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Kurzfassung

”Computational Aesthetics” ist ein Begriff, der haeufig von Wissenschaftlern
fuer den quantitativen Zugang zur Aesthetik verwendet wurde. Ein Ue-
berblick sowohl ueber die vergangenen als auch die neuesten Werke wird
dargelegt und deren hauptsaechlichen Ideen von Komplexitaet und Ordnung
aufgezeigt.

Da diese jedoch kaum auf Erkenntnisse der menschlichen Wahrnehmungs-
forschung basieren, wird der Begrift der Komplexitaet im Rahmen eines
derzeit allgemein anerkannten Modelles zur visuellen Wahrnehmung neu aus-
gelegt. Hinsichtlich der experimentellen Auswertung dieses Ansatzes wird
eine Hypothese formuliert, welche besagt, dass visuell-aesthetische Wahrnehmung
nicht voellig von Komplexitaet im primaeren visuellen Kortex (Zellanreiz)
unabhaengig ist.

Zur Ueberpruefung werden Multivariate Gabor Filter Reaktionen als Schaet-
zwerte fuer diese Zellaktivitaeten vorgelegt und zusaetzlich einfache Bildeigen-
schaften wie beispielsweise Seitenverhaeltnis und Aufloesung herangezogen,
um die Wechselbeziehungen umfassender zu pruefen. Diese werden schliesslich
mit menschlicher Bewertung von Fotos verglichen und Ergebnisse hieraus
zeigen statistische Signifikanz auf, die jedoch niedrig ausfaellt. Zusaetzliche
Experimente nach Methoden des maschinellen Lernens wurden durchgefuehrt,
denen es jedoch misslingt die menschliche Preferenz vorherzusagen.

Obgleich diese Ergebnisse nur schwach mit aesthetischer Wahrnehmung in
Zusammenhang stehen, so wird dadurch dennoch weitere Forschungstaetigkeit
und naehere Begutachtung von Bildmerkmalen und deren Zusammenhang
mit Wahrnehmungswirkungen und visuellen (aesthetischen) Vorlieben an-

geregt.
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Abstract

Computational Aesthetics is a term which has been frequently used by scien-
tists interested in quantitative approaches towards the concept of aesthetics
during the last century. A review of both past and recent works attempting
to quantify aesthetic preference of various stimuli is given, which shows that
aesthetics was described as some function of complexity and order in many
theories.

Since most measures were hardly relating to knowledge of human per-
ception, complexity is reinterpreted in the context of a currently accepted
model of visual perception and a hypothesis is formulated which states that
human visual preference is not independent of complexity (cell excitation) at
the very first stage of visual processing.

An estimate representative for cell activity in early visual processing is
presented: Multivariate Gabor Filter Responses. Additionally, image prop-
erties such as aspect ratio, resolution and JPEG compressibility are used to
sanity-check any correlations.

The estimate calculated, compared against human preference ratings of
photographs, shows statistically significant but low correlations. However,
the machine learning experiments performed, fail to predict any better than
one would by taking the mean value of the data.

Even though these results only loosely relate to aesthetic perception, it’s
motivating further research and closer inspection of image features and their

relation to perceptual properties and visual (aesthetic) preference.
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Chapter 1
Introduction

”There is no must in art because art is free”

—Wassily Kandinsky

Starting with this quotation, it’d like make clear what this thesis is not
about. It is not trying to build a theory of art. Also I am aware that the topic
of rational aesthetics is very controversial from an art perspective and also
really easily leads to wrong scientific claims. However, it has been addressed
by scientists over and over and is getting increased attention in some scientific

fields at the time of writing.

1.1 Motivation

Philosophers have discussed aesthetics for ages. Although the Greek origin of
the word is awoOnrikn, meaning ”a perceiver”, it is now widely accepted in
almost any encyclopedia to be defined as ”the philosophical study of beauty
and taste”. Kant had also described aesthetics as a reinforcing supplement
to logic ideas or concepts [20], hinting that objects are of higher value to us
if they are beautiful (in addition to the values of meaning and function). No
doubt that ingestion is of higher pleasure if the food is tasty.

In a similar fashion, aesthetics plays a major role in design, complement-

ing function and improving the products value in many ways. This fact is



commonly known and we experience this aesthetics in the every day usage
of many design objects such as cars, furniture, consumer electronics and so
on. Good aesthetic design supports our understanding of complex functional
objects, unifies their perception in a socioeconomic context (e.g. commer-
cials) and helps seamlessly integrating them into an environment (probably
the best example would be architecture).

Now, heavy use of computer aided design tools introduces a certain kind of
uniformity in the aesthetics produced. It appears as implicit aesthetics, which
is not planned or taken care of. This ’byproduct’ of how functional design
and planning is performed by computational tools can be widely observed in
e.g. architecture, food packaging, leaflets, etc. and the number of objects
produced by these tools is growing enormously. Particularly, the Internet
delivers a flood of media created by both private individuals and professionals
who do not necessarily put effort into aesthetic design. All of which leads to
a phenomenon of aesthetic pollution.

However, this part of the design process offers a problem for computer
science to improve software tools in such a way that they are also aware
of aesthetics, even if there is no human (artist) involved. This introduces
one major motivation for finding computational methods which are capable
of making aesthetic decisions. A paradigm which was called computational
aesthetics by various researchers. This signification will be used throughout
the whole work.

To identify solvable aesthetic problems in this context, one must point
out the differences between objects of design and objects of art. The latter
differ from the former by the lack of functional requirements which allows
for unconstrained aesthetic possibilities. In other words, there are no deter-
mined objective demands for their aesthetics. For scientific research it makes
no sense to bind this freedom of art in any way. That means for aesthetic
research it is incidental to focus on the more determined aspects. However,
since objects of art are aesthetically more versatile, they offer a more ex-
plorative basis for analysis. Also, computer generated art has been a rather
popular topic for scientists interested in aesthetic computation in history

and present, likely because it has often turned out as the only test-bed for
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developed aesthetic theories and measures.

On the bottom line, currently observed rational aesthetic research puts
emphasis on application and focuses on aesthetic problems in design, which
most importantly offers immediate application. There are essential questions:
Can tools be created that assist with creating beauty as easily as they already
do with purely functional creation? Can machines learn to perform aesthetic

decisions in a similar fashion as human perception does?

1.2 Structure

Motivated by these questions, this thesis tries to point out a mathematical
and computational perspective of aesthetic phenomena and tries to elaborate
and explore it with findings in visual perception. It is laid out in the following
way:

Chapter 2 historically reviews attempts of building aesthetics theories
and approaches towards quantification of certain aesthetic aspects of ob-
jects. Works are ranging from pure Gedanken experiments and metaphors
to concrete psychologically grounded studies. This summary contributes to
a better understanding of how scientists were involved with aesthetics and
how technological and mathematical advances were accompanying research
development. Digesting past work, Chapter 3 filters out the essential aspects
observed, which seem contributory to computational aesthetics. Finding in
visual perception are compared and matched with methods in computer vi-
sion and a model is postulated, which situates various aesthetic phenomena
in the various logical layers of perception. Finally, a hypothesis is formulated
which relates a part of aesthetics experiences to the most known layer: early
vision and the primary visual cortex.

Chapter 5 describes two implementations of estimates of visual complexity
in an early vision way of understanding. Both are compared against aesthetic
preference ratings of photographs collected from users of a huge online photo
community site Chapter 4 describes this data set.

Finally the results and contributions are concluded and open research

problems and directions are pointed out.






Chapter 2
Computational Aesthetics

”Pay attention only to the form; emotion will come spontaneously to inhabit it.
A perfect dwelling always find an inhabitant.”
—Andre Paul Guillaume Gide

This chapter will try to outline a scientific direction that has been contin-
uingly reappearing throughout the last century. Today a trend again shows
resumed interest of computer scientists for quantifiable aspects of the phe-
nomenons of beauty, because mathematical and computational tools are be-
coming more powerful and potentially more capable to imitate human per-
ceptual behavior.

The following sections give a historical review of the origin of these ideas

and summarize and categorize important works in that paradigm.

2.1 Historical Overview

2.1.1 Origin

There is no know scientific theory of aesthetics to date and therefore, no
matter what methodology used, research is inherently empirical and exper-
imental. Due to this fact, it seems right to date the origin of computa-

tional aesthetics back to the pioneering work of Gustav Theodor Fechner’s



”Vorschule der Aesthetik” [11]. Fechner defined the term experimental aes-
thetics which continuously provided a foundation for collecting and evaluat-
ing human preference data. His experiments included tests on aesthetic rules
like the golden ratio and his methodologies, as well as the research questions
he had pointed out, are today still considered current in the field of empirical
or Experimental Aesthetics.

George David Birkhoff, who was aware of Fechner’s work, however was the
first mathematician trying to quantify the aesthetic value of an object in his
book Aesthetic Measure [8] published in 1933. Since it involves computational
methods, this work is often regarded as the actual beginning of computational

aesthetics, as also described in a recently published historical summary by
Greenfield [17].

2.1.2 Time Line

Besides the origin of the idea of quantifiable aesthetics, which is debatable, its
historical development displays interest from many fields of research. Along
with the advent of new technologies and insights, new methods and ap-
proaches have emerged for this problem. The following time line is laid out

to give an overview on scientists’ involvement with this topic:

1876 G.T. Fechner’s ”Vorschule der Aesthetik” defined the term Fxperi-
mental Aesthetics, which is groundwork for today’s modern empirical

research of aesthetics [11].

1933 G.D. Birkhoff came up with the first attempt to directly quantify aes-
thetic value as a mathematical function of order and complexity in
his book ”Quantifying Aesthetics”. He started the idea of aesthetic

measures [8].

1954 Max Bense published Aesthetica I - Metaphysische Beobachtungen am
Schoenen, his first book about aesthetics and mentioning Birkhoff [3].

1958 Abraham Moles published the first book on information theory and

aesthetics, being a contemporary of Max Bense [26].

8



1965 Max Bense integrated Claude Shannon’s information theory with Birkhoft’s
formula, using the term information aesthetics in his book ” Aesthetica
- Einfuehruung in die neue Aesthetik” [4]. The book represents the sum
up of his earlier four-volume ” Aesthetica” series. Much of his work was

based on his students’ research.

1969 Until then, Bense published more articles on aesthetics and another

book dedicated to his information aesthetics work. [6].

1971 Berlyne summarized the state of psychological research of aesthetics

[7] which has been basis for many further investigations since then.

1978 Stiny and Gips formulated the first algorithms-oriented approach to-
wards aesthetics and the automated criticism and generation of art
(36].

1993 Scha and Bod published a Dutch article which, although having no
new research contributions, was actually the first known published work

that summarized former work under the name Computational Aesthet-
ics [29].

1994 Michael Leyton founded the International Society for Mathematical
and Computational Aesthetics (IS-MCA), identifying the need for
aesthetics in design and pointing out research directions for major ar-
eas. The IS-MCA is the first known group or institution dedicated to

Computational Aesthetics.

1994 Shumeet Baluja et al. trained a neuronal network to learn human aes-
thetic preference of images for automated evolution, and some results

were indeed quite interesting [2].

1997 Frank and Franke published ”Aesthetische Information” [14] as an
attempt to finally define information aesthetics as a field and not let
it die. It is an almost complete summary of follow-up works based on

Bense et al.



1998 Machado and Cardoso published a paper named ” Computing Aesthet-
ics”, picking up the quest for measure of aesthetic value again, using
more recent computer science methods. They also made the first link
between aesthetics and fractals. [25]. However, there is not direct

reference to Birkhoff in the paper.

1998 David Chek et al. published ” Aesthetic Measure for Screen Design”,
concluding successful objective measurement of screen layout aesthetics

building upon Birkhoff’s formula [10].

1999 Tomas Staudek also picked up interest in Birkhoff’s formula and tried

some extensions; this appeared in a technical report [33].

2000 Sudweeks and Simoff used Chernoft faces as metaphors to let users

encode aesthetic values and laid out an interface for aesthetic evaluation

37, 31].

2002 Gary Greenfield publishes work on images generated by genetic algo-

rithms under the name simulated aesthetics [16].

2002 A Dagstuhl workshop on ” Aesthetic Computing” was held by Paul
Fishwick and others. It set out goals to define an area of research where

art directly supports science. An ”Aesthetic Computing Manifesto”
was published in [12].

2003 Tomas Staudek presents a GUI tool called Arthur for generating shape-
based images and evaluating them with measures defined by informa-
tion aesthetics [34].

2003 A paper called Universal aesthetic of fractals [32] appeared to be the
first direct comparison of fractal dimension and human aesthetic pref-

erence.

2004 Staudek follows up research on aesthetics presenting a similar fractal
approach as above in the journal article called: Personality Character-

istics and Aesthetic Preference for Chaotic Curves [35].
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2004 Tali Lavie and Noam Tractinsky committed some studies on web site
aesthetics, being aware of the field of experimental aesthetics, but do
not refer to Birkhoff roots [24].

2005 A Eurographics workshop on Computational Aesthetics in Graphics,
Visualization and Imaging set out the goal to once again try to define
the meaning of computational aesthetics and Gary Greenfield published

the latest known summary on the origins of this term [17].

2.2 Theoretical Efforts

The following sections describe and categorize historical works on this new
aesthetics, which tries to be rational and quantify the phenomenons of beauty
or perceptual pleasure. Admittedly, categorization is a vague term, since
the amount of works is very limited and little consensus between different

theorists is observed.

2.2.1 Rational Aesthetics

In 1933, the American mathematician George David Birkhoff wrote the first
quantitative theory of aesthetics in his book Aesthetic Measure [8]. He was
known for many contributions to mathematical analysis in dynamics and lin-
ear differential equations. Interestingly, he formulated the Ergodic Theorem
which is about measure-preserving transformations and came from problems
in statistical physics. Birkhoff had also insights from physics and also col-
lected a wide range of experiences from art, which finally caused his interest
in aesthetics.

Being aware of most philosophical views and descriptions of aesthetics,

he described the aesthetic experience in three phases:
1. First, effort is required to focus attention on an object. (Complexity)
2. A feeling of value that rewards this effort (Aesthetic Measure).
3. Realization of certain harmony that the object contains (Order).

11



From these observations he constructed the formula (2.1) which should
describe this aesthetic relationship which he says is commonly known as
"unity in variety”.

Order

AestheticMeasure = Complexily (2.1)

His definition or meaning of complexity is based upon attention and it’s
physical correlative, what he calls ”automatic motor adjustments”. If for
example attention is fixed on a complex polygon, the eye follows the lines
of the object and these adjustments raise the feeling of effort. Therefore he
counted lines of polygons and took the number as an estimate for the object’s
complexity.

Birkhoff quoted the psychologist Theodor Lipps, who agreed with the idea
that more or less complete identification with the perceived object enhances
the aesthetic experience. This identification lies in the amount of associations
a person can make with the percept.

He distinguished between two basic type of associations. First, there
are formal ones like symmetry, proportion, balance and so on, where some
of them contribute to positive and others to negative emotions. All other
associations, like meaning, he called connotative.

The properties of an object causing those associations were called formal
elements of order and connotative elements of order respectively.

From this he formulated the problem in a mathematical fashion as follows:

Within each class of aesthetic objects, to define order O and the
complexity C' so that their ratio M = % yields the aesthetic

measure of any object of the class.

With this definition, Birkhoff did not actually make too big claims about
the scope of the formula’s validity (in contrast to the book’s title). Instead he
stated that it will be only applicable to properly restricted classes of objects
which allow direct intuitive comparison. Nobody would compare a vase with
a melody, but portraits of the same person are readily compared and sorted

in order of aesthetic preference.
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Figure 2.1: Birkhoft’s Aesthetic Measure of Polygons

He also said that one needs to define a suitable definition of complexity
within that class. Moreover, only formal elements of order can be considered,
since connotative elements are beyond measurement. Finally, he said that
the measure represents the aesthetic judgement of an ”idealized observer”,
meaning someone who is familiar with that class of aesthetic objects (prob-
ably to eliminate dependencies on diverse connotative associations).

The rest of his work focused on defining measures of complexity and order
for various classes of aesthetic objects including vases, ornaments, polygonal
forms, music and poetry.

Birkhoft’s work was the origin of many of the following developments.

2.2.2 Information Aesthetics

The last revival of a significantly large scientific movement, namely infor-
mation aesthetics, was a book by Frank and Franke published in 1997 [14].
It set goal to preserve works centered around the ideas of Max Bense and
Abraham Moles (see 2.1.2) which originated earlier in the century and were

followed up by a number of researchers and computer artists until then. The
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authors of this book have tried to situate this theory of aesthetic informa-
tion into the field of cybernetics, the theory of control and communication of
machines and living entities. It is more or less a complete review of this move-
ment. However, only parts of it are relevant for the interest in computational

aesthetics.

Max Bense was one of the two actual founders, was a German mathemati-
cian, physicist and philosopher. His teaching included mathematical logic,
scientific theory and the philosophy of technology. He tried to bring informa-
tion theory together with the ideas of Birkhoff’s measure and published the
book ”Aesthetica. Einfuehrung in the neue Aesthetik” [4] in 1965, based on
his previous work and the research of his students Gunzenhaeuser and Frank
(as reported in [17]). Both of them where students of Max Bense.

Contrary to his predecessors and contemporaries as well as most philoso-
phers, Bense tried to define an objective and universal aesthetic. In the
foreword of one of his younger books, ” Einfuehrung in die informationstheo-
retische Aesthetik” [6], he speaks about an objective, scientific, material and
abstract aesthetic, relying on the usage of mathematics, semiotic, physics,
information and communication theory. He also clearly expresses it’s segre-

gation from philosophical aesthetics and meta-physics. Bense wrote:

"Therefore this aesthetic can be seen as objective and material,
not using speculative, but rather rational methods. It’s interest
lies primarily and ultimately on the object itself; the relationship

to it’s consumer, buyer, view, critic, etc. recedes.”

In an article in rot journal [5], Bense summarized his many terms and defini-
tions. He used the word abstract aesthetics for his theory which was applica-
ble to any kinds of aesthetic objects, such as architecture, design, painting,
film, music, theater, and so on. He took Birkhoff’s attempt of quantification

and derived two classes of numerical aesthetics:

macro aesthetics Bense interpreted Birkhoff’s intentions as being so called
macro aesthetics, since it’s components can be perceived and measured

straightforwardly. Further, it is geometrically oriented.
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Figure 2.2: Creative model of Max Bense.

micro aesthetics however tries to measure the way an object was proba-
bilistically ”selected from a finite repertoire of material elements”. In

contrary, this is of statistical nature.

This numerical micro aesthetics, based on Birkhoff’s notion and inter-

preted with Shannon is formulated as:

Redundancy

MicroAesthetics = (2.2)

Entropy
Here entropy represents complexity and statistical redundancy represents
order, and is measured in the binary representations of artworks. In order
to further apply this information theoretical measure to the creative process,
Bense constructed an alternative model to the classical sender /receiver /channel
model of communication, the creative model (see figure 2.2).

One of it’s main differences is the addition of an external observer, who
selectively communicates elements from the finite material repertoire into an
innovative state, the product. Bense generalizes the word material as being
discrete, differentiable and manipulatable. An aesthetic repertoire is such a
set of elements from which aesthetic states can be created using some manip-
ulative principles, and therefore each aesthetic state is repertoire dependent.
Further, the demands for those manipulative processes cannot be determin-
istic or they will not create true aesthetic states. This so called aesthetic
state can then solely be recognized in the final result created by these non

deterministic and weakly determined processes.
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Rep = {(E1,p1) (Ea, p2) -y (Eny Pn) } (2.3)

Bense then describes a creative process as a sequence of selections from
this repertoire (2.3) of elements E (colors, words, etc.) and their probabilities
P.

Max Bense was a theorist and his works very hardly ever tested, other
than in experiments which tried to synthesize art according to those rules and
principles. He also constructed ways to fit his theory into higher levels using
semiotics, which try to describe the connection between this information

theoretic analysis and meaning.

Andre Abraham Moles was a contemporary of Max Bense and equally
influential to the movement of information aesthetics, was a French commu-
nication theorist. He initially studied engineering and later lead the Hermann
Scherchen Laboratory for Electro-Acoustic Music where his interest in music
research must have developed. Finally, he was director of the Institute for
Social Psychology at the University of Strasbourg.

Contrary to Max Bense, his approach to aesthetics was focusing on foun-
dations of human perception, even though he as well used information the-
ory as a tool. In his book Theorie de l'Information et Perception Esthetique
published in 1958 [26] he had among others referred to Birkhoff, Fechner and
Berlyne, and also Max Bense’s students. These references emphasize the link
to experimental aesthetics, psychophysiology and the school of Max Bense.
However, contrary to Max Bense, Moles used mostly auditory senses and
stimuli (music) for demonstration and reasoning of his theories.

Moles built his aesthetic theory centered around the term originality,
which he uses synonymous to quantity of unpredictability, the quantity of
information that he took from information theory. If a message is certain,
it will not excite the receiver and therefore not adjust his behavior. If on
the other hand a message is unexpected, the receiver will adjust his behav-
ior. A message can be however original on the semantic level as well as on

the aesthetic. He distinguished information values of messages, having both

16



semantic and aesthetic parts. The existence of the latter, as he said gets
clear when exhausting the semantic part of a message. An example Moles
gave was that if one can learn a theatrical piece by heart, there is nothing
unexpected and original left if watched again. Still everybody would en-
joy it. Hence, there must be more than information on the semantic level.
This space for aesthetic information lies in the degree of uncertainty of how
symbols are communicated. For example spoken language is not exactly de-
fined by it’s acoustic signal, since each symbol (e.g. phonemes) can have a
certain peculiarity, which depends on personal preference of the transmit-
ter. This aesthetic part of the message is untranslatable and doesn’t have a
universal repertoire common to everybody. Instead, the semantic part does
follow a universal logic and is translatable into another language or system.
Within this model, Moles make a very clear distinctions between semantic
and aesthetic information which implies that aesthetics is not about meaning.
However, even though aesthetic information is purely depending on personal
characteristics of transmitter and receiver and therefore hard to measure, he
hypothesizes that it as well follows the laws of information theory.

Moles tried to develop methods to extract the aesthetic part of messages
and measure it separately form their semantic value. He concluded that
if one can extract the semantic information (notation) of a musical piece
by destroying the aesthetic parts (e.g. orchestration, instrumentation, an
so forth), one must be able to isolate the aesthetic parts by destroying the
semantic information. The technique he inspected was reversing, which as
he said keeps the aesthetic aspects of the message.

Measuring the relative amount of aesthetic information can be performed
experimentally with an approximation procedure that involves the following

three steps:

1. Performing filtering techniques which eliminate semantical information

and sustain the aesthetic value.

2. Determining the maximum possible information by estimating the com-
munication channel’s capacity, which is the amount of possible symbols

and their possible arrangements. Discrete symbols are resulting from
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perceptual sensitivity thresholds; that is, spatially, acoustically and

temporally.

3. Determining a message’s redundancy by randomly destroying parts un-

til (aesthetic) understanding is completely destroyed.

The last part lacks any methods on how to measure retained ”aesthetic
understanding”. However, assuming it can be measured the results are
amounts of aesthetic information or originality. Additionally, Moles describes
the phenomenons of banality and overwhelming by lower and upper complex-
ity thresholds of an individual, depending on her or his a priori knowledge of
the message. To derive from that what is aesthetically interesting, there must
be ideal levels of complexity which make the individual not apprehend the
whole and neither make it loose track of it. An interval where the originality
of the message is not exhausted.

Moles’ apprehension of aesthetics was colliding with Bense’s in many
points. It is subjective and dynamic, depending on psychological parameters
of individuals rather than properties of the objects in question. Both theories

were lacking practical outcomes however.

2.2.3 Cybernetic Aesthetics

Frank and Franke summarized the field of information aesthetics [14] and
tried to make the original, conflicting theories of their predecessors more
consistent. Frank did not agree with Moles’ distinction between aesthetic
and semantic information, arguing that a composer wouldn’t produce any
aesthetics then (which would be the task of the interpreter). To Frank,
aesthetic information lies in the process of obtaining simpler levels of con-
sciousness from information already known. For example building words from
characters and sentences from word sequences, where the understanding of
each separate word is more complex than the general picture of the sentence.
For Frank, the reason for the existence of this aesthetic information from a
cybernetic viewpoint is seen as lack of explanation of human behavior only
by means of survival, knowledge gaining and behavioral adjustment. The

additional necessity for aesthetics comes from the desire for diversity.
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Considering this, the measurement of information constructed by Frank
is derived from Shannon entropy, with some adjustments to subjectivity. The
probabilities of certain situations or signs to appear, are defined as the sub-
jective probabilities resulting from what was already learned about such sit-
uations. Frank states that the subjective probabilities wy, converge (through
the statistical learning process of the individual) towards global probabilities
pr- 1/wy, are usually smaller than 1/p; and therefore subjective information
is usually greater (Eqn. 2.4). This process reduces inter-subjectivity to a
minimum, which results in virtually universal aesthetics as stated by Bense

earlier.

1 1
E pilogy, — > E P logy, — (2.4)
A Wy A Pk

In order for a piece of art, design, nature or mental structure to have
aesthetic value it must be perceivable at multiple levels of abstraction (e.g.
characters, words, sentences, etc.) and form unity at a higher level which
can be realized in different ways (e.g. melodic interpretation of a musical
piece). For the appreciation of beauty of an object, one is overwhelmed by
the complexity on at least one level and able to fully capture it at a higher
level. For instance, it is impossible to capture the full complexity of an
orchestra piece in the frequency domain (,_;, (n > j > 1)). On a higher
level (1,,) such as harmonic changes, information is reduced such that it fits
into the viewer’s capacity of short time memory (K). In this transition, the

aesthetic effect lies.

However this most recent summary of this movement [14] didn’t give any
examples on how to measure the named subjective probabilities in order
to calculate information complexity. Claimed outcomes of this new theory
remain mainly in the field of educational cybernetics. There, aesthetic infor-
mation describes the information of texts which content is already known,
and research is in particular committed to it’s learning supportive aspects.
With the death of Max Bense, most of his students turned away from their

research in aesthetics.
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Figure 2.3: Algorithmic Design and Criticism System by Stiny and Gips

2.2.4 Algorithmic Aesthetics

The term algorithmic aesthetics first appeared in an equally titled book by
Stiny and Gips [36]. To them, aesthetics meant the philosophy of criticism,
and further how this criticism can be used to produce or design. They tried to
describe algorithmic concepts necessary for criticism and design of artworks
in hope for gaining a better understanding of aesthetics and providing a
computational framework for aesthetic reasoning. A recent implementation
of this concept was done by Tomas Staudek, who wrote a computer program
called Arthur which can build and evaluate information-theoretical aesthetic
measures according to these modules described [34].

The first idea is to build a dichotomy of design and criticism or cre-
ation and evaluation respectively. The model described depicted in figure
2.3, taking account of these two processes consists of a set of functionally
separated algorithms and their input/output relationships. In the center of
these modules is the aesthetic system, which is built from four algorithms:
the interpretation and the reference algorithm, the evaluation and the com-
parison algorithm. This set of algorithms contains the aesthetic knowledge of
the model and is meant as a metaphor to either the artist’s or the art critic’s
conception of aesthetics. As the model is only a structural description of
various possible algorithms, it might be explained best by one example, such

as an aesthetic system implementing Birkhoft’s measure of polygons:

1. The receptor could be for example a scanner, reading a polygonal shape
from a sheet of paper and converting it into vector graphics, which will

be the representation of the object in question.

2. The interpretation algorithm take this representation as an input and

outputs a vector of properties as defined by Birkhoff (number of lines,
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number of symmetries, and so forth). The reference algorithm provides
a boolean predicate whether a given interpretation is consistent with a

representation, which in this case would be obsolete.

3. The evaluation algorithm would be the simple Birkhoff formula out-
putting the ratio M and the comparison algorithm is basically only the

<, >, = operators.

4. The analysis algorithm could for example coordinate inputs of several
polygons, call the aesthetic system and send outputs to the effector,

which could be a simple printf to a screen.

Stiny and Gips contributed models for algorithm design but did hardly
contribute to any new insight towards quantification of certain aspects of
aesthetics. However, their work is interesting and historically relevant, since
it summarized and categorized many theories and findings of computational
aesthetics. They were also the first who used the word aesthetics most di-

rectly connected to computer science methods.

2.3 Practical Attempts

Contrary to the last sections, the following sections describe practical findings
where algorithms and implementations are available and which are based on

more recent scientific methods.

2.3.1 Aesthetics and Compression

Machado and Cardoso, who were aware of Moles’ work, published a more
modern and practical implementation of a direct aesthetic measure [25].

They started off with two main assumptions:

1. Aesthetic is the study of form rather than content, and for estimating

the visual aesthetic value of an artwork, the latter is dispensable.

2. The visual aesthetic value depends on visual perception and is therefore

mostly hardwired and universal.
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Using the example of fractal images, which can look rather complex but
are mostly represented by a simple and compact formula, they build a di-
chotomy of complexity. Firstly, the retinal image representation is highly
complex but (analogously to the visual system’s preprocessing) the internal
representation is simple. An image of high aesthetic value is such, that it is
highly complex (image complexity, IC) but easy to process (processing com-
plezity, PC). This ratio (2.5) is similar to Birkhoft’s aesthetic measure (Eqn.
2.1).

c

M= (2.5)

As an extension, due to the assumption that while viewing an image one
finds increasingly complex levels of detail, processing complexity at several
moments in time is taken account of (Eqn. 2.6). This represents a similar

concept like Frank’s aesthetic transition between multiple levels of detail
(Section 2.2.3).

(PC(t1) — PC(to)) (2.6)

Implementation of these estimates (IC and PC) was done using JPEG
and fractal image compression using several compression parameters for the
latter, in order to simulate the different moments in time. The estimates
where defined as the RMS Error over the compression ratio, which should
represent compressibility.

Evaluation of the estimator was done using a psychological test for draw-
ing appreciation, which was designed to evaluate an individual’s level of
artistic aptitude, reacting to aesthetic principles such as: rhythm, symme-
try, balance, proportion, etc. The algorithm achieved an average score higher
than fine art graduates.

Along with this idea, a few immediate questions are left open. First
of all, the image complexity (IC) is argued in a way such that it implies
objective complexity similar to Max Bense’s, which is independent from visual
processing. Secondly, the method of evaluation reacts to rhythm, symmetry

and so forth. Since fractal image compression does directly take advantage
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of such redundancy (exploiting self similarities), the high test score seems

obvious.

2.3.2 Aesthetics and Fractals

Significant findings of relationships between aesthetic preferences and quan-
tifiable phenomenons have been reported in the area of fractal analysis. Spe-
har et at. have performed tests of human aesthetic preference of several types
of fractal images (natural, artistic and artificial) in connection with fractal
dimension [32]. The images used for analysis were (1) natural fractals, such
as trees, mountains and waves - (2) mathematical fractals and (3) cropped
regions of paintings by Jackson Pollock.

The measure calculated for comparison was fractal dimension, which is a
property widely used for the analysis of fractal signals and images and de-
scribes the scaling relationship between patterns at different magnifications.
A rough definition of the fractal dimension as given in [32] is such exponent D
in n(e) = e, with n(e) being the minimum number of open sets of diameter
e required to cover the set. For lines D = 1, for planes D = 2 and for fractals
patterns 1 < D < 2. For approximately calculating the fractal of images
(binary bitmaps), a standard algorithm know as boz-counting is applied. A
virtual mesh of different scales € is laid over the image and the number of
squares occupied n(e€) is counted for each e. When plotting — log(€) against
log(n), fractal patterns should result in a straight line of gradient D.

For Jackson Pollock’s paintings, this scaling relationship was observed in
a range of 0.8mm up to 1m, showing the patterns to be fractal over the whole
image.

Human values judgements of the three classes of fractal of various di-
mensions was collected using forced-choice paired comparison, where each
possible pair of two images in the set is presented next to each and the pro-
portional frequency of each image being chosen is taken as a measurement
for preference.

Results have been compared to aesthetic preference tests on random pat-

terns, to show that they do not depend purely on image density. Figure 2.4
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Figure 2.4: Aesthetic preference of Jackson Pollock’s paintings as a func-
tion of fractal dimension versus aesthetic preference of random patterns as a
function of image density (figures taken from the original paper).
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shows increased preference for patterns of particular fractal dimensions.
This measure can be seen as some kind of estimate of complexity or order
of a pattern respectively and therefore is not far off the history of quantitative
aesthetics.
In a more recent psychological study about fractals and human percep-

tion, the term aesthetics was raised once again:

”The aesthetic appeal of fractals can also be considered within the
framework of more traditional theories of aesthetics. Although
the nomenclature varies between different research disciplines,
aesthetic appeal is frequently presented in terms of a balance
between predictability and unpredictability of the stimulus...It is
possible that the intricate structure and apparent disorder of frac-
tal patterns might provide the required degree of unpredictabil-
ity while the underlying scale invariance establishes an order and
predictability.” [38]

2.3.3 Generative Aesthetics

An area of research and a testbed for metrics of aesthetic features is (au-
tomatic) computer generated art. Rules that try to define a certain style
and certain aesthetics are incorporated into evolutionary algorithms’ fitness
functions and generate whatsoever media (generally images or music). Even
though research almost never involves a scientific evaluation of such a sys-
tem’s outputted aesthetic values, it can be empirically verified with artists’
judgment. Since at least in the freedom of the art world this is sufficient,
many researchers have committed themselves to developing new techniques
of computer generated artworks.

Basic problems in generating images by evolutionary algorithms employ
the choice of image representation (pixels, shapes, etc.) and the evaluation
of the fitness function. In many cases pixel bitmaps are not well suited as
an encoding for each individual image, so most of the time parametric rep-
resentation are preferred. The fitness function is usually desired to represent

aesthetic appeal or value of the particular image. In interactive evolution, a
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Figure 2.5: Images that resulted from artificial evolution taken from the
original publication

human evaluator can rate images in order of his aesthetic preference and the
algorithm can evolve new images from this judgement. Automatic evolution
on the other hand requires some objective function to at least simulate this

aesthetic choice.

Baluja et al. [2] have attempted to capture an individual user’s aesthetic
preference during interactive image evolution with a neuronal network, which
was then used to simulated the users choices in automated evolution.

In their approach, images where represented through symbolic prefix-
order expressions, taking x- and y-coordinates as arguments. For example:
sub(log(z), avg(sqrt(y),log(z))). The genetic algorithm’s cross-over opera-
tor was defined in a way that a random node in each of two recombining
composition trees is chosen and the subtrees are copied from the source to
the target. For preserving diversity in the search, a constant mutation rate
of one mutation per individual per generation is applied, which simply swaps
function arguments. The interactive evolution was realized with a graphi-
cal user interface, where a test person could pick preferences throughout a
desired amount of generations. This is a very typical setup for interactive
image evolution.

The difference in their research was automation, where a neural network
was trained upon raw pixel data of 400 user-ranked images. The outcomes
where, obviously only visually evaluated. Some results of automatic evolution
controlled by the trained neuronal network are shown in figure 2.5.

The succeeding chapter will commit to a digestion of the above works,

focus on visual perception and aesthetics, which will lead to the experiments.
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Chapter 3
Perceptual Models

The historical survey of computational aesthetics in the last chapter has
shown a variety of approaches towards models of quantitative aesthetics
spread out over many disciplines. From the concepts of aesthetics, as in-
herited by philosophers, initial psychological experiments have led research
in a direction of objectivity, where mathematicians and computer scientists
have picked it up and tried to formalize it. Later, information theory has
played an important role in this area and various concepts of complexity
where considered being connected to aesthetics.

This chapter will present a digestion of the basic concepts that were
considered in the past and interpret them in the context of current research
of human visual perception. From this, a new hypothesis is built which
connects aesthetic experiences with various complexity measures in different

parts of vision processing.

3.1 Aesthetic Dimensions

Most authors of aesthetic theories by themselves did not really develop a
solid methodology for a measurable, quantitative aesthetics. However, they
did make clear some aspects of it in which objectivity may be found. It can
be observed that these concepts where trying to describe aesthetic values as

a particular state or configuration of certain properties of the objects or their
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perception, that is closely related to the concept of complexity. This ultimate

state of perception was generally approached from two sides:
1. minimize complexity
2. maximize order

In an information theoretical sense, these two directions seem ambiguous,
because order (redundancy) implies the absence of complexity. However, the
use of these heuristics can be interpreted taking up two positions.

On the one hand these theorists tried to confine the range of possible
levels of complexity in which aesthetic states may reside, while knowing little
about what increases perceptual complexity and little of what reduces it.
This could be providing remedy for not knowing any canonical measures. In
other words, by measuring complexity and redundancy, an estimate can be
provided wherever there is no analytical way to determine complexity.

On the other hand, the concept of aesthetics was very often decomposed
into more tangible factors. For example in Birkhoff’s measure, complexity
was the effort of motorial adjustments in the observer. Order was the pres-
ence of several perceptual forms which are known a priori, and therefore
less complex (more predictable). This demonstrates the idea of complexity
measures on different levels of abstraction.

Together this leads to a multivariate interpretation of perceptual com-

plexity.

3.1.1 Complexity

The term complexity has defined in various contexts by different sciences. In
mathematics, it represents the difficulty of solving a problem. More specifi-
cally in theory of computation, it is the study of how much time and memory
(space) an algorithm requires to solve the problem. Similarly, information
theory deals with complexity of strings, which can be seen as the difficulty
to compress them. A frequently used indicator is the information entropy or
in algorithmic information theory, the length of the shortest program which

generates the string.
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All these uses of the term complexity are defined for a particular scenario,
which is quantifiable and well defined. Such as for example its applications
in binary communication or compression. Complexity as a measure of aes-
thetics however is lacking the clear task. Some of the authors, like Max
Bense, tried to find an objective, universal aesthetics that is a pure statistics
of the objects themselves. Birkhoff, seeming to also have slight tendencies
towards objectivity, however defined complexity as something related to per-
sonal effort. Later developments of information aesthetics where applying
complexity measure to cybernetic concepts, especially learning. Three views

of complexity can be observed in the last chapter.

e "Objective” complexity: Complexity is measured as a function of sta-

tistical or geometrical properties of an object.

e Complexity based on a communication model. Usually the subject
is the receiver and his environment the transmitter. The receiver’s
memory is seen as the receivers repertoire of symbols and complexity

is based on unpredictability of messages for the subject.

e A computational model of complexity. The subject’s perception is seen
as a "machine” which requires various processing complexities for dif-

ferent message structures.

3.1.2 Order and Form

If aesthetics solely depended on single measures of complexity, a plain white
canvas would be the most beautiful and the pure visual noise the ugliest
picture (or vice versa). This is obviously untrue. Therefore, scientists have
frequently used the term order in the course of finding explanations of when
certain levels of complexity are more appealing.

Max Bense took Birkhoff’s formula, using statistical redundancy in place
of order, reasoning that it represents identifiability, the known. To him a
creative process was an ”ordering process”.

Moles associated the concept of order with form, the problem figure and

ground separation or signal versus noise respectively. To him it was repre-
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sented by redundancy, which is caused by a perceiver’s a priori knowledge
of a received stimulus and keeps complexity down to an interesting or aes-
thetically pleasant level. More precisely he related order to the degree of
predictability and internal coherence, expressed by autocorrelation.

In Birkhoff’s aesthetics the role of order was to perceptually reward the
effort of focusing attention on something complex. He assumed that there
exist elements of order such as symmetry, rhythm, repetition, etc. which
psychologically cause a positive tone of feeling, and also elements that cause
negative tones, such as ambiguity or undue repetition.

The recent approach done by Machado and Cardoso, who tried to apply
fractal tmage compressibility as an element of order in their aesthetic mea-
sure, assumed that self-similarities can be more easily perceived. They follow
a similar argumentation as Birkhoff, however using computational methods
for measuring.

Similarly, in the article Universal aesthetic of fractals [32] a direct compar-
ison of fractal dimension and human aesthetic preference has shown another
type of redundancy. The scaling relationship.

Another aspect of order is found in color research. Color perception is
far from being trivial and further it is sometimes regarded as one of the most
important factors for aesthetics. Antal Nemcsics has developed a color order
system named Coloroid [27]. In essence, it is a color-space that is supposed
to be uniform in aesthetic distances rather than in perceptual differences.
This should allow measuring of color harmony, an element of visual order.

Additionally, empirical work on concepts of order (e.g. symmetry, equi-
librium, rhythm, etc.) are found in Arnheim’s Art and Visual Perception [1].
In this book he defined an analogy of visual patterns to physical systems and
derived a set of laws, which are relevant to perception of art. His work is
commonly taught in art schools and could be a guide to identify perceptual
elements of order.

On the bottom line on can see that many authors put the term order into
an important role in aesthetics, and which is most of the time interpreted
as an opposing force to complexity. Even though this seems ambiguous,

it showed the repetitive interest in what reduces complexity. Is it a color

30



gradient or a well recognized shape?

3.1.3 Learning and Dynamics

Another concept observed which was related to aesthetics is learning and the
dynamics of perception. From human intuition, we can immediately agree
that what we think is beautiful is connected to our experiences, i.e. what we
have learned. One inspiring example would be listening to a song. Sometimes
when hearing a particular song for the first time it can seem uninteresting and
even unpleasant. After a few temporally distributed repetitions of hearing
it, it suddenly becomes beautiful.

In Moles’ information theoretical model of aesthetics, the concept of mem-
ory represents the important role of influencing perceived redundancy and
therefore also the quantity of aesthetic information. Following the fact that
human memory (i.e. the repertoire of elements for communication) changes
dynamically, he introduces the term differential information. Also later cy-
bernetical aesthetics relied on this concept of differential aesthetics.

Even if it seems natural to search for aesthetics in the dynamics of sub-
jective perception and learning, an inter-subjective aesthetics could be found
in "hard wired” parts of perception, such as in parts of early vision.

The following section will describe key findings in visual perception and
their computer vision equivalent in order to then come up with a perceptual

and computational interpretation of complexity.

3.2 Visual Perception

Visual Perception allows an individual to gain information about the envi-
ronment by detecting objects and structures in patterns of light reflected by
surfaces. This process appears to occur nearly instantaneously in the brain,
but is relatively complex to model. In Visual Perception [41], Steven Yantis
describes some key progress of vision research during the last century, which
addresses several problems along the path of visual processing. Consistently

to how computer vision [13] has divided it’s model and problems; it can be
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categorized as follows:

e Early Vision

Encoding of elementary sensory input

Mid-Level Vision

Perceptual constancy - correction for viewing conditions

Perceptual organization - grouping of low level features into surfaces

and objects

High-Level Vision

Object recognition - categorize and identify objects

Attention

Awareness

For some of these problems, such as in early vision, there is already a good
foundation of knowledge, but for the higher level aspects of vision there is
only very limited insight. In any case, two important principles about vision
are known. First is functional specialization, which occurs throughout the
whole path of visual processing. This starts at the retina, which consists of
four distinct types of photosensitive cells, arranged in ways to suit different
tasks such as for example the rods are relied on for night vision. At the next
higher level, there are distinct types of optical nerve bundles, specialized for
spatial, color and temporal codings respectively.

The other principle known is distributed coding, which is observed in
many stages as well. One example would be the representation of an edge in
the visual field. Rather than a single cell responding to the occurrence of one
particular edge, it is a population of cells sensitive to different orientations
that describe or detect the edge together.

These principles help in understanding vision as well as implementations

of computational models for image analysis and computer vision.
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3.2.1 Early Vision

Starting from the visual patterns of light projected on the eye’s retinal array
of cells, early vision models a representation of simple features such as color,
orientation, motion and depth. These features tend to be local and very
tightly connected to the retinal image. In other words, local spots on the
retina having corresponding cells in the primary visual cortex. This is called
retinotopic mapping. Most of these aspects have been extensively studied

and are well know.

Most importantly, at the very first stage of vision processing the retinal
ganglion cells (RGCs) perform difference computation on the array of bright-
ness values from the retina at specific locations in all directions. The applied
contrast sensitivity function has the shape of a Gaussian, which is also used
in image analysis for edge detection [15]. The output of the RGCs connects
(via an area called lateral geniculate nucleus, which is rather unknown) to the
primary visual cortex (named V1), where the cortical cells specify whether
a given position contains an edge, basically throwing brightness information
away. The resulting representation is a description of edge locations and

orientations.

Another feature the primary visual cortex encodes is scale. It consists of
cells which are tuned to various spatial frequencies, or in other words, dif-
ferent sizes of receptive fields. This is of importance, considering the mathe-
matical fact that any visual pattern can be represented by sums of different

frequencies (e.g. Fourier analysis).

The third important aspect is the coding of depth information available
from linear perspective, overlap, relative size and relative motion in the reti-
nal image. It is know that this information, especially stereoscopic depth
cues, are incorporated very early in the visual cortex and combines with the
above features to achieve object detection.

Early vision is also dealing with color. As for object recognition, the most
important feature seems to be shape, which can even help to guess it’s color.
Knowing an object’s color alone however doesn’t tell anything about what the

object is or what it’s other properties could be (according to [41]). Still it’s
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an important feature that helps detecting boundaries of objects and material
surfaces. What is very well know about color perception are the spectral
sensitivities of the retinal cones and how they combine. Together with the
opponent process theory of color perception [19], a range of phenomenons

(visual illusions) can be explained, such as for example:

Color adaption After looking at a red patch of color for a few minutes,

looking at a white surface it appears green.

Simultaneous color contrast A gray patch will appear slightly green when

surrounded by bright red color.

Mach Band effect At the boundary of two patches of highly different in-
tensities (steps), the region close to the edge looks lighter on the dark
side and darker on the bright side than their patches intensity respec-
tively.

The last spatial feature which caught a lot of attention from vision re-
searchers is motion. It is known that there exist complex cells in the primary
visual cortex which are sensitive to direction of motion as a function of ori-
entation. Even more complex cells respond to motion in their receptive field
as a function of both orientation and scale. Retinal image motion is caused
by motion of the eyes, motion of the observer and motion of the observed
object. A still image most of the time is not present. This arises the need
for a system which compensates for this motion in order to perceive stable
images. This is an open issue for both computer vision and human vision
research.

A currently accepted model of early human vision which is also used as
a basis for computer vision (texture description in particular) is a multires-
olution model (see figure 3.1). In this model the retinal image is split into
several sub-bands and each of which is convolved by linear filters of several
orientations, which look similar to derivatives of a Gaussian. The result-
ing maps are subjected to nonlinearity in order to take account of complex
spatio-temporally sensitive cells. The output (including added noise) is then

passed on to the next higher level of vision.

34



Linear
filters

—W’— nonlinearity —o@—»

m >_~ nonlinearity 4@—.

noise

$$9001d uoISI09(

,’ [—| nonlinearity

Figure 3.1: Simple multiresolution model of early vision (with the number
of filters simplified to three).

3.2.2 Mid-Level Vision

Retinal images in most situations not just measure properties of the objects
viewed, but also irrelevant and transient factors such as illumination, distance
and orientation. Despite of these constantly changing conditions, most of the
time the visual system is still able to independently tell the correct object
properties like color, size and shape. In vision this is called the problem of
perceptual constancy and is only very little known. It has been also addressed
in research of image understanding and computer vision [9].

The second problem in mid-level vision is the problem of perceptual or-
ganization. In particular grouping, segmentation and completion. Since
features described in early vision are local, they need some form of integra-
tion in order to detect and classify objects. Even worse, in real scenes most
objects are occluded by others, but human vision is still able to capture the
shape from local features of these objects in many cases. This hint for some
complex mechanism incorporated in higher levels of vision which perform
grouping in a similar way as described by Gestalt theory [39].

Gestalt psychologists have developed a set of rules of when local features
are grouped, as shown in figure 3.2. These rules can be easily agreed, but
finding a way to implement this theory in computer vision is hard, because

the examples used to demonstrate the rules are extreme cases and there is no
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Figure 3.2: Grouping rules from Gestalt theory (from Gordon, Theories of
Visual Perception, page 67)

laws on when which rule applies. Especially the rule describing that if fea-
tures form a recognizable figure, this grouping is preferred. It introduces the
problem of figure and ground separation, which in many cases is ambiguous.

Still, these Gestalt rules give some insight into perceptual organization.

A closely related phenomenon of vision is perceptual completion. The
disks and lines shown in figure 3.3 are rather seen as completed, occluded by
a white triangle. The triangle doesn’t exist however in a sense of physical
contrast to the background. Some part in the visual system fills in additional
contrast for the white triangle to the background. Vision has found evidence

for this phenomenon in the secondary visual cortex (V2) [41].

Computational Models of mid-level vision mainly address the problem of
segmentation which can be formulated as follows: Given a shape or structure,
determine whether a pixel belongs to it. The difficulty lies in the fact that
the shape is not a priori known by the machine. However, there has been
effort to build image segmentation algorithms that work similar to the laws

of Gestalt grouping [28].
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Figure 3.3: Kanizsa Triangle, can be seen even if it’s brightness is the same
as the background.

3.2.3 High-Level Vision

The next higher level of visual perception is the recognition of objects. It’s
difficulties are obvious, considering the almost infinite number of retinal im-
ages a simple object can produce. Obviously, the visual system can still
recognize a large set of objects invariant to rotation, lighting conditions and
so forth. There are two major ways of thinking in vision research trying to
explain this concept.

First group of models for object recognition employ the idea of template
matching. In it’s trivial form it would require all possible views of an object
to be stored in memory, which appears highly implausible and there is no
neurological evidence for that. An extended model is, that vision normalizes
the object for size, viewpoint, etc. and matches it against a few stored
canonical views, which together describe the object. This requires much less
memory and results in a more plausible theory.

The second group of approaches of object recognition describe that it is
based on the statistics of features or parts the objects consist of. For example
the presence of parallelism and certain colors and shapes can describe a
certain class of objects. A major part-based model of recognition is called
structure description, where objects are build from a set of three-dimensional

primitives, e.g. boxes and cylinders. Once such a description is extracted
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form a retinal image, it is viewpoint independent and easy to match against
memorized complex objects of similar descriptions.

Vision research suspects that the ”correct” model might be again a mix-
ture of both approaches. In computer vision however, object recognition
based on template matching is popular, but recognition based on structural

descriptions has been used as well.

3.2.4 Attention

Sensory input apprehended coherently at any given time is much too diverse
for a human to process. When running through a crowd of hundreds of
people looking for one particular person, vision couldn’t process each of the
peoples faces, nor the cloth they’re wearing, their hairstyle and so forth. In
spite of the heavy load of visual information present, the visual system can
select what is important and what enters awareness. This process is called
perceptual selection.

One theory in visual perception states that object recognition is per-
formed at a stage called feature integration. Low-level features obtained by
early visual processing (orientation, color, etc.) are connected to build ob-
jects, but this can only happen in one location at a time. This theory idea
is accepted in vision research and also neurological evidence has been found.

In computational models, a very popular approach is called saliency maps
first described by Koch and Ullman [21]. The idea is centered around a
retinotopic map which encodes the locations of visual stimuli that stand out,
are salient. This map provides bottom-up information for guidance of visual

attention.

3.2.5 Awareness

The last stage of visual perception research, and also the most unknown is
awareness. Views on how consciousness is achieved from attended percep-
tions are very abstract and most of the questions are still left to philosophers.
Tractable problems are limited to experiments of what neural activity corre-

sponds to what we can express or communicate (e.g. verbally). It is a search
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for correlations between neural and neurochemical activities and conditions
that cause states of awareness. Since this a new area of investigations and
outcomes are only a few, there obviously is nothing coexistent in computer

vision at the time of writing.

3.3 Towards Aesthetics

The forefather of empirical aesthetics, G. T. Fechner [11] described the
new aesthetics research as being necessarily bottom-up, while top-down ap-
proaches are mostly left to philosophers. The major difference is that bottom-
up explanations of aesthetic phenomena are built on top of stimuli. Rules
combining them into higher level descriptions are investigated, to which aes-
thetic preference can be related. The top-down approach starts from the phe-
nomenological concept of beauty and tries to break it down into situations
where it holds or doesn’t. According to Fechner, this top-down approach
still helps guiding the preferable bottom-up path. Birkhoff’s aesthetic mea-
sure can be also interpreted in this manner, approaching aesthetics from two
directions.

Taking the bottom-up path of explaining visual aesthetics, the most plau-
sible way seems to start with the visual stimulus entering the perceptual
system through the eye, going through various stages of processing until

awareness is achieved. How does this process relate to aesthetics?

3.3.1 Computational Model Postulate

Remembering the aesthetic theories in the last chapter, the following cate-

gories of aesthetic measures occurred:

e Aesthetics as a function of various object properties and/or perceptual

properties (Birkhoff, Machado).

e Aesthetics emerging from certain (pleasant) levels of complexity and

redundancy in a model of communication (Moles, Bense).
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e Aesthetics as a function of different, perceived complexities at various

levels of abstraction (Frank and Franke).

Together with the bottom-up idea of Fechner and the last section on

visual perception, one can derive the following postulate.

Visual aesthetics can be described as a function of complezities at mul-
tiple and distinct levels of visual perception processing. Complexity can be
estimated either directly (e.g. disorder or energy), or inversely by determin-
ing known elements of order (e.g. redundancy, form).

This formulation of the problem is based on two concepts which require
further explanation and refinement. First of all, conditions need to be set
under which a visual aesthetic experience is found and what is exactly meant
by this. Further it requires a definition of perceptual complexity, based on
known concepts of visual perception at different logical levels of abstraction.

The following section will address those problems.

3.3.2 Visual Aesthetic Experience

The prototypical visual aesthetic experience, as formulated by Kubovy in the

encyclopedia of psychology [23], is such that:

e Attention is firmly fixed upon heterogenous but interrelated compo-

nents of a visual pattern.
e [s not disturbed by awareness of other objects or events.

e Attention is not fixed upon an object’s relation to ourselves, to the

artist, or to culture.
e Feelings or emotions are evoked by the visual pattern.
e Experience is coherent, "hangs together”.
e While in this state, the image is not perceived as a material object.
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Figure 3.4: Simplified model of vision.

Assuming a group of people focusing on objects of the same class under
conditions similar to those above, an inter-subjective comparison of aesthetic
preference could be built. This assumption that aesthetics is not purely a

social construct will remain for the rest of this thesis.

3.3.3 Perceptual Complexity

Provided the visual system can be seen as a "machine” processing the retinal
input, visual complexity can be defined as a function of time and energy
consumed, in order to process the image. To build according estimates for
different levels of abstraction, a processing model of vision is constructed.
Figure 3.4 shows a simplified model of the human visual system, where
the representations of the visual stimulus are given for each phase. In early
vision it is given as outputs of spatial filters of different orientations and
scale. Mid-level vision deals with texture regions and shapes segmented from
the image, providing building elements of objects. Finally, high-level vision
deals with objects, as they were identified from shapes and features. For
different image statistics, each of these representations have various levels of
complexity. For instance a cartoon drawing might be rather simple at the
early stages, however contain many diverse shapes and objects. Contrary to
that, a photo of one tree standing on a wide meadow might be complex in

texture, but the image is containing only a few shapes and only one or two
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objects.

In order to build a computational model of aesthetics, definitions of com-
plexity need to be constructed for each of these levels of abstraction.

Complexity in early vision could be seen as function of cell spiking rates,
which are modeled as a set of spatial filters. The filter output might be taken
as the energy required by the cells to fire at this rate, and the total energy
of filter responses as an estimate for complexity. However, other estimates
are possible. This complexity can be interpreted as image quality.

On the segmented image, simple complexity measures such as shape
count, and shape complexity (symmetry, etc.) seem a good starting point.
How well this represents visual perception however depends on the quality of
the segmentation algorithm. On this level, the aesthetic interpretation could
be the quality of shape and forms.

As for object recognition, finding even a simple complexity estimate seems
more challenging. Object identification is tightly connected to a priori knowl-
edge. Also there is very little known from visual perception on how this
process works in the visual system. Therefore object complexity seems im-
possible to measure on a perceptual level. The simplest estimate would be
however object count. At this stage, the interpretation from an aesthetic

point of view would be composition.

3.3.4 Deriving a Hypothesis

An aesthetic model for predicting visual preference would need to calculate
complexities at each stage of vision. Taking into account that abstract art
usually excludes the high-level object detection mechanisms of vision, it’s
aesthetic values could be found within the earlier stages of vision. First
logical step towards such a model is to test, whether the lowest level image

features correlate significantly with human preference.

Hypothesis Visual, aesthetic preference of images of similar classes is not

purely subjective and depends to some extent on the amount of cell activity
mn V1.
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The following chapters will provide an implementation of an estimate of
this cell activity (complexity), which will be later used to verify our hypoth-
esis against aesthetic preference ratings of a photo database described in the

next chapter.
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Chapter 4
Photography Database

This chapter describes the data set used in this thesis experiments, which
was obtained from the photography platform photo.net, which contains an
enormously large amount of images numerically rated for aesthetic preference

by it’s users.

As for October 2003: ”680,000 gallery photos, with 40,000 new
photos submitted per month and 2.7 million photo ratings, with
210,000 new ratings per month”.

These images cover a wide range of artistic qualities from simple family
snapshots to professional photographs and fine arts. Such a database seems
an interesting starting-point to find relationships between those ratings given
and image features.

The raw data collected is analyzed using basic statistics and interpreted.
In the last section, some pre-filtering is described based on the initial inter-

pretations and irrelevant images are thrown out.

4.1 Legal Issues

In the context of this purely academic work, the site’s terms of use and
the individual copyright holders were fully respected. Since the data was

collected using automated computer programs which the site doesn’t allow
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in general, they were built in a way such that they do not cause more site
traffic than a typical human would cause using a web-browser. Some of the
site’s photos are printed in this thesis to demonstrate some principles and
outcomes of this work. This is done in hope that each author will grant

permissions to do so.

4.2 Obtaining Data

For extracting photographs and their related user-ratings, a Perl script was
developed which emulates a user browsing the site and looking through the
galleries. Images where stored in JPEG format as downloaded from the site
and ratings and image ID’s where stored in comma separated text files to be
loaded into Matlab.

4.3 Data Statistics

The total number of photographs collected is 1958 (with a portion of 147
black and white images), which resulted from a one week run of the down-
load script. The script was running slow in order to respect the site’s policies
and was then terminated for time reasons. Selection of the images from
the site was purely random (randomly selecting photo ID numbers) and in-
cludes both newly submitted entries and photographs which have been online
from months to years. At the time of data collection there were no content
categories (such as "People’; "Architecture’, 'Nude’, etc.) assigned to the pho-
tographs, so category selection was also random. All images have about the

same resolution.

4.3.1 Image Properties

Table 4.1 shows basic statistical properties of the data set’s images and figure
4.1 shows their histograms. A very typical resolution for web presentation
can be observed, lying between 0.2 and 0.5 mp. However, a few outliers exist.

As for the image aspect ratios, there are three major classes: (1) landscape
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Property Min Max Mean | Median | StdDev
Resolution (megapixel) || 0.0764 | 1.6031 | 0.3375 | 0.3158 | 0.1085
Aspect Ratio 0.4080 | 5.9823 | 1.2063 | 1.3180 | 0.4026
Compression Ratio 0.2399 | 89.9076 | 16.9542 | 14.2045 | 12.0483

Table 4.1: Image Statistics

Image Resolutions Image Aspect Ratios

600

600

10 15
Pixel Count 5 Width / Height

Figure 4.1: Histograms of resolution and aspect ratios.

format, (2) rectangular and (3) portrait format. They can be seen in the
histogram in figure 4.1 as three peaks >> 1, 1 and << 1. Most frequent
ratios seem to be landscape formats around 1.5. The outliers are panorama

photos and other non-typical photo artworks.

4.3.2 Rating Statistics

Ratings for the site’s gallery photos are given in two categories: ’originality’
and "aesthetics’. Instructions for what these categories mean are given to the

user on the web-site (http://www.photo.net/gallery/photocritique /standards/ ):

7 Aesthetics: Give a picture a high rating for aesthetics if you like
the way it looks, if it attracts and holds your attention, or if it
conveys an idea well ... Some ways of judging photographs cut

across all genres. Does the photo have an interesting composi-
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tion? An effective balance of colors? But most genres also have
specific standards of appraisal. For example, with portraits, give
a high rating if you think the subject has been captured effectively

and if the subject’s personality is communicated ...”

”Originality: Give a photo a high rating for originality if it shows
you something unexpected or a familiar subject in a new, insight-
ful, striking, humorous, or creative way. Originality can be very
subtle. A photo does not have to be taken on Mars to be original.
For example, can a portrait be original? Hundreds of millions of
portraits have already been taken. But a portrait can be origi-
nal if it uses expression, lighting, posing, or setting in a creative,
sensitive or humorous way to reveal the character or situation of

another person.”

The two ranking scales provided are expressed both numerical and nom-
inal, and range from 1 to 7 or ”Very Bad” to ”Excellent” respectively. The

instructions given to the users on the site are stated as follows:

"You can use the photo ratings system to critique photos along
two dimensions: "Aesthetics’ and ’Originality’ On each dimen-
sion, rate the photos from "Very Bad’ (1) to "Excellent’ (7). Pho-
tos should be rated relative to other photos on photo.net. Excel-
lent /7 does not mean ’one of the best photos of all time’; it simply
means one of the best photos of its type on photo.net. Your most
frequent rating should be a 4, and most of your ratings should
be 3 to 5, with progressively fewer being rated 6 and 7 (or 2 and
1).”

For the sample of 1958 photos collected from the site, these ratings employ
the statistics shown in table 4.2 and figure 4.2. The rating values are averages
of the users’ individual ratings per image.

The range of rating counts per image is relatively large, because some
images attract more attention than other and image with lots of high ratings

are shown more frequently on the site’s "top photos” gallery. The range of
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Property Min Max Mean | Median | StdDev
Number of ratings (N) 3 280 | 23.4219 10 36.3457
"Aesthetics” Rating (A) || 2.3300 | 6.8400 | 5.2148 | 5.1700 | 0.8954
"Originality’ Rating (O) || 2.6700 | 6.8700 | 5.1703 | 5.1000 | 0.8628

Table 4.2: Rating Statistics

Ratings per Image “Aesthetic' Ratings ‘Originallty Ratings
1801 4
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Figure 4.2: Rating Histograms

the (A) and (O) ratings does not cover the full theoretical range and there
is nothing below 'Bad’ and there is a majority of ratings centered around 5
(*Good”).

Not surprisingly, the three rating properties show high correlation, since
the rating instruction described above are handled wvery freely and are not
controlled. These relationships are shown in table 4.3 and figure 4.3. How-
ever, a combination of these value can be used and interpreted as an overall

image preference in the context of this online photo community.

Pearson ‘ N A O
N 1 0.6237 0.6311
A 0.6237 1 0.9305
O 0.6311 0.9305 1

Table 4.3: Rating Statistics
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Chapter 5
Visual Preference Experiments

In this chapter, two estimates of the amount of neural activity in early vision
are described. The first estimate is based on the thoughts in chapter 3 and
the second was used before in the context of visual aesthetics [25] and is
used for comparison. They both exploit properties of perception which are
based on findings in neurophysiology and should theoretically relate to the

way aesthetics is experienced.

5.1 Multivariate Gabor Filters

Gabor filters are a linear filtering technique used in many computer vision
tasks, such as face recognition or texture segmentation. They became popular
because of their similarity to various cell behaviors of the human primary

visual cortex.

A straightforward model for complexity in early vision stages would be the
amount of cell activity, estimated by the mean absolute gabor filter responses,
using a filter-bank that covers similar receptive fields as real cells do. Such a
complexity estimate is built in this section, based on Gabor filters of various

orientations and scales.

The Gabor function in the spatial domain is a combination of a complex

sinusoid carrier and a gaussian envelope as defined in [22] as:
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CL,/2 + 72y/2 CL’/

Gemanip.0(T,Y) = exp(— 52 )COS(QWX + ) (5.1)
7= (r—¢&) cosh— (y—mn)sinb (5.2)
y = (x—&)sinf+ (y —mn)cosb (5.3)

The parameters are (z,y) and &, 1,7, A, 0, v, o, where (z,y) is the position

in the visual field (or image respectively) and the rest is described as follows:

(&,m) The position of the receptive field’s center relative to the image position

in image coordinates.

o The standard deviation of the Gaussian, reflecting the size of the receptive
field.

~v The aspect ratio of the elliptical form of the Gaussian (receptive field),
found to be 0.23 < v < 0.92 in real cells and 0.5 is a typical value used

in computational models.

A The wavelength of the cosine factor which determines the preferred spatial

frequency the cell is tuned to.

0 The orientation of the cell, which determines the response to oriented

edges.

¢ The phase offset of the cosine, which determines the symmetry of the filter

with respect to the center of the receptive field.

A set of Gabor filters (see example in figure 5.1) at six orientations and
five scales is constructed, utilizing that function. The image is then convolved
with this filter bank resulting in a 5 x 6-dimensional complex valued feature
vector for each image pixel. The sum of absolute values of complex numbers
is taken over all orientations for each scale, and the mean value of each scale’s

responses is calculated. This is defined as:
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7

Figure 5.1: An example of a Gabor filter in spatial (left) and frequency
domain (right)

My, = Zabs(79j) (5.4)

5.1.1 Implementation

The filter response features defined above were implemented in Matlab using
the simple gabor toolboxr which is freely downloadable and helps in creating

filter banks and calculating their filter responses for an image or signal.

Sourecode 5.1.1

function IC = build_icg(filename, b, s, o)

% read image

[I, map] = imread(filename);

% if image is 8bit indexed, convert to rgb
if length(map) > O

I = ind2rgb(I,map);

I = cast(fix(I*255),’uint8’);

end

if length(I(1,1,:)) > 1
I = rgb2gray(I);
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end
I = double(I)./255;

% compute gabor filter responses
bank=sg_createfilterbank(size(I), b , f, 0);
r=sg_filterwithbank(I, bank);

for i=1:o0
r(i) = abs(sum(r.freq{i}.resp));

end

% image complexity
IC = [mean(r)];

The filter bank is created by the sg_createfilterbank command and
builds f x o frequency domain Gabor filters for the following parameters:
o; = {b, %, #, s #} and 0; = {0,Z,2% . oI}

This is passed on to the sg_filterwithbank command which filters the
image [ in the frequency domain and stores responses for each scale and
orientation in r. Fach response matrix is the size of the original image and
contains complex values. Their real and imaginary part can be used to de-
termine the magnitude and phase response of the filter. For each orientation,
the absolute sum of the complex response values is taken and averaged over
the image, resulting in an o-dimensional feature vector.

For the experiments, the filter bank parameters were 5 scales and 6 ori-
entations, starting at frequency b = 0.35 cycles/pixel. This value for the
maximum frequency was chosen a little lower than suggested in [22], since
preliminary experiments done had shown that too high frequencies show very
similar responses over all images.

The frequency domain visualization of this bank is shown in figure 5.2

and the summed responses over all orientations are shown at each scale for
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Figure 5.2: Gabor Filter Bank in the frequency domain.

an example photo in figure 5.3.

5.1.2 Results

A sample of photos from the data set ordered for their estimated complex-
ity (mean absolute summed filter response) is shown in figure 5.4 and the
histogram of values in figure 5.5.

Looking at figure 5.4, it appears difficult to order the images even manu-
ally and some pairs are nearly ambiguous in complexity. Still, one can agree
that there is some sort of increasing complexity from top to bottom. It can be
observed that large uniform image regions tremendously decrease and small

patterns of a certain scale seem to increase the estimated value.

5.2 Jpeg Compressibility

Machado and Petrou [25] presented an estimator of image complexity based

on compressibility, taking it as a metaphor for human perception, which is

57



Figure 5.3: Gabor Filter Responses at five scales summed over six orienta-
tions.

performing compression by throwing out irrelevant information when build-
ing an internal representation of an image. This reduction is emulated by
using the lossy JPEG compression algorithm [18] which also was designed to
discard information irrelevant to human perception while keeping essential
visual detail. More technically, the image complexity measure increases the
lower the achieved compression ratio and the higher the error in accuracy of
the visual representation gets. This measure (I chose to name it /C'M here)
is expressed by the following term:
RMSError

ICM = 5.5
CompressionRatio (5:5)
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Figure 5.4: Nine photos ranging from the lowest to the highest 'complexity’
values.

RM S Error meaning Root Mean Squared Error is used as a measure for the
loss in accuracy and CompressionRatio is the ratio between the number of
pixels in the original image and the compressed JPEG stream. Expanding

the above expression that leads to the following formula:

Bl = J)’]
[H]
[ipegstream(]

ICM = (5.6)

For simplicity only the luminance channel of the photographs was used and
color information was discarded, since human visual perception is by far more

sensitive to luminance than it is to chrominance.

5.2.1 Implementation

The following Matlab code will describe how this measure was calculated
from the image set. It was called for each image and a set of JPEG quality

parameters: {{5, 10,20, 30, 40, 50, 60, 70, 80, 90}.

Sourecode 5.2.1
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Figure 5.5: Distribution of 'complexity’ values.

function IC = build_ic(filename, quality)

% read image

[I, map] = imread(filename);

% if image is 8bit indexed, convert to rgb
if length(map) > O

I

I

ind2rgb(I,map) ;
cast (fix(I*255),’uint8’);

end

% now convert to grayscale
if length(I(1,1,:)) > 1
I = rgb2gray(I);

end

% write to lossy jpeg and read back in
imwrite(I, ’temp.jpg’, ’jpeg’, ’mode’,
’lossy’, ’quality’, quality);
J = imread(’temp. jpg’);
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% compute RMS_error

K = I-J;\\

L = double(K);\\

rms = sqrt(sumsqr(L(:))/length(L(:)));

% compute compression ratio
info = imfinfo(’temp.jpg’);
¢ = info.FileSize;\\
ratio = length(I(:))/c;

% image complexity

IC = rms / ratio;

Both imwrite and imread use the Matlab internal, standard conform
JPEG coding and decoding implementation. The JPEG algorithm trans-
forms the input image into the frequency domain using DCT (discrete cosine
transform). Quantization, the step that throws away perceptually irrelevant
information, components close to zero in the frequency domain are discarded.
These components are calculated for 8 x8 or 16 x 16 pixel regions. The quanti-
fied blocks are then compressed using Huffman coding, which removes binary
coding redundancy.

The objective was to perform a test following the idea presented in the

original paper.

5.2.2 Results

First task was to test the behavior of different JPEG quality parameters in
relation to the resulting image complexity values. It turned out that at pa-
rameter 50 there was the widest distribution of complexity values over the
set of images and at 70, there is a low. This is probably due to the fact
that most images in the database where already JPEG compressed before,

since they where intended for Web presentation and commonly used com-
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pression parameters are in the upper third of the parameter’s values. Note
that the quality parameter value is purely arbitrary and doesn’t reflect any
percentage. Also it’s scale can vary through different implementations of the
algorithm. At the low end (< 50), the algorithm probably hits a performance
boundary. This is shown in figure 5.6.
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Figure 5.6: The estimator seems to be most sensitive when using JPEG
compression quality parameter 50.

The distribution of measures shown in figure 5.7 displays a big number
of low valued image complexities and very few high values (JPEG parameter
50). However, the distribution of values does hardly change, when other
parameter values are used. Also the resulting ordered sequence of images
is very similar throughout different JPEG parameters for the estimator and
very similar to the ordering resulting from the Gabor filter based estimator.

The following sections will compare the estimates described above and
analyze their relationship to the human image preference data shown in the

last chapter.

5.3 Correlations with Image Preference

This section describes the core of the experiments that were done on the

image set. Different image properties and features that were calculated are
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Figure 5.7: Histogram of complexity values.

statistically analyzed and interpreted.

Chapter 4 describes human image preference as three variables in the
data-set. The originality rating, the aesthetic rating and the amount of
users rating on one particular image. All of them show significant statistical
correlation and cannot be seen as independent ratings. However, a general
image preference can be observed within them.

First step in analysis is a simple correlation test between each of the
variables together with the estimates described above over the whole set of
photographs. The correlation matrix, together with the statistical signifi-
cance is shown in table 5.1.

There is significant (at o = 0.01) positive correlation between the prefer-
ence ratings and the features described in this chapter, even though it is low.
It is highest in G3 which is the response at filter scale 0.179 cycles/pixel.
Correlation with aesthetics and originality ratings are very similar (due to
their close relationship in the data set). However the number of ratings (N)
relates more vaguely.

Besides the correlation between the image preference ratings and the es-
timates (G1-5 and JC), there are some other interesting relationships in the
data set. Most unexpected is that the original compression ratio (CR) cor-

relates with the number of ratings that were given for each photograph.
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Analytically, this is left unexplained. By knowing the site’s customs, it may
be guessed that users usually submitting popular photos tend to use higher
JPEG quality settings.

There is also a small significant negative correlation between the origi-
nality rating (O) and the aspect ratio of the image (AR). Potentially, this
is due to ’strange’ width to height ratios that pop out and are considered
more original by the users. However, this is solely an interpretation. Even
more surprising is the relatively high correlation between compression ratio
and aspect ratio, since the Jpeg algorithm operates on eight-by-eight image
blocks and width to height ratio is discarded.

Moreover, there is a high negative correlation between the original image
(Jpeg) compression ratio (CR) and the Gabor filter estimates (G1-5), because
the more diverse frequency components in an image, the harder it is for the
Jpeg algorithm to compress.

Since Gabor filters extract local responses to frequencies at each image
location but estimates described above take the mean of these responses, it
discards the spatial information. This results in extracting similar informa-
tion than Jpeg does with the discrete cosine transform, which does not incor-
porate spatial information anyway. Hence, the similarity of the estimate to
the jpeg compressibility described in section 5.2 (JC). Still, the Gabor based
estimates show a higher correlation with the preference ratings (A, O and
N).

Another important observation is that Jpeg stream size (the Huffman
coded quantified image DCT components of each block) and JC still highly
correlates with the Gabor estimates. Why the removal of binary coding
redundancy does not affect this correlation to a higher extent is left to inspect
outside of this thesis’ context.

The effect of image aspect ratio (AR) on the Gabor estimates is signifi-
cant. It’s relatively high for filters tuned to high frequencies and gets lower
for low frequencies. The explanation for this lies in the implementation of the
frequency domain filter (sg filterwithbank), which does a Fourier Trans-
form of the input image resulting in a matrix of components of the same

dimensions. For this reason, there are either more components of horizon-
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tal and vertical frequencies respectively and the mean response is influenced
by this. In other words, two image of different aspect ratios and the same

texture have different mean filter responses.

5.4 Machine Learning Experiments

Next step in the experiments was to find out whether using the above vari-
ables, more complex models can be built and used to predict the image
preference ratings.

The tool used for the experiments (WEKA) is described in [40]. It pro-
vides a general framework for various data mining tasks and algorithms and
allows for quick start data analysis.

In particular, the algorithm used for analysis is the a model tree learner
named MP5, which is provided by the WEKA toolkit. A model tree algo-
rithm initially builds a regular decision tree and the numerical classes are
predicted by a linear model at each leaf. For sanity check, other algorithms
were applied as well, but they produced results of the same magnitude and
proportions and were therefore omitted in this section.

The following sections describe the set of experiments committed and
interpret what was learned from different subsets of attributes in the data
set. For prediction, all target of the three target classes (A, O and N) were
used. For some attribute sets they all produced highly similar errors and
were left out of the description. Primary class of interest is the aesthetics
rating (A), and O and N are left out in this section because O shows equal
results to A and predicting N doesn’t make much sense. However, the full

test runs are shown in appendix A.

5.4.1 Learned Prediction Models

Obviously most interesting in the scope of this work was to check whether
it was possible to predict visual preference ratings solely from the features
described above. For comparison, to additionally check how simpler image

properties are performing, M5 pruned model trees (using smoothed linear
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models) were learned from the following subsets of attributes:

G1-5 The five Gabor filter response estimates.

AR, CR, RES Aspect ratio, original Jpeg compression ratio and image

resolution.

AR, RES Since Jpeg compression ratio relates to psychophysical proper-
ties, it provides a rather complex measure and is therefore omitted
in this subset. The test should show where the simplest features can

already predict the preference classes.

G1-5, AR, CR, RES This attribute set was chosen to check whether the

images can be divided into categories to improve prediction with G1-5.

G1-5, AR, RES Same as above, but without compression ratio.

The resulting error metrics resulting from ten-fold cross-evaluation of the
models are shown in table 5.2.

Although they cause very little absolute error, they all perform only a
few percent better than the trivial predictor (simply taking the mean value
of A over all instances). It can be also observed that the correlation between
the predicted values and the actual values increases slightly as compared to

each variable separately.

5.5 Discussion

Two experiments were done to analyze the data. First, a simple correlation
test and second, a machine learning experiment. The results from the learned
models in the last section are insufficient for prediction of users’ visual pref-
erence ratings, but the correlations shown in table 5.1 are significant. Due
to that fact, the experiments did provide some interesting, however small
insights into structure, quality and relationships in the data set. These out-

comes are discussed next.
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5.5.1 Originality and Aspect Ratio

From all the correlations between the variables, an unexpected and interest-
ing insight is the significant negative correlation between aspect ratio and
originality ratings. Cropping images to different proportions is considered
an aesthetic decision and is discussed heavily in the user comments section
below the particular photographs on the site. This might potentially be a

reason for the correlation.

5.5.2 Aesthetics Hypothesis

As for the hypothesis stated in section 3.3.4, considering the significant corre-
lations between the presented estimates and the ratings, it cannot be rejected

taking two assumptions:

1. The mean Gabor filter response presented does simulate the average

amount of cell activity in V1.

2. The ratings obtained from the photo community site do to some extend

reflect aesthetic preference other than preference of solely content.

There are two issues which weaken the possibility to take these assump-
tions: First, even though there is evidence from vision research that cell
excitation in the primary visual cortex corresponds to edge local detection in
the field of vision (Gabor filters), the model used in the experiments is very
simplified and filter bank parameters were chosen based on values used in
other applications (e.g. texture description and segmentation). Second, the
preference ratings are collected in a totally uncontrolled way and are most
likely full of noise. Especially because for photography content (i.e. signs,
associations) is very important and cannot be ignored.

So at this point interpreting the correlation as being related to aesthetic
perception seems very vague if not wrong. However, looking for support of
this hypothesis after finishing the experiments, some related literature was
found. Gretchen Schira reported findings of significant correlation between

Gabor filter responses and human aesthetic preference of texture images in
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a more controlled experimental setup [30]. Schira used more sophisticated
methods from experimental psychology to obtain the preference ratings. This
included tests which removed textured images from the set that the subjects
had associations with to validate the correlation. However, correlation was
still significant on the set with those images, which is a result in favor of

assumption (2) above.

5.5.3 Conclusion

On the bottom line, it should be stated that this work is highly preliminary.
Sill, the results are motivating to further inspect the relationship between

known properties of the human visual system and visual aesthetic preference.
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Class = A G1-5 AR,CR,RES AR,RES GI1-5,AR,CR,RES G1-5,AR,RES
Correlation coefficient 0.1951 0.3682 0.3192 0.3363 0.2576
Mean absolute error 0.7086 0.6651 0.6828 0.6753 0.7009
Root mean squared error 0.879 0.8334 0.8486 0.8444 0.8706
Relative absolute error 97.7602%  91.7548%  94.2016% 93.1634% 96.6942%
Root relative squared error | 98.1074%  93.0156%  94.7083% 94.2487% 97.1661%

Table 5.2: Prediction errors resulting models built using five subsets of the available attributes, predicting the
numerical class A. Although they cause very little absolute error, they all perform only a few percent better than
the trivial predictor (simply taking the mean value of A over all instances).
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Chapter 6

Summary, Conclusions and
Outlook

To end this thesis, the following last chapter will summarize and conclude
what has been done and point out open problems and future research ques-

tions.

6.1 Summary

Initially, the importance of aesthetics for the human environment as stated
by philosophers was described and the current problem of aesthetic pollution
resulting from computer aided design was pointed out. This led to the mo-
tivation that computers should learn certain aesthetic decisions, to provide
more assistance to humans in design processes.

Chapter 2 gave a historical overview of how scientists tried to approach
this problem in the past. Various theories originated around the beginning
of the last century and were followed by more modern practical approaches
towards the present time. Theories included usage of mathematical and
technological findings, like for instance Shannon’s information theory, but
however have shown no significant results. Only recently, small but more
scientific contributions to a computational aesthetic methodology were made.

Admittedly, past works have explored a fundamental part of philosophical
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and psychological problems related to a quantitative approach.

While the historical review was summarizing works which described var-
ious kinds of sensory input, the succeeding parts focused primarily on visual
aesthetics. Aesthetic measures were identified as being properties of either
(1) the object, (2) communication between object and subject or (3) the in-
ternal perceptual structures of the subject. Most of all those properties were
measures of complexity.

With a preference for (3), current findings of visual perception research
and computer vision were described, which model a visual stimulus at var-
ious levels of abstractions and representations. Upon these representations,
possible estimates for perceptual processing complexity were explored and
focus was pointed on the very first stage: early vision. Since there is hardly
any subjective influence at this particular stage of perception, the hypothesis
derived from this model stated that aesthetics is to some degree dependent
on these inter-subjective properties. This hypothesis formed the basis for the
successive experiments on the photo database.

This database was built from an online photo community site that offers
a feature to its users, enabling them to mutually rate photo entries. The
rating categories were aesthetics and originality, which did however show
a very high positive correlation and were therefore interpreted as a general
image preference in the context of this community’s aesthetic common sense.

About two thousand image-rating pairs, accompanied by other basic im-
age properties, such as resolution or aspect ratio were passed through (1)
simple correlation significance tests and (2) machine learning experiments.

For testing the hypothesis stated at the end of chapter 3, two estimates
for complexity in an early vision methodology were introduced: The Jpeg
compressibility and multivariate Gabor filter responses. Both of these esti-
mates were used in the context of quantifiable aesthetic in other works before
and had shown a statistically significant, but low positive correlation with
the image preference ratings.

To add another level of verification, a M5P pruned model tree was learned
for various subsets of the image and rating attributes, in hope for gaining

more insight into the structures and relationships within the database. Re-
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sults included interesting findings but were only preliminary.

6.2 Contributions

There were two major contributions in this work.

First was a historical overview of works adding to the formation of a
paradigm which is frequently called computational aesthetics to date. It’s
theoretical outcomes were interpreted and put in the new light of current
research in visual perception and computer vision, which should help identi-
fying solvable problems in the area of aesthetics.

The second contribution was an experiment done on a large database of
photographs and which was the first know attempt to analyze human visual
preference of such data. Results did include significant positive correlations

of the presented estimates with human preference ratings.

6.3 Conclusions and Future Research

Led by the motivation for computational tools which can decide aesthetic
problems, aesthetic research has been redefined in a new technological context
during the previous century and new theoretical concepts were formed. I have
sketched the essential concepts and pointed out their relevance for aesthetic
quantification approaches.

The results of the experiments are satisfying. They do not claim to be
a description or explanation of the concept of aesthetics, but encourage fur-
ther experiments. Since they only inspected relationships with early vision
properties and very important properties such as color, form and composition
were omitted, experiments done using higher levels of visual features are of
interest.

On the path towards applications, emphasis should be put on objects of
design and their difference to objects of art, which lack functional require-
ments. Most significantly research should focus on aesthetics in form rather

than content and find objectivity in psychophysical models of human percep-
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tion. In contrast, any pure theoretical outcome or reasoning about the values
of Art is rather pointless, taking into account the philosophical problems one
will encounter.

However, this work’s results are encouraging a new discipline which seems

justified and might catch increasing attention by researchers from now on.
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Appendix A

WEKA Results

The following output listings were generated by the M5P algorithm imple-
mentation coming with the WEKA framework. It shows the models learned

for the data described in chapter 5.

A.1 Gabor Estimates Only
Model A.1.1 - ru infornation == + 74.164 * G3

+ 95.7658 * G4

Scheme: weka.classifiers.trees.M5P -M 4.0 - 78.3746 * G5
+ 4.9053
Instances: 1958
Attributes: 6 LM num: 2
A A=
G1 -0.2069 * G1
G2 + 52.5417 * G3
G3 - 51.5637 * G4
G4 + 5.449
G5
Test mode: 10-fold cross-validation Number of Rules : 2
=== Classifier model (full training set) === Time taken to build model: 3.84 seconds
M5 pruned model tree: === Cross-validation ===
(using smoothed linear models) === Summary ===
G3 <= 0.007 : LM1 (833/119.806%) Correlation coefficient 0.1951
G3 > 0.007 : LM2 (1125/120.168%) Mean absolute error 0.7086
Root mean squared error 0.879
LM num: 1 Relative absolute error 97.7602 %
A= Root relative squared error 98.1074 %,
-19.5458 * G1 Total Number of Instances 1958
MOdel A..]_.2 === Run information === 0
G1
Scheme: weka.classifiers.trees.M5P -M 4.0 G2
G3
Instances: 1958 G4
Attributes: 6 G5
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Test mode: 10-fold cross-validation 0=

-0.1861 * G1
=== Classifier model (full training set) === + 42.1181 * G3

- 40.5445 *x G4
M5 pruned model tree: + 5.3712

(using smoothed linear models)
Number of Rules : 2
G3 <= 0.007 : LM1 (833/117.942%)

G3 > 0.007 : LM2 (1125/119.891%) Time taken to build model: 3.86 seconds
LM num: 1 === Cross-validation ===
0= === Summary ===
-18.2825 * G1
+ 84.2174 * G3 Correlation coefficient 0.185
+ 57.7877 * G4 Mean absolute error 0.6917
- 54.3201 * G5 Root mean squared error 0.8483
+ 4.8597 Relative absolute error 98.0477 ¥,
Root relative squared error 98.2747 ¥,
LM num: 2 Total Number of Instances 1958
MOdel A..]_.3 === Run information LM num: 1
N =
Scheme: weka.classifiers.trees.M5P -M 4.0 1712.5082 * G3
- 1392.4309 * G4
Instances: 1958 + 22.7114
Attributes: 6
N Number of Rules : 1
G1
G2 Time taken to build model: 2.27 seconds
G3
G4 Cross-validation =
G5 === Summary =
Test mode: 10-fold cross-validation
Correlation coefficient 0.0465
=== Classifier model (full training set) === Mean absolute error 23.0785
Root mean squared error 36.3929
M5 pruned model tree: Relative absolute error 98.9596 ¥,
(using smoothed linear models) Root relative squared error 100.0728 %
LM1 (1958/155.166%) Total Number of Instances 1958

A.2 Image Properties Only
Model A.2.1 -

| | AR <= 0.671 : LM2 (69/90.741%)
I AR > 0.671 : LM3 (264/100.039%)

Run information

Scheme: weka.classifiers.trees.M5P -M 4.0 CR > 8.613 :
AR <= 1.472 :
Instances: 1958 RES <= 0.229 :
Attributes: 4 | RES <= 0.214 :
A | | AR <= 1.353 : LM4 (47/104.712%)
CR | | AR > 1.353 :
AR [ RES <= 0.18 : LM5 (33/28.471%)
RES [ RES > 0.18 : LM6 (26/80.327%)
Test mode: 10-fold cross-validation | RES > 0.214 : LM7 (97/112.519%)
RES > 0.229 :
=== Classifier model (full training set) === RES <= 0.263 :

| RES <= 0.258 : LM8 (129/107.374%)
| RES > 0.258 : LM9 (104/113.013%)
RES > 0.263 :

M5 pruned model tree:

(using smoothed linear models)

| RES <= 0.567 :
CR <= 8.613 : | | CR <= 12.834 : LM10 (113/116.797%)
| RES <= 0.232 : LM1 (196/113.016%) | | CR > 12.834
| RES > 0.232 : | | | AR <= 1.079 : LM11 (164/115.986Y%)
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LM

LM

LM

M

LM

LM

LM

LM

LM

0.191

| AR >
0.191

0.0001 * CR

+ 0.3359 * AR
+ 3.2218 * RES
+ 3.7913

0.0001 * CR

+ 0.0644 * AR
- 0.4125 * RES
+ 5.0259

num: 3

0.0001 * CR

+ 0.0136 * AR
+ 0.0006 * RES
+ 5.1927

num: 4

-0.0011 * CR

+ 1.3076 * AR
+ 14.3069 * RES
+ 1.4969

num: 5
-0.0011 * CR
+ 0.3184 * AR

- 0.9064 * RES
+ 5.9786

num: 6
-0.0011 * CR
- 2.3348 * AR
- 1.0468 * RES
+ 9.6547

num: 7
-0.0011 * CR
- 1.0624 * AR
- 1.1694 * RES
+ 7.0236

num: 8
0.0004 * CR
- 0.073 * AR
+ 8.7145 * RES
+ 3.2027

num: 9

<= 1.554 :
1.554 :
: LM17 (251/114.048%)

AR > 1.079 :

| AR <= 1.303 :
| AR > 1.303 :
0.567 : LM14 (162/112.621%)

LM15 (39/127.014%)
LM16 (128/107.712%)

LM12 (107/102.845%)
LM13 (29/88.422%)

LM

LM

LM

LM

LM

LM

LM

LM
A

0.0004 *
- 0.073 *
- 1.337 *
+ 5.2855

num: 10

0.0014 *
- 0.0566 *
- 0.1171 =
+ 5.3546

num: 11

0.0079 *
- 0.1002 *
- 1.3882 *
+ 6.2985

num: 12

-0.0068 *
+ 0.1911 =
+ 0.2688 *
+ 5.2717

num: 13

0.0008 *
+ 7.0269 *
+ 0.953 *
- 4.1302

num: 14

0.0007 *
- 0.0767 *
- 1.3799 *
+ 6.1785

num: 15

-0.0006 *
- 0.1762 *
- 0.6681 *
+ 6.1291

num: 16

-0.0006 *
- 0.2906 *
- 0.6681 *
+ 5.9001

num: 17

-0.0114 *
+ 5.7747 *
+ 31.1127
- 9.9169

CR
AR
RES

CR
AR
RES

CR
AR
RES

CR
AR
RES

CR
AR
RES

CR
AR
RES

CR
AR
RES

CR
AR
* RES

Number of Rules : 17

Time taken to build model: 3.83 seconds

= Cross-validation




= Summary

0.3682
0.6651

Correlation coefficient

Mean absolute error

Model A.2.2

=== Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0
Instances: 1958
Attributes: 4
0
CR
AR
RES
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

M5 pruned model tree:

(using smoothed linear models)

CR <= 9.695 :
| RES <= 0.298 : LM1 (300/110.518%)
| RES > 0.298 : LM2 (301/93.914%)
CR > 9.695 :
AR <= 1.32 :
RES <= 0.639 :
CR <= 12.834 : LM3 (105/112.056%)
CR > 12.834 :
AR <= 1.084 :
| RES <= 0.424 :
| RES > 0.424 :
[ AR <= 0.978
| | AR >
AR > 1.084 :
| RES <= 0.262 : LM7 (45/99.16%)
| RES > 0.262 : LM8 (120/111.166%)
0.639 : LM9 (131/116.089%)

LM4 (98/114.006%)

: LM5 (76/103.99%)
0.978 : LM6 (27/100.653%)

RES <= 0.203 :
AR <= 1.501
| RES <= 0.146 :
| RES > 0.146 :
AR > 1.501
| RES <= 0.166 :
| RES > 0.166 :

RES > 0.203 :

| RES <= 0.208 :

| RES > 0.208 :

LM10 (19/132.527%)
LM11 (68/81.179%)

LM12 (93/121.708%)
LM13 (83/100.776%)

LM14 (150/104.133%)
LM15 (342/108.71%)

0.0001 * CR

- 0.0077 * AR
+ 1.2712 * RES
+ 4.6511

LM num: 2
0=

0.0001 * CR
+ 1.0447 * AR
+ 0.0082 * RES
+ 4.3191

LM num: 3
0=

Root mean squared error 0.8334
Relative absolute error 91.7548 ¥,
Root relative squared error 93.0156 %
Total Number of Instances 1958

0.0008 * CR

- 0.0303 * AR
- 0.0647 * RES
+ 5.3222

LM num: 4

0=

.0003 * CR
1.8365 * AR
3.3777 * RES
3.0255

+ + + O

LM num: 5

0=
0.0129 * CR
- 0.3211 * AR
- 2.4429 * RES
+ 7.0162

LM num: 6

0=
0.0119 * CR
- 0.6276 * AR
- 0.0647 * RES
+ 5.5844

LM num: 7

0=
0.0003 * CR
- 0.5566 * AR
- 1.2363 * RES
+ 6.8448

LM num: 8

0=
0.0003 * CR
- 0.2829 * AR
- 0.5854 * RES
+ 5.7986

LM num: 9
0=
0.0001 * CR
- 0.06 * AR
- 1.3293 * RES
+ 6.135

LM num: 10

0=
-0.023 * CR
+ 1.1637 * AR
+ 2.5275 * RES
+ 4.1457

LM num: 11

0=
-0.0018 * CR
+ 0.3974 * AR
+ 0.6485 * RES
+ 5.4323

LM num: 12

84



-0.0022 * CR
- 0.1399 * AR
+ 2.7436 * RES
+ 5.2478

LM num: 13

0=
-0.0023 * CR
- 0.1449 * AR
- 1.0385 * RES
+ 5.5139

LM num: 14

0=
-0.009 * CR

- 14.2682 * AR
+ 0.8653 * RES
+ 26.2088

MOdel A-2.3 === Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0
Instances: 1958
Attributes: 4
N
CR
AR
RES
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

M5 pruned model tree:

(using smoothed linear models)

CR <= 13.872 :
CR <= 6.714 :
CR > 6.714 :
AR <= 0.774 :
AR > 0.774 :
RES <= 0.301 : LM3 (328/119.018%)
RES > 0.301 :
CR <= 8.461 :
CR <= 7.247 :
| AR <= 0.972 :
| AR > 0.972 :
CR > 7.247 :
| RES <= 0.422 :
[ RES <= 0.327 :
[ RES > 0.327 :
| RES > 0.422 : LM8 (6/15.53%)
> 8.461 : LM9 (70/160.452Y)

LM1 (361/57.193%)

LM2 (179/101.032%)

LM4 (2/21.456%)
LM5 (3/23.33%)

CR
13.872 :
RES <= 0.203 :
AR <= 1.503 :
AR > 1.503 :
RES <= 0.159 :
| AR <= 1.785 : LM11 (13/212.954%)
| AR > 1.785 : LM12 (47/81.357%)
RES > 0.159 : LM13 (63/62.051%)
0.203 :
| AR <= 1.286 :
RES <= 0.599 :
AR <= 1.075 :

LM10 (86/221.866%)

LM6 (2/2.1467)
LM7 (5/57.484%)

LM num: 15

0=
-0.0004 * CR
+ 4.3369 * AR
+ 9.9925 * RES
- 3.449

Number of Rules : 15

Time taken to build model

=== Cross-validation ===

Summary ===

Correlation coefficient
Mean absolute error

Root mean squared error
Relative absolute error
Root relative squared err:

Total Number of Instances

| RES
| RES
AR > 1.
RES
RES
|
|
RES > 0.599
1.286 :
RES <= 0.21
RES >
AR <= 1.
RES
RES

|
|
|
|
|
|
|
|
| AR >
|
|
|
|
|
|
|
|

AR > 1.

0.0444 * CR

- 0.1976 * AR
- 0.3771 * RES
+ 11.9717

LM num: 2
N =
0.0299 * CR
- 0.1976 * AR
- 0.3771 * RES
+ 16.9766

LM num: 3
N =
0.0299 * CR
- 19.1059 * AR
- 124.9748 * RES
+ 71.5524

LM num: 4
N =
-20.1322 * CR
- 84.1088 * AR
- 0.3771 * RES
+ 289.8639

85

: 3.66 seconds

0.3684
0.6419
0.8034
90.9777 %
or 93.0766 7
1958

<= 0.413 : LM14 (78/236.514%)

> 0.413 : LM15 (90/177.352%)

075 :

<= 0.278 : LM16 (29/224.754%)

> 0.278 :

CR <= 27.947 : LM17 (55/129.658%)
CR > 27.947 : LM18 (27/20.469%)

: LM19 (94/81.355%)

: LM20 (134/79.435%)

0.21 :

398 :

<= 0.254 : LM21 (32/145.162%)

> 0.254 :

RES <= 0.267 : LM22 (93/39.32%)
RES > 0.267 : LM23 (30/52.258%)

398 : LM24 (131/122.936%)



LM

LM

LM

LM

LM

LM

LM

LM

LM

LM
N

num: 5
-20.1322 * CR
- 79.5678 * AR
- 0.3771 * RES
+ 281.4134

num: 6
-14.3716 * CR
+ 7.694 * AR
+ 29.2775 * RES
+ 135.0447

num: 7
-14.3716 * CR
+ 6.1845 * AR
+ 21.657 * RES
+ 139.8589

num: 8
-14.3716 * CR
- 2.3697 * AR
- 24.3499 * RES
+ 160.9351

num: 9
3.0936 * CR
- 2.3697 * AR
- 0.3771 * RES
- 3.8284

num: 10
0.0064 * CR
+ 70.3405 * AR
+ 458.2842 * RES
- 110.421

num: 11
0.0064 * CR
- 204.7775 * AR
- 690.8801 * RES
+ 495.732

num: 12
0.0064 * CR
- 15.2615 * AR
+ 19.2695 * RES
+ 55.0449

num: 13
0.0064 * CR
- 10.7102 * AR
- 72.6475 * RES
+ 47.6259

num: 14
0.0064 * CR

+ 103.7884 * AR

LM

LM

LM

LM

LM

LM

LM

LM

LM

LM

36

+ 132.7803 * RES
- 76.2693

num: 15

0.0064 * CR

- 66.4992 * AR
- 20.2359 * RES
+ 106.3058

num: 16

-0.1988 * CR

- 237.6376 * AR
- 83.2825 * RES
+ 370.576

num: 17

-0.1398 * CR

- 11.5888 * AR
- 19.5517 * RES
+ 48.3087

num: 18

-0.1752 * CR
- 1.6988 * AR
- 2.0227 * RES
+ 26.4644

num: 19

0.0064 * CR

- 8.6824 * AR

- 27.6311 * RES
+ 44.8584

num: 20

0.0064 * CR

+ 7.8749 * AR
+ 31.0254 * RES
- 5.0363

num: 21

0.0064 * CR

- 469.0257 * AR
+ 41.4595 * RES
+ 651.063

num: 22

0.0064 * CR

+ 31.0551 * AR
+ 59.272 * RES
- 44.5507

num: 23

0.0064 * CR

+ 389.6995 * AR

+ 139.4588 * RES

- 530.4973

num: 24



0.0064 * CR

+ 172.1326 * AR
+ 742.1708 * RES
- 393.4539

Number of Rules : 24

Time taken to build model: 2.22 seconds

A.3 Aspect Ratio and Resolution

Model A.3.1 -

= Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0
Instances: 1958
Attributes: 3

A

AR

RES

Test mode: 10-fold cross-validation

Classifier model (full training set) =

M5 pruned model tree:

(using smoothed linear models)

AR <= 1.472 :
AR <= 0.751 :
| RES <= 0.696 : LM1 (314/110.924%)
| RES > 0.696 : LM2 (99/109.269%)

AR > 0.751 :
RES <= 0.265 :
RES <= 0.214 :

| AR <= 1.338 : LM3 (73/126.809%)

| AR > 1.338 : LM4 (81/95.852%)

RES > 0.214 :

| AR <= 1.333 : LM5 (82/133.302%)

| AR > 1.333 : LM6 (305/106.238%)
RES > 0.265 : LM7 (473/115.131%)

AR 1.472 :
| RES <= 0.189 : LM8 (228/124.874%)
| RES > 0.189 : LM9 (303/114.605%)
LM num: 1
A=
0.0596 * AR
+ 0.6106 * RES
+ 4.8377
LM num: 2
A=
0.1771 * AR
- 1.0731 * RES
+ 5.6873
LM num: 3
A=
0.456 * AR
+ 13.5839 * RES
+ 2.3468

Cross-validation ===

=== Summary ===

Correlation coefficient
Mean absolute error

Root mean squared error
Relative absolute error
Root relative squared error

Total Number of Instances

LM num: 4
A=
0.4219 * AR
+ 0.5817 * RES
+ 5.2745

LM num: 5
A=
0.0133 * AR
- 0.9472 * RES
+ 5.4953

LM num: 6
A=
2.3119 * AR
- 0.4341 * RES
+ 1.9081

LM num: 7

A=
-0.0125 * AR
- 0.0109 * RES
+ 5.5194

LM num: 8
A=
-0.007 * AR
+ 3.4995 * RES
+ 4.731

LM num: 9
5.4868 * AR
+ 18.9257 * RES

- 7.2349

Number of Rules : 9

0.4234
19.1404
32.9358
82.0734 %
90.5666 %

1958

Time taken to build model: 3.38 seconds

=== Cross-validation ===

Summary ===

Correlation coefficient
Mean absolute error

Root mean squared error
Relative absolute error
Root relative squared error

Total Number of Instances

87

0.3192
0.6828
0.8486

94.2016 7%
94.7083 %,
1958



Model A.3.2 -

Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0
Instances: 1958
Attributes: 3
0
AR
RES
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

M5 pruned model tree:
(using smoothed linear models)

AR <= 1.472 :
AR <= 0.751
| RES <= 0.696 : LM1 (314/107.395%)
| RES > 0.696 : LM2 (99/102.781%)

AR > 0.751
RES <= 0.306 :
RES <= 0.213 :

|
| | AR <= 1.353 : LM3 (76/121.301%)
[ AR > 1.353 : LM4 (71/105.312%)
| RES > 0.213 :
| AR <= 1.298 : LM5 (168/121.311%)
| AR > 1.298 :
|
|
RES > 0.306 : LM8 (332/119.942%)

AR > 1.472 :
| RES <= 0.189 : LM9 (228/122.752%)
| RES > 0.189 : LM10 (303/110.048%)

LM num: 1

0=
-0.0029 * AR
+ 0.8143 * RES
+ 4.7753

LM num: 2

0=
-0.0029 * AR
- 0.7623 * RES
+ 5.5308

LM num: 3

0=
0.3663 * AR
+ 12.7201 * RES
+ 2.6101

LM num: 4

MOdel A..3.3 === Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0
Instances: 1958
Attributes: 3
N
AR
RES
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

| AR <= 1.339 : LM6 (165/109.935%)
| AR > 1.339 : LM7 (202/96.042%)

0=
0.3884 * AR
+ 1.035 * RES
+ 5.1903

LM num: 5

0=
-0.0794 * AR
- 4.5281 * RES
+ 6.6802

LM num: 6

0=
-10.0277 * AR
+ 0.3978 * RES
+ 18.0864

LM num: 7

0=
6.7125 * AR
+ 22.2926 * RES
- 9.6042

LM num: 8

0=
-0.0216 * AR
- 0.0081 * RES
+ 5.5268

LM num: 9

0=
-0.0076 * AR
+ 3.1785 * RES
+ 4.7248

LM num: 10

0=
5.4983 * AR
+ 15.9301 * RES
- 6.6867

Number of Rules : 10

Time taken to build model: 3.36 seconds

=== Cross-validation ===

=== Summary =

Correlation coefficient 0.3179
Mean absolute error 0.6624
Root mean squared error 0.8186
Relative absolute error 93.8899 ¥
Root relative squared error 94.8315 ¥,
Total Number of Instances 1958

M5 pruned model tree:

(using smoothed linear models)

AR <= 0.774 : LM1 (454/110.359%)

AR > 0.774 :
RES <= 0.302 :
RES <= 0.203 :

|
| | AR <= 1.505 : LM2 (188/206.628Y%)
| | AR > 1.505 : LM3 (232/141.255%)
| RES > 0.203 :

[ AR <= 1.333 :

38



LM

LM

LM

LM

LM

LM

A.4 Gabor Estimates with Image Properties

AR <= 1.238 :

[
(I B AR <= 0.992 : LM4 (19/32.778%)
(I B AR > 0.992 : LM5 (51/233.923%)
[ AR > 1.238 : LM6 (153/118.922%)
| | AR > 1.333 :
[ RES <= 0.24 :
[ B RES <= 0.216 : LM7 (261/87.837%)
| | | | RES > 0.216 :
| | | | | AR <= 1.446 :
| | | | | | RES <= 0.233 : LM8 (88/53.954%)
| | | | | | RES > 0.233 : LM9 (32/124.94%)
| | | | | AR > 1.446 : LM10 (33/170.19%)
| | | RES > 0.24 : LM11 (144/40.993%)
RES > 0.302 :
| RES <= 0.378 :
[ AR <= 1.104 : LM12 (71/257.071%)
[ AR > 1.104 :
[ AR <= 1.234 : LM13 (40/75.738%)
[ AR > 1.234 : LM14 (11/199.108%)
| RES > 0.378 : LM15 (181/181.632%)
num: 1
-0.2938 * AR
- 10.7995 * RES
+ 24.0231
num: 2

47.4721 * AR
+ 304.3807 * RES
- 74.1286

num: 3

-23.5484 * AR

- 247.6171 * RES
+ 98.1085

num: 4

26.6807 * AR

- 66.3294 * RES
+ 15.6531

num: 5
11.7435 * AR
- 66.3294 * RES
+ 51.4181

num: 6

-137.0262 * AR
- 463.5345 * RES
+ 321.3195

2.6144 x AR
+ 7.6041 * RES
+ 8.5891

LM num: 8

N =
-12.8441 * AR
+ 7.6041 * RES
+ 29.9874

LM num: 9
N =
-608.9958 * AR
+ 7.6041 * RES
+ 865.6222

LM num: 10
N =
2.6144 * AR
+ 7.6041 * RES
+ 15.3378

LM num: 11
N =
434.6337 * AR
+ 993.4485 * RES
- 827.4862

LM num: 12

N =
110.0404 * AR
- 0.2006 * RES
- 50.9857

LM num: 13
N =
70.206 * AR
+ 97.682 * RES
- 90.2892

LM num: 14
N =
146.2832 * AR
+ 206.8588 * RES
- 192.0886

LM num: 15
N =
1.1619 * AR
- 0.2006 * RES
+ 29.5203

Number of Rules : 15
Time taken to build model:

=== Cross-validation ===

=== Summary ===

Correlation coefficient
Mean absolute error

Root mean squared error
Relative absolute error
Root relative squared error

Total Number of Instances

89

1.8 seconds

0.2883
20.6787
34.8553
88.6694 ¥
95.8449 7,

1958



Model A.4.1

90



Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0
Instances: 1958
Attributes: 9
A
CR
AR
RES
G1
G2
G3
G4
G5
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

M5 pruned model tree:

(using smoothed linear models)

G3 <= 0.007 :
G3 > 0.007 :
| CR <= 13.023 : LM2 (624/110.248%)
| CR > 13.023 : LM3 (501/114.147%)

LM1 (833/117.814%)

LM num: 1

A=
0.0101 * CR
- 0.2262 * AR
- 0.483 * RES
- 29.6078 * G1
- 0.3383 * G2
+ 91.044 * G3
+ 111.6876 * G4
- 80.9177 * G5
+ 5.079

MOdel A.4.2 === Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0
Instances: 1958
Attributes: 9
0
CR
AR
RES
G1
G2
G3
G4
G5
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

M5 pruned model tree:

(using smoothed linear models)

G3 <= 0.007 :

| CR <= 16.162 :

[ G3 <= 0.003 :

| | | G2 <= 0.002 : LM1 (39/77.504%)
[ G2 > 0.002 : LM2 (27/74.526%)
[ G3 > 0.003 :

91

LM num: 2

A=
0.0162 * CR
- 0.012 * AR
+ 0.5176 * RES
- 0.6846 * G1
- 18.8175 * G2
+ 63.2379 * G3
- 18.7667 * G4
- 20.3143 * G5
+ 4.851

LM num: 3

0.0213 * CR

- 1.5839 * AR

- 2.1723 * RES
- 43.2484 * G1

- 0.2516 * G2

+ 1569.5122 * G3
- 50.1608 * G4
+ 7.5234

Number of Rules : 3

Time taken to build model: 3.84 seconds

=== Cross-validation ===

=== Summary ===

Correlation coefficient 0.3363
Mean absolute error 0.6753
Root mean squared error 0.8444
Relative absolute error 93.1634 7,
Root relative squared error 94.2487 7,
Total Number of Instances 1958

| G5 <= 0.007 :
[ CR <= 8.672 : LM3 (57/87.638%)
[ CR > 8.672 : LM4 (37/99.252%)
| G5 > 0.007 : LM5 (155/88.653%)
> 16.162 :
RES <= 0.261 :
| RES <= 0.187 : LM6 (81/131.947%)
| RES > 0.187 : LM7 (240/113.427%)
RES > 0.261 : LM8 (197/116.734%)
G3 > 0.007 :
CR <= 13.015 :
| RES <= 0.298 :
| RES > 0.298 :
CR > 13.015 :
AR <= 1.313 :
AR > 1.313 :
RES <= 0.203 :
| AR <= 1.502 :
| AR > 1.502 :
RES > 0.203 :

LM9 (337/111.829%)
LM10 (284/100.256%)

LM11 (212/111.68%)

LM12 (48/70.62%)
LM13 (43/90.762%)
LM14 (201/101.781%)

0.0039 * CR

- 0.0139 * AR

- 0.0186 * RES
- 1.6574 * G1

- 0.2671 * G2



- 16.7517 * G3 0.0008 * CR

- 21.7614 * G4 - 0.0601 * AR
+ 11.475 * G5 - 0.3306 * RES
+ 4.8343 - 56.6464 * G1
- 4.8005 * G2
LM num: 2 + 192.9436 * G3
0= + 4.0517 * G4
0.0346 * CR - 3.7904 * G5
- 0.0139 * AR + 4.7611
- 0.0186 * RES
- 1.6574 * G1 LM num: 8
+ 398.6072 * G2 0=
- 26.2569 * G3 0.0122 * CR
- 28.8075 * G4 - 0.6017 * AR
+ 16.7768 * G5 - 1.2748 * RES
+ 3.3906 - 40.7026 * G1
- 228.3318 * G2
LM num: 3 + 232.3482 * G3
0= + 96.6076 * G4
0.0148 * CR - 52.9204 * G5
- 0.0139 * AR + 6.0898
- 0.0186 * RES
- 1.6574 * G1 LM num: 9
- 0.2671 * G2 0=
+ 9.4291 * G3 0.0016 * CR
+ 2.8998 * G4 - 0.0303 * AR
- 8.4236 * G5 - 0.0145 * RES
+ 4.8033 - 17.8267 * G1
- 1.3188 * G2
LM num: 4 + 53.367 * G3
0= - 1.6467 * G4
0.0186 * CR - 16.6323 * G5
- 0.0139 * AR + 5.0118
- 0.0186 * RES
- 1.6574 * G1 LM num: 10
- 0.2671 * G2 0=
+ 9.4291 * G3 0.0017 * CR
+ 2.8998 * G4 + 0.5398 * AR
- 8.4236 * G5 - 0.0145 * RES
+ 5.0903 - 0.7086 * G1
- 36.8837 * G2
LM num: 5 + 92.5372 * G3
0= - 49.8528 * G4
0.0038 * CR - 0.8704 * G5
- 0.0139 * AR + 4.7963
- 0.0186 * RES
- 1.6574 * G1 LM num: 11
- 0.2671 * G2 0=
+ 9.4291 * G3 0.002 * CR
+ 2.8998 * G4 - 1.3225 * AR
- 6.7959 * G5 - 2.0872 * RES
+ 4.7927 - 23.0826 * G1
+ 60.9601 * G2
LM num: 6 + 10.9675 * G3
0= - 2.8853 * G4
0.0008 * CR + 7.7439
- 0.1032 * AR
- 0.809 * RES LM num: 12
- 9.8119 * G1 0=
- 4.8005 * G2 0.0046 * CR
+ 149.5487 * G3 + 1.0516 * AR
+ 4.0517 * G4 + 2.39 * RES
- 3.7904 * G5 - 25.5141 * G1
+ 5.123 - 0.1987 * G2
+ 72.112 * G3
LM num: 7 - 2.383 * G4
0= + 3.8466

92



LM num: 13
0=
0.0284 * CR
- 3.1527 * AR
- 15.4078 * RES

61.6952 * G1
81.7599 * G2
50.4442 * G3

+

+

- 2.383 ¥ G4
+ 12.6564
LM num: 14
0=
0.0195 * CR
+ 2.2048 * AR
+ 7.1228 * RES

- 54.7315 * G1

Model A.4.3

=== Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0

1958

Attributes: 9
N
CR
AR
RES
G1
G2
G3
G4
G5

10-fold cross-validation

Instances:

Test mode:

Classifier model (full training set) =

M5 pruned model tree:

(using smoothed linear models)

CR <= 13.872 : LM1 (956/112.511Y%)
CR > 13.872 :
| G3 <= 0.004 : LM2 (241/120.061%)
| G3 > 0.004 :
| | RES <= 0.203 :
| | | AR <= 1.503 : LM3 (78/217.833%)
| | | AR > 1.503 :
[ B RES <= 0.159 :
[ E | AR <= 1.756 :
[ T R RES <= 0.15 : LM4 (6/190.483%)
[ | RES > 0.15 : LM5 (3/159.85%)
[ A E | AR > 1.756 : LM6 (20/92.501%)
(I B RES > 0.159 :
[ A R | G3 <= 0.007 :
[ N | G4 <= 0.008 : LM7 (15/10.612%)
| | | | | | G4 > 0.008 : LM8 (8/2.816%)
[ R E | G3 > 0.007 :
| | | | | | G4 <= 0.011
| | | | | | | G3 <= 0.008 : LM9 (2/12.874%)
| | | | | | | G3 > 0.008 : LM10 (4/29.49%)
| | | | | | G4 > 0.011 : LM11 (19/14.44Y%)
| | RES > 0.203 : LM12 (606/168.661%)
LM num: 1
N =
0.9416 * CR

- 0.1987 * G2
+ 111.2034 *

- 2.383 * G4
- 0.2317

Number of Rules :

Time taken to buil

=== Cross-validati

=== Summary ===

Correlation coeffi
Mean absolute erro:
Root mean squared
Relative absolute

Root relative squared error

Total Number of Instances

G3

14

d model: 3.99 seconds

on ===

cient 0.3713
T 0.6429
error 0.8026
error 91.1313 7
92.9827 7,
1958

- 0.1838 * AR

- 0.3469 * RE
+ 1383.829 *

- 16.5627 * G
- 916.7874 *

+ 6.5013

LM num: 2

o

.3324 x CR
8.911 * AR
15.6885 *
57.232 * G1

+

+

187.5226 *

+ 24.775

LM num: 3
N =

o

.1783 * CR

+

+

355.4139 *
103.3643 *

+

+

1201.6177 *
583.7115 *
88.5961

LM num: 4
N =

-

.5342 * CR

180.6128 *
832.4562 *
787.4585 *
2509.7528 *
3281.1118 *
588.3181 *
438.9559

+

+

+

LM num: 5
N =

-

.5342 * CR
- 190.2723 *
- 832.4562 *
- 787.4585 *
2509.7528 *
3281.1118 *

+

+

93

S
G3
4
G5

RES

90.7634 * G2

G3

58.2722 * G4

63.3412 * AR

RES
G1

29.9426 * G2

G3
G4

AR

RES

G1
G2
G3



- 588.3181 * G4

+ 449.6841 LM num: 10
N =
LM num: 6 1.609 * CR
N = - 16.4145 * AR
1.2486 * CR - 209.2682 * RES

202.8236 * G1
3100.9717 * G2
428.713 * G3

89.2656 * AR
655.8923 * RES
434.673 * G1

+

+

+ 2509.7528 * G2 - 588.3181 * G4
+ 2263.2524 * G3 + 45.626
- 588.3181 * G4
+ 244.2721 LM num: 11
N =

LM num: 7 0.8988 * CR

N = - 16.4145 * AR
0.491 * CR - 209.2682 * RES
- 16.4145 * AR + 202.8236 * G1
- 209.2682 * RES + 3100.9717 * G2
+ 202.8236 * G1 - 428.713 * G3
+ 3171.4506 * G2 - 435.9192 * G4
- 472.042 * G3 + 54.023
- 866.3516 * G4
+ 119.4071 * G5 LM num: 12
+ 62.849 N =

0.0221 * CR
LM num: 8 71.9616 * AR
N = 80.0116 * RES
.5693 * CR 42.0082 * G1
16.4145 * AR 29.9426 * G2
209.2682 * RES 1230.2123 * G3
202.8236 * G1 65.4314 * G4

1o
+ 0

+

+

+ 3171.4506 * G2 + 133.1807
- 472.042 * G3
- 950.9705 * G4 Number of Rules : 12
+ 155.7484 * G5
+ 60.8532 Time taken to build model: 2.66 seconds

LM num: 9 === Cross-validation ===

N = === Summary ===
1.1513 * CR
- 16.4145 * AR Correlation coefficient 0.3177
- 209.2682 * RES Mean absolute error 19.8784
+ 202.8236 * G1 Root mean squared error 34.8033
+ 3100.9717 * G2 Relative absolute error 85.2378
- 428.713 * G3 Root relative squared error 95.7019 7
- 588.3181 * G4 Total Number of Instances 1958
+ 55.903

A.5 Gabor Estimates with Aspect Ratio and

Resolution
MOdel A..5.1 === Run information === G2

G3
Scheme: weka.classifiers.trees.M5P -M 4.0 G4
G5
Instances: 1958 Test mode: 10-fold cross-validation
Attributes: 8
A === Classifier model (full training set) ===
AR
RES M5 pruned model tree:
G1 (using smoothed linear models)
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G3 <= 0.007 :
G3 <= 0.003 :
| RES <= 0.269 : LM1 (139/126.94%)
| RES > 0.269 : LM2 (93/109.028%)
G3 > 0.003 : LM3 (601/115.1437%)
G3 > 0.007 :
RES <= 0.27 :
RES <= 0.203 :
AR <= 1.505 : LM4 (118/120.757%)
AR > 1.505 :
| RES <= 0.191 : LM5 (79/102.385%)
| RES > 0.191 : LM6 (33/106.456%)
RES > 0.203 :
AR <= 1.333 :
AR <= 1.306 :
| AR <= 0.938 : LM7 (15/98.211%)
| AR > 0.938 : LM8 (38/87.549%)
AR > 1.306 : LM9 (29/114.284%)
AR > 1.333 : LM10 (321/105.65%)
RES > 0.27 : LM11 (492/111.094%)

LM num: 1

A=
-0.0366 * AR
- 0.082 * RES
- 41.1738 * G1
- 0.4761 * G2
+ 19.4303 * G3
+ 6.5118 * G4

- 5.4062 * G5
+ 5.0168
LM num: 2
A=
-0.0451 * AR
- 1.1261 * RES
- 8.3961 * Gi1
- 513.5986 * G2
+ 836.9331 * G3
+ 6.5118 * G4
- 205.0447 * G5
+ 5.6541
LM num: 3
A=
-0.0095 * AR
- 0.0189 * RES
- 0.8344 * G1
- 0.4761 * G2
+ 3.0285 * G3
+ 86.6845 * G4
- 86.4154 * G5
+ 5.2251
LM num: 4
A=
1.6007 * AR
+ 11.8681 * RES
- 1.2406 * G1
- 87.9909 * G2
+ 87.7722 * G3
- 9.24 x G4
- 1.915 * G5
+ 1.4094
LM num: 5

A=

-0.2121 * AR

- 0.3975 * RES
- 6.705 * G1

- 1.6111 * G2

+ 12.9493 * G3
+ 86.5777 * G4
- 104.5776 * G5

+ 6.0075
LM num: 6
A=
-0.3801 * AR
- 1.0449 * RES
- 11.9418 * G1
+ 3.0246 * G2
+ 7.6416 * G3
+ 31.9033 * G4
- 31.8848 * G5
+ 5.9094
LM num: 7
A=
0.6771 * AR
+ 7.7309 * RES
- 5.7646 * G1
- 4.4641 * G2
+ 19.2413 * G3
+ 39.1505 * G4
- 41.3375 * G5
+ 2.7039
LM num: 8
A=
0.391 * AR
- 2.5485 * RES
- 5.7646 * G1
- 4.4641 * G2
+ 19.2413 * G3
+ 21.3509 * G4
- 25.6851 * G5
+ 5.9644
LM num: 9
A=
0.0841 * AR
- 3.8884 * RES
- 71.5614 * G1
- 4.4641 * G2
+ 100.646 * G3
- 1.8661 * G4
- 5.2688 * G5
+ 6.5132
LM num: 10
A=
-0.0477 * AR
- 0.0921 * RES
- 51.9346 * G1
- 2.6147 * G2
+ 101.532 * G3
- 1.8661 * G4
- 25.9955 * G5
+ 5.4313
LM num: 11
A=

95



0.5295 * AR

- 0.0055 * RES
- 0.1978 * G1

- 1.1692 * G2

+ 58.2467 * G3
- 58.0008 * G4
- 0.6234 * G5

+ 5.1472

Number of Rules : 11

MOdel A..5.2 === Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0

Instances: 1958
Attributes: 8
0
AR
RES
G1
G2
G3
G4
G5

Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===

M5 pruned model tree:

(using smoothed linear models)

G3 <= 0.007 :
AR <= 0.751
| RES <= 0.69 : LM1 (128/95.903%)
| RES > 0.69 :
[ AR <= 0.666 : LM2 (19/98.968%)
[ AR > 0.666 : LM3 (43/63.574%)
AR > 0.751
| RES <= 0.261 : LM4 (459/118.465%)
| RES > 0.261 : LM5 (184/119.087%)
G3 > 0.007 :
AR <= 1.313 : LM6 (566/114.832%)
AR > 1.313 :
RES <= 0.203 :
| AR <= 1.499 : LM7 (74/110.019%)
| AR > 1.499 :
| | RES <= 0.168 : LM8 (54/123.81%)
[ RES > 0.168 : LM9 (76/94.551%)
RES > 0.203 : LM10 (355/106.649%)

LM num: 1

0=
1.4908 * AR
+ 0.5328 * RES
- 4.5184 * G1
+ 6.9534 * G2

+

0.2958 * G3
16.8174 * G4
- 42.0802 * G5

+

+ 3.9119
LM num: 2
0=
-1.1455 * AR

- 0.0818 * RES

Time taken to build model: 3.91 seconds

=== Cross-validation ===

=== Summary ===
Correlation coefficient 0.2576
Mean absolute error 0.7009
Root mean squared error 0.8706
Relative absolute error 96.6942 7,
Root relative squared error 97.1661 7,
Total Number of Instances 1958
- 6.7763 * G1

+ 135.2442 * G2
- 169.3316 * G3
+ 104.7745 * G4
- 18.4461 * G5
+ 5.1789

LM num: 3

0=
0.2193 * AR
+ 1.2845 * RES
- 6.7763 * G1
+ 324.2723 * G2
- 244.866 * G3
+ 72.6884 * G4
- 18.4461 * G5
+ 3.3593

LM num: 4

0=
-0.0081 * AR
+ 0.0218 * RES
- 33.2348 * G1
- 0.3838 * G2
+ 132.0524 * G3
+1.1278 * G4
- 2.2771 * G5
+ 4.6987

LM num: 5

0=
-0.0081 * AR
+ 0.0678 * RES
- 3.0244 x G1
- 81.8654 * G2
+ 13.7957 * G3
+ 1.1278 * G4
- 3.5696 * G5
+ 5.5322

LM num: 6

0=
0.5157 * AR
- 0.0043 * RES
- 14.158 * G1
- 0.9039 * G2
+ 73.1204 * G3
- 50.939 * G4
+ 5.1084

LM num: 7

0=
1.6752 * AR
+ 3.7457 * RES
- 10.3846 * G1
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- 65.4491 * G2
+ 36.1206 * G3
+29.7989 * G4
+ 2.8204

LM num: 8

0=
-0.4388 * AR
+ 4.6396 * RES
- 7.5029 * G1
- 6.5962 * G2
+ 26.7359 * G3
- 8.4358 * G4
- 6.5075 * G5
+ 5.5053

LM num: 9

0=
-0.4388 * AR
- 0.771 * RES
- 7.5029 * G1
- 7.6696 * G2
+ 26.7359 * G3
- 8.4358 * G4
- 4.9343 * G5

MOdel A..5.3 === Run information ===

Scheme: weka.classifiers.trees.M5P -M 4.0

Instances: 1958

Attributes: 8
N
AR
RES
G1
G2
G3
G4
G5

Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

M5 pruned model tree:

(using smoothed linear models)

AR <= 0.774 : LM1 (454/108.858%)

AR > 0.774 :
RES <= 0.302 :
RES <= 0.203 :

| AR <= 1.505 : LM2 (188/201.565%)

| AR > 1.505 : LM3 (232/139.586%)

RES > 0.203 :

AR <= 1.333 :
AR <= 1.238 :
| AR <= 0.992 : LM4 (19/30.855%)
| AR > 0.992 : LM5 (51/233.923%)
AR > 1.238 : LM6 (153/116.141%)

AR > 1.333 : LM7 (558/90.978%)

RES > 0.302 : LM8 (303/206.757%)

LM num: 1

N =
-0.285 * AR
- 10.2337 * RES
- 750.3682 * G1

+ 5.983

LM num: 10

0=
2.0708 * AR
+ 7.4206 * RES
- 57.0249 * G1
- 2.9621 * G2
+ 83.7966 * G3
- 3.2374 x G4
+ 0.5798

Number of Rules : 10

Time taken to build model: 3.92 seconds

=== Cross-validation ===

Summary ===

Correlation coefficient 0.2739
Mean absolute error 0.6753
Root mean squared error 0.8327
Relative absolute error 95.7171 %
Root relative squared error 96.4697 7,
Total Number of Instances 1958

- 786.4892 * G2
+ 2753.8453 * G3
- 20.3092 * G4

- 917.6692 * G5
+ 27.201

LM num: 2

-2.6361 * AR

+ 300.2804 * RES

- 6.0556 * G1

- 8612.2528 * G2

+ 10330.0307 * G3
- 3422.0245 * G4

- 5.7332 * G5

- 2.3234

LM num: 3
N =

-24.5507 * AR
- 232.5259 * RES
- 6.0556 * G1
- 151.9638 * G2
+ 3012.0372 * G3
- 3000.4704 * G4
- 5.7332 * G5
+ 102.9735

LM num: 4
N =
14.855 * AR
- 59.3827 * RES
- 2940.5249 * G1
- 1112.8887 * G2
4540.6842 * G3
2762.0139 * G4
- 1633.2883 * G5
34.8058

+

+

+

LM num: 5
N =
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3.1154 * AR - 679.0221 * G5
- 59.3827 * RES - 247.1502
- 1683.5463 * G1
- 582.8758 * G2 LM num: 8
+ 2719.0795 * G3 N =
+ 1464.8068 * G4 34.7764 * AR
- 852.5929 * G5 - 0.1967 * RES
+ 62.5453 - 1576.8897 * G1
+ 3499.6302 * G2
LM num: 6 + 130.1668 * G3
N = - 80.9779 * G4
-139.1694 * AR - 5.7332 * G5
- 417.9206 * RES + 5.8476
- 192.7147 * G1
+ 1384.2314 * G2 Number of Rules : 8
- 417.101 * G3
+ 1087.1662 * G4 Time taken to build model: 2.39 seconds
- 918.7866 * G5
+ 308.5812 === Cross-validation ===
=== Summary ===
LM num: 7
N = Correlation coefficient 0.2371
125.0287 * AR Mean absolute error 21.4863
+ 368.8584 * RES Root mean squared error 35.4074
- 17.53 * G1 Relative absolute error 92.1322 7
- 1055.8894 * G2 Root relative squared error 97.363 7,
+ 1636.0457 * G3 Total Number of Instances 1958
- B7.977 * G4
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