomous,
subjective nature of the work. An activity such as
hacking is a good example of the contradiction at the
heart of capital’s attempt at control, as it is both a
necessary and potentially disruptive skill and embodiment
of technical knowledge in the information factory. This
example will be expanded upon in the next section, but
hacking represents technical knowledge useful to fix a
problem or create a problem. The context determines
whether complimentary or derogatory meanings are implied.

These contradictions are particularly evident in new
collective formations that utilise the networked
technologies. For instance, Terranova regards mail lists
as crucial to the development of network-organised
forms of political organisation, enhancing connectivity
and the open sharing of ideas. The composition of
contemporary forms of protests in general, rejects the
centralised form of mainstream broadcast media, for

a counter-position that is distributed and collective
(often referred to as a shift from a ‘one-to-many’ to

a ‘many-to-many’ model of communication). Indymedia,

a collective of independent media organisations and
hundreds of journalists offering grassroots, non-
corporate coverage, is an example of this model. Such
examples allow Terranova to argue that the Internet
materialises ‘general intellect’ that ‘implies the
release of a surplus value of potential’ (2002).

Applied to the development of software in general, the
collaborative gathering and analysis of information is
reflected in the open source movement and what Felix

Stalder and Jesse Hirsh call ‘open source intelligence’

(2002). They point to open source principles of peer
review, the free sharing of products, and flexible levels
of involvement and responsibility that are all derived
from practice and the technical possibilities of the
Internet technologies, that facilitate free and easy
information-sharing among peers, exemplified in ‘peer 2
peer’ networks. Stalder and Hirsh'’s examples are varied
in scope: from the ‘collaborative text filtering’ of

the _nettime_ mail list, itself running on the open
source list package ‘majordomo’, to _Wikipedia_ the free
encyclopedia built on open source principles, and the
technological platform of ‘Wikiweb’, in which users can
see the source code but also freely edit the content,
archived and published under the GNU public license
(2002). These examples illustrate general intellect and
the ways that technical expertise and socialised labour
work together. However, the ‘potential’ that Terranova
refers to demonstrates both positive and negative
tendencies, both releasing and limiting possibilities
for future transformation.

open source intelligence

The effectiveness of ‘open source intelligence’ is clear
(in contrast to what might be called ‘proprietary
stupidity’). It is arguably more reliable, stable

and less bug-ridden, as a result of peer review and
collective development. There are numerous examples

of high quality applications, operating systems

and platforms that have been developed utilising
collaborative programming and development environments.
For instance, Linux was recognised by Microsoft as being
superior to its own Windows operating system in 2000,
and since, it has become the orthodoxy to develop even
commercial software in this way. Fundamental to the
commercial interest is the tradition of open source

as a development method, based on a belief in ‘shared
culture’ and ecology. Re-using existing code is part of
this working principle, to avoid unnecessary work and
the overproduction of code. Eric S. Raymond describes
this in the following terms: ‘This attitude gives the
best return both in the “soft” terms of developing human
capital and in the “hard” terms of economic return on
development investment.’ (2004: 375)

Open source principles both contest and affirm
capital investment on human and economic levels. The

125

126

contradictions reveal themselves in anomalies like the
floatation of the open source supplier ‘Red Hat’ on the
Stock Market, and can be seen to subsidise rather than
undermine corporate capital. The apparent openness to
commodification of ‘open code’ requires a distinction
to be made between open source and free software,

along ideological lines. This is what Richard Stallman
(and the Free Software Foundation) attempts when he
clarifies the distinction: ‘To understand the concept,
you should think of “free” as in “free speech”’ (1996).
The ‘rasta-programmer’ Jaromil goes further in referring
to freedom from slavery to proprietary software. He has
produced dyne:bolic_ (2001) with these principles in
mind: a GNU/Linux distribution on compact disc, with a
useful assortment of applications designed to run on
old computers and even on Xbox games consoles. In both
references to free software, a political concept of
freedom is emphasised, whereas open source is linked
with pro-business computer libertarians, and the idea
of releasing source code and developing software
collaboratively as a potential antidote to the market
dominance of Microsoft (Medosch 2005: 182).[14] For
Lawrence Lessig too, in Free Culture: How Big Business
Uses Technology and the Law to Lock Down Culture and
Control Creativity (2004), free speech is also evoked
by quoting Thomas Jefferson on the nature of ideas,
claiming it is a fundamental right for ideas to remain
freely available in the public domain.

That ideas are not free once made tangible, and are
subject to intellectual property rights, is a byproduct
of an economy that has sought to commodify knowledge.
Capital tries to treat knowledge as it would any other
goods but does not always succeed in commodifying it,
because knowledge cannot simply be reduced to the
market. This is a point that Lazzarato adds, drawing
upon the work of the sociologist Gabriel Tarde. The
example given is the production of books, and how the
exchange value of a book can be determined by the
market as a product but not as knowledge, which is more
determined by moral issues of gift or theft (Lazzarato
1999: 162). It is easy to see evidence of this in the
issue of intellectual property and what should or should
not be in the public realm.[15]

Another consequence of this knowledge economy is that
places of learning are drawn closer to capitalism. At

the same time, it is argued by Dyer-Witheford (2005),
drawing upon Lazzarato and Negri, that this also
releases the potential for a more effective opposition
(shifting antagonism from the industrial factory to

the knowledge factory). For instance, as universities
concentrate their energies on engineering and technology
disciplines, forms of dissent employ the same tools.

An example of this would be the work of The Institute
for Applied Autonomy, who attempt to undermine the
normalised ambivalence to art and social issues that
characterises engineering practices, by their tactical
interventions using robotics and mobile technologies
(2005). The wide and free distribution of knowledge over
the Internet is clearly a threat to the traditional
learning institution (and the ideological state
apparatus), and this has contributed to the rise of
alternatives such as ‘free universities’ linked to the
principle of ‘open source knowledge’. Henriette Heise
and Jakob Jakobsen describe an example of this:

‘The Copenhagen Free University opened in May 2001

in our flat. The Free University is an artist run
institution dedicated to the production of critical
consciousness and poetic language. We do not accept

the so-called new knowledge economy as the framing
understanding of knowledge. We work with forms of
knowledge that are fleeting, fluid, schizophrenic,
uncompromising[ly] subjective, uneconomic, acapitalist,
produced in the kitchen, produced when asleep or arisen
on a social excursion - collectively.’

127

The University of Openness, in London, is another
example of what has become known as a ‘self-institution’
that allows individuals and organisations to pursue
their shared interest in emerging forms of cultural
production and start a ‘faculty’ to socialise their
research.[16] Its Faculty of Unix offers free workshops
as an alternative to the commodification of knowledge and
of proprietary systems in general, demonstrating the
potential of open source knowledge. Unix is a strategic
choice of study in this respect, as it represents a folk
tradition of ‘bottom-up’ development where ‘expertise’
comes from the shared culture itself, and the idealistic
logic that a better cultural understanding of technology
or indeed software will lead to ‘better’ implementation
(Raymond 2004). Developed through an engineering
tradition, Unix undoubtedly has a technical culture but
also a conceptual and political culture (Raymond’s book

128

_The Art of UNIX Programming (2004) is testament to this).

Proprietary software might be an inherently flawed
concept on many levels, but private property remains

a cornerstone of capitalism. The legal apparatus is
particularly slow to adapt to the ways in which this
paradoxical logic is challenged by the knowledge and
information economy. This is the basis of the argument
that Stallman makes in his ‘Why Software should not
have Owners’, that to think of software in terms of
material goods and to adopt its legal protections is
anachronistic (1994). The legal apparatus remains
poorly suited to dealing with the results of immaterial
labour, as it still tends towards distinctions of
property in terms of end-products after the making act,
unable to deal with dynamic processes (Barron 2002).
Thus even on its own proprietary terms of turning
information into commodities, the legal system fails

to deliver. In the context of these inadequacies,
alternative licenses, such as those provided by the
Creative Commons initiative, are useful in providing
flexible copyright licenses for creative works, but

do not adequately address the criticism that they
represent the potential for the further commodification
of creativity and cultural work. Rather than relying

on the legal apparatus (and particularly with Creative
Commons in mind), David M. Berry instead proposes the
‘Libre Commons’, rejecting ‘bureaucratic attempts to
overcode the social through law’ and instead affirms

the ‘intersubjective recognition and affirmation that
commonality provides’ (2004).[17] Rather than deciding
which license to use (from the pull down menu on the
Creative Commons web site for instance), an alternative
is simply deciding to reject the legal apparatus
altogether. A weakness of open license agreements
remains that they do not challenge intellectual property
law at source - on the issue of property. In contrast,
Berry'’s position is in recognition of the importance of
intellectual property and the antagonisms that arise
from the issue of common property.

Property thus remains, as it did at the time of Marx'’s
writing, as a key area of antagonism but its emphasis
has changed in its application to software. As for
software art, the issue of property is something that
Robert Luxembourg’s _The Conceptual Crisis of Private
Property as a Crisis in Practice_ (2003) comments upon.

A program script (crisis.php), an explanatory text file
(crisis.txt) and a screenshot (crisis.png) are presented
as a conceptual puzzle. If the program is run, it parses
the screenshot into the full text of the novel
Cryptonomicon by Neal Stephenson (of 1999). The
project thus forms a neat conceptual loop between

form and content, addressing issues of encryption,
privacy and intellectual property rights. It allows the
reader to gain access to the novel in such a way that
the author of the software remains within the legal
constraints imposed on the author of the novel by the
publishers. The lengthy title of the work indicates

the critical trajectory of this work, based on a quote
from Hardt and Negri’s Empire (2000), and tests the
limits of the legal apparatus that Hardt and Negri see
as underpinning the power structures of contemporary
capitalism. Property rights are only infringed on
execution of the script. The software on the other hand
is distributed overtly as free, open software under the
terms of the GNU General Public License agreement.

On closer examination, the work emerges from earlier
works by Project Gnutenberg and the production of

the software that lies behind the encryption process
(pngreader v1.1l), that works under the principle that
images and texts have the same underlying code of
zeros and ones. Any output that is encoded in such a
way (using the pngwriter) can be decoded (using the
pngreader), allowing for the covert distribution of
copyrighted materials. The user is ‘instructed’ to
perform an illegal act by running the php script but
whether he/she does this or not is beyond the capacity
of the software itself. An extreme case of the use

of this principle and subsequent legal proceedings
was Project Gnutenburg’s walser.php (2002) in which
the script generated a plain ascii version of Martin
Walser’s controversial novel (of 2002) Tod eines
Kritikers [Death of a Critic]. Walser.php does not
infringe copyright itself, but only if executed.

The work arguably demonstrates a more radical strategy than
clever licensing. It evokes piracy and plagiarism, already
common practice in the wider culture, particularly in the
distribution of music and movies, and peer to peer networks.
Plagiarism is also an integral part of software practice
in the free distribution and adaptation of source code

- with or without attribution or acknowledgement. The

129

130

open source and free software movement clearly relies
on forms of plagiarism for much of its work.[18] Vested
interests around property are made evident in these
operations of big business and the legal apparatus, in
attempting to police these pirate operations.

The figure of the pirate takes on a heroic status in
these debates (and in popular culture in general),
partly derived from its significance through action,
uprising or insurrection - what Bey calls ‘pirate
utopias’ in his essay ‘The Temporary Autonomous Zone’
(2003: 97). The historical parallel to the days of
early capitalism is a useful one (where slave ships
also sailed), and points to some of the underlying
antagonisms that open code and free culture present.
Related to this line of thinking is the project _The
Kingdom of Piracy_ conceived by Armin Medosch, Shu Lea
Cheang and Yukiko Shikata (2004), that explored the
world of free software and copyleft culture. The term
piracy is used in such work, not to describe illegal
activity on the high seas, but more metaphorically in
opposition to the moral legitimacy of capitalist logic.

The moral issue is also something that the satiric
project Re-code.com_ highlights, responding to: ‘the
absurdity of a system that allows corporate theft to go
unpunished while deeply criminalising petty consumer
theft’ (Conglomco.org & The Carbon Defense League 2004).
The project web site contained instructions, scripts for
generating UPC symbols, access databases of prices, etc,
allowing consumers control over the prices they paid for
supermarket goods. The site stayed online for ten days
before being taken down in response to threats from Wal-
Mart. The challenge to private property in work such as
this is overt: stealing back the value and subjectivity
stolen from the public in the first place. What is also
stolen back is general intellect.

This section has tried to outline the concept of
general intellect, to understand how the control

of communications, and the labour related to
communications, are crucial to the success and failure
of the economy. However, this can only be a positive
public force if it is at the same time political, as
Paolo Virno explains:

‘if the publicness of the intellect does not yield to
the realm of the public sphere, of a political space
in which the many can tend to common affairs, then it

produces terrifying effects. A publicness without a
public sphere : here is the negative side - the evil if
you wish - of the experience of the multitude.’ (2004: 40)

These issues around open source code and work represent
an enormous subject that could occupy a thesis in
itself, but important in this context is that these
developments and the contradictions that arise from them
can be seen to respond to both social and technical
conditions. The production of software makes a good

case study in this respect, in as far as the inherent
contradictions can be revealed and acted upon. The next
section addresses this issue.

Workers of all kinds find themselves in ever more
‘precarious’ conditions. In the (overdeveloped) knowledge
economy, the distinction between ‘cognitive’ and
‘precarious’ work has collapsed into what chainworkers.
org call ‘precogs’.[19] The term is their attempt

to characterise the combination of the intellectual
labour of the ‘brainworkers’ and the manual labour of
the ‘chainworkers’. To Lazzarato, the significance of
this cuts across traditional class distinctions, and
undermines the old distinction between material and
immaterial labour introduced in the previous section.
This also clarifies that immaterial labour has not
replaced material labour but added to it. There is often
confusion in this connection, as the term ‘immaterial’
does not mean insignificant or not material. Further
qualification is required to emphasise that material
goods are still being produced on a massive scale in
parts of the world, and that the labour involved in
producing immaterial goods is material in itself (Wright
2005).[20] But labour has also expanded to involve
cultural activities not traditionally considered in
terms of work, including creative labour. Creative
labour in this way stands for the combination of
information worker and artist, or what in the context of
this thesis would be the artist-programmer or software
artist, whether working on a paid or voluntary basis.

131

These developments present new contradictions over
work, characterised not least by the prevalence of free

132

labour in the cultural realm (something familiar to arts
practice in general). Indeed, the once straightforward
distinction between paid and unpaid work or non-

work is also harder to differentiate. To Terranova,

the complexity of labour in the digital economy is
characterised by free labour in the production of

free and open source software (2000: 33). She is
skeptical of the link between free labour and the ‘gift
economy’, to explain how gifts of time and ideas might
indeed overthrow capital from within (2000: 36). She

is referring to Richard Barbrook’s reference to the
‘high-tech gift economy’ (1999), which is in itself a
reference to Marcel Mauss’s anthropological examination
of ‘gift economies’ and systems of exchange, that lie
outside capitalism (1970).[21] The rejection of the so-
called free market for the ‘commons’ is characterised
by Barbrook as ‘anarcho-communism’, but unlike Mauss’s
studies of societies outside capitalism, the high-

tech gift economy is entwined in a complex relation to
the capitalist market. What is considered ‘free’ is
clearly based upon an infrastructure that is thoroughly
commodified. The participatory ethic that Barbrook sees
as shaping radical politics today in DIY culture would
be understood by Lazzarato as an imposition of new
forms of control and command over subjectivity, and
like general intellect, thoroughly contradictory (1999:
224). Social transformation, once thought to be tied to
working class agency, now appears to be based on the
more complex connection between the production of new
machinic subjectivities and the recomposition of workers
as a class linked to general intellect.

The issue remains of how to organise a society in

which producers-consumers give and receive, to the
satisfaction of mutual interests that are not entirely
based on individual reward.[22] This is a moral issue
for Mauss, of how to shift emphasis from individualised
benefit to social benefit. What he discovers is that
because the ‘producer-exchanger’ is giving something of
him/herself, he/she wants ‘recompense, however modest,
for this gift’ (1970: 75). The recompense relies on a
system of exchange not exclusively applied to goods and
wealth, property and things of economic value, but other
non-economic value. A cultural producer invests capital
in the form of knowledge and skill, into a project with
other rewards in mind such as peer recognition, what
Bourdieu refers to as ‘cultural capital’. Cultural

capital is heavily institutionalised in various fields,
such as the convention of academics giving papers at
conferences and sharing knowledge for free (or even
paying to give papers). The production of free software
operates in similar ways but tends towards an emphasis
on social not individual creativity. Drawing on these
ideas and associating them with general intellect,
Terranova explains free software not as an alternative
to capitalism but as an expression of new forms of
labour, that have:

‘... developed in relation to the expansion of the
cultural industries and are part of the process of
economic experimentation with the creation of monetary
value out of knowledge/culture/affect’ (2000: 38).

In this scenario, the information worker is often
conflated with the artist worker to characterise
‘creative labour’. To Marina Vishmidt this conflation
raises issues, not merely over the generality of the
term ‘immaterial labour’ but also the ‘dogma of art

or creativity’ (2005: 94). The final chapter will deal
with this connection to software art in more detail,

but first in what remains of this chapter a more general
approach to software work will be introduced. The
parallel between software and work is encapsulated in
the way the personal computer has become like a personal
factory, in which established social relations remain
unchallenged or become even further entrenched. But

is simply refusing to use certain software or hacking
technologies effective refusal? The suggestion is that
many oppositional strategies are not transformative, but
merely oppositional.

133

The chapter ends by arguing for the continued relevance
of dialectics to respond to the contradictions in
software work. Whereas the positions introduced in the
first two sections point to the inadequacy of dialectics
to deal with the crucial concept of immanence, the
dialectical approach introduced in the previous chapter
attempts to deal with this issue by integrating

ideas associated with complex systems. In this way,
contradiction can be reinstated.

software for work

Microsoft remain the symbolic target for criticism in
terms of software work. Naomi Klein claims Microsoft

134

‘wrote the operating manual’ for ‘engineering the
perfect employee-less corporation’ through the extensive
use of independent contractors, use of freelancers

and outsourcing as a ‘disposable labour force’ (2001:
249). But clearly Microsoft is symptomatic of a more
widespread logic that applies to employment practices
in general. Preferred patterns of work, including
critical work, are made explicit in the availability
and prevalence of Microsoft products in workplaces and
universities across the world. Much commercial software
appears to be designed to predetermine its use and deny
the user autonomy over their work. The user or worker
simply becomes one of the objects of a proprietary
operating system, that permits little deviance from the
prescriptive tasks the system allows. In ‘The Macintosh
Computer: Archetypal Capitalist Machine?’, William
Bowles argues that control is not only enhanced by the
development of new technologies but also expressed
through the technologies themselves. Writing in 1987,
he regards the ‘user-friendly’ graphical interface of
the computer as a further development of the industrial
period:

‘... where craft skills were stolen and locked into the
industrial machine, then perfected to the point whereby
general principles could be extracted and applied

to ever more sophisticated machines, each in turn,
requiring less and less skill [and labour] to operate!’
(2005: 50).

In the case of Apple Macintosh,[23] what they tried to
do with their operating system was to make a ‘universal’
graphic user interface, to set a standardised way

of operating a computer that enabled the relatively
‘unskilled’ user to gain access to computers. Yet
specialised expertise is also required to maintain the
‘inevitable inaccessibility of the machine itself’ at

a deeper level. The separation serves to reinforce the
split between technical operations and wider cultural
work. The average user interacts with the operating
system via a command structure, using a toolbox, and

so on, that parallels the kinds of standards developed
in machine tools. It may be easy to use but it is made
impossible to use it at a greater level of operation
(until recently at least, with Apple’s adoption of a
Unix-based operating system). It is a closed system that
‘mystifies’ the processes involved and the choices open
to the user. The operating system ‘”masks” the “real”

operation of the computer by interposing itself between
the user and the Central Processing Unit’, thus the
Macintosh computer presents itself as a ‘black box’,
denying access to its complexities (2005: 43).[24] This
expresses dictatorial control, according to Bowles.

The desktop metaphor of the graphical user interface
positions the user as an office worker. In the broader
context and ubiquity of Microsoft Office, Fuller explains
the ‘disappearance of the worker is best achieved by

the direct subsumption of all their potentiality within
the apparatus of work’ (2003: 139). In the essay ‘It
Looks Like You’'re Writing a Letter’, Fuller provides a
close analysis of the word-processing software Microsoft
Word, distributed as part of the Microsoft Office
package. Microsoft Word prescribes and universalises
work and leisure activities as if the user is designed
as part of the package, or even more so, the user’s
labour and subjectivity are made to disappear into it

- installed into the system, as Fuller puts it (2003:
148). Lazzarato’s assertion (referred to earlier in

the chapter) that facilitation involves the willing
subjectivity of the worker, or user in the process of
production, is a further explanation of the effectiveness
and totalitarian tendency.

In word-processing a text with Word, the writer becomes
part of the machine, thoroughly embedded in the choice
of computer and software program. This is one reason
why Microsoft Word is not used to write this thesis,
which also relates to Friedrich Kittler’s apology for
the software he used to write the essay ‘There is no
Software’ (1996). Bowles makes an issue of this too, in
declaring his tools: a Macintosh computer and Macwrite
word processing software (2005: 49 & 44). TextEdit,
used to write these words, is a far simpler and less
prescriptive program, but clearly the same issues apply.

In the case of ‘Word’, Fuller’s suggestion is to ‘cut
the word up, open, and into process’ (2003: 163) which
is exactly what he did for the installation A Song

for Operations , at the Lux gallery, London in 2000.
Accompanying the exhibition, the essay lays bare ‘Word’,
revealing it to be intentionally over-complicated but
packaged under the mask of user-friendliness. There is
an excess of programmed functions that serve to de-skill
the user, such as the various forms of ‘help’ available,

135

136

exemplified (at the time of Fuller’s writing) by the
cartoon Office assistant equipped with limited ‘artificial
intelligence’ to confront the user’s assumed ‘stupidity’
and suggest ‘correct’ use of language. There are also a
range of stupid templates available, such as ‘CV Wizard’,
‘Envelope Wizard’ and ‘Letter Wizard’ (hence the title
of his essay), but alas no ‘Suicide Note Wizard’ (2003:
148) - something later attended to by Goriunova in
‘Suicide Letter Wizard for Microsoft Word’ (2002),
combining work and death (as opposed to art and life).[25]

The underlying grammar of the software emphasises a set

of standard tasks to be completed. The preferences of the
program are particularly evident in ‘autocorrect’ with its
automated spelling and grammatical corrections reflecting

the dominance of correct English language as the globalised
language of business. As a result, in the overall context of
‘Office’ (the software and the workplace): ‘digital writing
is not simply subsumed within an uninterrupted envelope

for accessing various medial formations, but articulated,
variegated, and positioned by the [...] culture of doing
business’ (2003: 150). It is proprietary software in the
fullest sense. Back home, it is likely the user is using the
same operating system and software that they use at work,
either working at home literally or unwittingly at leisure.

hacking work

Viable alternatives such as open source software can

be identified but are they transformative? Fuller makes
this point by asking whether ‘free software is too
content with simply “reverse-engineering” proprietary
software’ (2003: 162). For instance, OpenOffice’s copying
of Microsoft Office feature-by-feature and opening up its
source code does not represent freedom as such.[26] Its
claim to be a free office suite rather misses the point
and reinforces much of the same logic. Worse still,

it could simply represent the tendency to position

free labour within the knowledge economy (as Terranova
expressed earlier). Both work and software should be
open to more radical transformations.

There are numerous examples of the ways users adapt
and use what would otherwise appear to be prescriptive
consumer technologies - what Michel de Certeau

calls ‘tactical’ forms and ‘makeshift creativity’,

to assert that users oppose established rules in

the most ordinary of circumstances (1984: xxiv).

[27] According to Mirko Schédfer, software products

are particularly prone to adaptation and further
innovation by users with technical competence, and by
the use of network communications to share ideas under
open source principles. His examples are turning the
Microsoft Xbox into a Linux web server, a Nintendo
Gameboy into a music editor, and enhancing the Sony
AIBO robot pet dog with feral behaviour (2004: 63).
Are these positive examples of ‘general intellect’?
Certainly modification or hacking of existing software
and hardware demonstrates the creative and collective
desire to adapt prescribed uses of technological goods,
and positions the consumer as producer too. Yet these
examples also serve to demonstrate how fast and adaptive
companies are in recuperating these innovations. The
unofficial development is recognised by manufacturers
as free labour and research. Moreover, especially with
an activity like hacking, the issue remains whether
the activity is locked into resistance mode only, and
does not engage sufficiently with the ways that capital
endlessly restructures itself as an adaptive system.

The autonomists refer to this restructuring aspect as
the ‘cycle of struggle’. The term stresses a crucial
issue: that resistance needs to transform itself in
parallel to this recuperative process. This is what
Mario Tronti calls a spiralling ‘double helix’ in which
the restructuring of capital and the recomposition of
the proletariat chase each others tails (in Dyer-
Witheford 1999: 68). It is in recognition of this
adaptive behaviour, that more tactical and strategic
alternatives need to be developed. Bey'’s concept of the
‘Temporary Autonomous Zone’ is one example of this, in
response to the observation that: ‘Even the guerrilla
Situationist tactics of street theatre are perhaps too
well known and expected now.’ (2003: 5) Adapting the
tradition of ‘independent media’, ‘tactical media’ is
another strategy for making ‘temporary hybrids of old
school political data and the aesthetics of new media’;
for instance, producing anti-aesthetic software and
other ‘hackivist’ strategies (Lovink 2002: 262).[28]

Geert Lovink and Florian Schneider explain that when
no other choice is possible, ‘sabotage can be seen as
a sort of anticipated reverse engineering of the open
source idea’ (2001). For example, ‘Floodnet’ software

137

138

was developed in 1998 by the Electronic Disturbance
Theater, allowing for ‘virtual sit-ins’ (or online civil
acts of disobedience) in the spirit of direct action,
and offered as a tool to enable protestors to effectively
shut down web servers of target institutions, by flooding
them with requests.[29] In this example, the tactics
associated with the refusal of labour in the material
world are adapted to an understanding of immaterial and
communicative labour.

The intersections of activism and the alternative use

of computer technologies are bound together in the term
‘hacktivism’. As the previous section suggested, many of
the alternatives to proprietary software do not attack
the issue of property at source. This is the central
argument of McKenzie Wark’s _The Hacker Manifesto (2004
[2001]) to maintain a central emphasis on property. Wark
argues that post-Marxist critique does not address this
issue sufficiently, and the ways in which informational
technologies have influenced the concept. His starting
point is a Marxist position that class relations derive
from the privatisation of the property relation, firstly
through land and subsequently through industrial
capital. Additionally, Wark claims intellectual property
to be a third, distinct form of private property, which
gives rise to a third, distinct class antagonism. He
explains:

‘Just as the development of land as a productive
resource creates the historical advances for its
abstraction in the form of capital, so too does the
development of capital provide the historical advances
for the further abstraction of information, in the form
of “intellectual property”.’ (2004: 018)

Property rights have now been extended from land

to capital to information. In Wark’s materialist
formulation, class division is similarly regenerated,
and it is the class associated with information

as property and who reject its privatisation and
commodification, who are the agents of social change.
It is this ‘hacker class’ that hold the potential to
exert a political agenda over property. Effectively, he
describes a class war between those keen to privatise
property (the legal hacks of patent and copyright by
drug and media companies in particular) and those
whose practice is involved in making property public
(the hacks of file sharing and pirating activities on a

popular level). Wark claims: ‘Information wants to be
free but everywhere is in chains’, playfully combining,
or hacking, both _The Communist Manifesto_ and the hacker
slogan (2004: 126).[30] According to his logic, information
like other goods is owned and controlled by class
interests, and the hacker is in a privileged position
(like the proletariat) to overturn these relations. The
hacker is able to disrupt the commodifying impulse of
the legal apparatus that wants to turn information into
property (described in the previous section in relation
to the focus on alternative licenses).

It is a convincing position, but there are difficulties
(not least with the ambiguity of the term hacking itself).
Certainly, there is no guarantee of a preferred ideological
position in relation to hacking, despite its undoubted
potential for forcing together new understandings from
existing materials in the ways that montage might have
done previously. Amy Alexander makes a similar point in
stressing the ambiguity of the term and the apolitical
motivation of much activity in this area. Although
hacking generally describes an activity like crudely
hacking a piece of wood with an axe, the application
to computing is rather more subtle but still a general
procedure of taking something apart, such as code. In
general usage, the term refers to the illegal act of
breaking into a computer, but Alexander explains the
confusion between ‘hacking’ and ‘cracking’: the hacker
as someone with proficiency and practical understanding
of the structure and operations of computer networks
and systems, but the cracker with more destructive
tendencies: ‘some hackers crack, many hackers believe
in exploratory cracking but not destructive cracking’
(2004).

For the purposes of this thesis, the importance is that
the hacker expresses something of the sense of autonomy
that the autonomists have described as lacking. This
emphasis on the centrality of autonomous and creative
labour is also characterised by Barbrook and Pit Schultz
in their ‘Digital Artisans Manifesto’ (1997). It is
argued that this transformation can come about by
rejecting neo-liberal work patterns of the free market,
the ‘californian ideology’ and formation of a ‘virtual
class’. Instead they propose the ‘digital artisan’ in
which autonomous work is made possible in the manner of
past craft workers (1997). Yet both these formulations

139

140

tend towards the assumption that ‘artistic labour is
productive labour’ (to cite Tarde, in Lazzarato 1999:
165). Artistic labour may offer some critical potential
in resisting commodification, but this is its potential
more than what happens in practice. For the most part,
the active productive human agent has been reduced to
inert, irrelevant and useless labour-power, not least in
the field of arts, to which it increasingly refers.

There are other difficulties with the figure of the
artist-programmer (or programmer as artisan in this
connection), where the processes of programming have
correspondingly become closed off, mystified, based

on elitist knowledge and hence contribute to the

return of a romanticised myth of creative genius,
embodied in the hacker class. These positions seem to
represent oversimplified (or mannered) versions of class
antagonism, that do not sufficiently incorporate complex
formulations of machinic agency, or the misery of
precarious working conditions both in the overdeveloped
world, but more particularly in the underdeveloped or
developing world.[31]

refusing work

Conceptual problems remain between the reconstitution of
the proletariat and the idea of a ‘stalled dialectics’,
in which the proletariat no longer can be seen to be

the privileged agents of social change (Terranova
2002). To simply replace one privileged class with
another, such as the hacker class, appears to miss the
point. Perversely, as has been introduced earlier in the
chapter, Negri looks to Marx to overcome the conceptual
problems associated with revolutionary praxis. Referring
to the Grundrisse , he argues that Marx uses both a
dialectical and a non-dialectical logic suited to the
development of the working class, from dominated labour
power to a revolutionary class (1991: 150). Negri
describes a more open description of the dialectical
method:

‘Thus there is no linear continuity, but only a
plurality of points of view which are endlessly
solicited at each determinant moment of the antagonism,
at each leap in the presentation, in the rhythm of the
investigation, always looking for new presentations.
[...] Each research result, in the presentation,
attempts to characterize the content of the antagonism

and to see it, tendentially, in its own dynamism;
when this dynamism takes off, we observe a veritable
conceptual explosion.’ (1991: 13)

The problem Negri has with dialectics is bound up with
Hegelian resolution and its implied attack of Spinoza’s
sense of ‘immanence’, which remains to the autonomists
a revolutionary theory.[32] Immanence in this sense,
represents an emergent force with potential to resist
power. However a dialectical approach can retain an
incomplete synthesis (referred to in chapter 3, and
argued by ZiZ%ek). Furthermore, Benjamin’s approach to
dialectics provides an intervention, as he tries to
‘halt the flow of the movement, to grasp each becoming
as being’ - as opposed to the more classical Marxist
approach where all social forms remain ‘in fluid
movement’ (Tiedemann 1999: 943). Benjamin’s concept of
‘dialectics at a standstill’ seems to draw together
dialectics and immanence:

‘For while the relation of the present to the past is a
purely temporal, continuous one, the relation of what-
has-been to the now is dialectical: is not progression
but image, suddenly emergent. (1999a: 462)

It is Benjamin’s idea of dialectics at a standstill that
enables the rupture of the historical continuum and the
possibility of transformation. Klee’s angel of history
is a dialectical image to Benjamin, and an example of
the way: ‘Images became dialectical for this philosophy
because of the historical index of every single image’,
and the ‘standstill’ thus rescues the image from the
conservative historical continuum - indeed, ‘blasts’ it
out of the continuum (Tiedemann 1999: 944).

Rather than regard dialectics itself at a standstill,
recent conceptual formulations of power continue

to evoke dialectical conjunctions. For instance

in Empire , contemporary power is described as:
‘characterised by a fluidity of form - an ebb and flow of
formation and deformation, generation and degeneration’
(2000: 202). An argument can be made that the cycle

of struggle needs to articulate itself in terms of
generative processes, in lieu of the regenerative
mechanisms built into capitalism itself. In another
formulation, the term ‘corruption’ is used to refer to a
perpetual becoming, that is the negation of generation.
Hardt and Negri say capitalism is by definition a

141

142

system of corruption and the task is to investigate

‘how corruption can be forced to cede its control to
generation’ (2000: 392).[33] Thus, corruption might

be thought of in terms of ‘de-generation - a reverse
process of generation and composition, a moment of
metamorphosis that potentially frees spaces for change’
(2000: 201). The dynamic of generation and corruption is
especially evocative of dialectics, as it lends itself
to the potential of destructive software to release
further transformations. Hardt and Negri describe

the structure of this, ‘like a software program that
carries a virus along with it, so that it is continually
modulating and corrupting the institutional forms around
it.” (2000: 197-8)

Software produced by The Museum of Ordure makes
reference to ideas of corruption. For instance,

Dust (2000) is both a representation and a process

of detritus that slowly ‘corrupts’, pixel by pixel.

The corruption is triggered by viewing the image

and in doing so, a pixel moves from one location to
another. When no viewer is present (indicated by the
sound falling below an ambient level), the pixels

are rearranged back into their original order. The

data is consistent, the pixels merely rearranged.

[34] Its dynamic form is consistent with the logic

that any characterisation of power as chaotic must

be countered with something equally complex. Alain

Joxe responds to this issue, in Empire of Disorder ,
asking how resistance can be characterised to lead to

a more pleasant chaos (2002: 107). His point is that
traditional standpoints of resistance seem powerless

to resist power, because now power is more complex

and has taken the form of resistance itself. Order is
now expressed through disorder, in other words. This
asymmetry between order and disorder is partly as a
result of the ‘decomposition’ of bipolar cold war
oppositions, replaced with the disorder of the free
market. As a result, what is required is a response that
draws on systems and complexity theory. This is somewhat
verified by Joxe’s statement that: ‘Disorder is only a
new beginning because it potentially contains a variety
of possible orders, a variety of scales of possible
orders. Disorder always opens a new choice of degrees of
order.’ (2002: 121)

In Negri’s terms, examples of reversal have not gone

far enough in transforming labour (and this is why he
considers socialism to be a repressed alternative to
capitalism [35]). For instance, labour time is more
difficult to measure and is less distinct from time
outside work, much of it now practised as ‘nonwork’,
outside of traditional production processes -
‘notworking’ as opposed to networking. These tendencies
can partly be recognised in relation to the computer,
in the way it has redefined social practices and
relations. Labouring practices follow this networked
pattern in which physical labour, intellectual labour
and machine labour are ever more undifferentiated.[36]
It is work itself that needs to be transformed and

made more autonomous according to Negri, not by the
reappropriation of work but by the refusal to work. This
position of refusal derives from Tronti’s essay ‘The
Strategy of Refusal’ of 1965 (1980), following the logic
that capital ‘seeks to use the worker’s antagonistic
will-to-struggle as a motor for its own development’ (in
Virno 2004: 11). Refusal is seen as an affirmation of
the worker’s creative capacities, outside of capitalist
relations of production.[37] The creative power to

use technology differently, to reappropriate it, still
rests with those who have the expertise to operate it.
Systems operators, programmers, computer scientists,
technicians, software engineers, designers, computer-
literate office workers, and software artists clearly
hold the potential to use and abuse this invention
power. This is what Negri calls ‘”invention power” -
the creative capacity on which capital depends for its
incessant innovation’ (Dyer-Witheford 1999: 71).

143

The strategy of refusal represents not a liberation
_of work, but from work. In terms of negation of
negation, what is required is to first negate capitalist
exploitation and then negate the conditions for work.
The more complex issue is how a refusal to work can be
extended to encapsulate general intellect. It is clear
that any interpretation of Marx must be adapted to

the times and the restructuring of power. Much of the
content of this chapter is recalled in this statement:
such as Deleuze and Guattari’s call for machinic agency,
and Artaud’s description of disorder, demonstrating the
potential for transformation. Although Negri argues
against the dialectic, there appears to be an agreement
that old forms and new forms of protest do need to

be brought together - for instance, both hacking and

144

sabotage. The activity of hacking, if seen alongside
other antagonist strategies that take things apart,
offers another form of praxis, suitable for contexts that
involve software. In conversation with Negri, this is
what Deleuze anticipated:

‘Computer piracy and viruses, for example, will

replace strikes and what the nineteenth century called
“sabotage” (“clogging” the machinery).’ (1990)[38]

New collective characterisations are required that
respond to general intellect, according to Matteo
Pasquinelli. For instance, he remains suspicious of the
rhetoric around free software. His concern is how the
discussion around open source and free software relates
to action in the real world. As a result, Pasquinelli
asks:

‘How can we turn the sharing of knowledge, tools and
spaces into new radical revolutionary productive
machines, beyond the inflated Free Software? This is

the challenge that once upon the time was called
reappropriation of the means of production. [...] How do
we start building these machines?’ (2005: 4)

Can we begin to imagine radical machines of disorder?

If software is considered as something produced as the
result of work and something that does work, the refusal
to work might be extended to the reinvention of software
that is dysfunctional, that refuses to function through
an intricate knowledge of its inner workings. Software
such as this would deny its potential, and represent not
a transformation of work but from work, in the sense
that Negri suggests with the paradoxical quote at the
beginning of this chapter. The further issue that this
chapter raises is whether software can be liberated from
software work. This is the challenge for software art-work.

6. *software praxis*

‘A successful work of art, according to immanent
criticism, is not one that resolves objective
contradictions in a spurious harmony, but one that
expresses the idea of harmony negatively by embodying
the contradictions, pure and uncompromised, in its
innermost structure.’ (Adorno, in Jay 1996: 179 [from
Prisms, 1967: 32])

Software both works and is worked upon. It follows
that software art holds the potential to make
apparent contradictions associated with the relations
of production, described in the previous chapter.

For instance, software can be programmed to act
disruptively, such as by the refusal to work (non-
executable code) or by working in a negative mode

or disorderly manner (dirty code), and outside the
orthodoxy of passive work (analogous to proprietary
models of clean and pure code). These possibilities
make it clear that software is not simply a functional
tool but expresses wider cultural processes and
transformative possibilities.

This final chapter returns to the central context of this
thesis in arguing for a critical practice in software
art that breaks the art historical continuum (what
Benjamin refers to as ‘dialectics at a standstill’).
Section 6.1 examines the deployment of software in

an artistic context, by concentrating on the work
involved in writing code and the work that the code then
actualises when it is executed. It argues for practices
that encourage the reader to become a writer, to become
engaged in the production process. In the spirit of past
critical practices, it suggests that software practices
can be developed that do not merely reveal the inherent
contradictions but the ways in which the apparatus
itself is subject to ‘functional transformation’. The
importance of this, as the quote by Adorno suggests, is
that contradictions are not resolved but embodied.

This way of working rejects determinism associated
with software, for something far more speculative and
‘artistic’. Section 6.2 describes this performative
dimension in more detail and relates it to the
distinction between labour, work and action. Praxis,
as action derived from theory, responds to these
coordinates of what exists and the future possibility
of its transformation. This description of praxis is
derived from dialectical thinking, which undermines
any undialectical opposition of theory and practice,
and stresses the combination of creative and critical
activity embodied in human action. These are words

of warning for the traditional form of a PhD as the
embodiment of privileged knowledge, and helps to
stress the merits of practice-based PhDs (as in the
case of this thesis when first written). Theory is made

145

146

meaningful and tested by practice, thus resists any
simplistic separation of the two concepts. Furthermore,
the phrase software praxis takes account of complex
systems, in which disorder can be seen to generate a
transformation of the system. In this way, this thesis
suggests that the operations of the programmer and
program, taken together, relate to transformative action.

A focus on coding practices, code, and the execution of
code represents the privileging of potential, expressing
‘immanence’ as something that remains within and is
ready to come into being. The final section 6.3, as the
term ‘coda’ indicates, contains some concluding remarks.
It takes the form of a series of qualifying statements
that suggest the key issues at stake but without
resolving them into a false sense of finality, in the
spirit of the dialectical approach it proposes. Taken
together, they embody what is reserred to as software praxis.

Software is a set of formal or logical instructions
written in code. Computers execute these instructions
but an emphasis on the program and the instructions
demonstrates that these are written, that they are
programmed through human intervention. In _The Art of
Programming (1981), Knuth suggests the analogy between
programming and recipes in a cookbook (1981), as a set
of instructions that are to be followed. To look at the
source code even of a meal reveals more information on
the dish to be prepared, and whether this is likely

to satisfy. The analogy is rather straightforward but
reveals something of the vested interests involved in
preparation, execution and consumption of the work. In
relation to free software, Stallman has similarly argued
the sharing of software is as old as computing, just

as the sharing of recipes is as old as cooking (1998).
The metaphor is also used by the Belgian artist group
Constant in their ‘cuisine interne keuken’ in which they
examine issues around cultural and precarious work. They
explain ‘we mean that a work, an organisation is made
of: the components (ingredients), the tools (utensils),
workplace, and work and creation processes (recipes)’
(2003: 61).[1]

A discerning consumer should engage with the preparation
and ingredients as much as with the end product - and
investigate what is going on in the kitchen or farms,

at the site of production.[2] With production in mind,
Marx once remarked that you cannot tell from the mere
taste of wheat who grew it (in Deleuze & Guattari 1990:
24). The significance of this is that the end product
gives little impression of the history of its process

of manufacture, and no indication of the relations

of production that were involved. In a similar way,
Benjamin quotes Bertolt Brecht to demonstrate the
deceptive representation of the site of production:

‘A photograph of the Krupp works or the A.E.G. tells us
next to nothing about these institutions. Actual reality
has slipped into the functional. The reification of human
relations - the factory, say - means that they are no
longer explicit. So something must in fact be built up,
something artificial, posed.’ (1992a: 255).

The surface appearance of the computer is particularly
unrevealing, and like the factory, expresses little

of the complexity of its inward operations (like
Bolognini’s installations of sealed computers mentioned
in chapter 2). Even the interface of the operating
system and other software that run on the machine hide
their workings (as the previous chapter described). The
trick of the software capitalist, then, is to hide the
content (or labour) under a deceptive form (like von
Kempelen s chess playing automaton mentioned in chapter
3), rather than to reveal the contradictions of value
and hence divisions of labour involved. This section

of the chapter outlines these concerns in as far as
they offer a political dimension to working with code,
by stressing the work involved in coding. What Alan
Sondheim calls ‘codework’ explains this as follows:
‘Every more or less traditional text is codework with
invisible residue; every computer harbours the machinic,
the ideology of capital in the construction of its
components, the oppression of underdevelopment in its
reliance on cheap labor.’ (2004)

This is something that Leonardo Solaas’s _Outsource
me! (2005), makes explicit. Solaas reverses the usual
outsourcing of programming work by seeking proposals
for him to program, and in so doing confuses the usual
power relations of a Western agency (even artist)
using cheap labour and expertise from the developing

147

world (Goriunova 2005). The work reflects the current
conditions of much software development that is
outsourced to software houses in India or the Caribbean
(Mackenzie 2005: 71). In Outsource me_, the programmer
voluntarily provides cheap labour by seeking proposals
to make software (commissioned by Readme 100 Software
Art Factory), in an ironic twist where the site of
technical production becomes a conceptual artwork, that
addresses the precarious labour relations of outsourcing.

A critical appreciation of software development requires
this simultaneous understanding of the production

of its source code and execution, to elicit fuller
technical and political detail. This has relevance for
software arts practice too, in stressing all aspects

of the work involved in making artwork to understand
the contradictions that arise from production. It is
quite common practice for examples of software art to
hide the complex interactions of processes and code
running on the computer behind the scenes, as well

as the working processes of both programming and of
programmers. Like most commercial software the source
code that the programmer works with, remains ‘closed-
off’ and inaccessible to the experience of the user.

For the most part, the software compiles the code into
an executable version that ‘locks-down’ the source to
protect proprietary interests, including intellectual
and artistic capital.[3] It is worth stating the
obvious, as David-Olivier Lartigaud does, that if a
work is not open source, how can anything other than

its execution be appreciated (2004)? Certainly the
argument can be made that an aesthetic appreciation of
code requires an appreciation of its written form _and/
or_ what it does when executed - analogous to poetry
that takes both written and spoken forms. The essay ‘The
Aesthetics of Generative Code’ (Cox, McLean & Ward 2001)
drew an analogy between poetry and code, and argued
that as appreciation of poetry may come from reading or
experiencing a live spoken performance, code’s aesthetic
value lies both in its written form and its execution.

148

That the source code might be considered an integral
part of the artwork, or even the artwork itself, remains
outside the imagination or will of the software/art
market, obsessed for the most part with property rights.
This is where software art offers an alternative view,
and is able to reveal contradictions over production,

peeling away the layers of operation and the relations
of production involved in working with code, and in code
working. An example is McLean'’s _animal.pl (2003),
software that ran continuously on a server connected to
the Internet until a server crash ended its ‘life’ (a
death notice was issued). The Perl script performed many
activities, such as publicising its existence to various
mail lists and making suggestions as to its life-like
qualities. Although relatively autonomous, _animal.pl
required a connection to the Internet to operate, and
its actions were prescribed by the programmer. The last
prescribed action animal.pl performed was to apply the
GNU Public License to itself, offering itself for others
to modify and adapt in new ways.

Such an example goes against the grain of much software
practice that displays an over-concentration on visual
aspects, as is the case with arts practice in general,
that has contributed to the neglect of more dynamic and
complex processes. For the most part, artists collude
with the ‘software culture industry’ on this issue,
leaving other potentially creative realms relatively
unexplored. In ‘There is No Software’, Kittler argues
that hardware is obscured by software, and as a result
confusion arises between the use of ‘formal and everyday
languages’. He claims: ‘We simply do not know what our
writing does’ (1996: 332). By this, he is referring

to the ways that graphical interfaces dispense with

the need for writing and hide the ‘machine’ from its
users. For Kittler, this is implemented at the level

of hardware itself, and software does not exist as a
machine-independent faculty (1996: 334).

149

Although the argument follows the concerns of the
previous chapter and the way that subjectivity is
embedded, clearly software can be hardware-independent.
Recent practices in software art, such as Socialfiction.
org’s _.walk (2003) that does not require a computer,
confirm this.[4] In this example, the decision-making
processes normally assigned to machines is interpreted
by the public and executed in the streets. It invites
active participation in the execution of algorithms

for walking, following the principles of ‘generative
psychogeography’. The implementation of the algorithms
is thus decidedly unreliable, allowing for unpredictable
and chance encounters. Levels of complexity and
conceptual ingenuity are evoked, not so much by

150

the programmer, but more so by the execution of the
program by people - unlike the ‘closed’ operations of
much contemporary software. The idea is endlessly re-
write-able in its collective distributed form and as a
collaborative developmental model of practice in the
open source tradition. Furthermore, it is an example of
software art that does not require a computer at all -
the simple technology of a pen and paper would suffice.
To refer back to Kittler’s statement, what is also
required is a person, or executant, who knows precisely
what their writing does, and can act upon it.

The approach to programming is consistent with
Benjamin’s description of what he called an ‘operative’
writer, who reflects upon his/her position within the
production process like a technician (in _The Author as
Producer_ , 1934). He refers to this as: ‘Work itself
puts in a word. And writing about work makes up part

of the skill necessary to perform it.’ (1992b: 90) His
example of this is the Russian writer Sergei Tretyakov,
who as a journalist (or ‘hack’) demonstrates a working
practice outside the established canon of literary
forms. What Benjamin has in mind is the way that
popular forms, such as the newspaper, might challenge
established separations: of academic and popular modes,
of descriptive and creative writing, of individual and
collective property, and between writer and reader:
‘For as literature gains in breadth what it loses in
depth, so the distinction between author and public,
which the bourgeois press maintains by artificial means,
is beginning to disappear in the Soviet press. The
reader is always prepared to become a writer, in the
sense of being one who describes or prescribes. As an
expert - not in any particular trade, perhaps, but
anyway an expert on the subject of the job he happens to
be in - he[sic] gains access to authorship. Work itself
puts in a word. And writing about work makes up part of
the skill necessary to perform it. Authority to write
is no longer founded in a specialist training but in

a polytechnical one, and so becomes common property.’
(1992b: 90)

This distinction between ‘the passive consumer of
the readable (lisable) classic realist text and the
active producer of meaning who accepts the challenge
of the writable (scriptable) text’ (Belsey 1992: 125)
refers back to the work of Barthes (in ‘The Death of

the Author’, 1977) - but in Benjamin the politics are
foregrounded. In the context of software art, Cramer too
draws upon Barthes’s _S/Z_ (1975) in making the same
distinction between ‘readerly’ and ‘writerly’ texts, and
applying this to operating systems (2003). Rather than
the readerly properties of a GUI operating system that
encourages consumption and hides the code, Cramer claims
the command-line operating system of Unix is writerly,
in terms of its openness and in encouraging the reader
to become a producer of code. Arising from the open
source movement and the social relations it engenders,
Unix offers this potential to provide access to the
hidden depths of code.[5] It is the ‘closest thing

to a hardware-independent standard for writing truly
portable software’ (Raymond 2004: 8). This contributes
to what Cramer considers particularly significant, in
breaking down the false distinction between the writing
and the tool with which the writing is produced. He
cites the 1998 essay by Thomas Scoville ‘The Elements

of Style: UNIX as literature’ (2003: 102) to insist on
the writerly aspects of programming (chapter 2 also
provided many examples in this vein). Also emerging from
Unix culture, the programming language Perl is eclectic
in its combining and appropriating other languages,
working against prescription: ‘It doesn’t try to tell
the programmer how to program’ (Wall 1999). Perl holds
multiple possibilities for transformation, and in using
it programmers demonstrate the potential for good
technique, in the sense that Benjamin describes in
adapting the apparatus.

The potential for transformation of the apparatus is
what Brecht calls the ‘functional transformation’ of the
‘forms and instruments of production’ (Benjamin 1992b:
93). This approach goes beyond an engagement with the
apparatus or being satisfied with finished works, but
seeks to transform the apparatus, because only in this
way might the relations of production be transformed
too. In the case of software production the position
holds relevance, in that it is not enough to simply
reveal source code, make it free or to stress its
potential aesthetic form (as was argued in the previous
chapter), but it also needs to be made available for
further transformation. Brecht’s solution was to develop
a new form of writing that foregrounded contradiction.
In Critical Practice , Catherine Belsey additionally
proposes a new form of critical writing developed along

151

152

similar lines to examine the process of production

of the text, and one that reveals the contradictions
inherent in the form of its production (1992). This
thesis follows these recommendations to argue for a
critical practice that reveals contradictions related to
the writing of software art.

A distinction needs to be emphasised in that artificial
languages differ from so-called ‘natural’ languages,
though clearly there is nothing natural about either

of them, as they are both artificial but in different
ways. Importantly, a program is not spoken as such

and it is written for two very different readers: the
computer that executes it and other programmers who

may like to understand it and revise it (Bolter 1984:
127). These linguistic differences are also what Kittler
has in mind when he points out that computer code is a
very particular kind of language. He points to a key
difference in that words of natural languages do not
generally do what they say: ‘No description of a machine
sets the machine into motion’ (1999). On the other hand,
the artificial language of computer code generally does
what it says - it executes and enacts its instructions
or description. That computer code has both a legible
state and an executable state, as Kittler puts it
(1996), or contains both readable and writeable states
at the level of language itself, is precisely the point
for Cramer in that ‘the score is not aesthetically
detached from its performance’ (2002a: 108). Once
described in terms of performance (_.walk_, for
example), some unpredictable elements are introduced,
associated with human intervention and machinic agency.
Contradictions between human and machine agency are
central to Christophe Bruno’s _Human Browser_ (2006).
Using wireless headphones, a human actor hears a text-
to-speech audio that comes directly from the Internet in
real-time, and simply speaks the words.

The important issue is how writing text or code relates
to action - a point stressed at the end of the previous
chapter. The dynamic relation between code, and the
actions that arise from it, are an indication of
historical processes taking place. Whereas conventional
software production suggests a particular kind of logic
where execution is determined by the code, software
arts practice offers the potential to introduce looser
thinking, ambiguity and contradiction. It is the

dialectical interplay between code and its execution
that concerns this thesis and what this suggests

in terms of the relation between past and future
possibilities. Whatever strategy is decided upon is
only ever part of an ongoing adaptive process, that

is ‘never perfect, always in becoming, performative’,
according to Lovink (2002: 264).[6] He describes this as
‘messy praxis’ (2002: 226) which is a good term for the
advocated approach of this thesis. Similarly, the term
software praxis continues to place emphasis on creative
human action and the contradictions that arise from this.

6.2 - software action

Code is a notation of an internal structure that

the computer is executing, expressing ideas, logic,

and decisions that operate as an extension of the
programmer’s intentions. Its written form is merely

a computer-readable notation of logic, and is a
representation of this process. Yet the written code is
not entirely what the computer executes, as there are
many levels of interpreting and compiling and linking
taking place. Code is only really understandable within
the context of its overall structure and the many
processes that are running. In technical terms, the
processor is obeying the instructions given to it and
generating activity as part of a continuing performance.
Many of the components are predetermined, but through
the multiple interactions, combined with the dynamism
and unpredictability of live action, the result is far
from determined.[7] In the example _feedback.pl (2004)
by McLean, a text editor is editing a piece of code that
has the ability to modify itself when executed (see

Cox at al 2004). These modifications happen directly

to the code being edited in real-time, opening up the
possibility for the code to fundamentally modify its
own behaviour. Of course, this has major implications
upon the act of programming and allows the programmer to
edit code whilst it is being executed, and to respond
to the live situation. The programmer is required to
consider the code’s initial logic, as well as be able
to follow the code’s logic after it has modified itself.
The suggestion is that this is an example of software
art that contains both theory (of its own agenda) and
practice (of its own action).

153

154

In ‘On Code and Codework’, Sondheim clarifies the
distinction made in the previous section between
‘declarative and performative’ codes (2005). His
example of a declarative code is something like Morse
code, where one thing is equivalent to another in a

way that would be useful for encryption. When it runs
it does what it says. In contrast, an example of a
performative code is Perl. Sondheim explains how Perl
codes procedure and thus works on a more semantic level
of understanding. He draws upon Umberto Eco’s semiotics,
in which the possibility of code is extended from rules
to ‘a set of possible behavioral responses ' which
places Perl in the realm of performance, according to
Sondheim (2005). In the area of software arts practice,
programmers make music in keeping with the expressive
qualities of live performance, by using interpreted
scripting languages (such as Perl) and coding in real-
time using the command line interface, with the source
code on public display as much as possible. For example,
in the performances of slub (aka McLean and Ward), the
intention is to open up what would otherwise seem to

be determinate processes of how music is generated.
Human intervention is foregrounded, and glitches become
part of the creative output.[8] Any resulting sense of
improvisation relies on a predictive understanding of
complex processes or virtuosity, and an opening up to
the transformative potential of code. Unlike a score
that is followed but interpreted, a computer generally
follows the instructions without interpretation. The
intervention of the programmer allows for a less
deterministic approach and an openness to other
transformative possibilities, such as the possible and
often unpredictable actions that result when a program
runs, including mistakes. The program performs the music as
much as the programmer, relaying instructions and acting
upon them. But in the case of live coding performances,
human agency is foregrounded.

An even more extreme example would be JODI’s recent live
performance Desktop Improvisations_ (2004), a reworking
of their earlier work My%Desktop (2002). They exploit
the limited potential of supplied and prescriptive software
in a formal performance setting with seated audience,
using the obnoxious alert sounds supplied with a standard
Macintosh operating system, using key commands to create
mayhem with repetitive mouse clicking. In a sense, it
operates like a ‘hack’ of both live coding and live

music, that uses programming panache and improvisation
as creative method. In this example by JODI, as with
much of their work in general, a computer crash simply
adds to the potential drama and an overall aesthetics of
error. For instance, and as a response to the inevitable
concessions of exhibiting at such a mainstream event

as Documenta X, JODI simply produced a link that on
clicking made the visitor’s machine crash. In these
examples, the performance of the programmer and program
challenge the way an operating system interpellates the
user, and subjects the relations to systematic abuse.

It is this performative aspect that lies hidden behind
the surface of the software that this section aims to
stress, in terms of its potentiality for action. This
issue is evident in Arns’s ‘Read_Me, Run_Me, Execute Me’
essay. The subtitle ‘Software Art and its Discontents’
(2004) suggests that the performative dimension lies
repressed in relation to code (by making reference to
Freud’s ‘Civilisation and its Discontents’). Using this
analogy, a programming language such as Perl might offer
therapeutic assistance in putting the programmer in
touch with his/her, and indeed culture’s, sublimated
desires - that which is repressed under capitalism, as
the previous chapter indicated. That freedom of speech
relates to relatively unrepressed free software, may

be one of the analogies that lead Arns to discuss the
performative dimension of software, through its relation
to speech act theory. She is making particular reference
to John Langshaw Austin’s How To Do Things With Words
(1962), to express: ‘that language does not only have

a descriptive, referential or constative function, but
also possesses a performative dimension’ (2004: 185).

The performative aspect of speech is evidently social
and context-bound, broadly differentiated in linguistic
studies as the distinction between syntactic and
semantic realms - emphasising the performance (or
‘parole’) that is generated from the rules (‘langue’).
Software art is concerned with both, but places

emphasis on the performative aspect. Using Ferdinand

de Saussure’s terms, software art is more concerned
with ‘parole’ than ‘langue’ - more social and semantic
concerns than structural or systemic ones. In semiotics,
the abstract system (langue/competence) generates the
concrete event (parole/performance). Arns sees speech as
analogous to program code in that it says something and
does something with consequences (2004: 186). Indeed, words

155

determine actions and events, and there is something
fundamentally performative in this.[9] An effective
speech demonstrates the potential to incite action.

Also referring to Austin’s _How To Do Things With Words_,
Virno says: ‘In the assertion “I speak,” I do something
by saying these words; moreover, I declare what it is
that I do while I do it.’ (2004: 90) Virno’s interest in
speech emanates from how work is now increasingly bound
to speaking and the use of communications technologies.
[10] A software program is particularly articulate in
this sense, as it both says something and acts upon the
instruction in an efficient way. It is this sense of
action that software art might exploit, by challenging
the expectations of the workplace.

The emphasis on action in itself makes a distinction
from the term work or labour. This distinction is what
Hannah Arendt identifies in her essay ‘Labor, Work,
Action’ (from a lecture of 1964). She identifies how
labour (poiesis) and action (praxis) tend to be under-
acknowledged in relation to work (2000). Labour is where
production and consumption are part of the same process,
like activities needed to sustain life itself. Human
labour is embedded in work only in as much as it is
required to generate an income. Even in Marx’s writings,
she maintains, labour is tied too firmly to work at the
expense of action.[l1l] Arendt’s point is that in any of
the differentiations that are attempted, action simply
cannot be avoided. For instance, this is the case in her
distinction between contemplation and action (what she
refers to as ‘vita contemplativa’ and ‘vita activa’),
from which she concludes that active life simply cannot
be avoided (2000: 167). She explains that rather than
think that all action ends in contemplation or that
contemplation leads to action, it is not possible to go
through life without acting in it, whereas contemplation
is optional. Put differently, unlike praxis, theory alone
cannot transform society.

156

Drawing upon the earlier distinction, the work involved
in making software involves a labouring component,

even if it is offered for free as in free software.

Also software works in itself, although this cannot

be considered labour unless tied to the labour of the
programmer. This would be an interesting line of inquiry
to explore and a complex one, but the important issue

here is how the work of art and software art undermine
the established distinctions, and do not fit what Arendt
describes as the ‘means-end’ chain (2000: 177). The work
of art breaks out of this chain by not being ‘useful’
and thereby resisting commodification. Although the
assumption might be made that software is generally
useful, unlike the work of art, the work of software art
is more ambiguous in this connection. In fact, much of
software art is trying to break out of the commercial
imperative to be useful, but also offers the potential to
be useful in other directions, such as in the case of
social or critical software, to use Fuller’s categories
(from chapter 2). That it evokes contradictions in

this respect, is part of its attraction for critical
practice.

For Arendt, human action or praxis lies in this realm
of uncertainty, as something that cannot be fully
known but that is crucially bound up with the principle
of freedom.[12] Making reference to Arendt’s essay
forty years later, Virno confirms that the once
unquestionable separation of labour (or poiesis),
action (or praxis) and intellect has since dissolved.
[13] Whereas Arendt argues that politics imitates
labour, he thinks the opposite, where labour imitates
politics, or indeed, that poiesis has taken on the
appearance of praxis (2004: 50-1). That labour takes
on the form of political action, or more to the point
has depoliticised action, explains what Virno refers to
as the current ‘crisis of politics, the sense of scorn
surrounding political praxis today, the disrepute into
which action has fallen’ (2004: 51). He thinks that
the purpose of any activity is increasingly found in
the activity itself. Quoting Aristotle, Virno further
explains the point: ‘For while making has an end other
than itself, action cannot; for good reason itself is
its end.’ (2004: 52)

The importance of action is stressed in this statement,
in that it breaks the ‘means-end’ chain. Virno

chooses to explore this idea through a discussion

of ‘virtuosity’ by looking at the special attributes

of the performing artist. Here again, he is drawing

upon Arendt’s observation that the performing arts

have a strong affinity to politics. A performance is
characterised by its lack of an end product, or at least
a product that is indistinguishable from the performance

157

itself (2004: 52). Furthermore, it operates in real-
time and has its own sense of purpose or fulfilment, in
parallel to the way that a computer program undermines
the distinction between its function as a score and its
performance (described in the previous section).

It would appear that many of the attributes associated
with virtuosity could be applied to programmers. For
example, a hacker is someone who performs a ‘hack’:
‘To qualify as a hack, the feat must be imbued with
innovation, style and technical virtuousity.’ (Levy
1994: 23, in Wark 2004) The programmer is required to
apply their technical and cultural agility. Referring
back to Benjamin, this alliance between cultural and
technical skill is necessary to ‘transform him[/her],
from a supplier of the production apparatus, into an
engineer who sees his task in adapting that apparatus’
(1992b: 102). He is making an important distinction
between theory and activism, and that it is simply not
enough to have political commitment in itself. This
emphasises Benjamin’s view that ‘technical progress is,
for the author as producer, the basis of his political
progress [sic].’ (1992b: 95). What Benjamin defines as
a producer is applicable to the figure of the artist-
programmer involved in the production of software. It
further relates to performance through the example of
Brecht, who according to Benjamin, ‘opposes the dramatic
laboratory to the finished work of art’ (1992b: 100).

158

The Internet suggests itself as a potential ‘dramatic
laboratory’.[14] Both politics and the performance
require a ‘publicly organized space’, as does labour
under post-Fordism (Virno 2004: 55). Virno also links
this sense of vituousity to speech, as a phenomenon that
has purpose in itself, does not produce an end product
independent of the act of speech, and operates in a
publicly organised space (again, the link between free
speech and free software as an ongoing performance of
shared score is evoked). He continues: ‘It is enough
to say, for now, that contemporary production becomes
“virtuosic” (and thus political) precisely because it
includes within itself linguistic experience as such.’
(2004: 56)

The etymological root of the word program emphasises
the material production of code as something before
the act. In Greek ‘programma’ is ‘what is in advance

written’ - a set of instructions to be executed that are
fixed beforehand. The artist-programmer Antoine Schmitt
calls the program ‘prepared’ in this sense (2003).

This is a useful intervention, as ‘programming’ can
thereby be understood as a set of utterances describing
a forthcoming action or a set of operations to be
implemented in order to get a result, further evoking
speech or performance. Art that is programmed holds a
close connection with any action that is conceived in
advance of its execution, and clues to this are to be
found in the source code. The question for Virno is:
‘what is the score which the virtuosos-workers perform?
What is the script of their linguistic-communicative _
performances_?’ (2004: 63). Added to this: what is the
source code? Following Virno, the score and the source
code is ‘general intellect’, as the ‘know-how on which
social productivity relies’, as an ‘attribute of living
labour’ (2004: 64-5). This know-how refers to the ways
in which workers learn skills but also the rules of
social behaviour by which labour-power is reproduced
(and that maintain class divisions). The issue is
whether this know-how is to be used for social good or
not, as suggested in the previous chapter. The script,
score and source code is by no means determined and does
not have an end product in sight. It is in contrast:
‘virtuosity without a script, or rather, based on the
premise of a script that coincides with pure and simple
dynamis, with pure and simple potential’ (2004: 66).

Potential is that which is not yet present. That action
might operate without a script, as a way out of the means-
end chain, is in marked contrast to Adorno’s comments
regarding music as a by-product of a score. Adorno’s essay
‘On the Fetish Character in Music and the Regression of
Listening’ (1991: 29-61) suggests that the score is the
work of art and that the listener reassembles the score
internally. He explains that:

‘... the essential function of conformist performance

is no longer the performance of the “pure” work but the
presentation of the vulgarized one with a gesture which
emphatically but impotently tries to hold the vulgarization
at a distance. [...] Vulgarization and enchantment, hostile
sisters, dwell together in the arrangements which have
colonized large areas of music.’ (1991: 36)

To Adorno, the score is partly a purer form, more
closely associated with production that affirms use

159

160

value, rather than the exchange value of the performance
itself. In the former, the listener is encouraged to
become a producer by executing the score, and in the
latter, a consumer of the commodity form of music. In
this sense, use-value is also reinstated over exchange-
value. Related to this, the performative aspect of
working without a score but working with source code to
avoid the end-product is evident in live coding, as well
as other practices that privilege source code.

The technical performance of the code object is
characterised in this way by Adrian Mackenzie, in

his essay ‘The Performativity of Code’ (2005). He is
making reference to the Linux kernal both in terms of
technical description of performance but also cultural
ones, typified by Scott Lash’s description of power as
performative (2005: 6); expressed through information
and communications networks. The performative element
is that which goes beyond reference and description.
For instance, Radioqualia’s _Free Radio Linux_ (2001)
is a performance in this sense. The source code of

the Linux kernal (the core component of the GNU/Linux
operating system) was webcast over the Internet, using
a speech synthesizer to convert the 4,141,432 lines

of code into talk radio. It was broadcast like other
speech materials and presented as displaying aesthetic
value (in a similar way to Linux’s prize at Ars
Electronica mentioned earlier). To Mackenzie, Linux is
a performative ‘speech act’ that produces an uncertain
relation between the code object (the Linux kernal) and
the code subject (the programmers), and thus challenges
its property relations and corporate relations of
production (2005: 13) - demonstrating collective social
action.

For Virno, this potential of utilising general intellect
for political action is something necessary. He proposes
two strategies of civil disobedience and ‘exit’ or
defection in opposition to servility, both evoking
disorder and the transformative potential of the script,
score, coda - and indeed source code. In order to resist
commodification, positive potential must remain without
end product, remain in the public realm, and remain
performative. A dialectical approach can accommodate
this by its rejection of determinism, following an open-
ended process that reflects the structures it aims to
transform. This is the critical task for software art

praxis, to remain in a continual state of becoming,
where contradictions remain active.

6.3 - coda

That multiple layers of meaning are possible in every
part of a text, presents difficulties for someone trying
to assemble a linear argument and offer a conclusion.
What has been said in support of this thesis has been
said, but in the interests of clarity it will finish
with three qualifying statements (corresponding to the
arguments in chapters 3, 4 and 5).[15] These are not
intended as definitive statements but ideas for further
development, as part of an ongoing dialectical process.

thesis 1:
Software art demonstrates emergent potential

The argument for a dialectics of software art runs in
parallel to the way in which source code is ready for
action. A program, like any programme of action, is
conceived in advance of its execution, and holds the
potential to act even when not executed. Similarly,
there may be a delay between what is known and what is
acted upon, where practice leads to the development

of theory (which in turn leads to the development of
practice) and so on. The dialectical process generates
what is already implicit, though not explicitly
articulated. The critical task for software art lies in
releasing transformative potential in this way.

By analogy, software expresses the dynamic and emergent
action between what exists and what is possible. A
historical materialist approach to software describes

a process where construction and execution remain in
dialectical tension. The process remains incomplete to
avoid critical stagnation, and one in which an open
model is maintained over attempts to close it down.
This clearly applies to open source code, as it does to
the impulse to act in the world. The link to emergence
confirms the conceptualisation of change, as something
that expresses an immanent dynamic - or ‘transformative
praxis’ - both as a condition and consequence of human

agency, that generates new possibilities of change to the

system. In terms of the production of software art, the

161

162

programmer and the program can exploit this potential.

thesis 2:
*Through disorder, software art generates transformative
action#*

Both dialectics and systems thinking share an interest
in dynamic processes and interactions, emphasising that
relatively small input can have massive consequences.
They also confirm that systems are not closed but open to
influence and change from external and internal factors,
releasing the potential for transformative agency. In
systems dialectics, negation is recast in terms of disorder,
in such a way that new order can be seen to be generated
through disorder, as an ongoing process of more extensive and
penetrating inquiry. Further development is generated at
the ‘bifurcation point’, or point of antagonism, causing
an unforeseeable change to the existing system.

As a consequence of machinic agency, tactics associated
with negation and the refusal to work are extended

to the desire for machines to break down and become
disorderly. The refusal to work follows in a critical
tradition that rejects the logic of the system and
order it is part of. It is an antagonistic strategy
that affirms the potential creativity and virtuosity

of the programmer and program, and self-determination
or autonomy over work. In this way, software art-work
rejects itself as work and affirms its potential for
transformative action. The importance of this lies in
the recognition of the relationship between action and
counteraction in the development of systems in general.
Software art can be disruptive of the normative contexts
in which it operates, and offer alternative concepts and
actions.

thesis 3:
*Software art embodies inherent contradictions leading
to software praxis*

The contemporary description of power as an adaptive
system does not reject but extends the emphasis on the
mode of production as the site of antagonism. Whereas
once labour represented the privileged site of struggle
in dialectical thinking, it now takes on a more open
character. The openness is in recognition of more and
more complex and disorganised interactions between

people and machines, and hence in the relations of
production that arise from these interactions. Any
critique of the labour involved in making art must
therefore recognise the ways in which labour has become
more immaterial, collective and communicative.

Clearly any interpretation must be adapted to the
times and so too with the dialectical method. This
thesis contends that dialectics needs to be adapted to
take account of the reconceptualisation of work and
the complex ways in which human and/or machine social
relations are expressed. One of the major objections
to dialectics has been its inadequacy to deal with
‘immanence’ as an emergent and radical force. On the
contrary, dialectics continues to be a useful critical
framework to describe systems that appear to contain
the same logic: combining a technical description of a
system and a suitable critical method for its analysis.
A dialectical methodology engages with informational
dynamics, whilst at the same time recognising that
culture and criticism are themselves dynamic processes.
A dialectics of software art requires a critical and a
practical understanding of both art and software.

A critical arts practice sounds like a contradiction in
terms, in these post-political times. The once radical
potential of conceptual or performance arts practice
reveals how even an arts practice that strives to reject
commodification is in turn recuperated. Software art can
be seen to demonstrate radical enquiry and speculation,
but on condition that it continues to transform itself
as part of an ongoing dialectical process of seeking
more critical depth. An open view of dialectics, that
takes into account complex systems, allows for an
ongoing chain of contradiction which is inherent but not
yet present. It is the assertion of this thesis that the
critical strategy of contradiction needs to be retained
at all times, and that software art practice can offer
new critical forms by embodying contradictions in the
interplay between code and action.

Contradiction is also embodied in the form this thesis
takes, as a theoretical work which takes account

of practice. Its writing, like code, lies at this
intersection of code and action as software praxis.
This thesis follows the conventions of critical writing
but at the same time is a Perl script that can be

163

164

executed by typing ‘perl’ and the name of the file in the
Unix command line. In this sense, it could only ever
represent a work in progress, as something to be argued
against, further adapted, and acted upon. It is both a
thesis in itself and ready to express its dialectical
potential by forming an antiTHESIS

use Net::FTP;

local $/;

open SOURCE, “<$0";
$source = <SOURCE>;

close SOURCE;

$beginning = index($source, ‘antiTHESIS’) + 13;

Send = index($source, ‘antiTHESIS’, S$beginning + 1) - 1;
Sbytel = $beginning + rand($end - S$beginning);
$byte2 = $beginning + rand($end - $beginning);

(substr($source, $bytel, 1), substr($source, $byte2, 1)) =
(substr($source, $byte2, 1), substr($source, $bytel, 1));

open SOURCE, “>$0";
print SOURCE $source;
close SOURCE;

if ($source !~ /disorder can lead to a new sense of order/) {
$ftp = Net::FTP->new(“thesis.anti-thesis.net”);
$ftp -> login(“antithesis”, “sisehtitna”);
$ftp -> cwd(“Sites”);
$ftp -> put($0);
$ftp -> quit;

7. *references*

CHAPTER 1:

[1] This is a reference to Kittler'’s ‘There is no Software’
(1996) in which he apologises for his use of proprietary
software and hardware to produce a ‘critical’ text.

[2] ‘Perl’ is an acronym for ‘Practical Extraction and
Report Language’, a high-level programming language,
first developed for Unix by Larry Wall in 1987, and
developed as an open source project. Perl programs are
usually called ‘Perl scripts’ and are particularly
useful for mixed-language script programming. ‘Unix’ is
a trademark of The Open Group, but in general refers
to any operating system that is either genetically
descended from Bell Labs’s ancestral Unix code
(developed by Dennis Ritchie and Ken Thompson in 1969)
or written in close imitation of its descendants
(Raymond 2004: xxix). A longer description of Perl
(written with Adrian Ward, and published as part of
Software Studies edited by Matthew Fuller) is
available online (http://www.softwarestudies.org/).

[3] To execute the Perl script, please type the
following into a Unix command line shell.

To run it once, type:

perl antiTHESIS.txt

To run repeatedly, type:

perl -e ‘while(1l){do “antiTHESIS.txt”}’

To run it 60,000 times, type:

perl -e ‘for(1..60000){do “antiTHESIS.txt”}’

The perl script has been written with the help of Adrian
Ward.

[4] When the text reaches a critical point of disorder,
it will be published at:
http://thesis.anti-thesis.net/~antithesis/

Any subsequent published version of the text will be
licensed under the Libre Commons Res Communes License
(http://www.libresociety.org/library/libre.pl/Libre

167

168

Commons) to express a cultural politics outside of the
legal apparatus. It thereby rejects the recommended
copyright statement for PhD submission. The program
itself is distributed as free software, meaning you can
redistribute it and/or modify it under the same terms as
Perl itself (http://www.perl.com/perl/misc/Artistic.html).

[5] The use of the term ‘anticonstraint’ makes reference
to the OuLiPo (Ouvroir de Littérature Potentielle) group
that is discussed in more detail in chapter 2.

CHAPTER 2:

[1] However, many relevant histories of media arts exist,
for instance: Paul (2003a), Rush (1999), Schwarz (1997),
to name a few recent anthologies. Paul’s _Digital Art_
refers to software art as a category in itself (2003a:
124-5). Stephen Wilson’s Information Arts_ (2002) offers
an alternative category, one that applies information
theory to arts practice, but this also remains far too
broad a description for the purpose of this thesis.

[2] _Generator was curated by myself and Tom Trevor.
See http://www.generative.net/generator/ for more detailed
information on this exhibition and http://www.anti-thesis.
net/ for other documentation. Since, there have been a
number of shows that take a historical perspective on
software art: _Abstraction Now_ at the Kiinsterhaus Wien
in 2003 and White Noise at the Australian Centre for
the Moving Image in 2005 are two examples.

[3] The issue of autonomy in critical theory will be
referred to in more detail later in this thesis, making
reference to the work of Autonomia in particular.

[4] Generative art was also practised among others by
Eduardo McEntyre and Miguel Angel Vidal (1928-) in
Argentina, according to Osbourne (1988). Max Bense'’s
theory of ‘generative aesthetics’ (1971) which drew
together Charles S. Pierce’s semiotics with Claude
Shannon’s information theory, is another reference in
this connection.

[5] This is sometimes called ‘Cartesian linguistics’ to
describe the separation of inner consciousness and the
outside social world. Perhaps this is what Galanter means
when he states that generative art is not ideological.

[6] A concern with grammar has been particularly
influential in generative music and composition, such

as in the generative music of Brian Eno (using Sseyo’s
Koan software), and in key texts such as Lerdahl and
Jackendoff’s _A Generative Theory of Tonal Music_ (1983)
that combines the formal methodology and psychological
concerns of Chomskian linguistics with Schenkerian music
theory.

[7] Bourdieu’s concept of ‘habitus’ has relevance in
this connection. It might be compared to Chomsky’s
generative grammar to emphasise the creative and

active capacities of human agents but without the
associated difficulties in Chomsky of the universal

mind. Habitus accounts for the ways in which agents can
act in specific ways without simply being bound by or
following rules. It is more a set of ‘dispositions’ that
generate practices and perceptions through ‘structured
structures’, almost as if by second nature. A good
example is language, and the ways in which certain forms
of language bind people together in groups. Thus habitus
is the ‘principle that regulates the act’ (Bourdieu, in
Jenks 1993: 14). One might extend this to include the
use of programming languages and the social formations
they elicit. The important point is that agents,
knowingly or not, generate practices in this way, and
they do so within a broader set of social relations.

169

[8] The ‘clinamen’ refers to the swerving of atoms in
Epicurean atomic theory.

[9] Calvino’s title was plagarised for the subtitle of
the essay ‘how I wrote one of my perl scripts’ (Cox,
McLean & Ward 2001).

[10] This evokes what Manovich refers to as the ‘Flash
generation’. However, his is a very general position
emphasised by the loose statement that: ‘Programming
liberates art from being secondary to commercial media’
(2002). This is what Wright is addressing, and more
detail is required to make clearer the distinctions
over proprietary issues and social relations engaged to
uphold this view.

[11] Brown represents an older generation of artists
associated with this field and has been involved in the
research project Cache (from 2002), aiming to ‘recover

170

computer arts history’ (http://www.bbk.ac.uk/hosted/
cache/). Gere’'s forthcoming edited collection White
Heat, Cold Logic_, draws on this research.

[12] To clarify the terms: syntax is conventionally
defined as the arrangement of words and phrases to create
sentences, a set of rules for the analysis of this, and
the structure of a statement in a computer language.
Semantics is the branch of linguistics and logic
concerned with meaning.

[13] Williams, in Keywords (1988) stresses the term
culture’s complex historical development and the ways
in which it has become important in several distinct
intellectual disciplines, and in several seemingly
competing systems of thought.

[14] This was further developed by Eco into a parody
for generating movie scripts in 1972, preempting the
commercial software Plots Unlimited_ (1994) that
exemplifies the standardisation of form in contemporary
movie-making (in Cramer 2005: 81).

[15] The ‘death’ was intended to shift emphasis onto

the words on the page, or the nature of the surrounding
language and discourse - and away from associated myths
of originality and genius, what Barthes refers to as
‘the “message” of the Author-God’ (1977: 146). The death
of the programmer would be welcome in the sense that the
programmer or software artist is often associated with
myths of originality and genius.

[16] This is further explained in response to Foucault’s
question ‘Who is speaking?’ from ‘What is an Author?’
(1991): ‘Mallarmé replies... the word itself... in a
pure ceremony of the Book in which the discourse would
compose itself’ (in Burke 1992: 9). There is a pressing
need to examine new demarcations, and the functions
released by the alleged disappearance of the author.

[17] Hayles’s book follows a format partly
autobiographical and composed in close collaboration
with a graphic designer. The results are mannered and
awkward but the point is clearly made. The materiality
of text or code is further verified by the property
rights exerted on it - intellectual property would
even cast (tangible) ideas as material objects in this

respect (and this is an important issue that will be
returned to in chapter 5).

[18] A ‘Quine’ is named in honour of Willard Van Orman
Quine, an influential mathematician and philosopher who
died in 2000. See Gary P. Thompson’s ‘The Quine Page’
(http://www.nyx.net/%$7Egthompso/quine.htm).

[19] Recent attention to Greenberg’s work has tended to
concentrate on this formalist position and what he calls
the ‘irreducible essence’ of pictorial art, in his 1965
essay ‘Modernist Painting’ (1992). Drawing upon Kant'’s
idea of ‘self-definition’, he stresses the flatness of

the picture plane as a distinguishing characteristic

of Modernist painting - even Jackson Pollock’s work
demonstrates a tension inherent in the constructed
flatness of the surface, acccording to Greenberg. In many
accounts, his work on abstract expressionism implies

an endorsement of neo-liberal ideology and American
individualism.

[20] Elsewhere this is sometimes called ‘code slang’
and more generally ‘code narrativity’. Clearly it is
possible to imagine a ‘creole’ consisting of natural
language and code such as Mez'’s work (a creole is a new
language - not an amalgam like ‘pidgin’ - formed where
two existing languages come into contact. A further
example would be Antiorp/Netochka Nezvanova's semi-
legible creoles, in which meaning and authorship are
held in question.

171

[21] ‘Laying bare the device’ is a phrase associated
more precisely with Victor Shklovsky’s study of Laurence
Sterne’s _Tristram Shandy (of 1759).

[22] In a similar way, Wark’s The Hacker Manifesto
requires that hackers take control and seek autonomy
over what they produce, to identify their interests as a
class in order to serve society as a whole, and strike
alliances with other workers (2004).

[23] This was a project by myself, Tim Brennan

and Adrian Ward, exhibited online and as part of
exhibitions: Manifest: Library (1999) as part of HUB,
Bishopsgate Goodsyard, London (commissioned by Cityside
& University of East London); and as part of A Timely
Place, or, Getting Back to Somewhere , London Print

172

Studio (2000). The paper ‘Manifest: Reframing False
Consciousness’ was presented as part of Consciousness
Reframed , University College Newport, Wales, & _
Phenomenology conference, University College, Cork,
Eire (both 2000). The User’s guide is called _Manifest_,
published by Working Press 1999.

[24] It is tempting to playfully claim that ‘software
art has no history’ - making reference to John Roberts’s
_Art has no History! (1994) examining the ideological
construction of art history. This in turn is a reference
to Althusser’s statement that ‘Ideology has no History’
(1997), that referred to Marx’s _The German Ideology_
(1978 [1845/6]) in which he proposes that ideology has
no history, ‘since its history is outside it, where

the only existing history is, the history of concrete
individuals’ (in Althusser 1997: 121). The idea that
ideology has no history is thereby a negative thesis

to indicate that ideology is pure illusion produced

by those in power, but also its sense of history is a
mere reflection of ‘real history’ - it has ‘no history

of its own’ (1997: 122). If the same can be said of art
history, can the same be said of software art history,
to reveal that the power relations that it expresses are
illusory in the same way?

[25] Use-value is something Saul Albert discusses in his
essay ‘Useless Utilities’ (2002), opposing the romantic
notion that defines art in terms of its lack of utility.
In a worse case scenario Albert suggests that ‘art for
art’s sake has been replaced by the idea of art for
technology’s sake’ with software simply reduced to the
role of tool (2002).

[26] There are key examples in a history of art and
technology that might be mentioned in this connection,
such as the ‘sci-art’ work of Leonardo da Vinci and the
‘experiments in art and technology’ (EAT) involving the
engineer Billy Kliiver working with John Cage and Robert
Rauschenberg amongst others. Of particular interest is
Kliiver’s collaboration with Rauschenberg 9 Evenings:
Theatre and Engineering (1960), which incorporated new
technology developed by 10 artists, working with more
than 30 Bell Labs engineers.

[27] This is the position taken by Habermas in
‘Modernity - An Incomplete Project’ (1991 [1980])

opposing emergent notions of post-modernity and post-
history at that time. Modernity describes a transition
state between the old and the new. New technology stands
as an exemplar for the wanton post-modern consumerist
condition of newness never being allowed to settle in
the present - a paradoxical combination of an obsession
with nostalgia and at the same time with the idea of
almost instantaneous obsolescence.

[28] It should be mentioned that the ‘Manifesto of the
Futurists’ is often cast as proto-fascist. Elsewhere,
Benjamin adds that the Futurist obsession with the
aesthetics of politics rather than the politics of
aesthetics can lead only to one thing: war. And this

is precisely what happened, in an appropriate ironic
twist, where the leading figures of futurism were killed
by the very machines they valorised. Benjamin makes a
dialectical opposition of the aesthetics of politics and
the politics of aesthetics: ‘This is the situation of
politics which Fascism is rendering aesthetic. Communism
responds by politicizing art.’ (1999b: 235)

[29] Pedagogy considered as an art form is exemplified

by the issues of communication and distribution that
conceptual art posed. Joseph Beuys coined the term
‘social sculpture’ with this in mind: ‘To be a teacher
is my greatest work of art. The rest is waste product, a
demonstration[...]. Objects aren’t very important to me
any more[...]. I am trying to reaffirm the concept of art
and creativity in the face of Marxist doctrine[...]. For
me the formation of the thought is already sculpture.’
(in Lippard 1997: xvii)

[30] In this context, ‘connectionism’ stands for ‘order-
emerging-out-of massive-connections’, an approach to
artificial intelligence that later became known as neural
networks (Kelly 2003: 360-1).

[31] A further link can be drawn to the Planetary
Collegium (http://www.planetary-collegium.net/) of which
Ascott is Director, and the research context from which
this submission for PhD derives.

[32] It should be said that the _Software_ show builds
upon a range of other influences, such as _The Machine
as Seen at the End of the Mechanical Age at the Museum
of Modern Art (1968), and Art by Telephone at the

173

174

Museum of Contemporary Art in Chicago (1969), as well as
_Cybernetic Serendipity at the ICA in London (1968).

[33] This quote could easily have been taken from Wark'’s
The Hacker Manifesto that also argues for a politics
based on an engagement with property that has shifted
from land, to industrial production, to information
(2004). The Radical Software Jjournal’s current
availability on the Internet as free PDF downloads

is therefore thoroughly in keeping with the ethos of
open content publishing initiatives (from http://www.
radicalsoftware.org).

[34] Another key reference is Burnham’s ‘Systems
Esthetics’ (1968b) that informs his _Beyond Modern
Sculpture . Gere'’s essay ‘Jack Burnham and the Work

of Art in the Age of Real Time Systems’ (as the title
suggests) makes the following claim: ‘that Burnham is to
art in the age of real time systems what Walter Benjamin
was to art in the age of its mechanical reproducibility’
(2005: 149).

[35] It was the Fluxus artist Henry Flynt who allegedly
coined the term ‘concept art’. Other influences include
Alan Kaprow'’s ‘happenings’, as well as concrete poetry,
mail art, performances, body and street works.

[36] This is a statement from 1967. For the _
Generator show, which used the quote in publicity,
LeWitt presented a ‘serial variation’ (or algorithm)
using found postcards of Chicago in which they become
increasingly layered.

[37] Somewhat similar in spirit, but with added irony,
is Cornelia Sollfrank’s statement on her web site, made
with reference to her net.art generators: ‘A smart
artist makes the machine do the work!’

[38] Kluitenberg writes: ‘In this paradoxical
environment [of the Internet], dominant discourses of
social, political and economic power can be challenged
at the level of the representational systems they
employ. The classical avant-gardes provide a repository
of ideas, tactics and strategies that are now played out
in a radically enlarged context; no longer the context
of art itself, but that of the network society.’ (2002)

[39] This is perhaps a reference to Tristan Tzara's
statement of 1918: ‘There is a great negative work

of destruction to be accomplished.’ (in Harrison &
Wood 1998: 252) This further relates to the ‘negative
dialectics’ of Adorno that will be introduced in the
following chapter.

[40] For instance, see the project _Gustav Metzger is My
Dad_ (1998) that Camerawork organised on the occasion of
its funding cut, where much of the paperwork associated
with funding was shredded (http://www.anti-thesis.net/
projects/shredding/images.html). In parallel, a digital
version shredded the html of web pages (http://www.anti-
thesis.net/projects/shredding/source.txt). I was co-
producer of these works.

[41] The source code of _biennale.py_ is available in
spoken form (http://www.epidemiC.ws/love.mp3). That a
virus might be regarded as a work of art has a history
too. Citing Baumgdrtel, Cramer describes the work of
Artemus Barnoz, in 1988, secretly installing a systems
extension that produced a new age peace message on every
system startup (in Nori 2002: 76).

[42] It reads: ‘:(){ :
defines a function named
function is called ‘{:

& };:}’. To explain, “:()’
‘:’, run a copy of itself if the
:&};’, execute the function ‘:’.

[43] The false declaration of love is a particularly
cruel one in a world that lacks love. The analogy of the
virus is not without its problems of description either.
Fuller makes reference to the work of David Wojnarowicz
who died of an AIDS related illness in 1992, and his
realisation that he’d not only contracted a virus but
also the realisation that society was diseased (2004:
28).

[44] That new media looks ostensibly like old media is a
similar observation to Jay Bolter and Richard Grusin’s
idea of ‘remediation’ (1999) to describe the ways in
which media are recycled into other media.

[45] Allegory is explained: ‘It has two important
technical properties: the anti-symbolist ability to
disrupt aesthetic illusions of the real, and the forcing
together, through montage or image pile-ups, realms

that are seemingly discrete, but actually connected.

175

[...] Allegory is a technical means to retransmit
discontinuity, fragmentation and a catastrophic
structure of history.’ (Leslie 2000: 199).

[46] The description of _The Bank of Time is taken from
the Runme feature that I previously wrote in 2004
(http://runme.org/project/+BoT/).

[47] Reflecting on his Passagen-Werk (what elsewhere
he called the ‘Dialectical Fairyland’, in Tiedemann
1999: 932), Benjamin further explains his method: ‘That
is, to assemble large-scale constructions out of the
smallest and most precisely cut components. Indeed,

to discover in the analysis of the small individual
moment the crystal of the total event. And, therefore,
to break with vulgar historical naturalism. To grasp
the construction of history as such.’ (1999a: 461) More
detail on this is included in chapter 3.

CHAPTER 3:

[1] The Klee painting was bought by Benjamin in 1921.
176 [2] Leslie’s translation differs from the commonly
distributed Harry Zohn translation (Benjamin 1999c:
249). It also prefigures Marshall McLuhan’s statement
that: ‘We look at the present through a rear-view
mirror. We march backwards into the future.’ (1967: 74)

[3]1 This is a quite different sense of catastrophe

than recent events that occupy the minds of those who
fear terrorism. Slavoj ZiZek would see fundamentalist
terrorism in terms of the ‘passion for the real’ - in
the case of 9/11, America simply ‘got what it fantasized
about’ and the ‘Real’ violently entered everyday

reality (2003). It was the unlikely figure of Karl-Heinz
Stockhausen who pointed this out in his statement that
9/11 was the ultimate work of art.

[4] The passage is an intriguing one with many further
references. For instance, the spiritual overtones are
important for an understanding of Benjamin’s work.

His interest in Messianism and the Kabbalah clearly

has a bearing on his views of historical progress and
redemption. To elaborate on this would be too much of a
tangent in this connection, as would an exploration of
the figure known as the ‘Turk’ that engages Orientalist

fantasies of the time.

[5] This is also an unwitting reference to Duchamp’s
_The Bride Stripped Bare by Her Bachelors, Even (The
Large Glass)_ (1915-23). Duchamp is an especially
suitable reference in this connection as he was a keen
chess-player, interested in the automated aspects of the
game itself.

[6] Bateson’s concept ‘metalogue’ (1972) suggests a
similar reflexive logic in describing a conversation in
which the form of discussion embodies the subject being
discussed. This thesis operates in a similar manner by
embodying the subject of software as software.

[7] There is nothing but this determining contradiction
of matter in motion, explains Mao in his ‘On
Contradiction’. It is through this that different forms
can be identified such as: ‘positive and negative
numbers in mathematics; action and reaction in
mechanics; positive and negative electricity in physics;
dissociation and combination in chemistry; forces of
production and relations of production, classes and
class struggle, in social science; offence and defence
in military science; idealism and materialism, the
metaphysical outlook and the dialectical outlook, in
philosophy; and so on.’ (1977: 36).

[8] ‘Apocatastasis’ does not appear in the dictionary
- I assume it combines apocalyptic and stasis in
describing damage due to lack of change on a dramatic
scale.

[9] The quote continues: ‘The tradition of all dead
generations weighs like a nightmare on the brain

of the living. And just when they seem engaged in
revolutionising themselves and things, in creating
something that has never yet existed, precisely in such
periods of revolutionary crisis they anxiously conjure
up the spirits of the past to their service and borrow
from them names, battle cries and costumes in order to
present the new scene of world history in this time-
honoured disguise and this borrowed language.’ (Marx
1980: 96) According to Marx, the more the present is in
crisis, the more one has to borrow from the ‘spirits of
the past’. Thus the living borrow from the dead - to
stress the emphasis that Derrida grants it in _Spectres

177

178

of Marx (1994).

[10] Fukayama’s argument is that American Empire brings
an end to European history. Derrida calls Fukuyama'’s work
the new ‘gospel’, to refer to its Christian overtones. Fukuyama
is explicitly drawing upon Hegel’'s _Phenomenology of
Spirit (sometimes called Phenomenology of Mind) but
also this is a reference to the work of Alexander Kojeve
of 1947, and his ‘postscript on post-history and post-
historical animals’ (1994: 70).

[11] Ironically the same criticism has been levelled

at Marx for his mystification of the dialectical method

- amongst others, by Popper, in The Open Society

and its Enemies_ (2003 [1945]). Popper is concerned

to assess the contributions of Hegel and Marx on an
understanding of history: ‘What I wish to show is that
Marx’s “materialist interpretation of history”, valuable
as it may be, must not be taken too seriously; that we
must regard it as nothing more than a most valuable
suggestion to us to consider things in their relation to
their economic background.’ (2003: 120)

[12] Ideology describes how ideas reproduce themselves.
The history of the term ideology itself reveals a
further connection to software in describing a genetic
theory of ideas - and ZiZek’'s term for ideology
‘generative matrix’ perhaps derives from this.

[13] Lefebvre, referring to Hegel’s ‘end of history’,
accuses Lukacs of conceiving of the ‘end of philosophy’
through his theory of class consciousness (1968: 36-
7). Lurking in the background here is a more complex
philosophical argument over the opposition of idealism
and materialism, making reference to Marx'’s ‘The German
Ideology’ of 1845/6 and ‘Manuscripts of 1844’. Early
Marx rejects both idealist and materialist philosophy
for revolutionary praxis.

[14] Terry Eagleton explains that in effect, Lukécs has
adopted Hegel’'s ‘absolute idea’ for the proletariat

and that through the dialectical method, truth can
eventually be found in the whole through overcoming
‘reification’. To explain reification briefly: it remains a
useful concept under consumer capitalism, more in fact

a precondition, as traditionally the ‘transformation of
social relations into things’ but also the ‘effacement of

the traces of production’ (Jameson 1991: 314), leaving
people to happily consume free of guilt.

[15] Althusser is stressing the importance of the
‘ideological State apparatuses’ (including the

family, schools, church, legal apparatus, political
system, trade unions, communications media, arts and
culture, etc.) that operates more covertly than the
overt violence of the ‘repressive State apparatuses’
(including the government, army, police, courts,
prisons, etc.) (1997: 110). This is not a new phenomena.
In pre-industrial times, the ideological state apparatus
worked through religion predominantly, controlling other
apparatuses like education, communications and culture.
He thinks this central position has now been taken by
the education apparatus in capitalist social formations
(1997: 116), and the contemporary conception of the
importance of the ‘knowledge economy’ would appear to
continue his emphasis.

[16] One can easily apply this to the academicisation

of critical theory, the publishing industry that has
built up around it, and the abstraction of theory from
everyday praxis: ‘The introverted thought architect
dwells behind the moon that is taken over by extroverted
technicians [as] no theory escapes the marketplace’
(Adorno 2000: 3, 4).

[17] The integrative power and levelling tendencies of
mass culture is what Adorno and Horkheimer’s essay ‘The
Culture Industry’ addresses directly (1997 [1944]).

[18] The Frankfurt Institut for Social Research developed
Marxist social theory, influenced by Freud and Max Weber
in particular. It is often charactised as ‘critical
theory’ and is associated with Adorno, Horkheimer, Benjamin,
Marcuse, Habermas, Arendt, amongst others. The work of
Susan Buck-Morss (such as _The Dialectics of Seeing),
also quoted in this thesis, draws from this tradition.
Jay’s _The Dialectical Imagination: A History of the
Frankfurt School and the Institute of Social Research
1923-1950_ (1996 [1973]) contains an extensive history.

[19] The idea of awakening contained a particular
theological and mystical significance for Benjamin. The
dialectic of waking and sleeping is further described
in Guy Debord’s The Society of the Spectacle (1998

179

180

[1967]) in which the impulse is also to awaken from the
bad dream of capitalism, to shake the sleeping political
consciousness out of its slumber.

[20] ‘The Spectre is Still Roaming Around!’ as ZiZek
puts it elsewhere (1998). Indeed, the first noun in _The
Communist Manifesto is ‘spectre’ and it immediately
returns (like the repressed): ‘A spectre is haunting
Europe - the spectre of communism’ [‘Ein Gespenst

geht um in Europa - das Gespenst des Kommunismus’].
Zizek used the phrase ‘The Spectre is Still Roaming
Around!’ for the title of his introduction to the 150th
anniversary of The Communist Manifesto published as

a separate volume (1998). Elsewhere, in The Ticklish
Subject , Zizek parodies _The Communist Manifesto_,

and playfully begins: ‘A spectre is haunting western
academia, the spectre of the Cartesian subject. All
academic powers have entered into a holy alliance to
exorcise this spectre [...] (1999b: 1).

[21] This book supports this view, not least in its

use of the programming language Perl, in which ‘AND

has higher precedence than OR does’, according to its
creator Wall (1999). See the entry to Software Studies
on Perl (Cox & Ward 2007).

[22] Popper is also a well-known critic of Marxism. In
The Open Society and its Enemies (2003 [1945]), he
accuses Marx of overstressing economism in what he calls
‘economic historicism’ (2003: 110).

[23] Bhaskar’s critique also casts Darwinian evolution
as teleological and hence closed. It is important not to
conflate this critique with the reactionary creationism
of fundamentalist Christians, whose sophistication
stopped with the first chapter of Genesis_ according to
Bateson (2000: 434). Equally misleading and apolitical
is the alternative view that: ‘species go extinct

not because of bad genes but because of bad luck’
(David Raup in _Extinction_, quoted in Goodwin 1997:
116). Furthermore, it makes an unacceptable political
metaphor, of the inevitability and naturalness of

free trade, open competition and market forces, where
the rich get richer and so on. Engels summarises this
problem as follows: ‘Darwin did not know what a bitter
satire he wrote on mankind, and especially on his
countrymen, when he showed that free competition, the

struggle for existence, which the economists celebrate
as the highest historical achievement, is the normal
state of the animal kingdom.’ (1980: 351)

[24] Prigogine and Stengers cite Ludwig Boltzman

who investigated the correlation of probability and
irreversibility: ‘Only when a system behaves in a random
way may the difference between past and future, and
therefore irreversibility, enter into its description.’
(1985: 16)

CHAPTER 4:

[1] Following the economic crisis in the 1970s, Castells
describes the conditions for the change in the evolution
of capitalism ‘to overcome its own contradictions’, and
to escape delimiting restrictions imposed by state-
controlled industrial forces (1996: 51). Thus, reform
sought to deepen the capitalist logic of profit-seeking
and enhance productivity by globalising production,
circulation and markets, whilst establishing state
support for these policies, often to the detriment of
social and public interests (Castells 1996: 19).

[2] Jameson relates these economic stages directly to
cultural production as follows: realism (worldview of
realist art), modernism (abstraction of high modernist
art) and postmodernism (pastiche) (1991).

[3] There are further links here that acknowledge
relatively distinct periodisations that relate to
machines and capitalist restructuring: this sense of
pervasiveness enabled by networked computers corresponds
to what Gilles Deleuze calls a ‘society of control’
modelled on the ‘third wave’ of computerised machines
(in his ‘Postscript on Control Societies’, from _
Negotiations , in Galloway 2004: 3).

[4] Incidentally, although humans have named ants in
pejorative terms, the ‘queen’ is not an authority or
camp figure, merely an egg-laying ant and does not direct
or exploit the workers as such.

[5] Although DNA’s double helix, as the basic structure
of life was identified in 1953 (by Francis Crick and
James Watson), it was only by the 1970s that genetic
engineering became widely practised with the cloning

181

182

of the first human gene in 1977 (Castells 1996: 48) and
subsequently the idea of engineering life has become big
business (with resultant battles over property rights
and who should own the copyright on gene research). The
ethical issue came to public attention in 1988 when
scientist entrepreneurs at Harvard University challenged
the moral and ethical agenda of God and Nature by
patenting a genetically engineered mouse. By now, the
human genome has been extensively mapped and despite the
best efforts of those who would consider life to be in
the public domain, scientist-entrepreneurs have gained
legal and economic control. Thus, humans themselves

are becoming increasingly privatised in a perversion

of nature. Some artists are working in this area but
tend to employ crude analogies or simply illustrate the
issues. Eduardo Kac'’s ‘transgenic’ rabbit Alba is one
provocative exception that engages with the discourse
and ethics of genetics (http://www.ekac.org/gfpbunny.
html).

[6] Biology, like technology, is clearly caught up in
complex cultural narratives of power, knowledge and
subjectivity. This is reminiscent of the ways in which
Foucault theorised the body and technology as bound
together in the construction of power. The human genome
project is an obvious example of the ways in which
knowledge and power serve the interests of institutions
over individuals (Kember 2000: 157). Foucault maintains
that there is no unitary human subject, except that
which is produced through discursive processes and
forms of rationality that produce the subject as the
object of knowledge - in the complex relationship of
knowledge-power. Throughout the nineteenth century,

the body was continually made subject to medical and
psychological examinations to render ruling capitalist
and imperial ideology as ‘true’ knowledge. This is the
normalising power of the ‘carceral network’ that did
not exercise power directly on the body but on the body
as the object of knowledge. For instance, research in
this area promises: ‘a DNA-level quality control over
the reproduction of labor power, control aimed not at
the cure of disease but at the disgrading of potentially
unproductive, oversensitive, or expensive units’ (Dyer-
Witheford 1999: 106). To the artist/activist collective
Critical Art Ensemble, this is ostensibly an eugenics
programme.

[7] In the industrial period, according to Adam Smith,
the worker ‘generally becomes as stupid and ignorant

as it is possible for a human creature to become [and]
in every improved and civilised society, this is the
state into which the labouring poor, that is, the great
body of the people, must necessarily fall’ (quoted in
Marx 1990: 483). This is perhaps more a question of
disaffection as the worker is no more stupid than the
system they labour for: ‘In fact, of course, this
“productive” worker cares as much about this crappy
shit he has to make as does the capitalist himself who
employs him, and who also couldn’t give a damn for the
junk’ (Marx 1981: 273). To be fair, Smith’s argument

is intended to suggest that education is necessary for
these very reasons, although he does not extend this

to an understanding of how the education system itself
‘reproduces’ capitalist interests - something Althusser
and Bourdieu describe in more detail (see chapter 3).

[8] Despite this tendency to imagine the worker-less factory,
the process of production evidently still rests on living
labour but it is organised in network forms. Marx puts
it like this: ‘A machine which is not active in the labour
process is useless[...]’. (1990: 289). Even a so-called
autonomous system cannot produce value in itself.

[9] Klein says much the same in her observations on the
way that labour is subordinated by the machine: ‘IBM
claims that its technology spans the globe, and so it does,
but often its international presence takes the form of
cheap Third World labour producing the microchips and
power sources that drive our machines. On the outskirts
of Manilla, for instance, I met a seventeen-year-old
girl who assembles CD-Rom drives for IBM. I told her

I was impressed that someone so young could do such
high-tech work. “We make computers,” she told me,

“but we don’t know how to operate computers”.’ (2001:
xvii) In the chapter ‘The Discarded Factory’, Klein
describes appalling exploitation that is the reality of
globalisation, paying particular attention to violence
and corruption within free trade zones.

[10] By referring to both system and hierarchy, Hardt
and Negri aim to make a hybrid of Niklas Luhmann’s systems
theory (in which society is described in terms of autopoesis
rather than made by humans as such) and John Rawls’s theory
of justice. By ‘governance without government’, they are

183

184

referring to the title of a book by James Rosenau and
Ernst-Otto Czempiel (1992). Elsewhere, this myth of a democratic,
nonhierarchical, noncentred network structure is what
Deleuze and Guattari describe as the ‘rhizome’ (1987: 3-25).

[11] This description of a distributed management system
lies behind the Kurator.org project as a distributed
curatorial system for open source code - using protocols
for different ends than centralised/decentralised and
proprietary interests. Kurator.org asks: ‘If the
assumption is made that traditional curating follows a
centralised network model, then what is the position of
the curator within a distributed network model?’ (Krysa
& Sedek 2005) The suggestion of the project is that the
artist-programmer characterisation is extended to that
of the curator-programmer, and software art to software
curation.

[12] This can be traced earlier to Leibniz in the
seventeenth century, who thought that clockwork automata
could express perfection when constructed by God, but
not when constructed by mere humans. According to
Cartesian logic at this time, mind and matter are seen
to be autonomous entities but little attention is given
to the dynamic interrelation of the two. This is why the
work of Leibniz is particularly influential to Wiener
(2000: 41).

[13] For a thorough technical history, see Paul E.
Ceruzzi’s A History of Modern Computing (2003

[1998]). The book covers the development of the
electronic digital computer in the 1940s to the spread
of networking after 1985, and in the second edition
through to the development of open source software after
1995. In any given history, there are vested interests
in which history is preferred. For instance, in _The
Language of New Media , Manovich cites Konrad Zuse

to situate the beginnings of ‘new media’ in keeping
with his central analogy to the history of cinema

(2001: 25). In contrast, Geoffrey Batchen, a historian
of photography, disputes this version of events and
proceeds to describe photography in binary terms:

the presence and absence of light, and on/off tonal
patterning representing numerical repetitions of units
to make up a whole image (Batchen, in Kimbell 2004: 29).
Indeed, he claims it is ‘a fledgling form of information
culture’ made more explicit by Fox Talbot’s 1839

proposal to replace the use of sunlight by the spark

of electricity: ‘a making visible of electricity’ (in
Kimbell 2004: 31). Batchen refers to a Fox Talbot image
Lace (of 1845) to make the link to a longer history of
lace-making and computation.

[14] In describing the factory as a ‘self-regulating
system in embryonic form’, Marx, using bio-technological
metaphors claimed: ‘An organised system of machines

to which motion is communicated by the transmitting
mechanism from an automatic centre is the most developed
form of production by machinery. Here we have, in place
of the isolated machine, a mechanical monster whose body
fills whole factories, and whose demonic power, at first
hidden by the slow and measured motions of its gigantic
members, finally bursts forth in the fast and feverish
whirl of its countless working organs.’ (1990: 503) Is
the achievement of technology simply to fulfill this
nightmarish vision of automation?

[15] Workers as ‘second-order robots’ refers to a
history of the term ‘robot’ itself. It was allegedly
first used by Karel Capek in his play ‘Rossum’s Universal
Robots’, in Prague in 1921, drawing upon the Czech term
‘robota’ which literally means ‘forced work or labour’
from the Latin ‘robor’ meaning power or force (Floridi
1999: 207). The play typically describes a scenario

in which a factory that builds artificial agents is
eventually taken over by them and the whole of humanity
destroyed.

[16] This is also a reference to Benoit Mandelbrot’s _
The Fractal Geometry of Nature , 1883, and his question:
‘How long is the coast of Britain?’. The answer is
infinitely long or that it depends on the length of your
ruler. Mandelbrot surmises that as the length of the
measurement becomes smaller, the coastline gets longer
- to the point where it is being measured at an atomic
scale, when it becomes infinite.

[17] An infinite loop is a sequence of instructions in a
computer program which loop endlessly.

[18] Boolean logic has many applications in electronics,
computer hardware and software. In _Zeros + Ones_ (1997),
Sadie Plant relates this logic to sexual politics. She

explains with irony how ones and zeros, male and female,

185

186

penis and vagina, all make ‘lovely couples’ (1997: 35).
In this sense, ‘It takes two to make a binary’ and

set up the heterosexual paradigm. Taking the analogy

to sex further, artificial life can be understood as a
heterosexist discourse, with its emphasis on the desire
for reproduction as one of the definitions of life (Kember 2003).

[19] The idea that a machine might demonstrate
intelligence is derived from Alan Turing’s paper
‘Computing Machinery and Intelligence’ of 1950, hence
the so-called ‘Turing Test’ to measure whether a machine
might pass for a human. Hofstadter’s ‘A Coffee House
Conversation on the Turing Test’ (1985 [1981]) is
sceptical about the claims of artificial intelligence,
setting the richness of human imagination and emotions
against the mechanicist promises of artificial
intelligence in the form of a conversation.

[20] In Heim’s view, class conflict is a thing of the

past, which says something about the commodification of
dialectics by academics and publishers alike, keen to
appear radical to satisfy the market but not upset it.

[21] Gotthard Giinther, in ‘Grundziige einer neuen Theorie
des Denkens in Hegel’s Logik’ [‘Main Features of a New
Thinking in Hegel'’s Logic’], situates classical binary
logic as part of a more general and comprehensive
multivalued or many systems logic (Paul 2000). What
further captures the imagination is that Giinther
planned to build a ‘transputer’, a machine based

on ‘polycontextural logic’ (how he perceived human
consciousness). There is some contemporary interest

in this logic in as far as it relates to networked
technology, in that it arguably reflects Gilinther'’s
polycontextural logic.

[22] Owens is partly concerned to distance herself from
what she sees as the mistaken (postmodern) view of
complexity as proof of uncertainty, virtuality and
scientific myth-making (1996). She is particularly
thinking of Kuhn’s _The Structure of Scientific
Revolutions_ (1970), and Paul Feyerabend’s _Against
Method (1975). Owens suggests that scientific method has
always embraced a strategic sense of uncertainty, not
just the arts and humanities (as indicated in chapter 3 when
discussing reflexivity and recursion). Similarly Brian
Goodwin (in his How the Leopard Changed Its Spots ,

1994) too easily equates this sense of uncertainty to

a critique of modernity (1997: 114). He is assuming
modernism to affirm determinism, whereas critical modernity
has always embraced uncertainty and its own critique,
and should therefore not necessarily be seen as deterministic
but able to embrace its contradictions (as described in
section 3.2, with reference to Berman in particular).

[23] The strange attractor demonstrates ‘infinite
regress’, an inexhaustible sequence of folding and
stretching a line. When a change takes place in a
predicted chain of events, the strange attractor causes
the initial system and the disturbed system to move
apart exponentially fast (paraphrased from Gleick 1998:
150-1).

[24] Lukédcs in _History and Class Consciousness_ would
de-emphasise the application of dialectics to nature, in
favour of the social and conceptual realms only (1976).
Whereas Jay describes Marcuse’s position as: ‘Natural
being was different from historical being; mathematical,
nondialectical physics was valid in its own sphere:
“Nature,” Marcuse wrote, “has a history, but is not
history”’ (1996: 73). Antonio Gramsci also shifts the
dialectic away from the contradiction inherent in nature
and emphasises the contradiction between reality and

the will of the subject, in calling for a ‘pessimism

of the intellect, [but] optimism of the will’. This is
usually attributed to Gramsci but is a variation of
Romain Rolland’s phrase ‘pessimism of the intelligence,
optimism of the will’ (footnote, in Hoare & Nowell-Smith
1971: 174).

[25] More detail on this issue of incomplete synthesis
was introduced in chapter 3. Otherwise, false totalities
emerge. For example, Stalinism is accounted for its lack
of open-endedness, as it wrongly assumed the dialectical
process to have ended, and closed it down to drastic
effect.

[26] An English translation and hypertext version of
Queneau’s ‘A Story as You Like It’ [‘Un conte a votre
facon’] is available online (http://www.thing.de/
projekte/7:9%23/queneau_1l.html).

[27] Prigogine and Stengers state: ‘A society defined
entirely in terms of a functional model would correspond

187

188

to the Aristotelian idea of natural hierarchy and order.
Each official would perform the duties for which he
[sic] has been appointed. These duties would translate
at each level the different aspects of the organization
of the society as a whole. The king gives orders to

the architect, the architect to the contractor, the
contractor to the worker. On the contrary, termites and
other social insects seem to approach the “statistical”
model. As we have seen, there seems to be no mastermind
behind the construction of the termites’ nest, when
interactions among individuals produce certain types of
collective behaviour in some circumstances, but none of
these interactions refer to any global task, being all
purely local.’ (1985: 205)

[28] For instance, and according to Owens, a theory like
deconstruction is ‘trapped in the very dualism it seeks
to circumvent’ (1996: 91). Other examples were mentioned
earlier in this connection (see note 22).

[29] Alternatively, there could be a forceful logic

in making a historical link to Anarchist principles

in describing a ‘political system’ that emphasises
disorder and chaos. This is what Bey does in T.A.Z.:
The Temporary Autonomous Zone, Ontological Anarchy,
Poetic Terrorism_ (2003 [1985]), describing anarchy as
chaos, and chaos as the principle of continual creation,
of ‘all-potentiality’ (2003: 70). He is making reference
to what Prigogine calls ‘creative evolution’ to account
for the creative potential of ‘perturbations, crashes,
and breakdowns in the Net’ (2003: 111). By drawing

upon Taoist thinking, Bey resists what he sees as the
negativity associated with chaos theory, or its link to
new ageism or science that sees it as a negative force
of destruction or for enforcing order.

[30] There are a number of examples of the ways in which
in practice, Marxism has sought to separate dialectics
from materialism: otherwise remaining in impoverished
form under Stalinism, or by focusing almost exclusively
on contradiction through Maoism (Owens cites Mao’s On
Contradiction). According to Mao, there is nothing

but contradiction of matter in motion, following in

the tradition of Engels in this respect (see note 9 to
chapter 3).

CHAPTER 5:

[1] Like ZiZek, Guattari sees the reorganisation of
better social relations as no more difficult to imagine
than other scientific or aesthetic endeavours - no more
difficult to ‘solve than questions of quantum physics or
the manipulation of genes’ (1995: 46).

[2] Guattari refers to an ‘intradisciplinary’ approach,
as the capacity to traverse different fields, in contrast
to an interdisciplinary approach that would tend to
make the mistake of making a synthesis of heterogenous
positions.

[3] To state the obvious, the antithetical title of
their Anti-Oedipus: Capitalism and Schizophrenia
(1990 [1972]) explicitly negates the oedipal drama; the
subtitle indicates the ‘intradisciplinary’ principle
(described in the previous note) of drawing together
capitalism and schizophrenia.

[4] To Marcuse, so-called ‘perversions’ such as
homosexuality operate as a potential challenge to the
exploitative organisation of labour, as expressed in
procreative social reproduction (Geoghegan 1981: 53-4).
Deleuze and Guattari also cite Wilhelm Reich in this
connection to understand the mechanics of fascism. Their
emphasis on desire explains in a more sympathetic way
Reich’s astonishment that the masses do not steal and
strike on a regular basis, and tolerate being humiliated
and enslaved. Deleuze and Guattari would have us re-
read Marx, but also Adolf Hitler, to understand how

the desiring-machine operates (in Guattari 1995: 248).
Similarly, in the work of the Frankfurt School, Oedipal
resistance to the father lent itself to the study of
authority (and by extension the relationship of the
individual to society) in as much as they were trying to
understand the psycho-social conditions in which workers
rejected their historical role within Marxism to accept
Nazism.

[5] Freud would advise that if you repress the existence
of something, even repression itself, it will return
anyway at unexpected moments, often as trauma. This
Freudian model of latency is what Jameson calls the
‘returns of the repressed of historicity’ (1991: xvi).

189

190

[6] The surrealist Francis Picabia describes the machine
as ‘the daughter born without a mother’ (in Guattari
1995: 125).

[7] Indicating his intellectual preferences, Leclaire
would like to reintroduce some dualisms such as the
real and the symbolic (Lacan), or the base and the
superstructure (Marx).

[8] Negri also co-wrote _Communists Like Us_ with
Deleuze (1990). As part of the Italian group ‘autonomia’
founded in the 1970s, Negri and others tried to open

up new possibilities for the theory and practice of
class struggle. Many of the ideas associated with
autonomia were developed through the journal _Futur
Antérior [future perfect], and the contributions of
Hardt, Lazzarato, Negri, Virno, mentioned later in this
chapter.

[9] It represents ‘simultaneous separation and
coherence’, according to Jim Fleming in the ‘Editor’s
Preface’ (1991: vii) in words that echo the process

of connections and rupture described in the work of
Deleuze and Guattari (in Guattari 1995: 126-7). To add
more detail and theoretical connections, Negri’s _Marx
after Marx_ results from a series of lectures at the
Université Paris in 1978 at the invitation of Althusser.

[10] ‘Subsumption’ indicates the ways that one thing
is absorbed into another. In this context, class
exploitation is subsumed into broader social forms and
life in general.

[11] The ‘multitude’ (taken from Benedict de Spinoza’s
phrase ‘democracy of the multitude’), expresses the
‘coexistence of the positive and the negative on the
terrain of immanence’ according to Hardt and Negri

in _Empire_ (2000: 374). Their _Multitude: War and
Democracy in the Age of Empire_ adds more detail on
the possibility for a revolutionary democracy, as does
Virno’s A Grammar of the Multitude (2004), drawing
particularly on the contrasting views of Thomas Hobbes
and Spinoza to develop an understanding that is derived
from Marx’s idea of general or mass intellect.

[12] Hardt and Negri say: ‘The proletariat is not what
it used to be, but that does not mean it has vanished’

(2000: 53). A broader definition of proletarians would
include the ‘marginalised proletariat’ of students, the
unemployed and unpaid house workers. Even technologies
that have changed the nature of work might also be
described as somewhat ‘proletarianised’ according

to John Armitage (2002). Some commentators, in what
Armitage calls the ‘neoliberal discourse of technology’
(2002), would go further and suggest that not only is
human labour no longer at the centre of production but
technology is instead. For more on this, see Jeremy
Rifkin’s _The End of Work_ (1995) - although this is not
a view this thesis supports.

[13] This understanding builds upon the work of Habermas
in his _Theory of Communicative Action_ (1984), that
updates the concept of historical materialism to take
account of communicative action.

[14] The free distribution of source code is free only
in the sense that it can be further adapted and changed
(under certain conditions of course). This is what
Stallman refers to as ‘copyleft’ protected by the GNU
public license agreement for future free provision and
distribution under the same conditions. See http://www.
opensource.org/ and then http://www.fsf.org/ for more
detail on the distinction between this and open source.

[15] The distribution of new knowledge associated with
a PhD thesis is similarly revealing. This explains

the purpose of the manner in which this thesis is
distributed. It is first copyrighted in the standard
way, but at a point in its future development the

text will be published on the web and licensed under
the Libre Commons Res Communes License. See chapter 1
(introduction) for further explanation of this.

[16] See the web site (http://twenteenthcentury.com/uo/
index.php), and for its Faculty of Unix, running since
2002 (http://darqg.org.uk/FacultyUnix).

[17] For more on the Libre Commons License, see the web
site (http://www.libresociety.org/library/libre.pl/
Libre Commons/). In a recent posting to the nettime
mail list, Cramer is scathing of this approach: ‘This
is a romantic apolitical position because such a space
“outside of all legal jurisdictions” does not exist.
Wake up and get a life.’ Berry counters this with the

191

192

following: ‘Incidentally, you may be interested to know
that law requires a state to enforce it, and, to the
best of my knowledge, we do not *yet* have a global
state, and consequently the spaces between nation states
(such as the high seas) are not subject to law as such
(rather international treaties which attempt to govern
these ungovernable spaces).’ (2005)

[18] It was le Comte de Lautréamont, who in 1870
claimed: ‘Plagiarism is necessary. Progress implies

it. It embraces an author’s phrase, makes use of his
expressions, erases a false idea, and replaces it with
the right idea.’ This was later plagiarised by Guy
Debord as follows: ‘Plagiarism is necessary. Progress
demands it. Staying close to the author’s phrasing,
plagiarism exploits his expressions, erases false ideas,
replaces them with correct ideas.’ (from ‘Negation

and Consumption’, in _The Society of the Spectacle ,
1998: 145). Stewart Home further claims that this was
wrongly attributed and Lautréamont plagarised the

quote: ‘Old discoveries belong to those who put them

to use’. Home has reworked it too as: ‘Progress is
necessary. Plagiarism demands it’ (these quotes are left
unreferenced in the spirit of their contents).

[19] Chainworkers.org’s slogan is ‘Chain and
brainworkers unite’ (http://www.chainworkers.org/)
referred to by Lazzarato (2003).

[20] This also accounts for further misconceptions such
as Lunenfeld’s term ‘dialectical immaterialism’ (2002),
to contribute to critical discussions about ‘technology
untethered to the constraints of production’. As

much as the phrase is evocative of the approach

this thesis takes, Lunenfeld’s statement is a severe
misunderstanding of the ways in which production has
expanded to the whole of society, with cultural work
thoroughly integrated in the social factory.

[21] However, Barbrook’s position should not be
dismissed out of hand, as it is also one that responds
critically to what he calls ‘the Californian ideology’
that typifies the combination of technological
determinism and free market principles. The example is
Wired magazine, that reproduces an ideology based upon
‘Darwinian thinking and techno-mysticism’ according to
Stallabrass (2003: 149).

[22] For example, Mauss refers to ‘potlatch’, a
ceremonial feast at which possessions are give away or
destroyed to display wealth or enhance status (1970: 5).

[23] The first Apple Macintosh and its ‘desktop’
graphical user interface was introduced in 1984.
Bowles is referring to the Apple II. Apple remains

the machine of choice in most ‘creative’ contexts. In
the most recent reprint of his essay, Bowles adds some
more recent reflection but in general finds its general
argument holds (2005).

[24] In a similar way, Latour describes a situation

where the seemingly impossible task of opening Pandora’s

black box is made possible by experiencing technology

at work, not ready-made - but ‘in action’ and ‘before

the box closes and goes black’ (1999: 21). ‘Black box’

is a phrase from cybernetics, applied when a piece of
machinery or a set of commands are too complex to be

easily understood. This applies almost by default to

software where the complex processes and actions are

obscured.

[25] The online description reads: ‘Suicide Letter 193
Wizard for Microsoft Word helps you to create a suicide
letter according to your preferences. Use professional
design. Choose from a variety of styles. Make your
letter look great.’ (http://www.dxlab.org/slw/).

[26] OpenOffice.org is a multiplatform and multilingual
office suite and an open-source project. Compatible with
all other major office suites, the product is free to
download, use, and distribute (http://www.openoffice.
org/).

[27] This would be in keeping with the position of de
Certeau, who asserted that users oppose established
rules in the most ordinary of circumstances (1984).
Through what he calls ‘antidiscipline’, consumers
negotiate discipline and power exerted on them. By
employing what he calls ‘tactical’ forms and ‘makeshift
creativity’, consumers ‘make use of techniques for re-
employment in which we can recognize the procedures of
everyday practices. A politics of such ploys should be
developed’ (1984: xxiv).

[28] The term ‘tactical media’ is variously defined,

194

but emerges from a group of media activists in Rome in
1996. Lovink’s involvement in tactical media emerges
from the Next 5 Minutes festival (which began in 1993)
and other collaborative writings; for instance ‘The ABC
of Tactical Media’ (1997) with David Garcia, and ‘New
Rules for the New Actonomy’ (2001) with Schneider. For
Critical Art Ensemble, the concept is a way of avoiding
the ‘dense arcane style of the Frankfurt Institut’
(2002: 27), and a way of asserting difference from avant-
garde practices for ‘electronic civil disobedience’
(2002: 13).

[29] For example, this ‘distributed-denial-of-

service’ was used by the Zapatistas against the Mexican
government and against the WTO at the time of Seattle in
1999 (Medosch 2003: 17).

[30] Or, as Eben Moglen puts it: ‘A spectre is haunting
multinational capitalism - the spectre of free
information.’ (2003: 216) Moglen is a lawyer who has
contributed to the development of the General Public
License (GPL) with Stallman. His full parody continues:
‘All the powers of “globalism” have entered into an
unholy alliance to exorcize this spectre: Microsoft

and Disney, the World Trade Organization, the United
States Congress and the European Commission. Where are
the advocates of freedom in the new digital society
who have not been decried as pirates, anarchists,
communists? Have we not seen that many of those hurling
the epithets were merely thieves in power, whose talk
of “intellectual property” was nothing more than an
attempt to retain unjustifiable privileges in a society
irrevocably changing? But it is acknowledged by all

the Powers of Globalism that the movement for freedom
is itself a Power, and it is high time that we should
publish our views in the face of the whole world,

to meet this nursery tale of the Spectre of Free
Information with a Manifesto of our own.’ (2003: 216)
Also making explicit reference to the _The Communist
Manifesto , Wark claims that what now haunts the world
is the spectre of ‘hacking’. However, he claims his
manifesto is neither an orthodox Marxist tract nor post-
Marxist repudiation, but a ‘crypto-Marxist reimagining
of the materialist method for practising theory within
history’ (2004: 024).

[31] The phrase ‘precarious labour’ has become increasingly

popular in the activist community to describe the
material reality of intermittent and irregular work that
‘teeters’ on the edge of moral acceptability and the
ability to generate a living wage, although it should be
noted that it is not labour in itself that is precarious
but the ‘technical and cultural conditions in which
info-labour’ finds itself (Beradi 2005).

[32] Negri'’s position on Spinoza is developed in his
essay ‘The Savage Anomaly’ of 1980.

[33] For more on this, see Reiner Schiirmann, _Des
hégémonies brisées , Mouvezin: T.E.R., 1996 (in Hardt

& Negri 2000: 389). The term ‘corruption’ is borrowed
from Aristotle’s _De generatione et corruptione_(1982),
again cited in _Empire .

[34] The dialectical operation between states of order
and disorder also underpins Signwave’s _Anagrammar_
(2001), an unruly version of Microsoft Powerpoint

or Apple Keynote (produced to accompany the essay

‘The Aesthetics of Generative Code’ for conference
presentation, Cox, McLean & Ward 2001). Whilst
presenting text slides on screen, it ‘listens’ to the
current sound input source, and when a sound occurs,
starts to jumble up the letters of the current slide.
When the sound falls below an ambient level, the letters
are rearranged back into their original order. Both
examples demonstrate a dialectical play between two
interconnected states of order and disorder, between
generation and corruption, suggesting the potential

for transformation. In the context of this thesis, the
examples offer a dialectical approach that responds to an
understanding of complexity theory (as argued at the end
of chapter 4).

[35] Negri’s negative view of socialism is perhaps
informed by the various failed examples of ‘real
existing socialism’ observed at the time of writing
in 1985. With Hardt, he charts the tragic irony in
that nationalist socialism comes to resemble national
socialism, because the same machine of national
sovereignty lies behind the logic of both. As a result,
they maintain ‘we are not anarchists but communists
who have seen how much repression and destruction of
humanity have been wrought by liberal and socialist
big governments. We have seen how this is being re-

195

196

created in imperial government, just when the circuits
of productive cooperation have made labour as a whole
capable of constituting itself as a government’ (2000: 350).

[36] Pasquinelli identifies action related to labour,
politics and art, as integrated into each other, making
everyone ‘workers-artists-activists’ (2005: 2).

[37] The Situationist International also made much

of this strategy of refusal in the May ‘68 uprisings

in announcing ‘Don’t Work!’ and ‘Never Work!’ (Ford
2005: 119 & 123). The Situationist refusal to work is
paralleled by the Neoist ‘artstrike’ calling on cultural
workers to stop making or discussing their work from
1990 to 1993 - although this is simply plagiarising
Metzger’s 1974 proposal for an Art Strike, according to
Home (1993). In the context of performance art, refusing
to work can be a provocative action, such as the example
of Roy Varra who simply stood in Tianneman Square, and
although doing nothing, was arrested.

[38] Deleuze explains that a sabot was a worker’s wooden
clog. In the context of programming, ‘deprogramming’

is one example of calling to attention the structures
and standard formats of software. This strategy makes
reference to the Situationist ‘détournement’ of
technology.

CHAPTER 6:

[1] Lévi Strauss’s _The Raw and the Cooked (1970)
provides a further reference in which the ‘raw’
associated with nature is opposed to the ‘cooked’
associated with culture. His approach is structuralist
anthropology drawing upon semiotics, where the raw
‘signifier’ enters into the realm of the ‘signified’ when
cooked. The analogy between recipes and source code is
further explored in the barszcz source code repository
that includes Jaromil’s string based cooking (http://
www.barszcz.net/).

[2] To Adorno and Horkheimer, the analogy to the
production of food also reveals that: ‘the culture
industry perpetually cheats its consumers of what

it perpetually promises[...] that the diner must be
satisfied with the menu’ (1997: 139). What is on offer is
bad for the digestion.

[3] The artist-programmer Mark Napier says much the
same: ‘In the software industry the code is very valuable
since it contains the knowledge, recipe or blueprint of
how the software product is made. The binary “executable”
is distributed to the world, but the source code is
carefully guarded. As an artist I'm happy to share most
of my source code with other artists.[...] Whoever owns
the source code in effect “owns” the artwork.’ (2000)

[4] Socialfiction.org’s _.walk won the first prize in

the software art category at transmediale in 2004 (see
Cox, Reas & Rich 2003). A simple stroll algorithm
follows: ‘// Classic.walk; Repeat { lst street left; 2nd
street right; 2nd street left }’. This is both clearly
understandable even to the non-specialist and wildly
unpredictable in its outcomes.

[5] Unix is open in the broadest sense in that its

API (application programming interface) works across
different computer platforms. Most servers rely on Unix,
and it underpins the Internet protocol of TCP/IP.

[6] Elsewhere Lovink charts this crisis of the
intellectual, tracing Gramsci’s idea of the ‘organic
intellectual interfacing with ordinary people to

the contemporary distrust of the concept of the
intelligentsia in the post-political era. In the
knowledge economy, the intellectual has become a
faceless professional, and sadly lacks a public role in
society. Accordingly, the suggestion is that the link
between the intellectual and the public might be forged
in virtual space - the ‘virtual intellectual’ (2002:
30). This might be wishful thinking, but expresses

the potential for a new kind of collective engagement
with ideas in keeping with a re-engagement with the
Internet as public sphere (located in the sphere of the
negative as Lovink puts it). Rejecting the ‘free-market
way of thinking’ the virtual intellectual is more of

a ‘free-floating’ knowledge worker (a less aloof term)
who engages with other workers and is ‘always under
construction’ (2002: 38-9). This also emphasises Virno’'s
point referred to in the previous chapter in relation
to general intellect - and the importance of the public
sphere in generating positive potential.

[7] This description is adapted from the previous
collaborative paper ‘Coding Praxis’ (Cox, et al 2004).

197

198

[8] For instance, the work of toplap (http://www.toplap.
org/) who perform music using live coding and display
their desktop screens in the spirit of transparency of
process (Collins et al 2003). This is not intentionally
a politicised practice at all (and consequently suffers
from the problem of virtuosity as an individualised
display of skill), but holds the potential to be a
critical practice in the sense this section describes.

[9] Or, actions and events determine words. This is
the irony of Bruno’s _Human Browser (2006) mentioned
previously in this thesis.

[10] Although it should be noted that Virno argues the
opposite to Arns, in claiming that it is not the parole
but the langue which is mobilised (2004: 91).

[11] The distinction between work and labour is hard to
fathom, as both words broadly refer to the same thing.
Arendt quotes John Locke: ‘the labor of our body and
the work of our hands’ (2000: 170). She adds that most
European languages make similar distinctions: ‘arbeiten’
and ‘werken’ in German; ‘laborare’ and ‘fabricari’ in
Latin; ‘ponein’ and ‘ergazesthai’ in Greek. It seems
that the human body is given over to labour, the
reproductive process, the biological and the link to the
human organism (even the pains of birth are associated
of course). Thus labouring is tied more closely to

the cycles of life itself, as it ‘corresponds to the
condition of life itself’ and lasting happiness and
contentment lies in ‘painful exhaustion and pleasurable
regeneration’ (Arendt 2000: 172).

[12] This position is developed in Virno’s ‘Virtuosity
and Revolution: The Political Theory of Exodus’ (1996:
188).

[13] Praxis is clearly an important issue in Marxist
philosophy. Lefebvre explains that human creation can
be explained as praxis in which humans transform nature
through ‘the unity of the sensuous and the intellectual,
of nature and culture’ (1968: 39).

[14] The issue of the Internet as an extension of

the public sphere makes reference to Habermas’s _The
Structural Transformation of the Public Sphere (1985)
and texts such as Mark Poster’s ‘Cyberdemocracy:

Internet and the Public Sphere’ (1997).

[15] This approach to a conclusion is inspired by
Virno’s _A Grammar of the Multitude_ (2004).

0100101110101101.0RG (2001) ‘Data-Nudism’, an interview

with Matthew Fuller about life sharing, Nettime , April
14, http://www.nettime.org [first published by Gallery 9

/ Walker Art Centre, http://www.walkerart.org/gallery9/

lifesharing/] [last accessed 31 Dec 2005].

Adilkno (1998) ‘What is Data Criticism?’, in Media
Archive_, New York: Autonomedia, pp. 57-59.

Theodor W. Adorno (1991) ‘On the Fetish Character

in Music and the Regression of Listening’, in J.M.
Bernstein, ed. _The Culture Industry: Selected Essays on
Mass Culture_, London: Routledge, pp. 26-52.

Theodor Adorno & Max Horkheimer (1997 [1944]) Dialectic
of Enlightenment , trans. John Cumming, London: Verso.

Theodor W. Adorno (2000 [1966]) _Negative Dialectics_,
trans. E. B. Ashton, London: Routledge.

Saul Albert (2002) ‘Useless Utilities’, in Signwave,
_Auto-Illustrator Users Guide , Plymouth/Exeter: i-DAT/
Spacex, pp. 89-99.

Amy Alexander (2001) ‘Re: Hackers: the political heroes
of cyberspace’ Nettime , March 16, http://www.nettime.
org [last accessed 31 Dec 2005].

Louis Althusser (1997 [1969]) ‘Ideology and Ideological
State Apparatuses: Notes Toward an Investigation’, in
Slavoj Zizek, ed. Mapping Ideology , London: Verso, pp.
100-140.

Hannah Arendt (1999) ‘Introduction: Walter Benjamin:
1892-1940’, in Walter Benjamin, _Illuminations_, London:

Pimlico, pp. 7-55.

Hannah Arendt (2000) ‘Labor, Work, Action’ [from a

199

200

Lecture 1964], in The Portable Hannah Arendt , New
York: Penguin, pp. 167-181.

Aristotle (1982) De Generatione et Corruptione , trans.
C.J.F. Williams, Oxford: Oxford University Press.

John Armitage (2002) ‘Resisting the Neoliberal Discourse
of Technology: The Politics of Cyberculture in the

Age of the Virtual Class’, http://www.textz.com [last
accessed 31 Dec 2005].

Inke Arns (2004) ‘Read Me, Run Me, Execute Me: Software
and its Discontents, or: it’s The Performativity of
Code, Stupid’, in Olga Goriunova & Alexei Shulgin, eds.
_Read_Me: Software Art & Cultures_, Arhus: DARC, pp.
176-193.

Antonin Artaud (2001 [1964]) The Theatre and its
Double , [first published as Oeuvres Completes] trans.
Victor Corti, London: Calder.

Roy Ascott (2003) _Telematic Embrace: Visionary Theories
of Art, Technology, and Consciousness , Berkeley:
University of California Press.

Roy Ascott (2004) ‘Orai, or How the Text Got Pleated:
A Genealogy of La Plissure du Texte: A Planetary
Fairytale,’ in _Leonardo , vol. 37, no. 3, pp. 195-200.

John Langshaw Austin (1962) How to Do Things with
Words , Cambridge: Harvard University Press.

Albert-Laszlé Barabasi (2002) _Linked: The New Science
of Networks , Cambridge, Mass.: Perseus.

Richard Barbrook & Pit Schultz (1997) ‘The Digital
Artisans Manifesto’, http://www.hrc.wmin.ac.uk/hrc/
theory/digitalartisans/t.1.1.html [last accessed 31 Dec
20057].

Richard Barbrook (1999) ‘The High-Tech Gift Economy’,
in Josephine Bosma, et al, eds. Readme! Filtered by
Nettime. ASCII Culture and the Revenge of Knowledge ,
New York: Autonomedia.

John D. Barlow (2001) The Book of Nothing , London:
Vintage.

Anne Barron (2002), ‘The Legal Properties of Art’,
conference paper, Marxism and the Visual Arts Now_,
University College London.

Roland Barthes (1977) ‘The Death of the Author’, in
_Image Music Text , trans. Stephen Heath, London:
Fontana, pp. 142-148.

Roland Barthes (1975 [1970]) _S/Z: An Essay_, trans.
Richard Miller, London: Cape.

Geoffrey Batchen (2004) ‘Electricity Made Visible’, in
Lucy Kimbell, ed. _New Media Art: Practice and Context
in the UK 1994-2004_, London: Arts Council of England
with Cornerhouse, pp. 26-44.

Gregory Bateson (2000 [1971]) _Steps to an Ecology of
Mind , Chicago/London: University of Chicago Press.

Catherine Belsey (1992), ‘Towards a Productive Critical
Practice’, in Critical Practice, London: Routledge, pp.
125-146.

Walter Benjamin (1992a [1931]) ‘A Small History of
Photography’, in One Way Street and Other Writings ,
trans. Edmund Jephcott & Kingsley Shorter, London:
Verso.

Walter Benjamin (1992b [1934 written]) ‘The Author
as Producer’, in Understanding Brecht , trans. Anna
Bostock, (first published as _Versuche iiber Brecht)
London: Verso.

Walter Benjamin (1996) _Selected Writings: Volume 1,
1913-1926_, Marcus Bullock and Michael W. Jennings, eds.
Cambridge, Mass.: Belknap Press.

Walter Benjamin (1999a) _The Arcades Project , trans.
Howard Eiland & Kevin McLaughlin [first written as _Das
Passegen-Werk_], Cambridge, Mass.: Belknap Press.

Walter Benjamin (1999b) Selected Writings: Volume 2,
1927-1934, trans. Rodney Livingstone et al, Michael W.
Jennings, Howard Eiland & Gary Smith, eds. Cambridge,
Mass.: Belknap Press.

Walter Benjamin (1999c) ‘Theses on the Philosophy of

201

202

History’ [written 1940, first published 1950], trans.
Harry Zohn, in _Illuminations_, London: Pimlico, pp.
245-258.

Walter Benjamin (1999d [1936 written]) ‘The Work of Art
in the Age of Mechanical Reproduction’, trans. Harry
zZzohn, in Illuminations , London: Pimlico, pp. 211-244.

Max Bense (1971) ‘The projects of generative
aesthetics’, in Jasia Reichardt, ed. _Cybernetics, Art
and Ideas_, NY: Graphics Society Limited.

Franco Beradi [Bifo] (2005) ‘ Info-Labour and
Precarisation’, trans. Erik Empson (http://www.
generation-online.org/t/tinfolabour.htm), [first
published in Italian, http://www.rekombinant.org/print.
php?sid3D2578] [last accessed 31 Dec 2005].

John Berger (1972) Ways of Seeing , London: Penguin/
BBC.

John Berger (1980) ‘Why Look at Animals?’, in _About
Looking , London: Writers & Readers.

Marshall Berman (1999 [1982]) All That Is Solid Melts
Into Air: the Experience of Modernity , London: Verso.

Josephine Berry Slater (2005 [2002]) ‘Bare Code: Net
Art and the Free Software Movement’, in Geoff Cox &
Joasia Krysa, eds. Engineering Culture , New York:
Autonomedia, pp. 133-149.

David M. Berry & Giles Moss (2004) _Libre Culture
Manifesto_ [Version 1. 62], http://libresociety.org/
[last accessed 31 Dec 2005].

David M. Berry (2005) ‘Re: <nettime> Libre Commons =
Libre Culture + Radical Democracy’, _Nettime thread [in
reply to Florian Cramer, 08 Dec], http://www.nettime.
org/ [last accessed 31 Dec 2005].

Hakim Bey (2003 [1985]) T.A.Z.: The Temporary
Autonomous Zone, Ontological Anarchy, Poetic Terrorism ,
New York: Autonomedia.

Homi Bhabha (1994) ‘The Commitment to Theory’, in _The
Location of Culture , London: Routledge.

Roy Bhaskar (1986) _Scientific Realism and Human
Emancipation_, London: Verso.

Roy Bhaskar, Andrew Collier and Alan Norrie (1998)
‘Dialectic and Dialectical Critical Realism’ section,
in Margaret Archer, Roy Bhaskar, Andrew Collier, Tony
Lawson, Alan Norrie, eds. Critical Realism: Essential
Readings , London: Routledge, pp. 559-739.

Friedrich W. Block, Christiane Heibach, Karin Wenz, eds.
(2004) _The Aesthetics of Digital Poetry_ , Ostfildern:
Hatje Cantz.

Friedrich W. Block (2004) ‘From Code to Screening and
Vice Versa: Orientation in Digital Poetics between
Concept and Perception’ lecture notes, ‘From Software
to Software Art’ symposium, _transmediale , Berlin,
February.

Maurizio Bolognini (2004), ‘Programmed Machines: Infinity
and Identity’, in _Generative Art 03_, international
conference, Politecnico di Milano, Italy, http://www.
generativeart.com/papersGA2004/b9.htm [last accessed 31
Dec 2005].

Jay David Bolter (1984) Turing’s Man: Western Culture
in the Computer Age , Chapel Hill: University of North
Carolina Press.

Jay David Bolter & Richard Grusin (1999) Remediation:
Understanding New Media , Cambridge, Mass.: MIT Press.

Simon Bone & Mathias Castro (1997) ‘A Brief History
of Quantum Computing’, http://www.doc.ic.ac.uk/~nd/
surprise 97/journal/vol4/spb3/ [last accessed 31 Dec
20057].

Pierre Bourdieu (1984 [1979]) Distinction: A Social
Critique of the Judgement of Taste_, trans. Richard
Nice, London: Routledge.

Pierre Bourdieu (1993) ‘The Field of Cultural
Production, or: The Economic World Reversed’, in Randall
Johnson, ed. The Field of Cultural Production: Essays
on Art and Literature , London: Polity Press, pp. 29-73.

Nicolas Bourriaud (2002) Relational Aesthetics , trans.

203

204

Simon Pleasance & Fronza Woods, Dijon-Quetigny: Les
Presses de Réel.

William Bowles (2005 [1987]) ‘The Macintosh Computer:
Archetypal Capitalist Machine?’, in Geoff Cox &
Joasia Krysa, eds. Engineering Culture , New York:
Autonomedia, pp. 39-61.

Stuart Brisley (2003) _Beyond Reason: Ordure , London:
Book Works.

Andreas Broeckmann (1997) in conversation with Ken Wark,
‘Machine Aesthetics’, Rhizome , http://www.rhizome.org/
object.rhiz?439 [last accessed 31 Dec 2005].

Andreas Broeckmann (2000) ‘Sociable Machinists of
Culture’, http://www.v2.nl/~andreas/texts/2000/
networkers.html [last accessed 31 Dec 2005].

Andreas Broeckmann & Susanne Jaschko, eds. (2001) DIY
Media - Art and Digital Media: Software - Participation
- Distribution_, festival catalogue, Berlin:
transmediale 01, Podewil.

Andreas Broeckmann (2003) ‘Notes on the Politics of
Software Culture,’ _Nettime , 4 September [for the _
Next5Minutes4 Reader], http://www.nettime.org/ [last
accessed 31 Dec 2005].

Andreas Broeckmann (2004) ‘Questioning Software Art’,
_Programmation Orientée Art , colloque organised by
David-Olivier Lartigaud & Anne-Marie Duguet, CRECA,
Université Paris, Sorbonne, 19/20 March.

Andreas Broegger (2003a) ‘Gigliotti on “(radical)
software”’, as part of software art thread, _Rhizome_
(via Andreas Broeckmann) 10 Oct, http://www.rhizome.org/
[last accessed 31 Dec 2005]

Andreas Broegger (2003b) ‘Software Art - an
introduction’, in Artificial.dk_, http://www.artficial.
dk/articles/software.htm [last accessed 31 Dec 2005]

Paul Brown, ed. (2003) ‘Generative computation and the
arts’, in _Digital Creativity , vol. 14, no.1l, Lisse:
Swets & Zeitlinger.

Wendy Brown (1996) States of Injury , Stanford:
Stanford University Press.

Susan Buck-Morss (1995) The Dialectics of Seeing:
Walter Benjamin and The Arcades Project_, Cambridge,
Mass.: MIT Press.

Peter Biirger (1984) Theory of the Avant Garde , trans.
Michael Shaw, Minneapolis: University of Minnesota
Press.

Seédn Burke (1992) The Death & Return of the Author:
criticism and Subjectivity in Barthes, Foucault and
Derrida , Edinburgh: Edinburgh University Press.

Jack Burnham (1968a) _Beyond Modern Sculpture: the
Effects of Science and Technology on the Sculpture of
this Century , New York: George Braziller.

Jack Burnham (1968b) ‘Systems Esthetics’, in Artforum ,
vol. 7 no. 1, September.

Alex Callinicos (2002) ‘Toni Negri and Michael Hardt’s
Empire’, Marxism 2002 conference presentation, July,
London.

205

Italo Calvino (1995) ‘How I Wrote One of My Books’, in
_Oulipo Laboratory , trans. Iain White, London: Atlas.

Carbon Defense League & Conglomco Media Conglomeration
(2004) ‘Recode.com’ in Geoff Cox, Joasia Krysa &

Anya Lewin, eds. _Economising Culture_, New York:
Autonomedia, pp. 111-119.

Manuel Castells (1996) The Rise of the Network
Society , (Volume 1 of The Information Age: Economy,
Society and Culture), Oxford: Blackwell.

Michel de Certeau (1984) ‘General Introduction’, _The
Practice of Everyday Life , trans. Steven F. Rendail,
Berkeley: University of California Press, pp. xi-xxiv.

Paul E. Ceruzzi (2003 [1998]) _A History of Modern
Computing , Cambridge, Mass.: MIT Press.

Noam Chomsky (1972 [1957]) _Syntactic Structures_ , The
Hague: Mouton.

206

Nick Collins, Alex McLean, Julian Rohrhuber, & Adrian
Ward (2003) ‘Live Coding in Laptop Performance’, in _
Organised Sound , 8 (3), Cambridge University Press, pp.
321-329.

Michael Connor, ed. (2004) Jodi: Computing 101B , Liverpool: FACT.

Geoff Cox & Adrian Ward (2007) ‘Perl’, in Matthew Fuller,
ed. Software Studies , Cambridge, Mass.: MIT Press.

Geoff Cox & Adrian Ward (2005) ‘Why Look at Artificial
Animals?’, in Roy Ascott, ed. Engineering Nature ,
Bristol: Intellect, pp. 115-119; derived from conference
paper, _Consciousness Reframed 03 , University College
Newport, Wales, 2003.

Geoff Cox, Alex McLean & Adrian Ward (2004) ‘Coding Praxis:
Reconsidering the Aesthetics of Generative Code’, in Olga
Goriunova & Alexei Shulgin, eds., Read me: Software Art
& Cultures , Arhus: DARC, pp. 161-174.

Geoff Cox, Casey Reas & Kate Rich (2003) ‘Software Art’
jury statement, transmediale 04 , Berlin.

Geoff Cox, Alex McLean & Adrian Ward (2001) ‘The Aesthetics
of Generative Code’, in Eugene Thacker, ed. Hard Code:
narrating the network society , Boulder, CA: Alt-X Press;
derived from _Generative Art 00_, conference paper,
Politecnico di Milano.

Geoff Cox & Tim Brennan (2000) ‘Manifest: Reframing
False Consciousness’, conference paper, _Consciousness
Reframed 00_, conference paper, University College
Newport, Wales.

Geoff Cox & Adrian Ward (1999) ‘The Authorship of Generative
Art’, in Kestutis Andrasiunas, ed. _.agon_[dotagon]
online journal, Lithuania, http://www.o-o.lt/agon/;
previously _Generative Art 99 conference, Politecnico
di Milano.

Florian Cramer & Ulrike Gabriel (2001) ‘Software Art’
jury text, in Andreas Broeckmann & Susanne Jaschko, eds. DIY
Media - Art and Digital Media: Software - Participation
- Distribution_, Berlin: transmediale 01 festival
catalogue, pp. 29-33.

Florian Cramer (2001) ‘On Literature and Systems
Theory’, lecture notes from Tate Modern, April 8,
http://cramer.plaintext.cc:70/all/literature and_
systems_theory/literature and system theory.html [last
accessed 31 Dec 2005].

Florian Cramer (2002a) ‘Concepts, Notations, Software
Art’, in Olga Goriunova & Alexei Shulgin, eds.
‘Software Art: Thoughts’, _Read me festival 1.2_,
catalogue, Moscow: Rosizo, State Centre for Museums and
Exhibitions, pp. 18-24.

Florian Cramer (2002b), ‘Discordia Concors: www.jodi.
org’, written for jodi exhibition catalogue _jodi_anti_
net_art.tex_, _Eu-gene_ posting, Nov 4, http://www.
generative.net/eu-gene/ [last accessed 31 Dec 2005].

Florian Cramer (2003) ‘Exe.cut[up]lable statements: the
Insistence of Code’, in Gerfried Stocker & Christine
Schopf, eds. Code - The Language of Our Time , Ars
Electronica, Linz: Hatje Cantz, pp. 98-103.

Florian Cramer (2005) Words Made Flesh, Code, Culture,
Imagination , Rotterdam: Piet Zwart Institute, http://
pzwart.wdka.hro.nl/mdr/research/fcramer/wordsmadeflesh/
[last accessed 31 Dec 2005].

Critical Art Ensemble (2002) _Digital Resistance:
Explorations in Tactical Media , New York: Autonomedia.

Sean Cubitt (1998) Digital Aesthetics , London: Sage.

Sean Cubitt (1999) ‘Orbis Tertius’, in _Third Text , 47,
Summer, London: Kala Press. pp. 3-10.

Guy Debord (1998 [1967]) The Society of the Spectacle ,
trans. Donald Nicholson-Smith, New York: Zone Books.

Gilles Deleuze & Félix Guattari (1987) _A Thousand
Plateaus_, trans. Brian Massumi, Minneapolis: University
of Minnesota Press.

Gilles Deleuze & Félix Guattari (1990 [1972]) ‘The
Desiring Machines’, in Anti-Oedipus: Capitalism and
Schizophrenia_ , [L’Anti-Oedipe] trans. Robert Hurley et
al, London: Athlone, pp. 1-50.

207

208

Gilles Deleuze & Antonio Negri (1990) Communists Like
Us_, New York: Semiotext(e).

Gilles Deleuze (1990) ‘Control and Becoming’,
conversation with Antonio Negri, in _Futur Anterieur_,
trans. Martin Joughin, http://www.generation-online.
org/p/fpdeleuze3.htm [last accessed 31 Dec 2005].

Jacques Derrida (1994) Spectres of Marx: The
State of the Debt, the Work of Mourning, & the New
International , trans. Peggy Kamuf, London: Routledge.

Arif Dirlik (1997) _The Postcolonial Aura: Third World
Criticism in the Age of Global Capitalism_, Boulder:
Westview Press.

Nick Dyer-Witheford (1999) _Cyber-Marx: Cycles and
Circuits of Struggle in High-Technology Capitalism ,
Urbana & Chicago: University of Illinois Press.

Nick Dyer-Witheford (2005) ‘Cognitive Capitalism and
the Contested Campus’, in Geoff Cox & Joasia Krysa, eds.
_Engineering Culture , New York: Autonomedia, pp. 71-93.

Terry Eagleton (1997) ‘Ideology and its Vicissitudes
in Western Marxism’ in Slavoj ZiZek, ed. Mapping
Ideology , London: Verso, pp. 179-226.

Ernest Edmonds & Mike Stubbs, eds. (2005) White Noise ,
Melbourne: Australian Centre for the Moving Image.

Sergei Eisenstein (1949 [1929 written]) ‘A Dialectical
Approach to Film Form’, in Jay Leyda, ed., _Film Form ,
New York: Harcourt, Brace and Company.

Friedrich Engels (1978 [1845 written]) ‘Working-Class
Manchester’, in Robert Tucker, ed., _The Marx-Engels
Reader , New York: Norton, pp. 579-585.

Friedrich Engels (1980 [1875-6 written]) ‘Introduction
to Dialectics of Nature’, in Karl Marx and Frederick
Engels: Selected Works in One Volume , London: Lawrence
and Wishart.

Micz Flor (2002) ‘"Hear me out” - Free Radio Linux’,
_Nettime , 12 May http://radioqualia.va.com.au/
freeradiolinux/ [last accessed 31 Dec 2005].

Luciano Floridi (1999) Philosophy and Computing: an
introduction , London: Routledge.

Simon Ford (2005) _The Situationist International: A
User’s Guide_, London: Black Dog.

Hal Foster (1996) ‘The Artist as Ethnographer’ &
‘Whatever Happened to Postmodernism?’, in The Return of
the Real , Cambridge, Mass.: MIT Press, pp. 171-204 &
205-226.

Michel Foucault (1991) ‘What is an Author?’, in Paul

Rabinow, ed. _The Foucault Reader: an Introduction to
Foucault’s Thought , trans. Josué V. Harari, London:

Penguin.

Francis Fukuyama (1992) _The End of History and the Last
Man , New York: The Free Press.

Matthew Fuller (2003) Behind the Blip: essays on the
Culture of Software_, New York: Autonomedia.

Matthew Fuller (2004) ‘The Digital Object’, in Olga
Goriunova & Alexei Shulgin, eds. Read Me: Software Art
& Cultures - Edition 2004 , Arhus: DARC, pp. 26-41.

209

Philip Galanter (2003) ‘What is Generative Art?
Complexity Theory as a Context for Art Theory’,
Generative Art 03 , international conference,
Politecnico di Milano, Italy, http://www.generativeart.
net [last accessed 31 Dec 2005].

Philip Galanter (2004) ‘Generative art is as old as
art’, an interview with Thomas Petersen & Kristine
Ploug, http://www.artificial.dk/articles/galanter.htm
[last accessed 31 Dec 2005].

Alex R. Galloway (2004) _Protocol: How Control Exists
After Decentralization , Cambridge, Mass.: MIT Press.

Vincent Geoghegan (1981) Reason & Eros: The Social
Theory of Herbert Marcuse , London: Pluto.

Charlie Gere (2005) ‘Jack Burnham and the Work of Art in
the Age of Real Time Systems’, in Morten Sondergaard,
ed. Get Real , The Museum of Contemporary Art in
Roskilde: Informations Forlag, pp. 149-163.

210

Charlie Gere, ed. (2006) White Heat, Cold Logic_,
Birkbeck College & MIT Press.

James Gleick (1998 [1987]) _Chaos: The Amazing Science
of the Unpredictable_, London: Vintage.

Gerrit Gohlke, ed. (2003) Software Art: Eine Reportage
iiber den Code/A Reportage about Source Code , Berlin:
Media Arts Lab at Kiinsterhaus Bethanien.

Brian Goodwin (1997) ‘Complexity, Creativity, and
Society’, in _Soundings: Media Worlds , Issue 5, Spring,
pp. 111-122.

Olga Goriunova & Alexei Shulgin (2002) ‘Artistic
Software for Dummies, and, by the way, Thoughts

about the New World Order’, in Goriunova & Shulgin,
eds. Software Art: Thoughts , Read me festival 1.2,
catalogue, Moscow: Rosizo, State Centre for Museums and
Exhibitions, pp. 6-9.

Olga Goriunova & Alexei Shulgin, eds. (2003) _Read_
Me 2.3 Reader: about software art , Helsinki: NIFCA
publication 25.

Olga Goriunova (2004) ‘Runme.org Repository: What

you believe is what you get’, symposium paper, _
Programmation Orientée Art , organised by David-Olivier
Lartigaud & Anne-Marie Duguet, CRECA, Université Paris,
Sorbonne, 19/20 March.

Olga Goriunova & Alexei Shulgin, eds. (2004) _Read Me:
Software Art & Cultures - Edition 2004_, Arhus: Digital
Aesthetic Research Center, Aarhus University.

Antonio Gramsci (1988) A Gramsci Reader , ed. David
Forgacs, London: Lawrence and Wishart.

Steve Grand (2000) _Creation: life and how to make it_,
London: Phoenix.

Clement Greenberg (1992) ‘Modernist Painting’, in
Francis Frascina & Jonathan Harris, eds. _Art in Modern
Culture: An Anthology of Critical Texts_, London:
Phaidon, pp. 308-14.

Félix Guattari (1995) _Chaosophy , Sylvere Lotringer,

ed., New York: Semiotext(e).

Jirgen Habermas (1984) Theory of Communicative Action ,
trans. Thomas McCarthy, Boston: Beacon Press.

Jirgen Habermas (1989) The Structural Transformation
of the Public Sphere: An Inquiry into a Category of
Bourgeois Society , trans. Thomas Burger, Cambridge:
Polity.

Jiirgen Habermas (1991 [1980]) ‘Modernity - An Incomplete
Project’ [first written as a talk in receipt of the
Theodor Adorno prize by the city of Frankfurt and

later published under the title ‘Modernity versus
Postmodernity’], in Hal Foster, ed. _Postmodern
Culture , London: Pluto Press.

Donna Haraway (1991) ‘The Cyborg Manifesto: Science,
Technology, and Socialist-Feminism in the Late
Twentieth Century’, in _Simians, Cyborgs and Women: the
reinvention of nature , London: Free Association, pp.
149-181.

Michael Hardt & Antonio Negri (2000) Empire , Cambridge
Mass.: Harvard University Press.

Terence Hawkes (1986 [1977]) _Structuralism and
Semiotics, London: Methuen.

N. Katherine Hayles (1989) ‘Chaos as Orderly Disorder:
Shifting Ground in Contemporary Literature and Science’,
_New Literary History , 20, pp. 305-322.

N. Katherine Hayles (1991) ‘Complex Dynamics in
Literature and Science’, in Hayles, ed. _Chaos and
Order , Chicago: University of Chicago Press.

N. Katherine Hayles (2002) Writing Machines_,
Cambridge, Mass.: MIT Press.

Georg W. F. Hegel (1953) Reason in History: A General
Introduction to the Philosophy of History , trans. R.S.
Hartman, New York: Library of Liberal Arts.

Georg W. F. Hegel (1967 [1807]) _The Phenomenology of
Mind/Spirit , trans. J.B. Baillie, New York: Harper &
Row.

21

212

Georg W. F. Hegel (1969) Hegel’'s Science of Logic_ ,
vol. 1, trans. A.V. Miller, London: Allen & Unwin.

Georg W. F. Hegel (1993 [1823]) _Introductory Lectures
on Aesthetics , trans. B. Bosanquet, London: Penguin.

Michael Heim (2000) ‘The Cyberspace Dialectic’, in Peter
Lunenfeld, ed. _The Digital Dialectic: New Essays on New
Media , Cambridge, Mass.: MIT Press.

T. F. Hoad, ed. (1993) _The Concise Oxford Dictionary of
English Etymology , Oxford: Oxford University Press.

Quintin Hoare & Geoffrey Nowell-Smith (1971) Selections
from the Prison Notebooks of Antonio Gramsci_, London:
Lawrence & Wishart.

Eric Hobsbawm (1998) Behind The Times: The Decline and
Fall of the Twentieth-Century Avant-Gardes , London:
Thames and Hudson.

Douglas Hofstadter (1985 [1981]) ‘A Coffee House
Conversation on the Turing Test’, in Metamagical
Themas , New York: Basic Books, pp. 492-525; also
http://www.cs.unr.edu/~sushil/class/ai/papers/
coffeehouse.html [last accessed 31 Dec 2005].

Douglas Hofstadter (2000 [1979]) _Godel, Escher, Bach:
an Eternal Golden Braid , London: Penguin.

Brian Holmes (2002) Hieroglyphs of the Future , Zagreb:
Arkzin.

Brian Holmes (2003), ‘Artistic Autonomy and the
communication society’, Nettime , Oct 26; conference
paper for Diffusion: Collaborative Practice in
Contemporary Art , Tate Modern, London.

Stewart Home (1993) ‘Assessing the Artstrike 1990-1993’,
http://www.thing.de/projekte/7:9%23/y Assessing the Art
Strike.html [last accessed 31 Dec 2005].

Richard Huelsenbeck, ed. (1998 [1920]) DADA Almanach ,
trans. Malcolm Green, et al, London: Atlas Press.

Erkki Huhtamo (2003) ‘Web Stalker Seek Aaron: Reflections
on Digital Arts, Codes and Coders’, in Gerfried Stocker

& Christine Schopf, eds. Code - The Language of Our
Time , Ars Electronica, Linz: Hatje Cantz, pp. 110-118.

The Institute for Applied Autonomy (2005) ‘Engaging
Ambivalence: Interventions in Engineering Culture’, in
Geoff Cox & Joasia Krysa, eds. Engineering Culture , New
York: Autonomedia, pp. 95-105.

Frederic Jameson (1991 [1984]) ‘The Cultural Logic of
Late Capitalism’, in _Postmodernism, or, The Cultural
Logic of Late-Capitalism , London: Verso, pp. 1-54; also
_New Left Review , no. 146, pp. 59-92.

Martin Jay (1996 [1973]) _The Dialectical Imagination:
A History of the Frankfurt School and the Institute
of Social Research 1923-1950_, London: University of
California Press.

Chris Jenks (1993) ‘Introduction: the Analytic Bases of
Cultural Reproduction Theory’, in Jenks, ed. _Cultural
Reproduction , London: Routledge, pp. 1-16.

Troels Degn Johansson (2004) ‘Mise en Abyme in Software
Art: A Comment to Florian Cramer’, in Olga Goriunova &
Alexei Shulgin, eds. Read Me: Software Art & Cultures -
Edition 2004 , Arhus: DARC, pp. 150-159.

Randall Johnson (1993) ‘Editor’s Introduction: Pierre
Bourdieu on Art, Literature and Culture’, in Pierre
Bourdieu, The Field of Cultural Production , Cambridge:
Polity, pp. 1-25.

Steven Johnson (2001) _Emergence: The Connected Lives of
Ants, Brains, Cities and Software , London: Penguin.

Alain Joxe (2002) Empire of Disorder , Los Angeles/New
York: Semiotext(e).

Alan C. Kay (1984) ‘Computer Software’, in _Scientific
American_, 251(3), September, pp. 41-47.

Kevin Kelly (2003 [1994]) Out of Control: The New
Biology of Machines, Social Systems, and the Economic
World , http://www.kk.org/outofcontrol/ [last accessed
31 Dec 2005].

Sarah Kember (2003) Cyberfeminism and Artificial Life ,

213

214

London: Routledge.

Lucy Kimbell, ed. (2004) New Media Art: Practice and
Context in the UK 1994-2004_, London: Arts Council of
England, with Cornerhouse.

Alexander Kojéve (1947) Introduction a la lecture de
Hegel: Legons sur “La Phénoménologie de 1l’Esprit” ,
Paris: Gallimard.

Friedrich Kittler (1990) _Discourse Networks 1800/1900 ,
trans. M. Metteer & C. Cullens, Stanford: Stanford
University Press.

Friedrich Kittler (1996) ‘There is no Software’, http://
www.ctheory.net/text file.asp?pick=74 [last accessed

31 Dec 2005]; also in Timothy Druckery, ed. (1996) _
Electronic Culture , New York: Aperture, pp. 331-337.

Friedrich Kittler (1999) ‘On the Implementation of
Knowledge - Toward a Theory of Hardware’, _Nettime ,
http://www.nettime.org/nettime.w3archive/199902/
msg00038.html [last accessed 31 Dec 2005].

Melanie Klein (1988) Love, Guilt and Reparation ,
London: Vintage.

Naomi Klein (2001) _No Logo , London: Flamingo.

Eric Kluitenberg (2002) ‘Transfiguration of the Avant-
Garde/The Negative Dialectics of the Net’, quoted in
Duna Mavor, ‘avant.garde - tranfigured or dead?’, _
Nettime , March, http://www.nettime.org/ [last accessed
31 Dec 2005].

Donald Knuth (1981 [1968]) The Art of Computer
Programming: Volume 1, Fundamental Algorithms ,
Reading, Mass.: Addison-Wesley.

Chris Kraus & Sylvere Lotringer, eds. _Hatred of
Capitalism: A Semiotext(e) Reader , Los Angeles:
Semiotext(e), pp. 273-280.

Ronald D. Laing (1965 [1960]) _The Divided Self: An
Existential Study in Sanity and Madness_, Harmondsworth:
Penguin.

Dominique Laporte (2000) History of Shit , London: MIT
Press.

David-Olivier Lartigaud (2004) ‘Introduction’, _
Programmation Orientée Art_, colloque organised with
Anne-Marie Duguet, CRECA, Université Paris, Sorbonne,
19/20 March.

Bruno Latour (1999 [1987]) _Science in Action: How
to Follow Scientists and Engineers Through Society_,
Cambridge, Mass.: Harvard University Press.

Maurizio Lazzarato (1996) ‘Immaterial Labour’, trans.
Paul Colilli & Ed Emory, in Paolo Virno & Michael Hardt,
eds. _Radical Thought in Italy , Minneapolis: University
of Minnesota Press, pp. 132-146.

Maurizio Lazzarato (1999) ‘New Forms of Production and
Circulation of Knowledge’, trans. Bram Dov Abramson,

in Josephine Bosma et al, eds. Readme! Filtered by

Nettime: ASCII Culture and the Revenge of Knowledge ,

New York: Autonomedia, pp. 159-166.

Maurizio Lazzarato (2003) ‘Digital Work’ seminar 215
[transcribed by Leslie Robbins & Alejandra Nunez Perez],
Media Design Research, Piet Zwart Institute & V2_
Organisation, Institute for the Unstable Media.

Maurizio Lazzarato (2004) ‘General Intellect: Towards an
Inquiry into Immaterial Labour’, trans. Ed Emery, [first
published in Common Sense] http://multitudes.samizdat.
net/article.php3?id_article=1498 [accessed 31 Dec 2005].

Henri Lefebvre (1968) ‘The Marxian Concept of Praxis’,
in The Sociology of Marx , trans. Norbert Guterman, New
York: Pantheon, pp. 25-58.

Henri Lefebvre (1991) _The Production of Space , trans.
Donald Nicholson-Smith, Oxford: Blackwell.

Fred Lerdahl & Ray Jackendoff (1983) A Generative Theory
of Tonal Music , Cambridge, Mass.: MIT Press.

Esther Leslie (2000) ‘The Work of Art in the Age

of Unbearable Capitulation’, in _Walter Benjamin:
Overpowering Conformism , London: Pluto Press, pp. 130-
167.

216

Esther Leslie (2004) ‘Globalica: Communism, Culture and
the Commodity’ in Geoff Cox, Joasia Krysa, Anya Lewin,
eds. Economising Culture New York: Autonomedia, pp.
89-109.

Lawrence Lessig (1999) Code and Other Laws of
Cyberspace, New York: Basic Books; also http://lessig.
org/

Lawrence Lessig (2001) _The Future of Ideas: The Fate
of the Commons in a Connected World , New York: Random
House.

Lawrence Lessig (2004) Free Culture: How Big Media Uses
Technology and the Law to Lock Down Culture and Control
Creativity , http://www.free-culture.cc/freeculture.pdf/
[last accessed 31 Dec 2005].

Ruth Levitas (1989) ‘The Future of Thinking about the
Future’, in Jon Bird, Barry Curtis et al, eds. _Mapping
the Future , London: Routledge.

Richard Levins & Richard Lewontin (1985) _The
Dialectical Biologist , Cambridge, Mass.: Harvard
University Press.

Claude Lévi Strauss (1970 [1964]) _The Raw and the
Cooked: Introduction to a Science of Mythology , trans.
John & Doreen Weightman, Harmonsworth: Penguin.

Steven Levy (1994) Hackers: Heroes of the Computer
Revolution , New York: Penguin.

Lawrence Liang (2004) _Guide to Open Content licenses_,
Rotterdam: Piet Zwart Institute.

Jacob Lillemose (2004) ‘A Re-Declaration of Dependence
- Software Art in a Cultural Context It Can’t Get Out
Of’, in Olga Goriunova & Alexei Shulgin, eds. _Read_ Me:
Software Art & Cultures_, Arhus: DARC, pp. 136-149.

Lucy Lippard, ed. (1997) _Six Years: the
dematerialization of the art object from 1966 to 1972
[...]_, London: University of California Press.

Geert Lovink & Florian Schneider (2001) ‘New Rules for
the New Actonomy’, Nettime , 25 June, http://www.

nettime.org/nettime.w3archive/200106/msg00141.html [last
accessed 31 Dec 2005].

Geert Lovink (2002) _Dark Fiber: Tracking Critical
Internet Culture , Cambridge, Mass.: MIT Press.

Geert Lovink & Florian Schneider (2003) ‘Reverse
Engineering Freedom’, Nettime , 24 Sept, http://www.
nettime.org/ [last accessed 31 Dec 2005].

Peter Lunenfeld, ed. (2000) _The Digital Dialectic: New
Essays on New Media , Cambridge, Mass.: MIT Press.

Peter Lunenfeld (2002) ‘Snap to Grid’, quoted in
Rhizome Digest , May, http://www.rhizome.org/ [last
accessed 31 Dec 2005].

Georg Lukécs (1976 [1922]) History and Class
Consciousness: Studies in Marxism_, trans. Rodney
Livingstone, Cambridge, Mass.: MIT Press.

Adrian Mackenzie (2005) ‘The Performativity of Code:
Software and Cultures of Circulation’, http://www.lancs.
ac.uk/staff/mackenza/papers.php [last accessed 31 Dec
2005]; also in Theory, Culture & Society , vol. 22, no.
1, London: Sage, pp. 71-92.

Ernest Mandel (1975) _Late Capitalism_, London: New Left
Books.

Ernest Mandel (1990 [1976]) ‘Introduction’, to Karl
Marx, _Capital: Volume 1 , London: Penguin, pp. 11-86.

Ernest Mandel (1995 [1978]) _The Long Waves of
Capitalist Development: A Marxist Interpretation ,
London: Verso.

Lev Manovich (1999) ‘Avant-garde as Software’, http://
www.manovich.net/TEXTS_04.HTM [last accessed 31

Dec 2005] [first published in Stephen Kovats, ed. _
Ostranenie , Frankfurt: Campus Verlag].

Lev Manovich (2001) The Language of New Media ,
Cambridge, Mass.: MIT Press.

Lev Manovich (2002) ‘Generation Flash’, http://www.
manovich.net/TEXTS 04.HTM [last accessed 31 Dec 2005].

217

218

Mao Tsetung (1977) _Five Essays on Philosophy , Peking:
Foreign Languages Press.

Carolyn Marvin (1990) _When Old Technologies Were New:
Thinking About Electronic Communication in the Late
Nineteenth Century , Oxford: Oxford University Press.

Karl Marx (1978 [1845-6]) ‘The German Ideology’, in
Robert C. Tucker, ed. _The Marx-Engels Reader , New
York: Norton, pp. 146-200.

Karl Marx (1980) [1851-2]) ‘The Eighteenth Brumaire of
Louis Bonaparte’ & [1845]) ‘Theses on Feuerbach’, in _
Karl Marx and Frederick Engels: Selected Works_, London:
Lawrence and Wishart, pp. 96-179 & pp. 28-31.

Karl Marx (1981 [1857-8 written]) _Grundrisse:
Foundations of the Critique of Political Economy (Rough
Draft) trans. Martin Nicolaus [first published 1939,
this translation 1973] Harmondsworth: Penguin.

Karl Marx (1990 [1867]) _Capital: Volume 1 , trans. Ben
Fowkes, Harmondsworth: Penguin.

Karl Marx & Friedrich Engels (1985 [1848]) _The
Communist Manifesto , Harmondsworth: Penguin.

Harry Mathews & Alastair Brotchie (1998) eds. _Oulipo
Compendium , London: Atlas Press.

Humberto R. Maturana & Francisco J. Varela (1980
[1973]) _Autopoiesis and Cognition: the Realization
of the Living , Robert S. Cohen & Marx W. Wartofsky,
eds. Boston Studies in the Philosophy of Science 42,
Dordecht: D. Reidel Publishing.

Duna Mavor [aka Joanne Richardson] (2002) ‘avant.garde
- tranfigured or dead?’, _Nettime , March, http://www.
nettime.org/ [last accessed 31 Dec 2005].

Marcel Mauss (1970) _The Gift: Forms and Functions of
Exchange in Archaic Societies , trans. Ian Cunnison,
London: Cohen & West.

Marshall McLuhan & Quentin Fiore (1967) _The Medium is
the Massage: An Inventory of Effects_ , New York: Bantam
Books.

Armin Medosch (2003) ‘Piratology: the deep seas of open
code and free culture’, in Medosch, ed. (2003) _dive: an
introduction to the world of free software and copyleft
culture , Liverpool: FACT, pp. 8-19.

Armin Medosch (2005) ‘Roots Culture: Free Software
Vibrations Inna Babylon’, in Geoff Cox & Joasia Krysa,
eds. Engineering Culture , New York: Autonomedia, pp.
177-201.

Gustav Metzger (1996) ‘Auto-Destructive Art’, in _
Damaged Nature, Auto-Destructive Art , London: Coracle,
pp. 25-63.

Eben Moglen (2003) ‘\DEF\MYTITLE{DOTCOMMUNIST
MANIFESTO}'’, in Ivet Curlin, Anna Devic, Natasa Ilic,
Dejan Krsic, Sabina Sabolovic, eds. _What, How & For
Whom: on the occasion of the 152nd anniversary of the
Communist Manifesto , Zagreb: Arkzin, pp. 216-223.

Nicholas Mosley (1972) _The Assassination of Trotsky_,
London: Abacus.

Warren F. Motte Jr. ed. (1998) Oulipo: a Primer of
Potential Literature , trans. Warren F. Motte, Illinois:
Dalkey Archive Press.

Mark Napier (2000) interviewed by Andreas Broegger,
‘The Aesthetics of Programming’, in conjunction with
exhibition on/off , Copenhagen, http://www.afsnitp.dk/
onoff/ [last accessed 31 Dec 2005].

Antonio Negri (1991) Marx Beyond Marx: Lessons on the
Grundrisse , Jim Flemming, ed., trans. Harry Cleaver,
Michael Ryan & Maurizio Viano, New York: Autonomedia.

Antonio Negri (1999 [1998]) ‘Back to the Future: A
Portable Document’, trans. Michael Hardt, in Josephine
Bosma, et al, eds. _Readme! Filtered by Nettime: ASCII
Culture and the Revenge of Knowledge , New York:
Autonomedia, pp. 181-186.

Antonio Negri (2002) debate on ‘counter-empire’, at _
sherwood , 17 May, http://www.sherwood.it/controimpero/

[last accessed 31 Dec 2005].

John von Neumann & Oskar Morgenstern (1944) Theory of

219

220

Games and Economic Behaviour , Princeton: Princeton
University Press.

Bill Nichols (1988) ‘The Work of Culture in the Age of
Cybernetic Systems’, in _Screen_, vol.29, no.2, Winter,
pp. 22-46.

David Noble (1995) Progress without People: New
Technology, Unemployment, and the Message of
Resistance_, Toronto: Between the Lines.

Franziska Nori, ed. (2002) I Love You: Computer,
Viren, Hacker, Kultur , exhibition catalogue, Museum
Flir Angewandte Kunst in Frankfurt am Main.

Sue Owens (1996) ‘Chaos Theory, Marxism and Literary
History’, in Jody Berland & Sarah Kember, eds. _New
Formations: Technoscience , Number 29, Summer, London:
Lawrence & Wishart.

Harold Osborne, ed. (1988) _The Oxford Companion to
Twentieth-Century Art , Oxford: Oxford University
Press.

Matteo Pasquinelli (2004) ‘Radical Machines Against the
Techno-Empire: From Utopia to Network’, trans. Arianna
Bove, http://www.rekombinant.org/downloads/radical
machines.pdf [last accessed 31 Dec 2005] [french
version, in Multitudes 21 , http://www.eurozine.com/
partner/multitudes/current-issue.html].

Christiane Paul (2003a) _Digital Art , London: Thames & Hudson.

Christiane Paul (2003b) ‘Public CulturalProduction
Art(Software){‘, in Gerfried Stocker & Christine
Schopf, eds. Code - The Language of Our Time , Ars
Electronica, Linz: Hatje Cantz, pp. 129-135.

Joachim Paul (2000), ‘Gotthard Giinther, the “Einstein”
of Philosophy’, http://www.vordenker.de/ggphilosophy/
ggeinstein en.htm [last accessed 24 Nov 2005].

Georges Perec (1995 [1969]) _A Void , [_La
Disparition_] trans. Gilbert Adair, London: Harvill

Press.

Norbert Pfaffenbichler & Sandro Droschl, eds. (2003)

Abstraction Now , Kiinstlerhaus Wien: Edition Camera
Austria.

Sadie Plant (1995) _The Most Radical Gesture: The Situationist
International in a Postmodern Age , London: Routledge.

Sadie Plant (1998) Zeros + Ones_ , London: Fourth
Estate.

Edgar Allan Poe (1836) ‘Maelzel’s Chess Player’, [first
published in _Southern Literary Messenger], http://www.
book-portal.net/poe/volumed4/maelzels.html [last accessed
31 Dec 2005].

Karl Popper (2003 [1945]) _The Open Society and its
Enemies_, London: Routledge Classics.

Mark Poster (1997) ‘Cyberdemocracy: Internet and the
Public Sphere’, in David Porter. ed. Internet Culture ,
London: Routledge, pp. 201-217.

Ilya Prigogine & Isabelle Stengers (1985) _Order Out of

Chaos: Man’'s New Dialogue With Nature , London: Fontana. 991

Eric S. Raymond (2004) The Art of UNIX Programming ,
Boston: Addison-Wesley.

Casey Reas (2004) _{Software}Structures_, in Olga
Goriunova & Alexei Shulgin, eds. Read Me: Software Art
& Cultures , Arhus: DARC, pp. 276-297.

Jonathan Rée (1999) I See a Voice: a Philosophical
History , London: Flamingo.

Jeremy Rifkin (1995) The End of Work: The Decline of
the Global Labor Force and the Dawn of the Post-Market
Era , New York: Putnam.

John Roberts, ed. (1994) Art Has No History! The Making
and Unmaking of Modern Art , London: Verso.

David A. Ross (2003) ‘Radical Software Redux’, http://
www.radicalsoftware.org/e/ross.html [last accessed 31
Dec 2005].

Michael Rush (1999) New Media in Late-20th Century
Art_, London: Thames & Hudson.

Mirko Schéafer (2004) ‘Made by Users: How Users Improve
Things, Provide Innovation and Change our Idea of
Culture - Problems and Perspectives’, in Olga Goriunova
& Alexei Shulgin, eds. _Read_Me: Software Art &
Cultures_, Arhus: DARC, pp. 62-77.

Antoine Schmitt (2003) ‘software art vs. programmed
art’, posting on _Rhizome Raw_, 4 Oct, http://rhizome.
org/thread.rhiz?thread=10403&text=20334#20334 [last
accessed 31 Dec 2005].

Pit Schultz (2002) ‘Re: The Hacker Class/On Empire’,
_Nettime , 02 June, http://www.nettime.org/ [last
accessed 31 Dec 2005].

Pit Schulz (2005) ‘The Producer as Power User’, in Geoff
Cox & Joasia Krysa, eds. _Engineering Culture_, New
York: Autonomedia, pp. 111-125.

Hans-Peter Schwarz (1997) _Media Art History_, ZKM
Center for Art and Media, Karlsruhe: Prestel.

William Curtis Seaman (1999) Recombinant Poetics:
Emergent Meaning as Examined and Explored Within a
Specific Generative Virtual Environment , PhD thesis,
CAiiA: Centre for Advanced Inquiry in the Interactive
Arts, University of Wales.

222

Edward A. Shanken (1998) ‘The House That Jack Built:
Jack Burnham’s Concept of “Software” as a Metaphor for
Art’, in Leonardo Electronic Almanac , 6:10, November,
http://mitpress.mit.edu/e-journals/LEA/ARTICLES/jack.
html [last accessed 31 Dec 2005]

Edward A. Shanken (2003) ‘From Cybernetics to
Telematics: The Art, Pedagogy, and Theory of Roy
Ascott’, in Roy Ascott, Telematic Embrace: Visionary
Theories of Art, Technology, and Consciousness_,
Berkeley: University of California Press, pp. 1-94.

Alexei Shulgin (1997) ‘Re: nettime: Art on Net’,
nettime , 13 March, http://www.nettime.org/Lists-
Archives/nettime-1-9703/msg00066.html [last accessed 31
Dec 2005].

Peter Singer (1983) Hegel , Oxford: Oxford University
Press.

Ricard Solé & Brian Goodwin (2000) _Signs of Life: How
Complexity Pervades Biology , New York: Perseus Books.

Cornelia Sollfrank (2001) ‘Hacking the Art Operating
System’, interviewed by Florian Cramer, Chaos Computer
Club, Berlin; also version published in 2002-3, in Simon
Yuill & Kerstin Mey, eds., Communication, Interface,
Locality_ , Manchester University Press in association
with Duncan of Jordanstone College of Art and Design.

Alan Sondheim (2001) ‘Introduction to Codework’, in
_American Book Review , 22 September, no. 6, pp. 1-4;
also http://www.litline.org/ABR/issues/Volume22/Issue6/
sondheim.pdf [last accessed 31 Dec 2005].

Alan Sondheim (2005) ‘On Code and Codework’, _Nettime ,
12 March.

Felix Stalder & Jesse Hirsh (2002) ‘Open Source
Intelligence’, First Monday , vol.7, no.6, June,
http://firstmonday.org/issues/issue7_6/stalder/index.html
[last accessed 31 Dec 2005].

Julian Stallabrass (2003) _Internet Art: The Online
Clash of Culture and Commerce , London: Tate Publishing.

Richard M. Stallman (1994) ‘Why Software should not have
Owners’, http://www.gnu.org/philosophy/why-free.html
[last accessed 31 Dec 2005].

Richard M. Stallman (1996) ‘The Free Software
Definition’, http://www.gnu.org/philosophy/free-sw.html
[last accessed 31 Dec 2005].

Richard M. Stallman (1998) ‘The GNU Project’, http://www.

gnu.org/gnu/thegnuproject.html [last accessed 31 Dec 2005].

Richard M. Stallman (2002) _Free Software, Free Society:
Selected Essays of Richard M. Stallman , Joshua Gay, ed.
Free Software Foundation.

Gerfried Stocker & Christine Schopf, eds. (2003) Code -
The Language of Our Time , Ars Electronica, Linz: Hatje
Cantz.

Tiziana Terranova (2000) ‘Free labor: producing culture
for the digital economy’, in _Social Text , 63, Vol. 18,

223

224

No. 2, Durham: Duke University Press, pp. 33-58.

Tiziana Terranova (2002) ‘The degree zero of politics:
virtual cultures and virtual social movements’, _Film-
Philosophy , 06 Feb, http://www.film-philosophy.com/
[last accessed 31 Dec 2005].

Tiziana Terranova (2004) _Network Culture: Politics for
the Information Age_, London: Pluto Press.

Rolf Tiedemann (1999 [1988]) ‘Dialectics at a
Standstill: Approaches to the Passagen-Werk’, trans.
Gary Smith & André Lefevere, in Walter Benjamin, The
Arcades Project , Cambridge, Mass.: Belknap Press, pp.
929-945.

Mario Tronti (1980 [1965]) ‘The Strategy of Refusal’,
in ‘Autonomia: Post-political Politics’, _Semiotext(e)
vol. 3, no. 3, New York: Semiotext(e), pp. 28-34.

Sherry Turkle (1997) Life on the Screen: Identity in
the Age of the Internet , London: Phoenix.

Tristan Tzara (1998 [1918]) ‘Dada Manifesto’, in Charles
Harrison & Paul Wood, eds. Art in Theory: 1900-1990:

an anthology of changing ideas , Oxford: Blackwell, pp.
249-253.

Gianni Vattimo (1992) The Transparent Society , trans.
David Webb, Cambridge: Polity Press.

Roman Verostko (2004) ‘Imaging the Unseen: A statement
on my pursuit as an artist’, http://www.verostko.com/
archive/statements/statement-recent.html [last accessed
31 Dec 2005].

Paolo Virno (1996) ‘Virtuosity and Revolution: The
Political Theory of Exodus’, trans. Ed Emory, in Paolo
Virno & Michael Hardt, eds. _Radical Thought in Italy ,
Minneapolis: University of Minnesota Press, pp. 188-209.

Paulo Virno (2004) _A Grammar of the Multitude: For an
Analysis of Contemporary Forms of Life , trans. Isabella
Bertoletti, James Cascaito, Andrea Casson, New York: Semiotext(e).

Marina Vishmidt (2005) ‘Precarious Straits’, in Mute Vol.
II #0 - Precarious Reader , London: Mute, pp. 38-43.

Yvonne Volkart (2004), ‘Calculating and Calculators: The
algorithmic and generative as an aesthetic strategy’,

in Springerin , trans. Timothy Jones, http://www.
springerin.at/dyn/heft text.php?textid=1562&lang=en
[last accessed 31 Dec 2005].

Larry Wall (1998), ‘computer code and linguistics’,
http://www.dd]j.com/documents/s=923/ddj9802a/9802a.htm
[last accessed 31 Dec 2005].

Larry Wall (1999), ‘Perl, the first postmodern computer
language’, http://www.wall.org/~larry/pm.html [last
accessed 31 Dec 2005].

McKenzie Wark (2002a), ‘From Hypertext to Codework’,
_HJS , vol. 3, issue 1, http://www.geocities.com/
hypermedia_joyce/wark.html [last accessed 31 Dec 2005].

McKenzie Wark (2002b), ‘on material and “immaterial”
labour’, Nettime , 01 June, http://www.nettime.org/
[last accessed 31 Dec 2005].

McKenzie Wark (2002c) ‘The Property Question: Culture,
Economy, Information’, Nettime 10 Feb, http://www.
nettime.org/ [last accessed 31 Dec 2005].

McKenzie Wark (2004) _A Hacker Manifesto , Cambridge,
Mass.: Harvard University Press [earlier version (2001)
‘Hacker Manifesto 2.0’, http://www.feelergauge.net/
projects/hackermanifesto/version 2.0/] [last accessed 31
Dec 2005].

Tomas P. Weissert (1991) ‘Representation and Bifurcation:
Borges’'s Garden of Chaos Dynamics’, in N. Katherine
Hayles, ed. Chaos and Order , Chicago: University of
Chicago Press, pp. 223-243.

Mitchell Whitelaw (2005) ‘System Stories and Model Worlds: A
Critical Approach to Generative Art’, in Olga Goriunova,
ed. _Readme 100: Temporary Software Art Factory_,
Dortmund: Hartware Medien Kunst Verein, pp. 134-153.

Norbert Wiener (2000 [1948]) Cybernetics: or Control
and Communication in the Animal and the Machine ,

Cambridge, Mass.: MIT Press.

Raymond Williams (1988) Keywords: A vocabulary of culture

225

226

and society , London: Fontana.

Stephen Wilson (2002) Information Arts: Intersections
of Art, Science, and Technology , Cambridge, Mass.: MIT
Press/Leonardo Books.

Gaby Wood (2002) ‘An Unreasonable Game’, in Living
Dolls , London: Faber & Faber, pp. 55-103.

Richard Wray (2005) ‘EU says Internet could fall apart’,
The Guardian, 12 October, http://technology.guardian.

co.uk/news/story/0,16559,1589967,00.html [last accessed

31 Dec 2005].

Richard Wright (1998) Montage - Transformation -
Allegory: A Study of Digital Imaging in Dialectical Film
Making , PhD thesis, London Guildhall University.

Richard Wright (1999) ‘Programming with a Paintbrush: The
Last Interactive Workstation’, http://www.runme.org/
project/+Painting/ http://www.nettime.org/ [last accessed
31 Dec 2005]; also in _Filmworks_, no.12, Autumn 2000.

Richard Wright (2004) ‘Software Art After Programming’,
_Metamute , July, http://www.metamute.com/look/article.
tpl?IdLanguage=1&IdPublication=1&NrIssue=28&NrSection=10
&NrArticle=1397&ST_max=0 [last accessed 31 Dec 2005].

Steve Wright (2005) ‘Reality Check: Are We Living in an
Immaterial World?’, in Josephine Berry Slater, ed. _

Underneath The Knowledge Commons , vol. 2 #1, London:
Mute, pp. 34-45.

Wu Jie (1996) _Systems Dialectics_, Beijing: Foreign
Languages Press.

Slavoj ZiZzek, ed. (1997) ‘Introduction’, in _Mapping
Ideology , London: Verso.

Slavoj Zizek (1998) _The Spectre Is Still Roaming
Around! , Zagreb: Bastard Books.

Slavoj Zizek (1999a) ‘Hegel’s “Logic of Essence” as a
Theory of Ideology’, & ‘Is It Possible to Traverse the
Fantasy in Cyberspace?’, in Elizabeth Wright & Edmond
Wright, eds. The Zizek Reader , Oxford: Blackwell, pp.
225-250 & 102-124.

Slavoj Zi%ek (1999b) ‘Introduction: A Spectre Is
Haunting Western Academia...’ & ‘Part 1: The “Night of
the World”’, in _The Ticklish Subject: the absent centre
of political ontology , London: Verso, pp. 1-123.

Slavoj ZiZek (2003 [2001]) ‘A Holiday from History: and
other real stories’, in Johan Grimonprez, dial H-I-S-
T-O-R-Y , [first published in Janus #9], Ostfildern: Hatje
Cantz.

0100101110101101.0RG & EpidemiC (2001) _biennale.py ,
http://www.0100101110101101.0rg/home/biennale_ py/index.
html

0100101110101101.0RG (2000-03) 1life sharing , http://
www.0100101110101101.0rg/home/life sharing/index.html

46LiverpoolSt.org (Tim Brennan, Geoff Cox & Adrian Ward)
(1999) Manifest , http://www.46liverpoolst.org [offline]

Eric Andreychek (2001) _Jabberwocky , http://www.
perlmonks.org/index.pl?node id=111157

Antiorp/Netochka Nezvanova, http://www.m9ndfukc.com/
[currently unavailable]

Maurizio Bolognini (1992-) various iterations of sealed
computers - see Bolognini (2004) section 7.2 above.

Christophe Bruno (2006) _Human Browser , http://www.
iterature.com/human-browser/

CODeDOC (2002) online exhibition, http://artport.whitney.
org/commissions/codedoc/index.shtml; & _CODeDOC II_

(2003) http://www.aec.at/de/festival2003/programm/codedoc.asp

Harold Cohen (1973-) _Aaron_, http://crca.ucsd.
edu/~hcohen/

Conglomco.org & The Carbon Defense League (2003) _Re-
code , http://www.re-code.com/ [project since offline]

Constant vzw, ‘Cuisine Interne Keuken’, http://www.

227

228

constantvzw.com/cn_core/cuisine/aboutEN.php

Copenhagen Free University [aka Henriette Heise & Jakob
Jakobsen], http://www.copenhagenfreeuniversity.dk/

Florian Cramer (1996-2000) Permutations , http://
userpage.fu-berlin.de/~cantsin/permutations/

Creative Commons, http://creativecommons.org/

_Cybernetic Serendipity (1968) exhibition, http://www.
medienkunstnetz.de/exhibitions/serendipity/

Digitalcraft.org (2002) I Love You , http://www.
digitalcraft.org/iloveyou/index.htm

Richardo Dominguez/Electronic Disturbance Theatre (1998)
Floodnet http://www.thing.net/~rdom/ecd/ecd.html

Elmo, Gum, Heather, Holly, Mistletoe and Rowan (2003)
_Notes Towards the Complete Works of Shakespeare , book/
DVD (produced by Geoff Cox), London: Kahve-Society & Book
Works, as part of http://www.vivaria.net/

Free Software Foundation, http://www.fsf.org/

Matthew Fuller (2000) _A Song for Operations_
Futurenatural [aka Richard Wright] (2001) _The Bank of
Time , http://www.thebankoftime.com/ [also see http://
runme.org/project/+BoT/]

_Generator (2002-03) exhibition (curated by Geoff Cox

& Tom Trevor for Spacex), http://www.generative.net/
generator/

Hans Haacke (1971) Visitors'’ Profile

Harwood (2002) _london.pl , http://www.mongrelx.org/
home/index.cgi?LondonPL

Indymedia, http://www.indymedia.org/

Jaromil (2002) _forkbomb , http://www.runme.org/
project/+forkbombsh/

Jaromil (2001-) dyne:bolic_, http:/dynebolic.org/

JODI [aka Joan Heemskerk & Dirk Paesmans] (1995)
wwwwwwwwww_, http://wwwwwwwwww.Jjodi.org

JODI (2002) Jet Set Willy ©1984 , http://jetsetwilly.jodi.org/
JODI (2002) My%Desktop (see Connor 2004)

JODI (2004) Desktop Improvisations: My%Desktop Live ,
performance & DVD commissioned by Fact, Liverpool as

part of exhibition _Computing 101B_.

Joasia Krysa & Grzesiek Sedek (2005) softwareKURATOR
v.l , http://www.kurator.org/

Sol LeWitt (1968-) Wall Drawings_

Robert Luxembourg (aka Sebastian Liitgert) (2003) _The
Conceptual Crisis of Private Property as a Crisis in
Practice , http://rolux.net/crisis/

Rainer Mandl, Annja Krautgasser (2003) _Pedigree ,
http://www.aec.at/de/festival2003/programm/codedoc/

krautgasser/project.asp

Alex McLean (2003) _animal.pl , http://www.vivaria.net/
taxonomy/examples/animal/ [only death notice online]

Alex McLean (2001) _forkbomb.pl , http://www.runme.org/
project/+forkbomb/

Alex McLean (2004) _feedback.pl , http://yaxu.org/words/
papers/feedback.html

Armin Medosch, Shu Lea Cheang & Yukiko Shikata (2004)
_The Kingdom of Piracy , http://residence.aec.at/kop/

Mez (aka Mary Anne Breeze), http://www.hotkey.net.
au/~netwurker/

Mongrel (1999) _Linker_ , http://www.mongrel.org.uk/
Linker

Mongrel/Harwood (2003) Nine (9), http://9.waag.org/

Yoko Ono (2001) _Mend Peace for the World , http://www.
generative.net/generator/browse.cgi?page=ono

229

230

Ordure.org (2000) Dust_ , http://dump.ordure.org/www.
ordure.org/291/dust.html

OuLiPo [Ouvroir de Littérature Potentielle], http://www.
oulipo.net/

pOesls: Digitale Poesie (2004), http://www.pOesls.net/

Project Gnutenberg, pngreader , http://pngreader.
gnutenberg.net/ [currently offline]

Project Gnutenberg (2002) walser.php , http://www.
textz.com/trash/walser.php.txt

Raymond Queneau (1961) _Cent Mille Milliards de Poemes_
[one hundred thousand billion poems]

_Radical Software journal (1970-74) http://www.
radicalsoftware.org/

radioqualia (2002) _Free Radio Linux , http://
radioqualia.va.com.au/freeradiolinux/

Tom Ray (1990-) Tierra , http://www.his.atr.jp/~ray/
tierra/

readme (2002-) http://readme.runme.org/

Casey Reas (2004) {Software} Structures , http://
artport.whitney.org/commissions/softwarestructures/

Redundant Technology Initiative (1996-), http://www.
lowtech.org/

RTMark (1996-) http://www.rtmark.com/
runme (2003-) http://www.runme.org/
Bill Seaman (1996-) _The World Generator/The Engine
of Desire , http://digitalmedia.risd.edu/billseaman/

workSpcWorldOl.php

Signwave (aka Adrian Ward) (2000-) _Auto Illustrator ,
http://www.auto-illustrator.com/

Signwave (2001-) Anagrammar_ http://www.signwave.co.uk/
go/products/anagrammar/

_Software, Information Technology: Its Meaning for Art
exhibition (1970)

socialfiction.org (aka Wilfried Hou Je Bek) (2003)
.WALK, http://www.socialfiction.org/dotwalk/

Leonardo Solaas (2005) _Outsource me! , http://
outsource.solaas.com.ar/

Cornelia Sollfrank (1999) _net.art generator_ http://
obn.org/generator/

Together We Can Defeat Capitalism (2003), Anti-
Capitalist Operating System v2.0 , http://www.twcdc.com/

Toplap (2004-), http://www.toplap.org/
transmediale, http://www.transmediale.de/

UK Museum of Ordure (Stuart Brisley, Geoff Cox & Adrian
Ward) (2001-) http://www.museum-ordure.org.uk/

University of Openness, http://twenteenthcentury.com/uo/

index.php & its Faculty of Unix, http://darg.org.uk/ 231

Roman Verostko (1969-) Algorithmic Art , http://www.
verostko.com/

For other references, go to http://www.anti-thesis.net/

