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AUTHOR’S PREFACE TO ENGLISH EDITION

The English edition of Gramice Nauki is essentially different
from the original text.

Chapter VII is completely changed. In Chapters VIII and IX
important additions have been made.

I am greatly indebted to Miss Brodie, Mgr. Herzberg, and
Dr. Hetper for important critical remarks.

LeEoN CHWISTEK.
Lwéw,






TRANSLATORS’ PREFACE

Significant contributions have been made by contemporary
Polish thinkers in the fields of logic, philosophy of science, and
the analysis of the foundations of mathematics. They have
been the initiators and leaders of contemporary thought on
many important issues involved in metalogic and linguistics.
Relatively little of their work is available in any international
language and hence the writings of these theoreticians have
remained comparatively unfamiliar to students in these fields
in other countries of Europe and in America.

The Limits of Science, by Dr. Leon Chwistek, was first
published in 1935 under the title Granice Nauki. The present
edition has been revised and supplemented by the author.
The translators are indeed grateful to Dr. Chwistek for his
whole-hearted co-operation both in revising the work and
cgrefully checking the manuscript.

Taking the views of Bertrand Russell, Henri Poincaré, and
David Hilbert as his point of departure, Dr. Chwistek goes on
to develop rational semantics, which he contends can be
successfully applied in solving the problems which arise in
connection with philosophy, science, social theory, and art.
The Limits of Sciemce is the culmination of Dr. Chwistek’s
thought with regard to the application of rational semantics
to logic, the philosophy of mathematics, and the foundation
problems of the physical sciences.

It is perhaps unnecessary to point out, especially to the
Polish reader, that the translators have directed their efforts
toward a free translation rather than a word-for-word rendering
of the text. It has proved more feasible to eliminate certain
idiomatic expressions of the Polish language and allusions
familiar only to the Polish reader, and to concentrate our
efforts upon obtaining an adequate and coherent interpretation
of the text. Wherever possible translations of quotations from
works in foreign languages have been taken directly from the
English translation of these works.

The translators wish to express their thanks to Professor
Herbert W. Schneider who initially encouraged this project ;
Professors Haskell B. Curry, A. F. Bentley, and Rudolf
Carnap, whose recognition of its value motivated its execu-
tion; Dr. J. Herzberg, of Lwéw, who gave invaluable



Xiv TRANSLATORS’ PREFACE

assistance in the tedious task of checking references ; Professor
Horace L. Friess, who gave freely of his time in chécking
references, interpreting allusions, and discussing certain
problems which arose in connection with the translation ;
Dr. H. Theodric Westbrook and Dr. Ernest Moody, who
willingly offered suggestions and criticisms in rendering quota-
tions taken from the medieval Latin; to Dr. Josef Maier, who
verified translations of quotations taken from German authors,
and to Miss Jean Macalister, of the Columbia University
Library, who checked several obscure references.

The translators are deeply indebted to Professor Ernest
Nagel without whose efforts the publication of this translation
would have been impossible. He not only undertook to make
the initial arrangements for publication, offered his advice
with regard to the problems which arose in connection with
the work, but checked the manuscript in its entirety, offering
invaluable suggestions and criticisms with regard to terminology
and interpretation.

In offering this translation of The Limits of Science to the
philosophical public it is the hope of the translators that this
initial translation of a logical text from Polish into English
will not be the last, that an increase in the familiarity of
Western thinkers with the works of Polish theoreticians
written in their native tongue will follow and that a more
adequate understanding and evaluation of their contributions
will be obtained.

H. C. B.
A. P. C



PREFACE TO INTRODUCTION AND APPENDIX

Chwistek’s views on logic, and in particular those concerning
semantics and metamathematics, were developed over a period
of many years. However a study of his writings of the last
four or five years reveals that, except for matters of detail,
his views have attained their final form. For this reason it is
important to indicate explicitly how the present text differs
in form from the original edition. Chwistek himself points out
that :

““In Chapters IV-VI instead of the Greek letters a, 8, .
theletters#, v, w, . . . are employed. Otherwise there will be 1o
conformity with the system of Chapter VII. Symbols such as
(0000), etc., have no individual meaning ; they are not names
at all. To have significant propositions we must assume that
(0000) ¢s true, or that it is a theorem.”

In a series of letters written during the summer of 1939
Chwistek dealt specifically with the varieties of type to be
used in setting up the manuscript and submitted certain
general directions, which can be summarized as follows :

1. Italics are. to be employed in the case of sentences of
the symbolic language, and in the case of real and apparent
variables (both logical and semantical) which are not starred
expressions. They are also to be used to indicate phrases or
sentences which are emphasized.

2. Bold face is to be employed in the case of the language of
interpretation amd the interpreted language. Constant
expressions, logical operators, and variables (whether real or
apparent), which are defined as starred expressions, are also
to be printed in bold face.

3. All mathematical symbols, when not considered within
the context of the system of semantics or metamathematics,
are to be written in accordance with the usual mathematical
conventions.

The application of these directions was left in all cases to
the present writer. Unfortunately many questions of interpreta-
tion arose in this connection and Dr. Chwistek was unable
to read the final draft of the manuscript in which they were
resolved. While Professor Ernest Nagel aided immeasurably
in dealing with them, the actual responsibility for the choice
of type of all symbols must rest upon the writer.
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It might be added here that in any case it would have been
impossible to follow the typography of the original edition not
only because' of fundamental changes in Chwistek’s position
since its publication, in 1935, but because of the inclusion in
the text of a considerable amount -of hitherto unpublished
material.

In the Introduction and Appendix an attempt is made to
develop a consistent interpretation of Chwistek’s views, to
eliminate all their “ obscurities ”’, and to give an adequate
evaluation of them. It is therefore necessary to employ
terminology current among other logicians as well as Chwistek’s
own phraseology. Consequently on occasion deviations from
Chwistek’s terminology and notation may be found on certain
fundamental points.® Quotation marks, for example, are
employed to indicate the name of an expression. Although
Chwistek himself does not accept this convention, it readily
permits the reader to discover exactly what Chwistek has in
mind at a given point. While this and other reformulations
employed in the Introduction and Appendix have been given
only after a careful consideration of Chwistek’s views in his
own terms, they are essential if his position is to be understood
and evaluated by other logicians. Since, however, Chwistek
never saw these portions of the text it is impossible to decide
whether he would be willing to accept the writer’s interpretation
of his views exactly as they stand. The reader can test its
adequacy by an examination of the translation itself, where
Chwistek’s own symbolism and notation remain unchanged.

Finally the writer wishes to express her appreciation to
Wellesley College, under whose auspices the Introduction and
Appendix were completed during her term as Alice Freeman
Palmer Fellow (1939-1940).

H. C. B.
! However in actual quotations from Chwistek’s writings, all his con-

ventions (past and present) are followed, except where specifically indicated.
All translations from the Polish were made by the writer.
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INTRODUCTION

For almost three decades Dr. Leon Chwistek has been
occupied with the problems of philosophy and logic. While
it is generally recognized that he has made valuable con-
tributions to logic by his critical analysis of its foundations,
his own doctrines in philosophy and logic have been the
subject of heated debate, particularly in his native land.
The Limaits of Science presents Chwistek’s position on
some of these controversial issues. While admittedly but an
outline of the methodological and logical problems of the
exact sciences, this work merits consideration as an attempt
to approach these problems from the standpoint of a new
logical science, semantics, and a new view concerning reality,
the theory of plural reality. In the light of current philosophical
discussion it is of interest to note that Chwistek was led to
work out this new approach as a result of a prior analysis of
language. His position can therefore be characterized as the
reaction of a present-day nominalist to contemporary realistic
and anti-rationalist doctrines.

Unfortunately, however, Chwistek uses a vocabulary and
symbolic apparatus different from that of other philosophers
and logicians. A number of writers have tried to restate his
views in more familiar terminology. Consequently differences
of opinion have arisen concerning the proper interpretation of
his position as well as its validity. Chwistek has defended his
position largely by attacking that of his opponents. But just
as Chwistek’s critics have never really tried to understand his
views in Ass terms, he has never really tried to understand
the viewpoint of his critics. An adequate evaluation of his
point of view requires that some common basis of discussion
be attained. It is the aim of this introduction to supply this
lack and to contribute to such an evaluation. An attempt
will therefore be made to place Chwistek’s logical views in
their proper philosophical setting. The influence of his logical
theories upon more general philosophical considerations will
also be examined.
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I
TrE METHOD OF SOUND REASON
The Gritevia of Sound Reason

It is a commonplace to state that philosophers and scientists
both seek a coherent conception of the world and attempt to
give an adequate analysis of experience. In view of this
identity of aim it is not entirely surprising that their views
have had an influence upon each other. Nevertheless the
scientist and philosopher treat different aspects of experience.
The physicist for example may be concerned with the con-
ditions for the occurrence of electrodynamic phenomena, while
the philosopher may be concerned with the generalized problems
of knowledge. .

It is Chwistek’s contention, as a result of long preoccupation
with philosophic and scientific problems, that certain weaknesses
inherent in scientific procedure have given rise to many false
philosophic doctrines. For example the inability of the Greek
philosophers to remove the paradoxes discovered by Zeno
(192 ff.)* gave rise to a philosophy of ** pure being ”. Thus in
times of crisis in the history of science philosophers have been
wont to advance doctrines in which exact thought is replaced
by vision and phantasy. In this way Chwistek explains the
widespread influence of Plato’s thought. He interprets Hegel’s
views as arising from the confusion among eighteenth and
nineteenth century mathematicians concerning the nature of
infinitesimals.

Chwistek himself protests against any philosophic doctrine
which is based upon ‘ absolutes ”’, because they cannot be
exemplified in or verified by experience. For this reason he
objects to such concepts as “ the perfect good >’ of Socrates,
the “ ideas "’ of Plato, the * absolute truth * of Hegel, and the
““ absolute knowledge "’ of Husserl. Philosophic doctrines, he
maintains, are to be secured by the application of reason
(i.e. sound reason) ta experience. Only in this way is it possible
to attain knowledge and add to the scope of our experience.?

Chwistek’s analysis of sound reason has obviously been

1 References to the text will be inserted in parenthesis.

? Chwistek also maintains that metaphysical elements must be eliminated
from science. He objects, for example, to the mtroduction of entelechies
into biology by Driesch (5). Nevertheless he insists that some method must
be found to eliminate such scientific puzzles as the already mentioned paradoxes
of Zeno. Once again Chwistek has recourse to the method of sound reason.
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motivated by the situation in philosophy where philosophers,
who present utterly incompatible views, each claim to have
achieved knowledge. Chwistek himself believes that it is
possible to discover certain fundamental truths, which though
perhaps trivial, are not subject to variations in interpretation.
These propositions, which are open neither to serious dispute
nor alteration, he regards as the foundation of science and
philosophy. Chwistek clearly formulates his view, when he
defines sound reason as ““the method for attaining truths
not subject to intellectual revolution ”’ (25).

Unfortunately, however, it is difficult to discover exactly
what Chwistek means by sound reason. While he recognizes
that it consists of a number of fundamental assumptions,?
he asserts that “ its criteria cannot be formulated in a pattern
(265), and that these criteria are variable (plynny).2 He freely
admits that ‘ the exact bounds of their operation cannot be
fixed ”’ (265). The net result of his discussion of sound reason
is therefore merely a statement of some of the well-known
features of the reflective method, although these features do
bt characterize this method completely.

Chwistek has selected for consideration various criteria of
the method of sound reason. But in the case of each of these
criteria he recognizes its inadequacy as a defining characteristic
of this method. Sound reason, for example, relies upon habits,
but habits are subject to alteration. Again, sound reason works
successfully only in the domain of familiar phenomena. Even
the laws of thought, which are also advanced as positive criteria
of this method, are subject to these limitations (29-30).2 Nor
can Occam’s razor (43) guarantee reliable knowledge. As a
rule of selection, which requires the acceptance of the simpler
of two alternative explanations, it has a negative role; but
even in this capacity this principle cannot be formulated
precisely.

1 Contrary to the procedure of certain present day philosophers, Chwistek
admits the dependence of his views upon certain assumptions. Cf. e g. Z.M C,,
p. 186, “. . . they " [the philosophers] “ forget only too often that the
demonstration of anything requires the acceptance of some supposition . . .
the acceptance of suppositions 1s an arbitrary act and 1s . .. conditioned by
a certain feeling of truth which, however, 1s undoubtedly subjective and
cannot be forced upon any one as necessary.”

2 W.R., p. 46.

3 Chwistek points out the validity of the principle of contradiction with
respect to definite questions which require definite answers. B® he also
points out the necessity of specifying certain supplementary and frequently

artificial conditions in the case of propositions involving change (29-30).
Cf. also Z.S., p. 276.
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Chwistek also characterizes sound reason as a method
which involves criticism. But while he realizes the importance
of being aware of the function of reason in science and philosophy
he also recognizes the part played by the emotions, intuition,
and background of the scientist and philosopher in the develop-
ment of their views. For this reason the method of sound
reason cannot be identified solely with criticism. For the
exercise of sound reason requires not only criticism but

. : $
“ construction ”.  Unfortunately Chwistek’s usage of the
latter term is not free from ambiguity. In his treatment of
the natural sciences and the problem of reality he uses this
term as a synonym for the synthesis of concepts. In the case
of the deductive sciences he evidently bas in mind the con-
struction of systems. .

Chwistek’s consideration of these characteristics of the
method of sound reason shows that none of them formulate
the method adequately. Each of these characteristics must
be regarded as referring only to a partial mef:hod, whose
application in conjunction with other such partial methods
constitutes an application of the method of sound reason.
A criterion for the failure to use the method of sound reason
in some particular analysis, according to Chwistek, is that one
of these partial methods has not been employed. For example,
he regards Hegel’s doctrines as anti-rational * because they
are incompatible with one of the fundamental principles of sound
reason, the principle of contradiction (12-14). Many other
citations might be offered in support of this interpretation of
the method of sound reason.

1 Chwistek uses the word ‘‘ anti-rational ”’ together with the terms ‘‘ meta-
physical ”’, “1dealistic ’, and * fictional "’ as derogatory epithets A doctrine
is “ anti-rational > if it is not obtained by the application of the method of
sound reason. The terms ‘‘ metaphysical ”, ‘‘1dealistic ', and * fictional ”
are used to refer to concepts which have no experiential base and consequently
cannot be verified by reference to experience. For example, Chwistek regards
Newton’s absolute space as a metaphysical, idealistic, and fictional concept.
This general position is familiar to the reader of contemporary positivistic
literature. It should be noted, however, that Chwistek extends the usual
list of terms of opprobrium far beyond its usual length.

It is of course possible to quarrel with Chwistek’s terminology since he
assigns new meanings to familiar philosophical terms. However his general
intent is clear enough. It is therefore important to point out that Chwistek
does not feel that problems which are usually called metaphysical are either
meaningless or idealistic, when conceived as the study of the fundamental
problems.of existence. He does not for example hold that the problem of the
relation between the soul and body is meamngless (cf. W.R., pp. 39-40).
He discusses the problem of free will at some length (W.R., pp. 40-1, 54-5).

This recognition of the possibility of metaphysics clearly distinguishes his
views from those of many present-day positivists.
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Language in the Light of Sound Reason

The formulation of the results of scientific and philosophical
research in purely linguistic terms necessitates a language
suitable for precise investigations, to be used in conformity
with the principles of sound reason. Consequently Chwistek
attempts to formulate some of the criteria of meaningful
discourse. In the main he follows the British empirical tradition
in identifymg the meanings of a term with the ideas or images
evoked by it. Accordingly, when “ meaning "’ is so conceived,
a term will vary considerably from individual to individual
and from situation to situation.! It is therefore not difficult
for Chwistek to show the falsity of the view that concepts have
an absolute “real’” meaning, which is the same for all
individuals. Nor does Chwistek find any merit in the view,
advanced by writers such as Husserl, that there are apriori
laws for distinguishing the meaningful from the meaningless.

Chwistek then raises the question whether everyday language
is an instrument suitable for scientific and philosophical
purposes. His answer, which is in the negative, is based largely
upon the theory of meaning which he proposed. Everyday
language contains many abstractions which are treated as
concrete objects. As Shestov says, * Just as things of the
external world <have a real existence for us, so the good has
a real existence for Socrates’ (27). Plato regards the soul
as an object in everyday use (28). Such general concepts are
subject to individual interpretation. Because the same term
is used in different meanings in everyday language it is not
difficult to comstruct contradictions in this language (40-2).
Leonard Nelson, for example, has uncovered the following
paradoxical ? situation in epistemology (271) ®:

Epistemology is concerned with the problem whether or not
objective knowledge is possible. To solve this problem it is
assumed that there exists some criterion which can be applied
in its solution. This criterion must obviously either be knowledge
or not.

If this criterion is knowledge it belongs to the domain whose
validity is being examined and is therefore problematical.
1 It is not Chwistek’s intent to dispense with any of these meanings nor

with any of the terms current in philosophical and scientific discourse. He
requires only that the meanings of the terms used be clearly and garefully
spicgwgé.radox or antinomy is a statement which can be shown to be both

true and false on the basis of the same set of premises.
3 Cf. W.R., pp. 38-9.
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Consequently the criterion to be used in solving the epistemological
problem cannot itself be knowledge. )

On the other hand if the criterion to be used is not knowledge,
then it itself must be known, i.e. the criterion of knowledge must

be employed.

While such difficulties may at first sight seem trivial they
have far-reaching consequences for an adequate logic and
philosophy of mathematics. Since it is possible to construct
such contradictions in everyday language, this language is
obviously not consistent and the rules which govern its con-
struction and usage cannot guarantee that it will function
correctly. It is not then a language which is suitable for
scientific and philosophical purposes.

If, however, Nelson’s epistemological paradox is examined
more closely it will be noted that the paradox is obtained only
by using two different senses of the word ‘‘ knowledge ”
interchangeably. The word “ knowledge ** has been made to
refer to itself. It has been suggested by some writers that
paradoxes can be eliminated by postulating that a concept or
statement cannot be used to refer to itself. This suggestion
has been worked out in various ways, and the rules proposed
for the attainment of this end are called theories of types.
Chwistek has made a positive contribution to the theory of
meaning * by suggesting a theory of types for everyday language,
with the help of which such contradictions as the epistemological
paradox ? will be eliminated from this language. He has thus
outlined a device for preventing the assigning of a single
property to different types of entities. i

The difficulties which Chwistek finds in everyday language
have led him to adopt a position which he calls ‘“ nominalism .
For example, his rejection of abstract ideas and universals (xxii,
xxv) leads him to maintain that the scientist and philosopher

1 Chwistek even goes so far as to recognize that the term “ meaning ™ is
not 1tself entirely unambiguous and he suggests the possibility of a hierarchy
of propositions formed on the basis of different meanings of the word * mean-
ing”. Cf. W.R., p. 85, and Z.S., p. 330.

? On Chwistek’s view the epistemological paradox involves the sentence,
““The criterion for the epistemological problem is knowledge,” and the
sentence, “‘‘The criterion for the epistemological problem is knowledge ’
Is knowledge.” In the first sentence the property of ** bemng knowledge "
is predicated of a noun. In the second sentence this property is predicated
both of g noun and of a sentence. The property of ** being knowledge ** when
predicat®d of a noun is of lower type than when predicated of a sentence.
It has not the same meaning in both cases. If these facts are realized 1t
becomes impossible to reason in the manner indicated by Nelson and the

paradox in question cannot arise.
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should be concerned only with concrete objects. While he
therefore frowns upon the use of general concepts, individual
words, and names play an important role in Chwistek’s con-
ception. But because of the ambiguity of everyday language,
the various ideas which its terms evoﬁe must be carefully
distinguished from one another, and a new and more precise
language must be developed in which each idea is represented
by a specific symbol (e.g. word, sign, or name). Chwistek’s
method of sound reason expresses this nominalism. Its applica-
tion reduces reasoning to the performance of purely mechanical
operations upon symbols, analogous to calculatory operations.
With the help of this method Chwistek hopes to secure the
greatest amount of certainty in knowledge, within the limits
of human reason. He insists there is no break in continuity
between the kind of knowledge obtained in daily life and the
kind obtained in the theoretical and experimental sciences.
Consequently scientific propositions themselves are subject
to the qualified certainty which the method of sound reason
can give ; knowledge of the world can never be complete.t

Logic and Sound Reason

Because sound reason critically employed suffers from
obvious limitations, Chwistek finds it necessary to supplement
the uncontrolled operations of sound reason by a new device
which he calls ““ logic ””. However he uses the term ‘‘logic ”’
in two distinct senses which he himself does not carefully
differentiate. In one sense ‘‘ logic * is taken to be ‘‘ the basis
of all thought * and can be construed as a general methodology.
Its function is to distinguish the various categories of experience
and to supply fixed rules in accordance with which sound reason
may operate. With its help it is possible to differentiate beliefs
which are held because of unreflective habit from those
supported by reflective thought. It is with logic as a methodo-
logical instrument, co-extensive with the method of sound
reason, that Chwistek has been concerned up to this point.

In the second and more frequent sense in which Chwistek
uses the term, logic is identified with a formal system. A formal
system must of course conform to the principles of sound
reason already mentioned. However, the specific task of

1 This fact is easily recogmzed if the conditions of human kiowledge
formulated 1mn the cniteria of sound reason are understood. Moreover, on the

basis of the theory of types a large set of sentences must be regarded as
meaningless and consequently cannot be admitted as knowledge.
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formal logic embraces the formulation of concepts in terms
of an unambiguous and precise symbolism as well as the
elimination of appeals to intuition and of ‘‘metaphysical ™
assumptions. Consequently the development of a formal
logic involves not only the analysis of the concepts of systems
of knowledge already adopted, but their reconstruction on the
basis of this analysis. In this way Chwistek hopes to avoid
the hypostatizations against which his nominalism is directed,
to expose the inadequacies of idealistic, realistic, and anti-
rational systems of logic, and to convince the reader of their
uselessness. Chwistek himself employs “ logic ** in this second
sense only when he formalizes the mathematical sciences.
However, although he does not apply formal logic to the
philosophy of science and problem of reality, he offers con-
structive suggestions concerning these domains based upon his
system of logic.

The construction of a system of formal logic! is carried
through by specifying carefully directives of meaning, primitive
concepts, axioms and rules governing operations. In con-
sequence it is possible to determine almost mechanicaliy
whether an expression can be regarded as meaningful and
whether a proposition can be regarded as logically wvalid.
Although the procedures involved are highly formalized, and
although no attention is paid to the referents of the signs
employed, the results obtained conform in a rough way to those
secured by less rigorous methods. In this way logic serves
to supplement and control the unanalysed operations of
habitual thinking.

Chwistek devotes the major portion of the present book
to the construction of a logical system which will fulfil this
task. His system is not yet complete since certain portions
of mathematics have not yet been incorporated within it.
Neither is his system entirely adequate since parts of it are not
free from ambiguity.? Nevertheless Chwistek’s belief that a
completely satisfactory apparatus can be constructed remains
unshaken and even in its present state seems to him to supply
methods necessary for combating anti-rationalistic philosophies.

1 Such a system will be called a formal system.

2 These claims will be justified in the appendix which contains an exposition
and criticism of Chwistek’s system of formal logic (called “ semantics *’ or
““ rational metamathematics ’). This appendix contains material designed
to aid the reader interested in the more technical aspects of Chwistek’s work.
The introduction, which is addressed to the more general reader, includes
only a general account of the aims and methods of the system of semantics
(ct. Section II).
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CuwIsTEK'S VIEWS ON LOGIC AND THE PHILOSOPHY OF
MATHEMATICS

It has been pointed out that for the most part Chwistek
regards logic as a formal system ? and it is his primary concern
to develop such a formal system with the help of which it will
be possible to derive various known portions of logic 2 and
mathematics. For an adequate appreciation of the motives
which led Chwistek to construct a new logical system (which he
calls ““ semantics ’),® it is essential to bear in mind recent
developments in logic and the philosophy of mathematics.

Recent Developments in Logic and the Philosophy of Mathematics

Up to the nineteenth century mathematicians conceived
their discipline as being exclusively the science of quantity.
Kant, for example, regarded geometry as the study of quantita-
tive relations of space. He claimed that the proof of geometrical
propositions required a certain kind of sensuous, non-empirical,
non-logical intuition (of space). Moreover he maintained that
these proofs exhibit a constructive character, i.e. that they
are based upomr rules which stipulate the way in which the
intuitions corresponding to mathematical theory must be
constructed.

However with the development of projective geometry,
which makes no use of metrical concepts,* it was soon realized
that geometry might be conceived as dealing with non-
quantitative relations. Additional discoveries, such as the
principle of duality, geometries in which the validity of the
theorems is independent of the kind of elements treated,s
and perhaps above all non-euclidean geometries, led to the
complete breakdown of the Kantian conception of geometry.

Geometry was now conceived as the study of certain abstract

1 In this connection it should be recalled that a formal system 1s a system
1n which the directives of meaning, primitive concepts, axioms, or construction
rules, and rules governing operations are precisely formulated, The theorems
of such a system are denived by the application of the stipulated rules.

2 As developed by other logicians.

3 Or alternatively ‘' rational semantics *’, *° metamathematics *’, “ rational
metamathematics *, ‘* formal metamathematics ™.

4 e.g. the notion of distance. .

5 e.g. the line geometry of Plucker and the sphere geometry of Huntington,
in which the line and sphere respectively rather than the point were taken
as the fundamental elements,
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relations between unspecified (not necessarily spatial) elements.
This new conception led to the application of postulational
methods to geometry by such writers as Hilbert, Pasch, Veblen,
Pieri, etc. Assumptions were explicitly formulated in order
to make possible trufy rigorous demonstrations of geometrical
theorems, without any appeal to our intuition of space.
Consequently the problem of the consistency of sets of geo-
metrical axioms! received widespread consideration. It
developed that the solution of this problem depended in
turn upon the problem of the consistency of the axioms of
arithmetic. In other domains of mathematics also, the attention
of inquirers became directed toward providing a rigorous
axiomatic foundation, with the consequence that a general
study of postulational methods was inaugurated, a study which
persists to this day.

During the nineteenth century foundations were also laid
for the ultimate breakdown of the Kantian conception of
arithmetic, as the science of quantity which depends upon
sensuous intuition. The first important step in this direction
was taken by Weierstrass and Kronecker, who maintainfed
that the system of natural numbers is the basis of all branches
of mathematics and that it is logically possible to arithmetize
all portions of mathematics. They asserted that all mathe-
matical entities can be defined in terms of the integers and
that all mathematical results 2 can be expressed as properties
of natural numbers.? The actual task of arithmetizing mathe-
matics was undertaken by Cantor, Dedekind, and Weierstrass

1 The axioms of geometry were formulated as propositional functions which
contain the primitive or undefined concepts as the only varnables. The only
restriction 1mposed upon these variables 1s that they satisfy the axioms

At this point 1t may be well to recall several familiar logical distinctions
A symbol with a precisely determined meanmg 1s called a constant. The
symbol ** 8 *', for example, is a constant. There are, however, symbols which
have no independent meaning. Such symbols are called variables and the
group of symbols, in which they occur, are called functions. For example,
“% 1s a book” is a propositional function containing the vanable “ x *’.
If, however, this propositional function is prefixed by the phrase * for all » *,
or the phrase “ there is an x ', 1t becomes a proposition. In the function
“% is a book”, “x” is called a ‘real variable”’. In the proposition
“For all », 15 a book ”’, “x " 15 called an * apparent variable”. A set of
axioms is called consistent if it is impossible to derive any two mutually
contradictory theorems from these axioms.

3 ie. mathematical operations and theorems.

3 Kronecker even went so far as to advocate the elimination from mathe-
matics Fs1llegitimate, of all numbers other than the integers. A brief exposition
and critique of Kronecker’s method, which is based upon the concepts of

congruence and modulus, is contammed in Max Black: The Nature of
Mathematics, New York, 1934, pp. 174-7.
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among others, and led to increased rigour in the definition of
the fundamental concepts of mathematics. Such notions as
“limit ”’, ‘‘area’, ‘ irrational”, etc.,, were re-examined.
New and precise definitions of these congepts were then given
in terms of the integers and their relations, without any appeal
to spatial or temporal intuition.

It was natural for mathematicians to suppose that if the
fundamental concepts of the various portions of mathematics
could be defined in terms of the integers it would be possible
to unify all mathematics on the basis of elementary arithmetic.
They assumed further that if they could axiomatize the
various branches of mathematics, including elementary
arithmetic, they could develop mathematics as a set of analytic
propositions without any dependence upon intuition. The
mathematicians therefore sought to axiomatize all parts of
mathematics. Each part was constructed as a deductive system
with its own set of primitive terms and a set of axioms concern-
ing these primitives. The axioms were regarded as implicit
definitions of these otherwise unidentified terms. This work
wds climaxed by the investigations of Peano, who, on the
assumption that all branches of analysis had been rigidly
formalized, axiomatically constructed, and reduced to
elementary arithmetic, sought to complete the task of unifying
mathematics by constructing an axiom system for elementary
arithmetic, which would specify unambiguously the properties
of the natural numbers. He constructed a system consisting
of five axioms and succeeded in showing that from them it is
possible to derive all the usual theorems of elementary
arithmetic. His system contained three undefined concepts :
“0,” “number” (ie. “integer”), and ‘‘ successor .
Unfortunately, however, it is possible to given an infinite
number of interpretations of Peano’s system which satisfy
his axioms. As a matter of fact any serial progression what-
soever 1 satisfies these axioms.? It follows that Peano’s axioms
did not characterize the integers uniquely and that he did
not supply the final basis upon which all of mathematics
could be construed as a set of analytic propositions. It was

1 The sequence of natural numbers is but one example of a progression
which satisfies Peano’s axioms. The sequence of even numbers 1s another
1llustration of a set of numbers satisfying these axioms. In this case 0"
has its usual meaning, and the * successor ” of a number is the result of
adding 2 to this number.

3 Cf, Bertrand Russell, Introduction to Mathematical Philosophy, New York,
1919, pp. 8-9.
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thus necessary to supplement Peano’s work by supplying an
adequate definition of natural numbers. This task was
accomplished by Frege and Russell.

Gottlob Frege surveyed the various definitions of “ number ”,
which had been proposed by his contemporaries. After a
searching critique he concluded that ‘“number” denotes
neither subjective, spatial, nor physical properties, but that
although it is a non-sensible attribute, it is nevertheless an
objective one.! He fully agreed with the general tendency of
mathematicial development to construct mathematics on
purely rational grounds without any appeal to psychology or
intuition. His standpoint was grounded on an analysis of the
different contexts in which numerical expressions occur, from
which he concluded that it is possible to define the numbers
in terms of certain ideas 2 so general that they belong to logic.?
On this view it is logic as the ultimate foundation which
supplies the method for unifying all of mathematics.

Independently of Frege Bertrand Russell attained essentially
the same results, and it is Russell’s formulation in Principia
Mathematica which has become most widely known.* Using
four primitive ideas ® and ten primitive propositions, only
five of which are symbolical, he developed first the principles
of logic and then the various portions of analysis.® In other
words Russell (together with Whitehead) attempted to show
in full detail that it is possible to reduce ? mathematics to
logic.

Unfortunately, however, certain difficulties may be raised
in connection with Russell’s system. In the first place the
question of the consistency of his system is by no means
settled by his assertion that it seems impossible to doubt or

19129Cf. B2éir8trand Russell, Our Knowledge of the External Worid, New York,
, p- 218.

* Examples of such ideas are * implcation ™ (i.e. “if . . . then "), *“ nega-
tion ” (i.e. “mnot”), etc.

® Le. he defined “ number " as a property of a property of a collection.
For present purposes it is sufficient to consider a collection as a set of objects.

¢ Russell's system cannot be called a formal system in the sense in which
we have been usmng this term, since he did not stipulate all the rules of pro-
cedure to be used 1n deriving theorems.
. l.e “ elementary proposition”, “ negation ™, ‘‘assertion’, and ** dis-
junction ”,

¢ Amongst other things Russell was able to prove Peano’s five postulates.

7 Ingthis context the process of reduction requires the definition of the
concepts of mathematics in terms of logical concepts, the statement of
the axioms and theorems of mathematics in terms of logical concepts, and the
pfr?of of these axioms and theorems by purely logical devices from the axioms
of logic.



INTRODUCTION xxxiii

deny any of the principles of logic. As Hilbert ? already
pointed out, the problem of the consistency of a set of axioms
requires consideration in its own right and Russell himself
never gave any serious thought to this problem. Furthermore
it is difficult to reconcile Russell’s assertion on the one hand
that logic is concerned with the real world,? and his insistence
on the other hand that the laws of logic are true in all possible
worlds ? (ie. that logical principles are relevant to a realm of
entities which are not necessarily existent). Moreover other
difficulties arising in connection with the platonic realism
expressed by the latter point of view prevented Russell
from offering any consistent view concerning the nature of
classes.

But for our purposes the difficulties which arise in connection
with the systematic development of the theory of classes are
most important. This theory, which serves as the foundation
of modern mathematics, had been extended by Georg Cantor
to include infinite (transfinite) classes as well as the usual finite
ones. Unfortunately, however, it was soon shown that it is
possible to develop a number of paradoxes within this theory.
Typical of such paradoxes is the contradiction of Burali-
Forti (151), the first paradox to be demonstrated within
the theory. In order to understand some of the suggestions
made to eliminate such obvious violations of the principle of
contradiction, it is worth while formulating two of the simpler
paradoxes, that of Russell concerning classes which are not
members of themselves, and the paradox of the liar, sometimes
called the Epimenipes paradox. Russell’s paradox is as follows :
If a class is conceived as a set of objects it is possible to form
a class of such classes. It then seems to follow that certain
classes include themselves as members. Thus, if non-men form

1 Cf.

2 %ussellg]ntroductwn to Mathematical Philosophy, l.c., p. 169.

3 4b. p. 192

¢ Russell originally regarded classes as mere aggregates of terms or things.
On this view the null class became a meaningless concept. In addition he
soon realized that classes must have a different kind of reality than things,
since in the course of his investigations he found it necessary to distingumish
between a term and the class whose only member is that term. Consequently
he abandoned h15 original conception of classes and advanced what he called
the “ no-class ** theory. Since for practical purposes and under certain con-
ditions functions of a function of a variable can be regarded as funetions of
the class determined by that variable, he maintained that it is possible to
develop the theory of classes without ever using the concept of a class itself.
On this view classes are but logical fictions, i.e. symbolic or hnguistic short-
hand devices.



xXxxiv INTRODUCTION

a class, this class appears to be a member of itself since it is
notaman (150-1). Bertrand Russell raised the question whether
the class of all classes, which are not members of themselves,
is a member of itself.. Two contradictory answers can be given
to this question. Where the symbol A is used to denote the
class of all classes which are not members of themselves,

if A is a member of itself, by definition it is not a member
of itself ;

if, however, A is not a member of itself, it is a class which
is not a member of itself, and consequently is a member
of itself.

The paradox of the liar can be formulated as follows : When
I say that I am lying,

if I am lying I am telling the truth;
if, however, I am telling the truth then I am lying.

Russell proposed to resolve these paradoxes by distinguishing
three different kinds of statements : true, false, and meaningless.?
He regards statements as meaningless when they fail to conform
to a certain set of rules, which he calls the theory of logical
types. These rules formulate the permissible ways of combining
logical ideas. When Russell suggested such a set of rules
he developed what has come to be known as the simple theory
of types. In this theory a distinction is drawn between
individuals,? functions which take individuals as arguments 3
(ie. functions of type 1), functions which take functions of
type 1 as arguments (i.e. functions of type 2), etc. In other
words the type of a function is determined by its argument.*
A class can be a member only of classes, not of any class
whatsoever. Hence it is meaningless to speak of a class
being a member of itself. Thus the statement in Russell’s
paradox are neither true nor false but meaningless statements,
and it is impossible for the paradox to arise in significant
discourse. It turns out, however, that while it is possible to
resolve paradoxes such as Russell’s with the help of the simple

1 In this context ““statement’ is not to be identified with * sentence’” or

‘‘ proposition ”  ““Meaningless’’ does not indicate a third truth-value,
% 1.e. any object which is neither a function nor a proposition. Individuals
are of type 0.

# For. example, n the function ** # is a man ”’, " » ”’ 1s the argument to the
function, which takes mdividual arguments only; in the function
“ R is transitive ", the argument “ R ”’ will have only functions as values.

4 Each logical function belongs to a single logical type. Moreover 1ts
arguments must be of the immediately preceding type.
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theory of types, such antinomies as the Epimenides paradox
cannot be eliminated by it.X

For this reason Russell proposed the branched or ramified
theory of logical types. In this theory the type of a function
is determined not only by the type of the arguments which
it takes, but also by the form of the function. The theory
is stated in terms of the notion of the ““ order” of a pro-
positional function or of a proposition. A predicative function
of an individual or a first-order matrix? is defined as an
elementary ® function of an individual. First-order functions
are defined as functions whose arguments are individuals or
are obtained from such functions by quantification. A second-
order matrix is a function which involves at least one first-
order matrix among its arguments but has no arguments other
than first-order matrices and individuals.  Second-order
functions are defined as second-order matrices or functions
obtained from the latter by quantifying some of the variables,
and so on for functions of higher order. An analogous hierarchy
of Propositions can easily be specified. It turns out that the
branched theory of types is sufficient to remove all of the
paradoxes which have been developed in the theory of classes.

Chuwistek’s Early Contyibutions to Logic and the Philosophy of
Mathematics

It is in connection with the theory of logical types that
Chwistek made his earliest contributions to logic and the
philosophy of mathematics. His achievements were two-fold.
In the first place he was the earliest logician to advocate
anew the simple theory of types for the elimination of the

1 As Ramsey pointed out Russell’s paradox involves only logical concepts,
while the paradox of the liar is based upon a non-logical concept, the concept
of “truth’’ as well as logical concepts. Cf. Ramsey, The Foundations of
Mathematics, New York, 1931, pp. 20-1.

2 While in this introduction Russell’s own statement of hus views is followed,
it is worth notmg that ‘“ matrix ** is a syntactical term (cf p.xxxvi, n 1) while
“ function ”’ and “individual” are not. Strictly speaking therefore, predicative
functions should not be identified with first-order matrices.

8 An elementary function is a function which contains no quantifiers,
i e. a function which contains neither the universal operator ** forall (every) »
nor the existential operator * for some # ”’, or “ there exists at least ape » ™.

4 Quantification is the process of asserting a propositional function of all
or some values of one or more variables, If all the variables are quantified
the function becomes a proposition. If only some of the variables are quantified
the function remams a function.
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paradoxes of the theory of classes.! And secondly he seriously
criticized the use of existence axioms in logic and mathematics.

As it happens the ramified theory of types does not permit
the development of Cantor’s theory without an additional
assumption, known as the Axiom of Reducibility. This axiom
asserts that every propositional function? of any order what-
soever is formally equivalent to some propositional function
of order one.% 4 In his earliest consideration of Russell’s work 5

1 It 1s perhaps worth while to pomt out that several other suggestions have
been made for avoiding these.antinomies Zermelo and Fraenkel, for example,
maintam that the paradoxes need not occur 1if the axioms of the theory of
classes are carefully formulated.

Other writers seek to elimmate the paradoxes by means of a distmction
between an object language and 1ts various “ metalanguages” An object
language 1s a language which is the object of investigation * Metalanguages
are of two kinds: syntactical and ** semantical . The syntactical language
is the language 1n which the forms of the sentences of the object language
are studied. The ‘' semantical ” language is the language in which the relations
between the symbol and the thing symbolized are investigated. For example,
** It is snowing "’ is a sentence 1n the English language, which can be regarded
here as an object language. The sentence “ * Itis snowing ’ contains three words
is a syntactical statement since it 1s concerned with the structure of one of
the sentences of the object language and states a syntactical property of this
sentence. The sentence  ‘ It is snowing ’ is true if and only if 1t is snowing "’
15 a ‘‘ semantical "’ statement statng a ‘‘ semantical ” property of this same
sentence of the object language. Hilbert’s distnction between a language
and its “ metalanguage” corresponds to the distinction drawn here between
an object language and 1ts syntax language Professor Alfred Tarski initiated
formal investigations 1n ““ semantics”. Cf ‘O pojeciu prawdy w odniesieniu
do sformalizowanych nauk dedukcyjnych ” (“ On the Concept of Truth m
reference to Formalized Deductive Sciences'’), Ruch filozoficzny, vol. 12,
1930-1, pp 210-11, and ‘ Der Wahrhertsbegnfi mm den formalisierten
Sprachen ', Studia philosophica, vol. 1, 1936, pp. 261-405, a translation of
a work which appeared origmally imn Polish, Both the syntax language and
the “ semantical ”” language can be constructed as formal systems and a theory
of types can be specified for each of these languages Many wrnters, on the
basis of Ramsey’s distinction between the logical and non-logical
(' semantical ’) paradoxes (xxxv, n. 1) make use of the (simple} syntactical
theory of types for the ehmination of the logical paradoxes and the
 semantical ’ theory of types for the resolution of the non-logical paradoxes.

The above usages of the terms ‘ metalanguage "’ and ‘‘ semantics *’ must
be distinguished from Chwistek’s use of these terms, which will be considered
below (xxxvin ff and Appendix) It is for this reason that these terms have
been inserted in quotation marks 1n the present discussion.

Chwistek has never specifically commented upon any of these methods
of avoiding the paradoxes. However, his general attitude toward existence
axioms and toward the distinction between a language and its ‘‘ meta-
language * (xl1) are sufficient to indicate that he would emphatically reject
any of these proposals.

2 Of individuals as arguments.

8 This assumption, which largely removes the distinctions drawn between
the ofders withm the types, is necessary in the development of the theory
of real numbers Two functions are said to be formally equivalent if they are
(materially) equivalent for all values of the variables contained in these
functions, Cf. p xlvii, n. 1.

4 And similarly for higher types, s Z.S.
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an analysis of Principia Mathematica, Chwistek seriously
questioned this axiom.! He suggested that the situation be
remedied by retaining the branched theory of types but
rejecting the axiom in question. This proposal involves the
identification of classes with propositional functions and
consequently the development of a modified theory of classes.?
A number of years passed before Chwistek worked out in full
detail the radical modifications required in developing a theory
of classes subject to this far-reaching restriction.? He then
pointed out the real difficulty in connection with the Axiom
of Reducibility : it is not a proposition of logic but an existence
axiom, with whose help it is possible to “ prove that there are
objects which perhaps cannot be determined ”’ even though
““to have any object it is necessary and sufficient to have a
proposition from which this object is to be obtained by a
wholly determined formal process ”.# In the interim between
Chwistek’s proposal of the theory of constructive types and
its actual construction, he suggested a return to the simple
theory of types.® Unfortunately, however, this theory also
depends upon existence axioms, e.g. the Axiom of Infinity,
which asserts the existence of infinitely many individuals.¢

The Meaning of Semantics

Thus while Chwistek clearly indicated his dissatisfaction
with Russell’s attempt to complete the refutation of the
Kantian thesis concerning mathematics, he was also aware of
the shortcomings of his own early views on the theory of types.

1 As a matter of fact the grounds which Chwistek gave for his criticism
of this axiom turned out to be utterly false, as he himself later realized.
He asserted that the Axiom of Reducibility led to a contradiction within
Russell’s system  What Chwistek actually demonstrated was that when
a certain postulate of Poincaré 1s added to the axioms of Russell, a contradic-
tion ensues. This postulate was formulated by Poincaré as follows . * Consider
only objects which can be defined 1n a finite number of words.” Chwistek
has always accepted this postulate together with its implications.

3 In this theory identity holds only between classes,

3 Cf. T.C T. Chwistek called the new system which he developed the theory
of comstructive types, or the pure theory of types. It was characterized by
the fact that in conformity with Poincaré’s postulate 1t contains only a finite
number of primitive symbols, and a long series of verbal directions for the
construction of addrtional symbols and for the transformation of expsessions
in a fimste number of operations. Its proofs are completely symbolic.

4+ T.C.T., p. 10.

5 A.L.F,

¢ Chwistek pomted out that alternative existence axioms can be assumed
and that each choice of axioms leads to a distinct theory of classes.
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Consequently he- soon proposed a new formal system which
he called semantics,! which he hoped would accomplish
what Russell had failed to achieve. He wished to include in
this new system those features of previous systems which he
considered valid, and at the same time to avoid the difficulties
encountered in these systems.

Chwistek felt, for example, that Bertrand Russell was on
the right track when he attempted to reduce mathematics to
logic. Yet in so far as the theory of logical types presented by
Russell as a necessary concomitant of his system was not
entirely satisfactory, Chwistek did not feel that Russell had
achieved the end he had in mind, i.e. the unification of mathe-
matics. Nevertheless he wished to retain not only Russell’s
general aim but the deductive method of presentation which
Russell employed in Principia Mathematica.

Actually he went beyond Russell when he began to develop
the latter’s suggestions. In the first place even though Russell
failed to derive mathematics from axioms which undoubtedly
belong to logic, Chwistek still maintained that it is possible to
unify mathematics, if not with the help of logic alone, then
with the help of semantics.? In other words the system of
semantics is the result of an extension of the logistic thesis ;
Chwistek asserts that mathematics and logic can be reduced
to semantics.? In the second place he not only developed the

1 The determmation of the meaning of this term is the problem under
investigation in the next few pages. Nevertheless it may now be said that
whatever meaming Chwistek assigns to this term his usage must be distin-
guished from that of most contemporary writers on the subject. He does not
intend to develop a theory of meaning, nor to enter mto contextual analysis.
In spite ofhis attack upon the hypostatization of entities (xxviu), heis obviously
not seeking the referents of words. Moreover he is not concerned with the
study of the responses of individuals to the names of entities He does not
analyse the relations between the symbol and the thing symbolized, 1.e. such
concepts as * truth ”’, *‘ designation ”’, ‘‘ satisfaction »’, etc. This, of course,
is not to say that he has no interest in any of these investigations. It is just
that these projects are not the concern of semantics in his sense of this term.
On his view semantics is comcerned neither with psychological nor non-
formal investigations. Chwistek explicitly rejects a distinction between a
symbol and that which 1t symbolizes.

3 j e. with the help of logical and semantical concepts.

3 Evidence for this assertion can be found only i Chapter VII, where
Chwistek’s system 1s worked out rigorously. Chapters IV-VT should be con-
sidered as an attempt to familiarize the reader with Chwistek’s technique
and tq supply the motivation for its introduction. Although a number of
clues which turn out to be very helpful in understanding the later chapter
are given in these earlier chapters, the proofs contained in the latter are
intuitive. The gap between logical and semantical notions is not completely

bridged and Chwistek’s theory cannot be evaluated on the basis of this
material.
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system of semantics deductively but as a formal system,
Thus the system of semantics is an attempt to define the
concepts of logic and mathematics in terms of two primitive
semantical concepts “ # ” and ‘“ ¢ ", whege all the construction
and transformation rules governing semantical concepts are
explicitly formulated.! The axioms and theorems of mathe-
matics and logic are stated in terms of the primitive and
defined concepts of semantics, and the axioms and theorems
of these domains are proved with the help of the transformation
rules of semantics. These proofs are purely symbolic.?

Henri Poincaré suggested ? several rules for the conduct of
logical investigations concerning the infinite. He advised *:

1. “ Consider only objects which are capable of being defined
in a finite number of words.”

2. ““ Never lose sight of the fact that every proposition which
concerns the infinite is a translation, an abbreviated statement
of propositions which refer to the finite.”

3. “Avoid classifications and definitions which are not
predicative.”

Well aware of the situations in which Poincaré’s rules are of
value, Chwistek adopts them in slightly modified form,
formulating them in such a way that they can be applied to
the concepts of semantics. It is characteristic of Chwistek’s
procedure that none of these rules appear either among the

1 The sign “ ¢ is called an expression (xI) as is any combmation of the
two primitive signs which is obtained with the help of these carefully stipulated
construction rules.

2 For further details concerning the techmcal aspects of Chwistek’s system
see the Appendix.

% Poincaré’s suggestions were intended to achieve two objectives: first,
the avoidance of the paradoxes of the theory of classes ; second, the develop-
ment of a general method for constructing mathematical entities, which will
possess certain properties demonstrated to exist. The theorem which states
that there 1s no greatest prime number 1s an example of this second point.
It can be shown that this theorem is true, for if any prime number p 1s taken
to be the greatest possible prime, and the product 1.2.3.5. ... .p formed from
all previous primes, a new number p’ can obviously be constructed by adding 1
to this product. This number, if it is not 1tself prime, is divisible by a prime
which must be greater than p. It is possible to determine in a finite number
of steps whether p’ is prime. If it is not prime, 1t is possible to determine in
a finite number of steps by which prime it is divisible. This proof does not
actually require that this new number be calculated. As a matter of fact 1t
would be impossible for any individual to carry out this proof for every
possible case. Even for cases where p is relatively small and only a few steps
are required to calculate the mew number p’, it would be very impractical
to compute its value.

4 Henri Poincaré, Derniéres Pensées, Paris, 1913, pp. 138-9.
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rules governing the system of semantics or in the system of
semantics itself. He regards the first rule, which is an instru-
ment for the criticism of classical Mengenlehre, as a special
case of Occam’s razor,! one of the criteria of sound reason.
In as much as the entire system of semantics is constructed
in conformity with the method of sound reason he finds no
need to include this postulate among the rules of his system.
As a rule governing the system of semantics, it obviously cannot
be contained within this system. -

Nevertheless Chwistek minimizes the negative role of this
postulate, since he feels that it requires the modification and
reconstruction of classical mathematics rather than the
rejection of large portions of this subject. For this reason he
gives a positive interpretation of Poincaré’s first rule, an
interpretation which is based upon the ambiguity of the word
“word ”’.2 He formulates this postulate as follows : ‘“ Consider
only objects which are capable of being defined in terms of
a finite number of expressions.” Although this interpretation
of Poincaré’s principle does not prevent the construction of
a formal system which would include mathematics,? it does
impose definite restrictions upon any such construction. In
the first place the concept ‘‘ expression’” must be a basic
concept of any such system.4 In the second place fundamental
revisions are required in the classical theory of classes, parti-
cularly with regard to such infinite classes as the real numbers.
Poincaré’s second rule, which must also be interpreted as a
restriction placed upon the construction of expressions,5 is
important in this connection, since it is applied in conjunction
with the first postulate. Thus all expressions even those
concerning infinite classes can be constructed with the help
of a finite number of expressions. 8

Chwistek’s thesis that a theory of types 7 is essential for

1 Cf T.L., pp. 125-6.

2 This ambiguity exists in French and Polish as well as English,

8 As Poincaré himself would maintain.

¢ Thus * expression "’ is a technical term of Chwistek’s system of semantics
and is therefore placed in quotation marks. Since in subsequent discussion
this term will be used only in the sense indicated and simce Chwistek himself
does not employ quotation marks, they will be omitted in what follows.

5 Since propositions are defined in terms of expressions.

¢ Expressions which can be constructed in a finite number of steps by the
application of stipulated rules will be called constructible. This is not to say
that these expressions must actually be constructed. It is essential only that
it is possible ¢» theory to construct them.

? Either the simple or pure theory of types.
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the elimination of contradictions and meaningless statements
may be regarded as a reformulation of Poincaré’s third rule.
Like the other postulates, and for the same reason, such a
theory is not found among the explicit rules governing the
expressions of Chwistek’s system. Nevettheless, every state-
ment of this system is constructed in conformity with such
a theory.

In his investigations on postulational methods Hilbert found
it necessary to study the structural properties of signs.
Chwistek was apparently much impressed by this aspect of
Hilbert’s work. He points out that the great merit of the
formalist school,? lies in its initiation of syntactical investiga-
tions concerning the properties of systems of symbolic logic.
But he seems not to recognize that for Hilbert syntactical
investigations constitute a field of study distinct from logical
investigations themselves. Indeed, Chwistek asserted :

“. . . Professor Hilbert assumes a system of axioms containing
the principles of the Logical Calculus together with some purely
Mathematical axioms (e.g. Zermelo’s axiom) ; and he endeavours
to prove with the help of “ metamathematical ” methods that
they imply no contradiction. . . . Suppose he has proved by means
of these primitive ideas and propositions ” [of the logical calculus]
‘“that a system of propositions (say p, ¢, #) is compatible with
them. Then he has simply proved these propositions. If he has
used {explicitly or tacitly) other ideas or propositions, then he
has assumed some new hypotheses, which appear more general
than Zermelo’s axiom, etc. . . . Note that Hilbert does not
assume the Theory of Types . . . such a ‘metamathematic’
cannot be essentially different from the Logical Calculus, this
calculus being as a matter of fact a simple consequence of the
laws of our thinking.” 2 .

In a footnote to this same paragraph Chwistek adds :

... there is a Meta-mathematic dealing only with the meaning
of symbols, but never with the truth or falsehood of propositions.
Therefore there is no means of providing a mathematical or
logical proposition with such a Meta-mathematic.” 2

It would therefore seem that Hilbert’s influence upon
Chwistek’s intellectual development has been more apparent

1 Of which Hilbert was the founder. )
3 T.C.T., p. 11. Spelling, typography, the usage of capitals and quotation
marks conform to the original text.
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than real except in regard to terminology.? In fact Chwistek’s
own procedure when he develops the system of semantics is
the very antithesis of that suggested by Hilbert. He does
not follow Hilbert in distinguishing between mathematics
and ‘‘ metamathematics ”’ ; thus, he does not construct one
language whose concepts form the basis for the derivation of
logic and mathematics, and a second language whose theorems
state the syntactical properties of the first language. Rather
he constructs a single language, which includes theorems
concerning the structural properties of expressions in addition
to logical and mathematical theorems.

We are now in a position to formulate more clearly what is
meant by semantics. Semantics is a formal system which
makes use of a carefully specified symbolism based upon two
signs “#” and “e¢”’.? The sign “¢” is called an expression.
Any combination of these signs obtained by the application
of carefully stipulated rules is also called an expression. It is
evident that the expressions of semantics must be constructible
in the sense in which we have defined this term. The symbols
usually employed in logic and mathematics are correlated
with certain of these expressions and are allowed to replace
them.® Chwistek himself defines semantics as the “ science
of expressions ’. In other words semantics treats only those
configurations of signs which are expressions in the sense
indicated. Further rules are stipulated whose application to
expressions yield new configurations called theorems. These
theorems are of two kinds. Some of them are sentences of the
language of logic and mathematics. The remaining theorems
formulate syntactical properties of this object language.
Nevertheless both kinds of theorems are derived by a single
method.

It is clear then that Chwistek has attempted to achieve
within a single system three distinct objectives, which may
be briefly indicated by the rubrics “ constructibility ”, “ meta-
mathematics ”, and “ reducibility to a more general basic
science . These elements are borrowed from the representatives

* i.e. Chwistek borrowed the term ‘‘ metamathematics” from Hilbert.
It should be noted that Chwistek’s usage of this term m the passage cited

differs from his usage in the current work. But each of Chwistek’s usages
differs from that of Hilbert.

® In Chwistek’s eyes one of the lessons learned from the paradoxes is that
they are caused by the ambiguities of the words used in everyday language.
Consequently the various ideas evoked by words must be carefully dis-
tinguished and each idea represented by a specific sign.

*# In practice these symbols are regarded as expressions.
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of the three schools of thought engaged in the discussion of
the philosophy of mathematics during the present century:
the intuitionists or constructivists, the formalists, and the
logisticians.1

I1I
THE THEORY OF PLURAL REALITY

Chwistek has been concerned with the problem of reality
for many years and first stated his views on the subject almost
twenty-five years ago in a lecture delivered before the Philoso-
phical Society in Cracow.? A few years later the material
presented at that time was published in considerably amplified
and modified form.? Chwistek’s views became the subject of
heated debate in Poland, although the severe criticism to
which they were subjected¢ was based on interpreting
Chwistek’s formulations without reference to the context in
which they occurred.

Chwistek never intended his views concerning the problem
of reality to constitute a new metaphysical theory. On the
contrary he specifically stated that *“ the problem of the present
study is the establishment of the meaning of the term
‘reality * . His theory of plural reality must therefore be
regarded as an attempt to specify the various ways in which
the term ‘““real ” is used® and not as an attempt to provide
a solution of the *‘ philosophical ”’ problem of reality. Accord-
ingly it is a misinterpretation of Chwistek’s intent to take
literally his assertion that there is no one true reality but that

* This is not to say that Chwistek accepts all the ideas advanced by the
writers in question. For example, he rejects Russell’s theories of types because
they depend upon existence axioms. He rejects Poincaré’s opposition to
constructions based upon the use of logical symbolism, and lis stress upon
the necessity of mathematical intuition (80).

3 Cf. T.L., pp. 139-151.

2 C{.WR.

4 Cf. e.g. Przeglgd Warszawsks, Rok 2, Tom 1, 1922, which contains a review
of W.R. by Professor Tadeusz Kotarbifiski, pp. 426-8, and an article by
K. Irzykowsk:, pp. 291-306.

Przeglad filozoficzny, vol. 25, 1922, which contains a critique of Chwistek’s
views by Dr. Roman Ingarden, pp. 451-468.

Determanism nauk przyrodniczych (The Determinism of the Natural Sciences),
by Joachim Metallman, Krakéw, 1934, pp. 52-7.

5 Cf. W.R,Dp. 3.

¢ In conformity with this interpretation the phrase * concept of reality
has been used throughout Chapter X to render the word ‘‘ rzeczywisto$¢ .
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there are at least four different realities. Moreover, it is not
a relevant criticism to point out that on his analysis it is
impossible to account for all aspects of experience. Chwistek
himself is not interested in such questions as whether any of
the well-known cosmdlogical theories is the only theory which
can account for the totality of experience. He notes, for
example, that not only do both materialism and idealism seem
valid to their adherents, but that to one and the same individual
materialism may at one time appear to be the only wvalid
doctrine, while at another time idealism alone may seem to
explain certain portions of experience in a satisfactory manner.

This interpretation of Chwistek’s theory of reality as an
attempt to distinguish the different usages of the word *‘ real ”
conforms to his general nominalistic approach (xxvi-xxvii). On
his view the proper task of philosophy is definition rather than
demonstration.? Accordingly, he regards the enumeration of
the various ideas evoked by the term ‘““real” * as genuine
philosophical activity, whose object is the attainment of
maximum certainty in knowledge within the limits of human
reason. Sound reason, when applied to the problem of reality,
therefore, prevents ambiguities and the confusions arising
from them.

However in The Limits of Science Chwistek does not actually
define the four meanings of the term ‘‘real’” which he dis-
tinguishes ; and he speaks of the “‘ criteria ”’ of the various
realities without specifying them. What he does is to suggest
four different contexts in which the word “real” is used.
Thus he notes that ““real ” is a predicate employed in con-
nection with four different kinds of entities: atoms, things
and persons, images,® and sensations. Accordingly, he dis-
tinguishes four different ““ concepts of reality ”’, that of physical
reality, of natural reality, of the reality of images, and of the
reality of sensations. In so far as each of the entities mentioned
is characterized by a different set of properties, a different
"“ concept of reality ”’ is employed each time one of them is
called “real”. Although Chwistek himself does not regard
this classification of the various ‘‘concepts of reality ’ as

1 Cf. Wk, p 7.

3 Chwistek asserts the importance of distinguishing the various meanings
of a term because the use of the same termin different meanings, 1.e. ** operating
with different patterns of reality ** (270), 1s unavoidable 1n everyday language
and because there are no criteria on whose bass it 1s possible to decide which
meaning should be employed at a particular moment.

3 e.g. dreams.
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exhaustive it seems worth while to point out some of the
more obvious omissions in his account. He does not, for
example, make clear in what sense macroscopic objects are
said to be ““ real ”’. Neither does he state whether such entities
as genes and chromosones are to be regarded as ‘“ real *’ in the
same sense as are atoms. Nor does he specify in what sense
certain numbers can be regarded as ‘‘ real .

Nevertheless in his earlier writings on the theory of plural
reality Chwistek did attempt to define the various meanings
of the word “real”. At that time he not only regarded
Principia Mathematica as the model for all deductive systems,
but he maintained that various portions of philosophy, in
particular those portions which deal with reality, can be
formulated as deductive systems. He called such formulations
“ formalizations ', and maintained that their primitive concepts
and axioms are not arbitrarily posited but are derived from
an analysis of experience. These axioms contain concepts
specific to the theory of reality as well as certain logical concepts.
In stating these axioms,® ten in all, Chwistek employed six
propositional functions as primitive.? He contended that
certain sets of axioms chosen from this group implicitly define
the different meanings of the word “real’’.? He suggests

1 Cf. W.R., pp. 30—4.

(1) If an object is given immediately it is real.

(2) If an object is visible, it is real.

(3) If an object is real, it is visible or given immediately.

(4) Certain real objects are not visible and are not given immediately.

(5) An object 1s visible if and only if it is visible during waking life.

(6) There are objects which are visible, which need not be visible during
waking Life.

(7) An object is visible if and only 1if it is visible under normal conditions.

(8) There are objects which are visible, but which need not be visible under
normal conditions.

(9) Part of a real object is real.

(10) If part of an object is real, that object is real.

This set of axioms is a contradictory set.

2 ‘ yigreal,” “ x is given immediately,”” ** x is visible,” ‘* # is visible during
waking life,”” ** x is visible under normal conditions,” and ‘‘ x is part of y ~
(cf. W.R., Lc.).

® Cf. W.R., p. 33.

Sensational reality is defined by axioms 1, 2, 3, 5, 8.

The reality of images is defined by axioms 1, 2, 3, 6, 8.

Natural reality is defined by axioms 1, 2, 4, 5, 7, 9, 10.

Physical reality 1s defined by axioms 1, 2, 4, 5, 8, 9, 10.

The adequacy of Chwistek’s definitions is not in question here although
some of the problems raised by his analysis have already been indicated.
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further that from each of these sub-sets important theorems
concerning  reality ”’ may be derived, although he himself
did not derive any of them.?

The fact that in The Limits of Science Chwistek does not
construct such formalizations might lead one to suspect that
he has abandoned this method. However, in a recent letter
(28th May, 1939) he states: “1I have not abandoned this
conception, although I think it has only theoretical importance.”
And indeed, in the book itself, Chwistek makes sufficiently
clear that the formalization of reality is possible, though it
requires to be based on semantical considerations. He points
out that it is possible to construct symbolic representatives
of the objects of experience, i.e. configurations of signs denoting
these objects (268). He also contends that it makes no difference
whether signs are interpreted as things, collections of atoms,
visions,? or expressions (85). He suggests that it is possible
to correlate with signs not only logical and mathematical
concepts but philosophical concepts as well.

Chwistek’s position on questions of logical theory have
influenced the formulation of his views on the problem’ of
reality. He requires, for example, the acceptance of a theory
of types prior to the formalization of reality. With the help
of this theory he distinguishes an infinite number of meanings
of the word ““real ” in addition to the four meanings already
indicated. For there are formalizations of higher type which
take formalizations of lower type as arguments. However,
this theory of types, which Chwistek calls ‘‘ metascientific ”’,
isnot formulated very precisely. Thus while Chwistek maintains
that each of the four formalizations (i.e. each of the four
““ concepts of reality ”’), are of a different order although they

It shonld be noted that different concepts of reality are based on con-
tradictory axioms. The concept of natural reality for example is based on
axiom 7, which is the contradictory of axiom 8, upon which the concept of
physical reality is based.

Chwistek maintains that the four ‘‘ concepts of reality * thus defined are
equally plausible and that it 1s possible to develop a consistent philosophical
doctrine on the basis of each of these concepts. Consequently he asserts that
no one philosophical theory is to be preferred to any other. Nevertheless
Chwistek feels that a philosophical view based upon the concept of the reality
of sensations conforms more adequately to the nominalistic approach than
any other philosophical position.

! None of these deductive systems can be regarded as formal systems since
their formation and transformation rules have not been explicitly formulated.
Nevertl}eless they might be developed as formal systems.

? Visions are one kind of images.
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are of the same type,! he nowhere sets up a precise hierarchy
of orders. Nevertheless at very isolated points he does venture
to make such comments as: the concept of physical reality
is of higher order than the concept of natural reality (279).
In spite of the lack of an explicit formulation of the ‘‘ meta-
scientific ' theory of types this theory is of use in resolving
some of the epistemological puzzles raised in connection with
dreams. Chwistek maintains, for example, that it is not an
error for an individual to regard his dreams as ** real **, Dreams
are just as ““real ”’ as are persons or things. They are merely
of a different order. On the other hand it would be wrong for
an individual to regard the sensation which he experiences
when he is dreaming as sensations of the same type as those
which he experiences when he is awake, Chwistek’s contribution
to philosophical theory thus rests on the method he has devised
by which it is possible to obtain precision of philosophical
concepts,?

} Bertrand Russell’s formulation of the branched theory of types is based
upon a distinction between various orders of functions and propositions.
First-order functions, for example, are defined as functions whose arguments
are individuals. Although all such functions are not of the same type Russell

inted out that in practice these differences of are noglected, (Cf,

itehead and Russell, Pn‘nci{ia Mathematica, vol, i, Cambridge, 1935,
pp. 161-2.) Chwistek has therefore interpreted Russell as maintaining that
although functions are of different orders, they are all of the same tﬁype
(cf. Z.S., p. 320). Consequently when Chwistek introduces a ‘ metascientific **
theory of types in connection with the theory of plural reality, he maintains
that functions of different orders may be of the same type.

' In his considerations of the problem of reality Chwistek has on occasion
alluded to general semantics (as distinct from rational semantics) and seems
to suggest its importance in dealing with the problem of reality, He does
not, however, specify exactly what he understands by the term °’ general
semantics '’ and always returns to rational semantics, the system of semantics
dev;loped at length in this book, for hints to be applied in resolving this
problem.

Typical of this procedure is Chwistek’s insistence that it is possible to
treat only ‘* patterns of reality . For he never explicitly indicates what is
to be understood by this term. Obviously the word ** pattern " is not used in
precisely the same way as it was employed in Chwistek's logical considerations
(296, n. 2), sinco he maintains that it is impossible to obtain singular pro-
positions such as ‘“a is real ” [where “a " denotes a partic object
(268-9)), with the help of rational metamathematics or semantics. Never-
theless it is clear that a ** pattern of reality ”’ is some kind of a function since
it contains a variable. The pattern “ x is real ", for example, contains the
variable ‘' x ",
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IV

THE PHILOSOPHY OF SCIENCE

Chwistek’s interest in the problems of the philosophy of
science, as manifested in his published writings, is com-
paratively recent. As a matter of fact his work in this field
has been confined almost entirely to a critical account of some
of the fundamental concepts of the natural sciences.? Semantical
considerations and the theory of plural reality, as theories
constructed in accordance with the method of sound reason
have therefore had an important role in the development of,
Chwistek’s views on the philosophy of science.

Chwistek's Conception of Science

Chwistek views science as an attempt to develop a con-
sistent rationalistic view of the world, based upon simple,
clear “ truths” derived from experience by the application
of sound reason (3). He points out three distinct elements
involved in scientific activity: classification, description,
and explanation. Although none of them is sufficient to
characterize the method of science completely, scientists do
nevertheless classify, describe, and explain phenomena (3).
Explanation is given in terms of laws usually numerical in
character (25). For this reason scientists must specify a
conceptual apparatus which will permit the simplest possible
solution of concrete scientific problems. Accordingly economy
is not an end in itself but is relative to the particular problems
in which the scientist is interested.

1 Chwistek does include positive constructive work on the special theory of
relativity but his views on this subject will not be considered here. In the
first place since his early consideration of relativity theory (G.N., }}? 215-222),
his position has undergone continual evolution (cf. L.R. and P.P.R.S.), and
there is no way of knowing whether these views have attained their final
formulation. In the second place the present formulation of Chwistek’s views
on this subject (242-252), which is obviously quite different from his early
position, was originally written in English. Unfortunately certain passages
are not entirely clear (cf. e.g. p. 245). nt world conditions have made it
impossible to clear up these obscurities. Furthermore this introduction is
concerned with material of philosophical rather than of purely scientific interest.
1t will therefore be sufficient to point out that in connection with the theory
of relativity Chwistek is interested in deriving the Galilean transformation,
which implies that it is impossible to detect by means of mechanical experi-
ments uniform rectilinear motion with respect to absolute space, and the
Lorentz transformation, which implies that two events, which are simultaneons
for an observer at rest in a given frame of reference, no longer appear so to
an observer moving relative to that frame of reference.
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Chwistek points out that in spite of the fact that the scientist

endeavours to describe and explain phenomena, he 15 not
interested in finding their ‘‘ causes . Such questions as:
“ Why does the earth revolve around the sun ? ", ' What is
an atom? ", etc., are metaphysical rather than scientific ;
they lead to fruitless investigations, which do not extend the
scope of our experience (11). The extension of our experience
is one of the primary aims of the scientist and involves the
possibility of prediction on the basis of scientific laws.

Chwistek also realizes that our scientific knowledge is not
all-inclusive. Nature does make sudden jumps (51). It is
frequently possible to give explanations of phenomena in
terms of scientific laws only after their occurrence. It is there-
fore impossible in many situations to make predictions of a
kind which would prove useful. For this reason scientific
knowledge in particular, as well as knowledge in general,
can never be complete (xxvii).

Finally in conformity with his insistence that science must
be based upon the method of sound reason, Chwistek opposes
the introduction of ‘‘ metaphysical ", *“ideal”’, anthropo-
morphic, and “ fictional *’ concepts into science (xxiv, n. 1).
He also objects to the use of rough analogies, because the
scientist is likely to forget that they are of value only as
auxiliary devices and cannot be regarded as accurate
representations of scientific facts.

Such is Chwistek’s general conception of science, a con-
ception which he works out with the help of a critical analysis
of material drawn from the different sciences. However when
he turns to particular problems of the philosophy of science
Chwistek selects for consideration material taken from the
natural sciences rather than from the biological or social
disciplines. As a matter of fact he discusses the methodo-
logical problems of physics almost exclusively.

Measurement and Arithmelic

Chwistek points out that in physics events are abstracted
from the totality of experience with the help of sets of numbers.
Each such set is called the spatial representation of an event.
This process of abstraction, i.e. of ‘‘ formalizing reality !

3 This meaning of the term ‘* formalizing reality "’ obviously differs from
that employed elsewhere (xlv), in so far as it involves a mathematical
representation of reality (238).
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is a device used to predict (238). The apparatus employed in
this process evokes images of reality, but it must not be
confused with actual events. It is for this reason that Chwistek
sharply criticizes those who take these “images” literally
(239), i.e. those who identify ‘‘ concepts of reality” with
“reality ”. On Chwistek’s view mathematics supplies an
adequate apparatus for representmg the properties of subject-
matter without requmng any ‘‘ metaphysical ”’ assumptions.

The derivative a—y’-‘— for example, which is employed by the

physicist is not a mathematical fiction as some writers maintain.
xl ”»
t —t
that case also have to be regarded as a mathematlcal fiction,'a
conclusion few physicists would be willing to accept. On the
other hand Chwistek regards both the concept ‘‘ derivative ”
and the concept ‘“ velocity *’ as expressions. Since the physicist
makes discoveries which * transform the surface of the earth ”
69) with the help of simple operations upon velocities, etc.,
hwistek feels that it is vital for the physicist to know how to
use these expressions, i.e. to perform these mathematical
operations upon them,

Chwistek treats as expressions even the numbers used in the
process of measurement. The theorems of arithmetic are
derived with the help of logical and semantical devices alone
and Chwistek insists that they need nof be verified by reference
to experience. The actual process of measurement he regards

a “ crudely defined activity " (255), since it is impossible
to set up a one to one correspondence between the results of
measurement and real numbers. A physicist interested in
measuring the length of a table would not be satisfied with
a single measurement but would make several. He would then
formulate the results of these measurements as a series ? of
numbers.? He would say that the length of the table is
represented by a number greater than the smallest number

For the velocity, which is represented by , would in

1 It should be recalled that for Chwistek the word * fiction * is a term of
opprobrium. He has already indicated that the concepts of the calculus are
not fictions, since they can be developed in terms of the concepts of semantics.
He su gests that they be introduced in a purely formal way in such a manner

ey involve only constructible’ expressions (321-3). He has indicated
that the concept of velocity at a point can be analysed in terms of the concepts
of the calculus (200-3).
* In this context the word ‘ series * is used in a non-mathematical sense.
% In Chwistek’s terminology as a series of expressions.



INTRODUCTION li

in the series and less than the largest number in the series.
Chwistek sees no reason why the physicist should regard the
average of these numbers as the “ true ”’ length of the table
since more accurate results can be obtained by utilizing the
inequality which stipulates the range of variation of the
numbers obtained by measurement. For this reason he insists
that the length of the table ‘“ corresponds "’* in some way to each
of the numbers obtained in the process of measurement and
that slight differences between the results of measurement
can be disregarded provided that two numbers are designated
between which all the numbers obtained by measurement
can be found.

Chwistek’s Conception of Space and Time

Chwistek’s concern with the methodological problems of
physics leads him to examine the foundations of geometry.
He defines geometry as an experimental science, which depends
upon the measurement of segments (217), i.e. of distances.
He does not, however, consider the physical procedures
involved in making measurements,? but confines himself almost
exclusively to a consideration of the logical difficulties
encountered in the development of geometry as a purely
mathematical science. Chwistek’s considerations therefore
bear upon matters which are of primary concern to the
mathematician rather than the physicist, and he regards the
decision between euclidean and non-euclidean geometry as
not raising any problem for physics.? Since the constructions

! The meaning of the word ‘‘corresponds” in this context is mnot
mdicated.

2 In Chwistek’s elementary considerations his analysis of arithmetic
assumes that the reader is familiar with the procedure of measuring segments
(70). Chwistek himself has never analysed this procedure.

3 Chwistek disagrees with Poincaré on this subject largely because the
problems involved must be approached from the point of view of the physicist
rather than from the point of view of the pure mathematician. Poincaré
has recognized this fact but Chwistek treats the issues involved from the
point of view of the mathematician. In any case the main difference between
Chwistek and Poincaré with regard to the “ conventional *’ aspects of this
problem may be summarized as follows: Chwistek sees no problem at all
in connection with the application of geometry in physics, because of the
1dentity of euclidean and non-euclidean geometry when applied to limited
areas; Poincaré insists that whether one applies euclidean or non-euclidean
geometry 1n the solution of a definite scientific problem depends upon which
system of geometry is most convenient.

Chwistek opposes Poincaré’s ‘ conventional * resolution of this issue mainly
because he feels that ‘‘ conventionalism *’ leads to opportunism and irrational
philosophical doctrines (234), particularly with regard to social problems.

d
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of euclidean geometry are identical with those of non-euclidean
geometry within sufficiently small areas,® he sees no need to
decide which geometry is to be applied to existential material.
In a letter dated zoth July, 1939, he says, ‘“ If we speak about
a part of space there is no problem at all as to what space is
to be assumed, because all spaces are approximately euclidean
. . . sound reason does not countenance ideal objects, con-
ventions, and fictions.” In view of this statement it would
seem that Chwistek feels either that the construction of a non-
euclidean geometry is an interesting mathematical exercise
with no relevance for physics, or that the application of either
euclidean or non-euclidean geometry in physics yields essentially
the same results. Yet he also realizes some of the difficulties
encountered in applying euclidean geometry to certain portions
of physics. He points out, for example, that it is difficult,
if not impossible, to give an actual illustration of parallel
lines. To an observer stationed at some point of a railway
track, the rails seem to meet somewhere in the distance.
Although it is known that they never do meet it is impossible
to directly experience this fact because the observer can never
simultaneously be at the point of observation and at the
““ point of intersection ”. Thus euclidean geometry does seem
to involve “ fictional ”’ objects after all (xxiv, n. 1). It is also
possible to raise similar difficulties in connection with the
application of non-euclidean geometry in physics,? since it is
impossible to give an example of an experiential point or line.

Apart from his position concerning the applicability of
geometry to existential material, the point which Chwistek
emphasizes most strongly in his discussion of space is that

He fauls to realize that all conventions are not arbitrary and that what Poincaré
has in mind when he speaks of the importance of ' convention " is practical
convenience.

Moreover Chwistek’s failure to provide a place for macroscopic objects 1n
his theory of plural reality leads him to identify natural reality with physical
reality, 1.e. to treat persons and planets in exactly the same way as he treats
atoms. Chwistek commuits here an error analogous to that of certain nineteenth
century philosophers, who, on the basis of the laws of mechanics, proceeded
to argue the question of free will.

However it should be noted that while in The Limits of Science Chwistek
opposes Poincaré’s position, elsewhere he points out the importance of
Poincaré’s analysis. Cf. U.B., p 4.

! This is a mathematical fact.

2 Nevertheless Chwistek recogmizes that many contemporary physicists
do use a geometry in which there are no parallels. He recognizes the important
role of * congruence ” (234-5) in geometry, although he emphasizes the
mathematical definition of this concept, rather than the physical process of
measuring distances.
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events are specified in physics by means of a co-ordinate
system. But he realizes that this specification of the spatial
co-ordinates of an event must be supplemented by the specifica-
tion of a temporal co-ordinate as well. There is no ‘“real ”
or absolute time, but only events which are verified by reference
to experience. Experience teaches us that certain events are
earlier and others later, and enables us to correlate (with the
help of clocks) numbers with temporal events (238). The
concept of time is thus an abstraction from experience which
utilizes the apparatus of mathematics. In consequence,
although the physicist employs the concept of continuous
time in spite of the fact that we do not experience sensibly
continuous time, actually ‘it is impossible to take sensual
continuity seriously especially because the meaning of this
concept is not known ” (240-I).

In his discussion of time Chwistek also points out the
necessity of reasoning in conformity with a theory of types.
While an individual speaking about time must speak in time,
Chwistek recognizes the importance of distinguishing these
two uses of the word ‘‘ time ”. In other words the fact that
the time ¢» which an individual is speaking is of a different
type from the time about which he is speaking must be taken
into consideration in all discussion.

The Philosophy of Science and the Theory of Plural Reality

Chwistek’s theory of plural reality is important in connection
with many problems of the philosophy of science. It is there-
fore worth while to give at this point several illustrations which
show the relevance of this theory to certain of these problems.
The physicist’s concern with the problem of motion leads him
to study the motion of those bodies which Chwistek calls
““things ”’. For this reason when the physicist is studying
the motion of bodies along an inclined plane, his analysis
depends upon the concept of natural reality. Similarly, since
the physicist interested in the motion of atomic particles has
incorporated some of the results of this kind of mvestigation
into the kinetic theory of gases, Chwistek would maintain that
this theory is based upon the concept of physical reality.
Even the concept of the reality of images is of importance in
physics because the use of a microscope depends upon some
“image ”’ in the mind of the observer, i.e. some mental picture
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of that which he hopes to see with the help of the microscope
(286). Chwistek also points out that the concept of the reality
of sensations has been used as the basis for the criticism and
re-examination of the meaning of certain fundamental concepts
of physics. In this way certain ““ idealistic ”’ elements found in
this theory have been eliminated. He has in mind here the
re-examination to which such concepts as “ position ”’ and
“ momentum ” (256-8, 283) have recently been subjected.

The Problem of Determinism

3

Chwistek has been concerned with the ““ problem of deter-
minism "’ over a period of years. The Limits of Science contains
the fullest statement of his views on this subject up to the
present time. He is interested mainly in those aspects of the
problem which concern physics. Accordingly, he recognizes
the futility of attempting to apply his results to the *“ philoso-
phical ” problem of free will. Nevertheless his discussion is
marred by such digressions as his attempt to introduce Fermat’s
last theorem as evidence for the deterministic point of view
(254).

Chwistek begins his discussion of the problem of determinism
by a criticism of the “ classical ’ views on the problem. He
points out that those “ classical ”’ physicists, who advanced a
deterministic conception of the world based their views on
the conception of an “ideal ”’ reality. They therefore dis-
tinguished the ‘‘ real ”’ length of a segment from its actually
measured lengths. In opposition to these scientists Chwistek
maintains that the notion of successive approximations to this
“real length ”’ is unnecessary, since the length of a segment
can be stipulated as a number to be found between two fixed
limits. Chwistek also criticizes the identification of the concept
of determinism with the concept of predictability. He maintains
that in a given system, even if all the elements necessary for
the prediction of an event were known, it would be impossible
to predict all possible results which can be obtained by the
application of the rules of this system. Nevertheless Chwistek
holds that this system may be determined (260) and that it
may even be possible to predict the particular event in question.
He offers his system of semantics as a model of a determined
system, in which, nevertheless, it is not possible to predict all
the results which can be obtained by the application of its
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rules. Thus on Chwistek’s view determinism must be dis-
tinguished from predictability. For on the one hand an event
may be both predictable and determined ; on the other hand
it may merely be determined. It should be noted here that
Chwistek employs the concept “ determinism * as a primitive
or undefined idea. He does not even define it implicitly with
the help of a set of axioms.

Chwistek raises similar objections in connection with the
views of the “ classical "’ indeterminists. He accuses them of
maintaining that it is impossible to obtain increased precision
by successive approximations to the ‘“real” length of a
segment. Consequently it is not surprising that he rejects this
“ idealistic * conception.

Nevertheless Chwistek also rejects the view that contemporary
physics is based upon indeterministic concepts. He explains
the position of contemporary physicists on the problem of
determinism as a reaction to the two ““ classical * (*‘ idealistic ™)
views on this problem. He maintains, for example, that the
criticisms of ““ classical ”’ determinism do not establish the
fact that a determinism without ‘‘ idealistic” suppositions
would in any way be objectionable (256—7). Consequently
he sees no reason why physics cannot be based upon deter-
ministic concepts. He maintains that such concepts as
‘“ position ”’, ““ length ", etc., can be determined o the basis
of experience within ‘‘ sufficiently narrow limits ” (258). More-
over entire classes of numbers, not particular numbers, satisfy
the inequations which define these limits. In spite of the
fact that Chwistek does not regard predictability as the
defining characteristic of determinism, he maintains that
only events which lie within these limits can be predicted.
He asserts that if some day it should become possible to go
beyond these limits the concepts * position ”, ‘“ length ”’, etc.,
would acquire a new meaning, i.e. they would become new
concepts for which different limits had been specified. This
point is explained by means of the theory of plural reality.
It becomes possible to go beyond the limits originally defined
on the basis of experience, only if the process of formalizing
reality ? is taken a step further, i.e. if a new formalization of
reality is set up. New concepts are thus defined with the
help of this new formalization.

1 It should be poted that these concepts have an experimental but not an

absolute meaning.
2 It should be recalled here that a ‘‘ mathematical concept of reality ”’ is

involved here (xlix).
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The Pyoblem of Induction

Chwistek concludes his discussion of the methodological
problems of science with a brief consideration of induction.
With the help of several illustrations he makes a number of
general observations concerning the nature of inductive reason-
ing, and enumerates some of the difficulties encountered in
formulating an adequate theory of induction. Examples of
unwarranted extrapolations make evident the fact that a
factor relevant in one context where induction is applied, may
be irrelevant in another. Furthermore no general rule can be
given concerning the number of instances necessary for a valid
inference to be drawn from them. In some cases inductive
reasoning cannot be performed ; in others a general conclusion
can be inferred from a single event. Chwistek also points out
that the validity of inductive reasoning depends upon the
meaning of the concepts involved, and upon knowledge of
the facts and of changes in the relation between them. Moreover
the elements of guessing and emotion cannot be eliminated
from inductive reasoning.

Chwistek, unlike most contemporary thinkers, is not interested
in justifying the use of the inductive method. He is not,
however, content merely to make such general comments as
those enumerated above. Accordingly, he turns to the
question whether or not it is possible to construct a general
law or pattern for all inductive reasoning. The discovery of
the answer to this question he regards as the real “ problem
of induction ”’. He goes on to reduce this problem to the question
whether or not reality can be completely formalized, in as much
as his original problem and his new formulation of it both
obviously involve the abstraction of certain elements from
experience. Since, however, reality can never be completely
formalized (261, 269), he concludes that it is impossible to give
a general pattern which governs inductive reasoning. He also
uses the increase in factual knowledge, which results from
the extension of the scope of our experience by means of
improved apparatus (266), as additional evidence in support
of his position. It is thus clear why inductive reasoning can
never be formulated in a pattern.

Chwistek maintains that the principle of complete induction,
introduced as a rule of procedure in semantics, cannot be
regarded as a rule of procedure in the natural sciences, since
it is impossible to determine with any accuracy the * transition
from any one case to the following ”’. Since the application
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of complete induction is a characteristic feature of some of
the natural sciences Chwistek proposes to justify the use of
this principle by means of probability considerations (267) ;
for he sees no problem in applying the calculus of probability
to existential material (255).

Chwistek’s views concerning the methodological problems
of science were developed in consequence of his aversion to
the presence of ““ metaphysical ’ elements in science. He was
therefore led to formulate some very unusual views on the
philosophy of science, some of which require further develop-
ment. His conclusions concerning the ** problem of induction "’
are almost entirely negative. Unfortunately he does not con-
sider any of the specific issues under contemporary discussion
concerning the validity of inductive reasoning. It would
seem, however, that the very fact that no general pattern can
be given for this type of reasoning should make these issues
even more acute for Chwistek than for other logicians, since
he has attempted to apply a single method to all portions of
philosophy and science. It should be noted finally that Chwistek
has made no attempt to give an exhaustive treatment of the
methodological problems either of science in general or of
physics in particular.

! The consideration of these claims must be omitted, in part because of
the technicalities involved and in part becayse of certain unclarities which
result from the fact that this portion of thé text was written in English.
It has proved impossible to clear up these obscurities at the present time.






CHAPTER 1
INTRODUCTION

1. We are living in a period of unparalleled growth of anti-
rationalism. Exact thinking based upon the principle of con-
sistency is the sacrificial goat to which all the disasters of our
times have been imputed. The World War and all the orgies
of domineering capitalism have been attributed to rationalism
developed in accordance with the requirements of exact
thinking. Exact thinking is blamed for drying up the sources
of the sacred enthusiasm and for causing the emotional
exhaustion of our epoch. Exact thinking, it is alleged, has
become the source of the excessive growth of materialistic
culture, as well as the shrinkage and sterilization of spiritual
life. The demand for a new logic, for new laws of thought more
suitable to the needs of spiritual life, has become the hobby-
horse for a whole galaxy of obscure and false doctrines, from
the revived dialectic of Hegel to pragmatism, universalism,
and the phenomenology of Husserl.

These doctrines have arisen in many cases owing to wide-
spread ignorance, while at other times they have been dictated
by completely dishonest tendencies. Their source is the tragic
disintegration of science over a period of years and the despair
born out of a perception of the weakness of scientific procedure.

The history of the spiritual culture of mankind may be
reduced to the struggle between faith in the creative power of
exact thinking on the one hand, and doubt and powerless self-
humiliation in the face of the irresponsible aberrations of
fanatics who never attempt to solve any concrete problem
and relinquish the pleasure of overcoming real difficulties on
the other hand. This struggle has been carried on for centuries
with varying fortune. But at present we have entered into a
period of incredible abasement of science, a period of the noisy
superiority of groups of puffed-up eulogists of irrational
nonsense, who are leading mankind toward open crime and
violence—as a rule unknowingly but often quite consciously.

2. Reflecting on this sad state of affairs, Professor Wladystaw
Natanson writes :

“ Ought we not to regard it as evil for comprehensive science
to give instruments of incalculable power to nations who have not

I E
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grown up to them morally ? We have conquered the forces of
nature but we have not conquered ourselves. As a consequence
myopic egoism arises, and as usual disasters ensue; we are
retarded, we are turned back. In silence with apparent equanimity
science betrays its high mission. Science has much to say to
the nations. When will it say it ? When will it find inspiration
and power enough to warn, to restrain, to convince ? 1

I think that one cannot leave these disturbing questions
without attempting to answer them. One must at any cost
ferret out the source of the evil, reveal it in all its nakedness,
and completely root it out.

It will be seen that the matter is much clearer than would
appear on the surface for basically nothing but fear and general
inertia prevent the solution of these problems.

3. Despite all efforts, inherited prejudices concerning the
metaphysical foundations of science have not as yet been
overcome.

The critical attitude, with which laymen credit great scholars
is not sufficiently far-reaching. When Bruno Winawer, the
author of many comedies, derided the philosophers, he con-
trasted them with the representatives of the exact sciences
and called the latter creators of new forms of life on earth.?
He did not, however, observe that these same scholars humble
themselves before philosophers and desire at any cost to set
themselves up as specialists who discover the bases of
philosophy.

Winawer could maintain this view so long as he did not read
the popular lectures of Schrédinger, the creator of the wave
theory.? On reading them, he was startled by the mass of
irresponsible phrases and crude analogies contained therein,
which compared contemporary physics with the so-called new
reality in art, and the electrons with separate human
individuals. He became even more disturbed when I assured
him that this is a common fact and similar cases can be cited
by the dozen.

4. It is a fact that naturalists of the extremely critical type
restrict themselves too often to detailed investigations in
their own field and disregard the endeavour for a rationalistic
view of the world. Naturalists have a peculiar foible : they

! Wiadyslaw Natanson : Porzqdek natury (The Order of Nature), Krakéw,
1928, p. 159.

* Cf. his articles published in Wiadomosci Literackie (Literary News).

8 Erwin Schrédinger : Science and the Human Temperament, translated by
James Murphy and W. H. Johnston, New York, 1935.
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indulge in metaphysical prejudices and seek popularity in the
name of doctrines which go far beyond the bounds of sound
reason and exact thought. Unfortunately they have great
influence.

Things have come to such a pass, that to talk to-day about
the distinction between the representatives of pure science and
the metaphysician is indeed difficult; for in the writings of
famous mathematicians, physicists, astronomers, and biologists,
abject surrender to the authority of deplorable and fruitless
metaphysical endeavours is found. I shall give the following
examples :

The famous German mathematician, Hermann Weyl,
prefaced his book entitled Rawum, Zeit, Materie (a work in
which he endeavoured to include Einstein’s theory in his
system) with a philosophical introduction typical of a pro-
fessional metaphysician of inferior quality. In his opinion it
is a sad necessity that philosophy oscillates from system to
system—a sad state of affairs which ““ we cannot dispense with
unless we are to convert knowledge into a meaningless chaos *’.1
In other words, bearing in mind the tragic maxim, ““ All
beginnings are obscure,”’ * we are forced to build on uncertain
foundations.

In the entire conception of the foundations of science offered
by Weyl, one finds no trace of that modesty and unpretentious-
ness in the presentation of a theory which is worthy of a
representative of the exact sciences. There is no recognition
of that fundamental principle, that the point of departure in
constructing a world view should not be a confused meta-
physics, but simple and clear truths based upon experience
and exact reasoning. Weyl entirely neglects the fact that
physical theories are pure abstractions, which one cannot even
regard as images of reality and that their rule reduces to this,
that they make possible the systematic classification of
phenomena as well as investigations directed toward the
discovery of unknown phenomena. He ignores the fact that if
philosophy is to be taken seriously it must restrict itself to a
critical analysis of the relation of scientific theories to experience
and cannot be the basis of these theories. He does not limit
his ill-timed ambitions and seek the foundations of science ;
he prefers to immerse science in a chaos of paradoxes rather
than to give up beautifully sounding, showy phrases.

1 Hermann Weyl : Space-Time-Maiter, translated by Henry L. Brose, New
York, 1922, p. 10.
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Metaphysical chaos marks the ideas of even those repre-
sentatives of theoretical physics who consciously construct
their theories from fictional elements having nothing in common
with reality. They all seem to long more or less consciously
for reality and they substitute their fictions in its place. Despite
the explicit stipulations formulated in their introductions,
they speak definitively concerning the indeterminism of the
microphysical world as if this were some reality underlying the
laws of physics. Thereby they operate very arbitrarily with
the concept of meaning. Appealing to the fact that the smaller
their error in measuring the position of the electron, the larger
their error in measuring its velocity, and conversely, they
affirm that under these conditions the concepts of the position
and velocity of the electron has no clearly determined meaning.
Often, however, they forget to add that from this point of view,
the concept of the electron itself and in general the concept
of the microphysical world has no determinate meaning. If
then the laws of motion of individual electrons are not dis-
cussed, that is only because it is not desired to question
seriously the electron fiction.

Similar misunderstandings are evident in the case of the
astronomers. When they write about the expanding universe
and simultaneously maintain the finitude of the universe, they
approach these matters as they would the inflation of a rubber
balloon. Eddington, the famous astronomer, accepts the
presence within this theory of features so paradoxical that if
he himself did not believe in the theory, such a belief would
exasperate him.* There is involved in Eddington’s view a very
primitive realism, in which it is hard to detect a trace of those
recognized restrictions upon which contemporary science is
based. There is, of course, no real basis for dispute as to the
legitimacy of auxiliary constructions; a genuine basis for dis-
-agreement is derived from the dubious pretension to knowledge
of the essence of the universe, conceived in the image and like-
ness of the objects surrounding us.

Furthermore, disregarding the fact that their knowledge
of the so-called universe is very fragmentary, astronomers
would like to decide the question whether there is life beyond
our globe and to give it a negative answer. In short, they
would like to return to medieval geocentricism.

Reflection on these matters makes it difficult not to ask

1 Sir Arthur Eddington : Discussions sur I’dvolution de I'univers, Trad. et
avant-propos par Paul Conderc, Pars, 1933, p. 81.
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on what grounds philosophy could be disregarded and science
considered the source of that revivifying word about which
Professor Natanson writes.!

As to the biologists it must be acknowledged that they are
weighed down by an oppressive mass of anthropomorphisms
and irresponsible anthropological discourses which supply
abundant food for philosophical dilettantism.

Driesch, the well-known biologist, is of the opinion that
biology cannot do without the concept of entelechy whose
internal correlate is the soul. This supposition leads him to
accept some basic dynamic intellectual element which can be
found both in the ultimate individual elements of a manifold
as well as in the manifold itself.? Needless to say, here is
involved an irrationalism which denies that which to-day still
happens to be called scientific thought.

At the present time behaviourists carry to absurdity that
important truth, affirmed by Mach,? that the psychic states of
another individual cannot be the object of direct knowledge.
The behaviourists proceed as if there were no difference between
the phenomena of life and those of inorganic nature. They do
not take account of the fact that so-called sympathetic attitudes
or their lack are but reactions to phenomena around us, and
are worthy of as much consideration as is given to sight or
blindness. The fact that they take no note of these reactions
leads to misunderstandings, which do not increase the authority
of exact science. .

Let us now contrast the metaphysician influenced by Husserl,
Max Scheler, with the Dutch anatomist Louis Bolk. According
to Bolk, man is a degenerate monkey incapable of normal
development.# Man is therefore said to constitute an evident
negation of life and an obstacle to nature. Evidently entirely
in his element, Max Scheler takes issue with this theory. He
invokes the spiritual life, culture, and art. He did not observe
that Bolk’s specialized knowledge makes him a dangerous
opponent. Metaphorically speaking, on the level of such
generalities, the contents of one empty bottle can be transferred
into another ad infinitum.

1 Cf. 1. 2. (In cross-references to the text the number before the decimal
point indicates the chapter, the number after the decimal point the article )

2 Cf. Hans Driesch . ‘‘ Das Organische im Lichte der Philosophie,’” At
del V Congresso Internazionale dv Filosofia, Napoli, 1924, pp. 615-625.

* Cf. Ernst Mach : The Analysis of Sensations, translated by C. M. Williams,
Chicago, 1914, pp. 334, 54.
14; Ci. Max Scheler : Philosophische Weltanschauung, Bonn, 1929, pp. 35-6,
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5. Finally I wish to discuss the ill-considered reflections of
Sigmund Freud, the eminent professor of neurology, on the
theme “ love thy neighbour . While I am not an adversary of
Freud and freely acknowledge him to be one of the greatest
contemporary philosophers, his polemic against the com-
mandment : “ Thou shalt love thy neighbour as thyself,” 1
is based upon primitive arguments which reflect a narrow,
ultra-bourgeois view of the world. This is a classic example
of the harmful consequences of lack of logical training. Freud
accepts the method of sound reason. Unfortunately, however,
it is accompanied by all the prejudices of the bourgeoisie and
he neglects the fact that the limits of sound reason are much
narrower than it would appear.

The principle, that it is more desirable for an individual to
have than to give, is not as evident as it seems. It may be
that extreme altruism, which depends upon making sacrifices
for others, is a disguised form of egoism. However, this egoism
differs so fundamentally from trivial egoism that to reduce
both types to the same instinct must be regarded as an obvious
excursion into metaphysics, worthy of Hegel or Bergson.

When this type of discourse is compared with a work of any
philosopher in the tradition of positivism,?it must be admitted
that it is the professional philosopher who manifests clear
thought and a critical attitude. It must be admitted that in
our day, the great tradition of the exact sciences has ceased to
be dominant and that it has become difficult to establish
the boundaries between these sciences and irrational error.

Undoubtedly terms differ in meaning in different contexts.
It is also difficult to extract from the chaos surrounding us
that which really deserves to be called pure science. But it
does not follow that it is necessary to succumb to the lure of
verbal phrases because they guarantee an apparently unified
view of the world. It must be explicitly noted that metaphysics
is not and cannot be a view of reality because it involves a
fundamental error at its very root, namely the assumption that
there exists knowledge other than that which is based upon
experience and exact reasoning.

Historically the desire for such knowledge has always
appeared when the great aims of rationalistic science have been

1 Cf. Sigmund Freud : Civilization and its Discontents, authorized transla-
tion by Joan Riviere, New York, 1930, pp. 81-7.

2 Cf. Eugéne Dupréel: Traité de Movrale, Travaux de la Faculté de philo-
sophie et lettres de I’Université de Bruxelles, t. iv, Bruxelles, 1932.
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wrecked on a reef of paradoxes. Actually these paradoxes
indicate paths toward new discoveries and toward a new and
more profound formulation of scientific questions. But the
dullness and inertia which are characteristic of the human mind
and which lead toward the easy path of anti-rational subterfuge
have permitted neither enthusiasm nor creative effort.

Those representatives of science who have not lost faith in
it have concerned themselves too little with the disturbing
phenomena of life about them. Alarmed and uneasy they have
confined themselves to a limited sphere of detailed investiga-
tions. As often as the scientists have prepared to dictate the
laws of science to mankind, they have encountered internal
contradiction. Confused and broken they have been forced to
withdraw from the field of strife.

There have been many such gaps in the development of
scientific thought. I mention only the discovery of the
incommensurability of the side of a square with its diagonal,
the paradoxes of Zeno of Elea, the Copernican system, the
theory of gravitation, the critique of pure reason, non-euclidean
geometry, the theory of Darwin, the paradoxes of the theory
of aggregates, the experiment of Michelson, and Einstein’s
theory which is based upon it, the discovery of radium and of
the quantum properties of radiation. On each of these
occasions the scientists, dismayed by their results, retreated
and left the fate of human culture to the discretion of
individuals, who were unable to perceive the implications of
these findings and therefore were inadequately equipped to
carry on the struggle. It was at just such a time that Plato
rose, and on similar occasions Hegel and later Nietzsche,
Bergson, and their lesser followers achieved extraordinary
success. They gave to disappointed mankind a narcotic of
vision and phantasy which they substituted for exact thought.
Society prepared to yield to the authority of chosen intellects
and to abandon its critical attitude toward prevailing relation-
ships. I do not deny that on occasion their ideas were worthy
of admiration, yet I cannot refrain from pointed criticism of
their procedure.

6. Rational criticism originated in Greece, but because it
had too radical a form in its early stages, it led to extreme
scepticism. The Greeks were unable to surrender their over-
extensive epistemological ambitions, and therefore -easily
succumbed to a feeling of despair during periods of failure.
The paradoxes of Zeno of Elea are known to have checked the
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development of Greek mathematics. Similarly the discoveries
of Heraclitus and Protagoras, which are correct in principle,
are known to have completely checked belief in a science
based upon experience.

To-day it is difficult to evaluate the social influence of the
sophists, because their activities are known only from the
writings of their admitted enemies. Nevertheless it is certain
that they helped unmask false methods of reasoning, current
in societies supported by tradition and the authority in-
separably connected with it. It is well known that in such
societies, the most diverse absurdities are held to be evident
merely because they have been so regarded for generations.
Sound reason is identified with the cultivation of these
absurdities. Any opposition is held to be a bad error.

Undoubtedly the sophists went too far in their criticisms ;
nevertheless it must be pointed out that the Greek scientists
could not refute their doctrines because they neither possessed
the principles of exact thought nor knew its limits.

Socrates opposed the sophists in the belief that there exists
a sphere of thought independent of our caprice ; however, its
domain was the world of universal, confused, and vague
concepts, i.e. precisely those which even to-day are subject to
individual interpretation. Consequently this belief was
inevitably doomed to defeat.

Lev Shestov emphasized that great truth which was known
to several earlier authors, that the arguments employed by the
platonic Socrates are both cavilling and subjective. Yet in
contrast to the arguments employed by the sophists they are
held to be objective and absolutely true.t

Plato was undoubtedly a creative individual of the highest
rank. But that which has always been regarded as his chief
merit, namely the fact that he avoided arbitrariness and
subjectivism through the use of universal concepts, was also
his greatest error and the source of long-lasting stagnation.

Centuries elapsed before man rediscovered the proper
province of exact reasoning. During this period, from the
famous Plotinus to Hegel and the pragmatists, the platonic
dialectic was the source of the mythology imposed upon
objective science.

Yet it cannot be denied that it was Plato’s disciple, Aristotle,
who took the first step toward constructing a system of the

1 Lev Shestov: Le pouvoir des clefs, translated by B. de Schloezer, Paris,
1928, p. 101 £,
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principles of exact thought. Aristotle’s system was a fragment
and was not free from fundamental errors. It was but the first
step along a long and wearisome path. Unfortunately men have
regarded Aristotle’s work as perfect and for many centuries
did not attempt to go beyond it. Even to-day it is still defended
and passionately adhered to, although it is well known that
its study is a useless requirement. For many centuries learned
theologians imposed upon mankind as valid truths strictly
proved by means of Aristotle’s infallible system, doctrines
which have nothing in common with exact reasoning. Actually
they more or less consciously made the most of the obscurities
and defects of this system.

Nevertheless the postulate of consistency, formulated by
Aristotle as the well-known principle of contradiction
(Principium contradictionis) 1 was a great triumph of rational
thought.

It is possible to try to avoid this principle and to extricate
oneself from the maze of contradictions which result from false
assumptions motivated by utilitarian considerations. However,
no one has had the courage to say that better reasoning exists,
which need not be governed by the principle of consistency.
Furthermore, this principle permits the discovery of errors
in reasoning where lawlessness reigns.

The Russian philosophers of the Bukharin school condemn
Aristotle’s logic because it permitted the fiction of immutable
concepts and supported the existing social order and the
blemish of slavery.? They credit Hegel with having unmasked
the prejudice concerning the immutability of concepts and
with having opened the way to social progress.

This entire doctrine was caused by misunderstandings.

The postulate of consistency created a basis sufficient to
overthrow a social system based upon slavery. The institution
of slavery involves obvious contradictions, although the
attempt is made to conceal them by more or less skilful phrases.
On the one hand slaves are regarded as beings inferior in
principle and essentially different from free men ; but on the
other hand the right to sell free men into slavery is accepted.
Aemilius Paulus abandoned Epirus to his mercenaries and sold
one hundred and fifty thousand free men into slavery. Among

1 Cf. Aristotle: Metaphysica, translated by W. D. Ross, Oxford, 1908,
bk. iv () ch. 3-8, 1005a~1011b.

% Cf. Nikolai Bukharin © Historical Materiahism, authorized translation
from the third Russian edition, New York, 1925, pp. 23, 170.
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those enslaved were keen, sensitive men who were highly
developed mentally and ethically. The moment they were
enslaved they became chattels subject to the unrestricted
orders of their owners, who in many cases ruthlessly and cruelly
took advantage of their rights. The money obtained was
divided among the soldiers. Each soldier obtained no more
than eleven drachmas. Plutarch wrote :

“ Men could only shudder at the issue of a war, where the wealth
of a whole nation thus divided turned to so little advantage and
profit to each particular man.””?

These words of Plutarch are significant. It is seen that where
cultivation of the emotions is not on a sufficiently high plane,
the principle of consistency does not serve as a check.

Considerably before Hegel, the prejudice concerning the
immutability of concepts was overthrown in practice, if not
in theory, by the rationalists of the eighteenth century who
prepared the way for the French Revolution. Undoubtedly the
French Revolution developed from a rationalistic culture
which was based upon exact thought associated with the spirit
of mathematics and disdainful of all thought that was not clear
and precise.

This culture was a phase of the development of the dogmatic
rationalism of the sixteenth and seventeenth centuries which
was based upon the belief that mathematical and natural
methods make possible the discovery of the essence of all
things. This belief resulted in a series of contradictory philo-
sophical systems and the need for a critical attitude.

The strength of the pre-revolutionary philosophers did not
lie in positive constructions, but in criticism based upon the
methods of the exact sciences and extended to limits not reached
in any previous period. The materialists overthrew the myth
concerning the substantiality of the soul. Hume unmasked the
false ambitions of dogmatic rationalism. Voltaire ridiculed
the false pathos of the Middle Ages, the cult of the devil, and
the unbridled licentiousness of the feudal lords. Montesquieu
overthrew the belief in the apriori character of law and morality
by a simple comparison of facts drawn from different times
and different societies. Jean Jacques Rousseau overthrew the
prejudice concerning the intellectual superiority of the

! Plutarch. The Lwes of the Noble Grecians and Romans, translated by
John Dryden, revised by Arthur H. Clough, Modern Library edition, a reprint
of Clough’s edition published in 1864, New York, p. 339.
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privileged classes. The Encyclopadists robbed science of the
mysterious charm of the book of the seven seals.

It is known that Saint Simon, a typical rationalist who
accepted the critical world view of the pre-revolutionary epoch,
was the creator of socialism. The positivist Auguste Comte
who was greatly influenced by Saint Simon was the creator of
sociology. Hegel’s dialectic was not necessary to see the
inconsistency of a social structure which was characterized by
the oppression of the poor classes by the ruling class. The
Aristotelian principle of consistency and cultivation of the
emotions, based upon the doctrine of Christ, was quite sufficient
for this purpose. That Karl Marx, the great defender of the
wronged, was a disciple of Hegel and appealed to Hegel’s
dialectic was the result of a fortuitous concurrence of circum-
stances. Hegel’s dialectic was a minor influence in the works
of Marx and did more harm than good because it produced the
illusion that Marx was concerned with the self-contradictory
idea. Actually Marx was concerned only with the distress of
the working-class and with the creation of a view of the world
which would remove this distress. The dialectic of Marx does
not differ essentially from the constructive methods of the exact
sciences. Marx did not write on the ‘“love thy neighbour ”
principle only because even at that time this principle was an
outworn requisite, which could not restrain bestialized business
men.

The positivistic doctrines of Auguste Comte strongly
influenced nineteenth century scholars and produced a type
of critical investigator who, like Newton, rejected such
questions as : what is this ? and why is it so and not otherwise ?
—because such questions lead to fruitless investigations. This
type of investigator tries rather to extend the bounds of
experience as much as possible and to formulate the laws
governing phenomena. This doctrine, although radically
altered during the course of the years, is maintained to this
day. Thanks to the works of Mach, Poincaré, Einstein, and
many other investigators has been produced the contemporary
naturalistic view of the world, based upon the principle of the
economy of thought formulated by Mach, and the relativity
of the principles of the theoretical sciences. It might be
thought that these doctrines would lead to the victory of the
ideas of tolerance and social justice. Actually this did not

1 Cf. Ernst Mach: The Science of Mechanics, translated by Thomas J.
McCormack, Chicago, 1902, pp. 6, 480—490.
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happen. In this view of the world there remained certain weak
points, against which occurred an anti-rational reaction leading
to the present sad state of affairs. The source of this reaction
should now be sought and definitively eliminated.

7. Hegel was undoubtedly the creator of contemporary
anti-rationalism. His doctrines resulted from misunder-
standings which were caused by a superficial knowledge of
Kant’s philosophy and a completely erroneous conception of
mathematical analysis. Kant contrasted metaphysics, whose
concepts necessarily lead to paradoxes, with mathematics, the
sphere in which precisely defined concepts are employed.
Kant’s doctrine became a permanent acquisition of mankind.
However, a century of work was necessary before it was under-
stood that the primitive concepts of mathematics are as variable
as other primitives and that their force lies only in the fact
that their domain can be fixed by means of a precise symbolism.
Hegel made this weak point in Kant’s doctrine the basis of his
dialectic. Hegel seized upon the fact that the mathematical
analysis of the time depended upon the very confused concept
of infinitely small increments or infinitesimals. He argued that
there are and there are not infinitesimals ; therefore infinitesi-
mals are undoubtedly contradictory objects.

On the other hand it is a fact, Hegel maintains, that mathe-
matical analysis permits the discovery of the laws governing
nature, while a consistent algebra is on the whole quite
unproductive. It clearly follows that mathematical analysis
owes its fruitfulness to the contradictions contained within it.
But if such be the case, the fact that metaphysics leads to
contradiction is not a defect but the guarantee of its creative
power. Let us therefore cease to fear contradiction. Rather
let us be courageous enough to accept its aid. We will then
discover the essence of things which Kant had regarded as
unknowable, namely the creative idea which contradicts itself
at every step.

This view is obviously much more presumptuous than any
view hitherto developed by mankind.

Paradoxes which from the beginnings of the history of
intellectual culture had been regarded as fatal, suddenly became
the source of great optimism and an instrument to be employed
in obtaining knowledge of absolute truth. These doctrines
offered so great a temptation that it can hardly be wondered
that they gained many adherents and are found to-day in
many different forms. I think that the fundamental duty
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of the representatives of true science is to combat this
doctrine.

The style in which Hegel addressed his students clearly
reflected popular mysticism. It might have been thought that
a practical joker had cut parts of sentences out of scientific
works and put them together arbitrarily in order to stupify
and frighten mankind. Because of his great knowledge of
human nature and his great talent for propaganda Hegel knew
how to insert whole paragraphs amidst a mass of nonsense and
pretentious poppycock.

He begins with the idea that to be and not to be is the same
thing, whereupon the following explanation is added :

““If we look more closely we find that a proposition has here
been asserted which, carefully considered, has a movement by
which through its proper nature, it disappears. But in so doing
it does what must be held to constitute its true content, it under-

goes Becoming.” *

When the reader is convinced that he can never fathom the
thoughts of the master and that he can only gather crumbs
which are gratuitously thrown to him, he encounters the
following doctrine :

““ God is known as Spirit, who duplicates Himself for Himself,
but at the same time sublimates this difference in order that in
it He may be in and for Himself. It is the task of the world to
reconcile itself with Spirit.” 2
By this time the reader begins to realize that the master has

disclosed to him the proper goal toward which he should strive
at all cost. Unfortunately he does not know how to do this.
He feels that he lacks courage and has no confidence in his own
powers. The master then addresses him in an entirely new
language, a language which is wholly colloquial, in fact just
such a language as is employed by every cook and provincial
shop-keeper. He says:

... this task is entrusted to the German world.” 2

A new epoch in philosophy began with Hegel and the German
romanticists. It was characterized by the exploitation of the
vagueness of concepts for purposes of the authors, the utiliza-
tion of a conception of the universe in the interests of aristo-
cratic reaction and the conscious use of this conception for

1 G, W, F. Hegel: Science of Logic, translated by W. H. Johnston and

L. Struthers, New York, vol. i, 1929, pp. 102--3.
2 G. W. F. Hegel. Vorlesungen wber die Geschichte der Philosophie, edited

by G. J. P. J. Bolland, Leiden, 1908, Einleitung, p. 85.
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cheap rhetorical effects. Schopenhauer vainly tried to unmask
Hegel’s method. But his voice was drowned by the plaudits
of over-enthusiastic admirers. A phalanx of imitators soon
arose. Hegelians appeared in almost all the countries of
Europe and it is well known that all Polish philosophy during
the first half of the nineteenth century developed under the
influence of Hegel.

The plague of anti-rationalism cast into the world by Hegel
spread to fantastic bounds. At first it was stifled by the
tremendous growth of the mathematical and natural sciences ;
later as a result of the crisis in these forms during the nineteenth
and twentieth centuries, it assumed new forms.

The first of these new forms was Friedrich Nietzsche’s artistic
conception of reality. Soon afterwards Bergson suggested the
re-examination of the paradoxes of Zeno of Elea from which
resulted emphasis upon a new faculty of knowledge called
intuition. Bergson was influenced by the monstrous doctrine
of the pragmatists. At the same time there began to spread in
Germany the ‘‘scientific” philosophy of Husser] which
attempts to create a new scholasticism in the name of the belief
in absolute knowledge.

After the war, Europe was swamped by vast numbers of
irresponsible anti-rationalistic systems which in the main
yielded nothing new but were based upon cheap phrases which
have been known for a long time. These systems helped create
an atmosphere of depression and fear among the representatives
of the exact sciences and had a more or less conscious influence
upon their method of thinking.

On reading the arguments of Bergson, it should be observed
that they are based upon a number of unresolved mathe-
matical problems. While Bergson condemns the mathematical
method and seeks to replace it by a better method he
characterizes the latter with the help of mathematical concepts
which are awkward and colourless.

Bergson relies upon vague and variable concepts as symbols of
acts of a special kind. While these acts cannot be performed,
Bergson perceives their possibility intuitively. Intuition is
not to be identified with that ‘‘ experience which arises from
the immediate contact of the mind with its object, an ex-
perience which is disarticulated and therefore most probably
disfigured ”.1 Intuition is true experience, an experience which

! Henri Bergson: Matter and Memory, translated by Nancy M. Paul and
‘W. Scott Palmer, New York, 1911, p. 239.
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is higher than that which is called human experience. To have
this experience it is necessary to give up certain habits of
thought and even of perceiving and to place oneself at the
turn of human experience. Bergson writes :

‘... there still remains to be reconstituted, with the infinitely
small elements . . . of the real curve, the curve itself. . . . In this
sense the task of the philosopher . . . closely resembles that of
the mathematician who determines a function by starting from
the differential. The final effort of philosophical research is a
true work of integration.” 1

Because mathematics has not satisfied any of our desires,
which in fact cannot even be formulated, it should be thrust
aside. Instead of mathematics a new science which will be
easier and more pleasant will be created. In lieu of struggling
with the difficult problems of the theory of mathematical
functions more attractive operations will be performed which
meet no opposition, because no basis for opposition can be
found. Anyone of a different opinion may be told that he is
lacking in intuition and that he must feel his way intuitively.
After a certain time he will either understand or pretend that
he understands. In this way will be revived the tradition of
the old magi, who held society by dangling before it secret
and esoteric knowledge. Intellectual slavery from which
mankind cannot escape is to be organized on a large scale.

These or similar thoughts must have been present in those
minds which are excessively individualistic and which,
influenced by Bergson, are inclined toward opportunism.
They appeared openly and shamelessly in Anglo-Saxon
countries as pragmatism (William James) and humanism
(F. C. S. Schiller).

Both these doctrines skilfully exploited the positivistic con-
ception of the economy of thought (Ernst Mach) which in
conformity with the views of Bergson, they grotesquely
caricatured.

The principle of the economy of thought 2 cannot be precisely
formulated. In practice it reduces the aim of science to the
construction of a theoretical system of concepts which would
enable us to know the truth, i.e. to adjust ourselves in the real
world as simply as possible. The theory of Copernicus may be
cited as an example. However, actually the theory of Coper-
nicus decided nothing because it can be maintained with equal

! Bergson: lc., pp. 241-2. 2 Ermnst Mach: le.
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right that the earth revolves around the sun and that the sun
revolves around the earth. This latter view follows from a
consideration of the relativity of all motion. Nevertheless the
theory of Copernicus permitted us to describe in simple fashion
the motion of the planets and later led to the Einsteinian
principle of relativity.

Neither can the latter principle be regarded as an absolute
truth, although it permits the construction of a much more
unified cosmological system than the Newtonian system, and
although it discloses phenomena never dreamt of before. As
a whole the system of Einstein is much more complicated than
that of Newton, but it is much more economical in dealing
with the problems which present themselves. It is therefore
seen that naive simple economy is not sought for its own sake,
but as a means for the attainment of knowledge of that which
is before us.

The pragmatists did not take the trouble to think these
matters through. All they said was that if economy is being
discussed, value and therefore utility, and not truth is con-
cerned. There is no concept of truth without the concept of
utility. That which is useful is true. Neither pure thought
nor pure knowledge exists. Always and everywhere the element
of belief and individual want is decisive. Concern with matters
which are not connected with life is fantastic.

The reality of every day is not true reality, writes F. C. S.
Schiller.t True reality is created in accordance with one’s
needs. There may be a certain hesitation in accepting this
theory because the supposition of the reality of the things and
persons surrounding us is regarded as useful. However, if it
is understood that the belief in the ability to create a new
reality is much more useful, no hesitation with regard to
accepting this belief unconditionally will occur.

According to Schiller, Protagoras was the real creator of
humanism. Schiller does not interpret the doctrine of
Protagoras as extreme scepticism but as a new type of
metaphysics.

Schiller treats the difficulties which arise in connection with
the fact of the existence of mathematics. He briefly remarks
that the evidence and objectivity of mathematics is an illusion
which results from familiarity with the postulates of mathe-
matics, the frequently accepted belief in their practical
importance and the fact that mathematics does not consist

L Cf. F C. S. Schiller: Studies in Humanism, London, 1907, pp. 220~1.
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of a series of isolated truths but its truths form a unified and
coherent system.

Schiller does not mention the fact that such truths, as twice
two is four, cannot be denied without considering the system
of which they are a part, although in many cases it might be
to our advantage to do so. Certainly everyone would deny
that there is an advantage in accepting a system of arithmetic
where 2 + 2 = 5 if he has to pay someone else, but where
2 + 2 = 3 if he is to be paid.

Contradiction would indeed follow from this, but in many
cases contradiction has proved to be very useful and often can-
not be distinguished from reasoning which is based on feeling
and emotion. Consequently if on the grounds of utility,
mathematics is generally regarded as an objective science,
perhaps by the former term is meant a utility which has nothing
in common with individual criteria, a metaphysical utility whick
is inaccessible to ordinary intuition. But utility in this sense, in
so far as it is not simply a synonym of what Schiller calls truth,
is a mere phrase.

Schiller does not refrain from employing underhand demagogic
tricks. He fails to consider arguments in which rational
criticism is employed and deals only with the naive idealism of
certain English metaphysicians. Consequently his arguments
seem ultra-intelligent and effective. It is not strange then that
the superficial reader, especially one who is seeking a quick and
easy solution of the problem of knowledge does not see this.

The influence of the doctrines of Schiller and James has been
much greater than is apparent. I quote from them but rarely,
although their ideas live on in the works of many post-War
German metaphysicians and adversely influence the minds of
exact investigators the world over.

It seems to me that it is a waste of time to argue with them.
I think that it is sufficient to emphasize the nonsense involved
in their doctrines. It is much more important to confront them
with a consistent world view which has been developed by the
use of a critical and rationalistic method and which involves no
metaphysical suppositions. The first step toward the attainment
of this goal must be a consideration of the foundations of logic
and of the question whether it is really possible to construct a
system of logic which involves no metaphysical suppositions.

8. The doctrines of the phenomenological school, which was
founded by the late Edmund Husserl, are representative of a
certain type of anti-rationalism.



18 THE LIMITS OF SCIENCE

Husserl did not oppose science but desired to supplement it
by a scientific philosophy based upon the conviction that
absolute knowledge is possible.

I quote here the criticism of the doctrines of this school which
I made in the introduction to a previous essay.!

“ The fact that the phenomenologists themselves repeatedly
show the absurdity of their belief in the possibility of absolute
knowledge spurs them on and forces them to unparalleled efforts,
which prevent the development of their most characteristic views
and prevents their progress beyond the sphere of pleasing con-
ventionalism. Nevertheless the sin of verbalism, sanctioned by
the deplorable ‘ pure grammar * of Husserl shakes this school to
its foundations. Not only do the phenomenologists fail to attain
the heights of which they have dreamt but they are brought back
to the muddy dells of reality. .. .

“ Pure grammar is the means used by the naturalists and the
naturalistically orientated epistemologists to prevent a critique
of the bounds of everyday language. These investigators gave
careful consideration to the meaning of philosophical questions
which are apparently innocent and natural. Thus they initiated
the exact investigations later conducted by the logicians, and in
particular by the famous Bertrand Russell. Among other things
they were concerned with such eternal questions as : What is
truth ? What is matter ? What is man? What is the good ?
What is a work of art ? and so forth.

“ Those scientists who had failed to consider these questions,
lost contact with reality and entered the sphere of fiction. The
chief problem of the phenomenologists was to be the rebuilding
of this contact.”

It was to be re-established by an investigation of the real con-
tent of concepts, which does not differ essentially from that of
which Plato dreamt. Different methods were applied but they
were just as arbitrary and confused. Husserl began with a cavil-
ling criticism of the nominalism of Hume? and pointed out that
Hume did not show how it happens that certain ideas are
produced by certain words. This objection is obviously childish
because much more complicated phenomena are involved here
than the phenomenon of gravitation, for example, about whose
essence we neither know, nor hope to know, anything. Accepting
independent concepts to establish meanings is very much like

1 T. V. M., pp 48-9.

* Cf. Edmund Husserl: Logisck Untersuchungen, Bd. u, Teil 1, Halle,
1913, pp. 184 £,
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positing that the weight of matter is located at the centre of the
world in order to establish the law of gravitation.

The positive work of Husserl explained nothing because of
necessity it was based upon arbitrary and confused assumptions.
His works are filled with such assumptions.

It is clear, for example, that for Husserl the word something
has a simple meaning.

“ The experience of an idea which is consummated in under-
standing the word is undoubtedly a construction, but its meaning
is without a trace of being compounded.” 1

This distinction between the meaning of the word and
understanding it is the result of verbalism and arbitrariness,
since it is impossible to discover anything other than the ideas
which present themselves when the use of the word some-
thing is being considered. These ideas might be called the
meaning of this word. The phenomenologists maintain that only
by the use of their hypotheses can the relativism which makes
science impossible be avoided. Actually it is the phenomeno-
logical method which makes science impossible because it makes
science depend upon some special faculty which has nothing
in common with either reasoning or experience and which can
not be controlled. If the method advocated by the phenomeno-
logists were employed, sooner or later esoteric knowledge of the
type found in the Ancient East and the intellectual and material
slavery associated with it would recur. The pre-War essay of
Reinach,? a disciple of Husserl, plainly manifested this
tendency.

The Bolshevik revolution and its unexpected success destroyed
the social illusions of the phenomenologists and transformed
them into the obvious anti-rationalism of Hitlerian insanity.

9. The negative aspect of both positivism and materialism is
that on the basis of these doctrines it is impossible to fix even
approximately the boundaries of the exact sciences. In par-
ticular it is difficult to define the special status of mathematics.
The old Kantian argument which depended upon the thesis that
mathematical truths are certain while those of nature are
approximate was until recently universally accepted. Even
Poincaré took it seriously. The voices of those naturalists who

1 Husserl : l.c., p- 296. )

3 Cf. Adolf Reinach: ¢ Die aprionischen Grundlagen des burgerlichen
Rechtes,” Jahrbuck fur Philosophie und phinomenolo ische Forschung, Bd. i,
teil ii. 1913.
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observed that arithmetic is not to consider the changing world
(Le Dantec), had no great influence. For the most part atten-
tion was focussed on the fact that the world of geometry is an
ideal world and differs fundamentally from the sensual world.
The attempts of John Stuart Mill to regard points, lines, and
planes as hypothetical objects proved to be unfortunate. This
was also true with regard to Mach’s attempt to discover
correspondents of these constructions in the sensual world. It
is clear that geometry does not depend upon inquiries of this
kind and those who have advocated apriorism based their views
upon this fact.

The reduction of arithmetic and geometry to the principles
of formal logic, which was attained by Whitehead and Russell
at the beginning of the century, was the crucial moment in the
attempt to fix the boundaries of the exact sciences.

If the attempt to construct a great system of logic from which
all the apriori sciences could be derived were successful,
completely new perspectives would be opened up to science and
an adequate basis for a critical and rationalistic method would
be attained. A system of logic which permits mathematical
theorems to be proved without the aid of the intuition of the
creative individual by mechanical operations, which can be
performed by any one who can understand ordinary arithmetic,
was sought. The attainment of this ideal would have been so
great a triumph for science that in comparison with it the
attempts of the irrationalists would seem like child’s play. It
was to be expected that the representatives of radical criticism
would have accepted the work of Whitehead and Russell with
enthusiasm. However, the exact opposite actually occurred.

Peano’s earlier attempt to formulate the apparatus of
concepts and axioms of mathematics had already evoked a
violent reaction on the part of Poincaré. Actually he both
feared to break with the positivistic tradition and mistrusted
the reaction of an extremely critical mind toward a work which
had many weak points. Peano’s apparatus of concepts was still
far from perfect and it was possible to ask whether it would not
loseits force the moment it was desired tomechanize it completely.

The second crucial moment in the development of this line of
thought was the discovery of the paradoxes which follow from
Cantor’s theory of aggregates. These paradoxes were involved
in the foundations of the new logic. Russell succeeded in re-
moving these paradoxes by means of his famous theory of
logical types but he was able to do so only by introducing certain
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metaphysical suppositions which a critical mind could not
accept.

In the first place it was necessary to presuppose the existence
of individuals which could not be further characterized. The
existence of these individuals was an integral part of the system
but no example of them could be given. In other words the
domain of logic became an abstract world similar to the
platonic world. The primitive concepts of logic became
platonic ideas because they had to be explicitly distinguished
from the signs by which they were introduced. Finally it was
necessary to accept an additional hypothesis which assured the
existence of infinitely many individuals. Otherwise finitism
could not be avoided. On the other hand, if this hypothesis were
accepted the existence of objects not definable in terms of the
concepts of the system would have to be accepted.

In short it must be admitted that the system of Whitehead
and Russell is such that either it does not contain the class of
natural numbers or it contains a class of real numbers which
contains as a sub-class numbers not definable in terms of the
concepts of the system. The latter consequence which at the
same time leads to the affirmation of the existence of the actual
infinite evoked a particularly vehement reaction on the part of
Poincaré. Poincaré was a decided nominalist and could not
become reconciled to the existence of indefinable objects, much
less to the existence of infinite classes of such objects. Poincaré
regarded his belief as the fundamental postulate of a nominal-
istic logic. He formulated this postulate as follows : ‘‘ Consider
only objects which can be defined in a finite number of words.”’?

Poincaré thought that by proposing this postulate he
invalidated the entire construction of Whitehead and Russell.
Most of the adherents of the new logic were of the same opinion.
This fact clearly shows the extent to which science depends
upon philosophic views.

Mathematicians were divided into two groups. The members
of the one group called themselves empiricists and the influence
of Poincaré upon them is clearly observable. I think that they
should be called nominalists. The nominalists rejected syste-
matic logic, were satisfied with mathematical, intuition, and con-
fined themselves to a verbal characterization of the intuitive
method (Brouwer). This method differs from that employed in
constructing a precisely defined system. The idealists, who from
the point of view of the medieval tradition should perhaps be

1 Henr1 Poincaré : Derniéres Pensées, Paris, 1913, p. 138.
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called realists, constituted the second group. The members of this
group, relying upon Cantor’s theory, failed to mention the
system of Whitehead and Russell and restricted themselves to
intuitive attempts to demonstrate the consistency of the axioms
of mathematics (Hilbert).

With the mathematicians so divided in their opinion the
expected rebirth of the exact sciences on the basis of a great
system of logic which fixes their boundaries failed for the
moment.

But the game was not finished.

Further investigations showed that the metaphysical supposi-
tions of the system of Whitehead and Russell can be eliminated
by basing the construction of a consistent system of logic upon
a pure theory of types and upon the science of expressions,
formulated symbolically, which I have called semantics. In other
words the additional suppositions made by Whitehead and
Russell are unnecessary. :

Thus a new system of logic which satisfies the nominalistic
postulate of Poincaré and which is compatible with the spirit
of critical rationalism was developed. In spite of the extensive
restrictions of this system it is no poorer than the system of
mathematics which is based upon the axioms of Zermelo.
Consequently it is adequate to develop all the material which
is desired by most mathematicians.

When this new system is completely worked out, we will be
able to say, that we have at our disposal an infallible apparatus
which sets off exact thought from other forms of thought.

The old dream of the logicians concerning a consistent logical
apparatus will no longer be a mirage. Just as now we have
calculating machines, in time we will have the apparatus which
is necessary to derive the general theorems of semantics.

However, I think that there is no reason to wait until this
ideal has been achieved.

The very confirmation of such a possibility offers weapons
which are adequate to combat the attacks of the anti-ration-
alists and to free us from any possibility of attack by them.

A science which is based upon an infallible system of logic and
which involves no irrational assumptions will be able to fulfil
the mission toward society which Professor Natanson requires
of it.2

Such a science will not fall into error and will not be brought
to a standstill as a result of its own illusions.

1Cf1.2.
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Such a science will be able to say to the nations :

Construct new concepts if nothing else, but guard against
operating arbitrarily with them. Remember that otherwise
chaos and error will result, and that it is possible to avoid them
only with the help of a complete system based upon the
principle of consistency.

Have the courage to search the obscure hidden corners of
your system and do not be ashamed to admit that you were
following the wrong path if from your assumptions you derive
conclusions which contradict these assumptions. Do not
believe that exact analysis necessarily leads to inertia and the
depreciation of the imagination and emotional life.

The fact that recently a nation with a great cultural tradition
has been mastered by brutal, ignorant individuals shows only
that this nation was permeated by an irrational metaphysics.

History teaches that ultimately victory has always been the
destiny of societies who employ the principles of exact reasoning.
Exact analysis depraves only weak and inept individuals who
find it too difficult for them. It should not be feared by young
and healthy societies. They will always find sufficient strength
to act upon thoughts which were obtained over a period of
years by means of exact analysis and to work out a well rounded
fruitful life on the basis of these thoughts.



CHAPTER 11
THE LIMITS OF SOUND REASON

1. The conclusions obtained by means of sound reason must
be distinguished from the popular view of the world. The
popular view of the world or what is called ** common sense "
embraces ““ the things which seem obvious and inevitable . . .
in a given society "’.1 The popular view of the world is a definite
metaphysical system whose principles cannot be precisely
formulated but which work quite successfully through the
operation of habits. It is well known that the popular view of
the world is always associated with escapism and is a synonym
of banality and mediocrity. Crime and cruelty which seem to-
be necessary ingredients of the world are its inseparable
companions. The fight against this metaphysics is difficult and
dangerous. Its power of suggestion is so great that the only
alternative to it seems to be a break with rational thought and
reliance upon emotion and will, to decide everything.

Nevertheless history shows that even a serious struggle with
dominant types of social relations, carried on in the name of
irrational catch-words, does not involve a complete abandon-
ment of sound reason. An individual may be ruled by a great
passion and dominated by the expectation of a miracle to solve
his problems; but it does not follow from this that when
crossing the street he is to disregard traffic or that if there
isno fuel, a motor will not run. These are indeed common-places
and it may seem a waste of time to be concerned with them ;
however that may be, the facts to which they point form the
basis of all man’s intellectual creativity.

Sound reason functions smoothly in accordance with fixed
rules, provided that men remain in familiar spheres and conduct
themselves in accordance with ideas sufficiently well
established to enable them to resolve their problems. Under
these circumstances animals as well as men behave in accord-
ance with certain mental habits which are generated independ-
ently of their will. But if an individual finds himself in a novel
situation to which his conceptual apparatus is not obviously
applicable, serious difficulties arise. Logic has therefore two

19;4A.1 (}52 Heath, “ Reflection and Common Sense,” The Philosopher, vol. xii,

24



THE LIMITS OF SOUND REASON 25

fundamental problems. The province in which the criteria of
sound reason function in accordance with rules must be clearly
distinguished, and systematic methods for avoiding the
confusion of these criteria with thought-patterns dictated by
habit must be indicated. These problems are much more
difficult than they seem at first sight. There are no absolute
criteria ; there is no basis for maintaining that what is to-day
regarded asa manifest truth may not some day become doubtful.

Human thought does not develop continuously and it is not
possible to remain content with the piecemeal addition of new
truths to old ones. Such a piecemeal accretion can continue
only until an intellectual revolution takes place, with a
consequent inversion of values. Thus by sound reason is to be
understood the method for attaining truths which are not
subject to intellectual revolution. While it is certain that there
are such truths, they are primitive and banal. It is hard to
suppose that they may become the basis for the construction of
a conceptual apparatus, by means of which the laws of the
development of science can be stated in precise formuli.
Nevertheless it will be seen later that this is possible. But to
solve this problem a long series of very tedious investigations
must be conducted and many difficult problems connected with
the individual sciences must be solved. Not until then will the
technique necessary to overcome the bad habits of common
sense be obtained. This task must begin with a critique directed
against every-day language which, in effect, embodies the
common sense dominant during a given epoch. Criticism of
scientific language will be undertaken later and the founda-
tions of mathematics, the most primitive and at the same time
most mystical of sciences, will be examined. The history of the
struggle of sound reason will have to be investigated together
with the metaphysical myths encroaching upon its sphere. The
task of rebuilding the foundations of mathematics and removing
its metaphysical suppositions must be undertaken to convince
ourselves that this impressive intellectual structure is the
product of a procedure which is as simple and obvious as that of
systematically laying brick on brick and which is involved in
man’s progress from the construction of wooden sheds to the
construction of skyscrapers and stratospheric balloons. It will
be shown that all else is but ornamentation and would even be
amusing were it not regarded as the essential creative power and
did it not conceal the fundamental mechanism of the science.
It will be ascertained that in other domains as well, a similar
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fight against the misconstruction of this ornamentation and its
restraining influence must be carried on before systematic
construction work can begin.

The attempts of true science may be defined by means of two
terms : criticism and construction. It has been customary to
employ the terms analysis and synthesis, but because they have
for centuries been connected with metaphysical myths their use
involves a whole series of misunderstandings. The term
synthesis is particularly dangerous because it has frequently
been misused by the anti-rationalists. According to them
synthesis does not denote a well-built structure but is a hastily
put together scaffolding whose shaky walls are effectively
hidden by paint. Neither does the term analysés as used by the
philosophers have a precise meaning. It does not signify
incisive criticism directed toward reaching the heart of the
problem, since such criticism must be accompanied by con-
struction. On the other hand, since it is necessary to rely upon
something, if it is not recognized that there can be no
permanent basis for opinions, other than the sort of reflection
required for constructing a shed or a swallow’s nest, our
judgments will inevitably be based upon some prejudice. All
this critical work will then have been in vain.

The dangers connected with superficial criticism will first be
considered.

2. The critique of customs instituted by the sophists was
radical and thorough, but because it was not accompanied by a
constructive effort it was fruitless and pernicious. It will be seen
later on how the results of this critique have been exploited.
The reaction in antiquity to the activity of the sophists was
relatively moderate and served to establish firmly the existing
state of things. I am referring to the platonic dialectic. Plato
was strongly influenced by Socrates but from his writings no
clear opinion can be formed about the latter. In any case it is
certain that Socrates was the first philosopher to make use of
the method of sound reason; this constitutes his greatness.
Socrates recognized that all thought is of the type employed in
daily life and asserted emphatically that truth may be attained
by the common as well as the educated man. This insight had
the mark of genius although in its practical application it was
warped by the confusion of sound reason with common sense.—
In addition to his emphasis upon sound reason, Socrates enter-
tained the conception of the perfect good. This conception is
irrational and cannot be reconciled with sound reason. Men
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recognize almost intuitively the difference between good and
bad because they have been taught to make such distinctions
since childhood ; nevertheless such evaluations are superficial.
It is not clear what is to be understood by the perfect good and
attempts to define this concept have failed.

It was the error of Socrates that he attempted to support the
irrational idea of the good by the criteria of sound reason. Lev
Shestov, in writing about Socrates made the following state-
ments :

““ The problem of Socrates involved creating something from
nothing and getting something from nothing.’" 1

“If one can speak in this way Socrates drinks his good as
ordinary men drink water. He apprehends it with the eyes of the
intellect, he grasps it with the hands of spirit. Just as things of
the external world have a real existence for us, so the good has
a real existence for Socrates.” 2

A more forceful account of the irrational elements involved
in Socrates’ thought can hardly be imagined. His attempt to
establish his ideas by means of sound reason appears to be more
dangerous and strange, the more convinced we become of
their irrational character. It is readily recognizable that such
an attempt will ultimately be disastrous to the operation of
sound reason since the criteria of sound reason will be identified
with those of common sense.

The way in which this confusion of concepts occurred can be
shown by an analysis of Plato’s dialogues.

Sound reason can operate in the sphere of crude and primitive
definitions. These definitions are adequate only so long as we
confine ourselves to familiar every-day phenomena. Failure to
recognize this fact produces the illusion that every-day language
is a perfect instrument which can be made to function smoothly
in accordance with fixed rules once its use has been learned.
The reverse is in fact the case. If we leave the sphere of the
familiar events of daily life, difficulties are encountered with
which the criteria of every-day language are unable to cope.
Plato showed accurately how this happens. He begins with the
notion that the concept of the good, of beauty or of love is
simple and noble and it is necessary to reflect but a little in
order to become convinced of this. Gradually this naive view is
replaced by a feeling of doubt and uncertainty which arises

1 Lev Shestov: Le pouvorr des clefs, translated by B. de Schloezer, Paris,

1928, p. 8.
2 Shestov: le., p. 9.
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because of the d1a1ect1ca1 subterfuges to which the honest
Socrates must resort in order to arrive at the desired result. It
seems that the soul cannot be a harmony because the good of
the soul would then be a harmony of harmonies!; but this is
impossible. However, the suggestion is made that perhaps the
harmony is better at one time than at another so that in the
former case the soul itself is more virtuous. Whether or not
this is the case, it is clear that these considerations involve
uncertainty and confusion. The soul is discussed as if it were
a fixed object although it is not clear what the nature of the
soul is.

A child thinks of the human spirit as something like
a breath which issues from the body. Although he may forget
this naive idea he will retain the general conception of something
called the soul. Plato’s Socrates speaks of the soul as if he were
speaking of an object in every-day use, yet no one of his hearers
considers that perhaps the term sox! denotes absolutely no
object. Those participating in the discussion readily agree that
the soul cannot be compound, because its component parts can-
not be specified. Apparently they do not realize how such an
admission leads to a proof of the immortality of the soul. If
something is not compound it could neither be created nor
could it cease to exist. Indeed if it is difficult to imagine how
something which is not compound can be created, it is even more
difficult to imagine how something which is compound can have
a beginning in time. In particular it is not easy to see how a hen
comes from an egg, but Plato ignores such questions as trivial.

Plato’s arguments greatly influenced the development of
human thought. It is hard to discover why. Undoubtedly a
proof of the immortality of the soul was very desirable from the
point of view of religion; on the other hand, the thesis that the
soul is uncreated is obviously inconsistent with religious beliefs.

The fact that all these matters were discussed in every-day
language is very interesting. The product of the struggle for
existence, a crude conception of creation, began to be regarded
as absolute knowledge which goes beyond the bounds of the
human imagination. As a result of the disconcerting paradoxes
of the sophists and the ensuing despair of and disbelief in
our ability to discover a firm foundation for beliefs, the fiction
of pathetic and perfect knowledge was produced. It was
supposed that this knowledge unravels-the mystery of existence.

1 Plato: ‘“Phaedo” 77-8, 91-3, The Dialogues of Plato, translated by
Benjamin Jowett, 3rd ed., New York, 1892, vol. il
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At the same time there developed an aversion to thorough
criticism as an instrument of Satan which leads to dangerous
consequences.

To this day there are many naive imitators of the platonic
Socrates who ask simple questions in assured tones in order
to force their world view upon those participating in the dis-
cussion. I am certain that Socrates was not so devious in his
methods. Nevertheless I think that Shestov was right in
regarding Socrates’ motto: “I know only that I know
nothing >’ as a mask hiding arrogant pride.!

Socrates’ fundamental error had a fateful influence through-
out the ages of history through Plato’s pupil, Aristotle. The
illogical character of the platonic dialectic was too striking for
any one to be able to persuade himself that it conformed to the
principles of sound reason. A systematic basis for perpetuating
the confusions between the principles of sound reason and those
of common sense was supplied by Aristotle. Nevertheless his
achievements are noteworthy. His greatness lies in the fact
that he formulated the fundamental principle of sound reason,
namely the principle of contradiction. Aristotle recognized the
importance of his discovery, calling this principle *“ the most
indisputable of all principles”.2 It can be formulated in
various ways. The present discussion will consider only the
following formulation :

Two propositions, one of which is the contradictory of the other,
cannot both be true at the same time.

It should be noted that in spite of its simplicity and triviality;
this principle is valid only under certain conditions. It is valid
only if it is invoked in the consideration of material to which
our concepts are applicable.

““To every definite question as to whether an object has this
characteristic or that, we must respond with a yes or a no. As to
that there can be no doubt whatever. But how are we to answer
when an object is undergoing a change, when it is in the act of
losing a given characteristic or is only in course of acquiring it ?
A definite answer should, of course, be the rule in these cases
likewise. But the answer will not be a definite one unless it is

couched in accordance with the formula ‘ Yes is no, and no is

yes’;...” 3

1 Shestov . p. 230.

2 Anstotle * Metaphyszca translated by W D. Ross, Oxford, 1908, bk. iv
(F) ch 4, 10084, 1. 4.

* G. Plekhanov: Fundamental Problems of Marxism, edited by
D. Ryazanov, London, 1929, p. 114.
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These words characterize precisely the situation. A determinate
character is ascribed to a changing object. It is not said for
example that such an object is both good and not good, both
red and not red, both great and not great. Answers to definite
questions must be completely definite. It is admitted that in
such cases change is concerned. On the other hand the answer
is too general to be satisfactory and it cannot be taken, as the
partisans of the Marxian dialectic suppose, as the basis for
precise scientific investigations. In the exact sciences the
concept of a fixed object is supplemented by the concept of an
object in phase so that the object may be good in one of its
phases and bad in another. In this way the principle of
contradiction is maintained. It is clear, however, that to achieve
this, tedious and prolonged constructive work is necessary.
Consequently the principle of contradiction when applied to
any and all problems and investigated in every-day language
must be regarded as false.

This state of affairs does not diminish the merit of Aristotle.
The moment it is recognized that there is no exact science
without the principle of contradiction and that all attempts to
go beyond it are either only apparent denials of it (Marxian
dialectic) or sterile anti-rationalism (Hegel, Bergson, etc.) the
greatness of Aristotle’s discovery must be acknowledged.
Just because the principle of contradiction does not always
function in accordance with the prescriptions of common sense,
it serves as an especially powerful means for distinguishing
common sense from sound reason. However, it should not be
thought that reasoning in conformity with the principle of
contradiction never violates the criteria of sound reason. The
history of science has shown that the principle of contradiction
may lead to a barren formalism, which without involving us in
asserting falsehoods can give a distorted view of creative activity
in science. This matter will be considered in detail later on.

The too general formulation of the principle of contradiction
by Aristotle led to an erroneous conception of its function. In
consequence the discovery of the actual role of this principle in
sound reason required a long period of great intellectual effort.

These issues were obscured by Aristotle’s scientific activity
because of his naive trust in common sense and his attachment
to the existing state of affairs which is evident, for example, in
his acceptance of slavery as natural.?

1 Anstotle: Politics, translated by Benjamin Jowett, Oxford, 1908,
book i, chs. 3-7, pp. 30-8.
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R. D. Carmichael says:

‘“ Aristotle was almost entirely concerned with establishing
what has been conceived already or of refuting error, but not
with solving the problem of the discovery of truth... He thinks
of confirming truth rather than of finding it.” 1

To attain this objective only a powerful dialectical-rhetorical
apparatus for silencing the most skilled opponent was necessary.
Aristotle’s theory of the syllogism was such an instrument. This
mistaken and thoroughly sterile doctrine was nevertheless a
great discovery ; it was the first attempt to mechanize reasoning
and was the first example of a system of formal logic. However,
it involved an unprecedented growth of verbal metaphysics
which still flourishes and hampers the development of science.

Professor Tadeusz Sinko emphasized the dialectal-rhetorical
character of Aristotle’s logical works in his remarkable treatise
on Greek literature.?

Sinko comments as follows on the Categoriae :

“But who knows whether Trendelenburg (De Aristotelis
Categorizs, Berlin, 1833) did not understand the matter more
accurately when he tried to show that Aristotle’s categories
depended simply upon distinguishing the different parts of
speech (nouns, verbs, conjunctions, and others).”

He has the following to say on the Topica :

“ The eight books of the Topica survey different well-worn
helps useful in disputation on proposed themes and the evaluation
of probable assertions.”

Finally Sinko says :
“ The Sophisticis Elenchis which recapitulates the Topica,

shows at length how the logic of the Organon mainly serves the
needs of rhetoric.”

Even in the famous Analytica a verbalism which leads to
fundamental errors is clearly marked. Aristotle uniformly
neglected the fact that uncritical acceptance of every-day
language must lead to contradiction.

By admitting all the expressions in common use as equally
legitimate, Aristotle was made powerless to cope with the
paradoxes of the sophists and was condemned to evasions and
subterfuges. It is scarcely possible to speak of having entered

1 R. D. Carmichael . The Logic of Discovery, Chicago, 1930, p. 6.
3 Tadeusz Sinko‘ Literature grecka (Greek Literature), tom. 1, cz¢d¢ 2,
Krakéw, 1932
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the sphere of precise knowledge if only such propositions as :
1t 1s good, it is not not-good,* etc., are considered, for their mean-
ing even at first glance is quite confused. As has been pointed
out, in such circumstances Aristotle could be certain of victory
in debate 2 but such success does not amount to a solution of
the problem of consistent thinking.

In short the theory of the syllogism in which but a few mis-
leading phrases were employed, was of no value in investigating
vital problems. Moreover it included a false principle of infer-
ence, 1.e. the principle of the conversion of universal categorical
propositions.?

According to this principle, from the premise

All devils are wrongdoers,

follows
Some wrongdoers are devils.

This premise is unquestionably true since by definition the
devil is a wrongdoer. On the other hand this conclusion
involves the affirmation of the existence of devils It can
therefore be supposed that the existence of devils can be proved.
But in similar fashion it would be possible to prove the existence
of whatever was desired. Even the existence of square circles,
glass mountains, and invisible wishing caps could, for example,
be proved.

Some logicians attempt to defend this obvious error by
maintaining that Aristotle did not allow for the possible
existence of null concepts.# But this is precisely the difficulty
of verbal philosophy. Null concepts cannot be neglected
because it is never known in advance whether or not a given
expression denotes such a concept. For every given case it
must be shown that the concept is not null. A completed logic
is necessary for this task if it is not explicitly assumed that a
non-null concept is being employed. But the acceptance of such
an assumption involves a fundamental reformation of syllogistic
theory. Once the assumption of existence is explicitly made,
verbalism is taken at its face value and the illusion that verbal
logic is fruitful disappears once and for all.

Consequently the theory of the syllogism does not satisfy the

! Anistotle :  Analytica Priora, translated by A. J. Jenkinson, Oxford, 1928,
bk. 1, ch. 48, 51a.
2 Aristotle l.c., bk. 1, ch. 19, 68a
$ Aristotle : l.c., bk. i, ch. 2, 25a.
9; 5]an Séeszyﬁski: Teorya dowodu (The Theory of Proof), tom i, Krakéw,
1925, p. 40.
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requirements for a purely formal system, namely that it should
be an aid in solving interesting problems.

3. The history of syllogistic theory shows that even from a
purely formal point of view the doctrine was never more than
trivial. It therefore gave rise to the conviction that logic is
unproductive.

Nevertheless Aristotle’s spirit continued to flourish among
the verbal metaphysicians. They are incapable of evaluating
the conceptual apparatus of the exact sciences and satisfy their
desire for a lasting foundation which will strengthen their
authority by postulating the existence of etemal concepts
which are concealed behind the expressions of every-day
language. They regard every-day language as a perfect system
which carries within itself the seeds of absolute truth.

However, just the reverse is in fact the case. Every-day
language is not a consistently worked out system and never will
be one. Professor Delacroix justly called it ““a mixture of
conventions and logic, of arbitrariness and reason .1

This naive confidence in every-day language is one of the
most curious and interesting of human ostentations. It reflects
not only man’s virtues but also his weaknesses with all their
erratic manifestations.

Professor Rozwadowski, the great linguist, writes :

1 said that language and languages are masterpieces of human
culture ; undoubtedly, but in them there are also masterpieces
of almost grotesque monstrosity. The situation here is on a par
with such phenomena of human culture as the compulsory
mutilation of the feet in China, compulsory tattooing of the skin
for decoration, compulsory fantastic hairdress, and the deforma-
tion of the skull in strange ways by different human races.” 2

All these problems are completely ignored by the verbal
metaphysicians. They stubbornly believe that if they use every-
day language with sufficient accuracy—and it should be
recognized that they identify accuracy with pedantry—they
will be able to obtain entirely univocal definitions. In this way
a bombastic and dull style is cultivated which produces the
illusion of precision. Viewed objectively the outcome is trivial
and futile.

An example of such an unfortunate method is the university

! Henn Delacroix: Le langage et la pensée, Deusudme Edition, revué et
complétée, Paris, 1930, p. 10

t J. Rozwadowski: O zjawiskach rozwoju jezyka (On the Phenomena of the
Development of Language), p. 9.

G
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textbook of logic by Professor Kotarbinski. I cite the following
paragraphs :

“In the mouth of Peter, for example ‘I’ denotes Peter, while
in the mouth of John, John is denoted. In the mouth of someone
in Warsaw who utters the proposition ‘Stanislaus lives here’
the word  here ’ frequently means that the one who lives ‘ here’,
lives in Warsaw, and conversely, etc.” 1

“ Similarly ‘I understand a given name clearly * means that
I am conscious of the properties which constitute its connotation.
If therefore 1 always observe their presence in a given object, I
will recognize it as the designate of this name, and conversely I
determine that a given object is not the designate of this name
only if I always observe that it lacks these properties.” 2

The author has obviously striven for accuracy, but in effect
he has only substituted involved and clumsy expressions for
simple and trivial ones, thus creating the illusion that he is
employing univocal language.

Professor Delacroix says :

“ Words have many meanings. We always have more ideas
than words and more words than ideas. Even in the language of
a child, words describe complex situations and this complexity
increases with the enlargement of experience.” 3

The point involved is that even in the case of the simple
names mentioned by Kotarbinski, horse, sparrow, five-grosz
piece, cigarette, for example, there is no precisely determined
field of application so that no one understands them in such
a way that he can always unambiguously decide what the
designate of a given name is.

That such names as five-grosz piece and cigaretie are vague is
evident, whenever a coin with a partially effaced inscription or
a cylindrical capsule filled with tobacco of an ungraded variety
is examined. The names of species of animals also seem to be
vague as soon as an attempt is made to apply them to a more or
less developed foetus or to fossil remains. If it is admitted that
every man must have a mother and that every such mother
must be a human being, it has apparently been proved that men
have always existed, although this conclusion contradicts the

! Tadeusz Kotarbinski: Elementy teorji poznania, logiki formalnes i
metodologyt nauk (Elements of the Theory of Knowledge, Formal Logic and the
Methodology of the Sciences), Lwéw, 1929, p. 24.

3 Kotarbifiski: le¢., p. 27.

8 Delacroix: lc., p. 216.
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experimentally supported conclusions of the geologist. Conse-
quently if it is desired that a determinate meaning be assigned
to the word ma#, it must be assumed either that the first
woman sprang from the rib of a man or that the mother of some
man may have been a monkey.

Such questions involve us in such instructive paradoxes as
those of Eubulides concerning the bald man and the heap of
sand, or the paradox of Zeno of Elea about a rustle.

When one grain of sand is dropped it does not make a rustle.
If no rustle is produced when a fixed number of grains is dropped,
apparently no noise will be produced by increasing the number
of grains by one. Consequently on the basis of the principle of
complete induction a bushel of millet cannot make a rustle.?

It should be observed that even the simplest word at the very
beginning of the dictionary has no precisely determined
meaning. This word, as is well known, is the letter 4. It is
possible to distinguish the letter 4 when we restrict ourselves
to a selected group of signs not specified in greater detail. On
the other hand, it is easy to give examples of the letter « con-
cerning which it might be impossible to decide whether they are
in fact replicas of the letter 4 or of the letter 4 or o. This in-
determinateness carries with it no serious practical consequences
because it is always possible to disregard writing that is not
clear. But this does not alter the fact that it is impossible to
speak truly of the precise extension of a word.

The discussions of Aristotle concerning the arguments of the
sophists seem to be of secondary importance. It is therefore a
disquieting sign that there are still professional philosophers
who take the Aristotelian method of definition pey genus et
differentiam specificam ? seriously. But to-day even a moderately
intelligent man recognizes that there are no words which have
an absolute priority over all the others and that defined words
as well as those in terms of which they are defined therefore
have the same status. Both types of words were acquired in
childhood as a consequence of habits formed in connection with
observed objects, or simply as meaningless sounds to which we
have finally become accustomed. But these are banal truths
already known by Roscellinus, the Canon of Besangon, who lived
during the Middle Ages when the halls of the royal palace were

1 Cf, X. Pawlicki: Hislorja filozofji greckiej (The History of Gyeek Philo-
sophy), Krakéw, 1890, p. 267.

$ Cf. Aristotle: Metaphysica, translated by W. D. Ross, Oxford, 1908,
book vii (2), ch. 12, 1037.
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lighted by pine torches and when the mode of travel was by
imaginary magic carpets rather than aeroplanes. But the
Scholastic tradition has a stronger hold on the minds of
philosophers than the natural and mathematical sciences and
social revolutions. The thought of Aristotle dominates Schol-
astic minds as if nothing had changed since his day.

Students who are influenced by the Scholastic mode of thought
regard their verbal definitions as if they had been created by
the mind of God, even though they frequently have too much
good sense to take the matter very seriously. Unfortunately by
pursuing this kind of activity they acquire a disdain for logic and
become plastic material for irresponsible anti-rational doctrines.

It is usually said that a definition gives the so-called genus et
differentia specifica of a term, but it is not generally observed
that the attainment of a complete classification in conformity
with this concept of definition will always remain a pium
desideyium.

If a child sees a sparrow and asks what it is, he will be told
that it is a sparrow. The sensible child will be satisfied with
this answer when he hears the word sparrow for the first time
because he feels instinctively that nothing else is involved. The
word sparrow is a label which is attached to certain objects and
nothing more is to be said. If this child now sees a canary he
will say that it is a sparrow. When he is told that it is not a
sparrow but a canary he will ask why this is the case. He will
perhaps be answered because the canary has a yellow breast
while the sparrow is grey. The child now knows the specific
difference between canaries and sparrows but not the specific
difference of canaries. Even a very accurate and natural
description which is supplemented by photographs or multi-
coloured slides cannot show him the specific difference of a
canary. Such a description is never sufficient. Ultimately it is
necessary to point to a living model.

The same phenomenon occurs in all descriptive sciences,
especially in grammar. A rule which is not accompanied by
examples is of no value and the understanding of a rule increases
as the number of examples increases. If many examples are
given, it is even possible to dispense with the rules.

4. The philosophy of the late Edmund Husserl developed
from his stubborn belief in the absolute character of the external
structure of every-day language. This philosophy exerted a
very strong influence upon German culture. It awakened the
passion for seeking absolute criteria in all realms of human
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thought, including civil law. The effects of phenomenology are
very strong to-day. I have often had occasion to combat them.
I fear that they have helped strengthen the spirit of intolerance
and have weakened the capacity for thorough criticism.

Husser]l believed in the existence of apriori laws which
separate sense from nonsense. He wrote :

“ These laws which rule in the domain of meanings and serve
to distinguish sense from nonsense are not the laws of logic in the
fullest sense ; they provide logic with the possible forms of meaning,
i.e. the apriori forms of complex significant meanings of  formal
truth’ and ‘ objectivity ’ respectively, which then govern the ‘ logical
laws’ in the fullest sense. While the former laws guard against
nonsense, the latter guard against formal or analytic contradiction,
i.e. formal absurdity.” !

This passage brings out the important truth which has been
known to mathematicians for a long time, that the problems of
logic cannot be confined to that of truth and falsity alone. The
study of logic must begin with the problem of meaning.
Unfortunately, however, Husserl combines the fundamentally
false supposition that there are apriori laws of sense and
nonsense with this truth.

In every-day language the transition between sense and
nonsense is not sharp.

There exist various degrees of sense, ranging from the theorems
of elementary arithmetic to metaphysicsin the style of Heidegger
and dadaistic poetry. Investigations of these phenomena are
worth considering if they do not presuppose the existence of
apriori laws of sense.? If the matter is understood in the same
way as it was understood by Husserl, immutableand determinate
forms must be sought where actually there are none, and this
would spoil the whole undertaking.

Husserl was of the opinion that making investigations
concerning linguistic phenomena depend upon psychology
makes penetration into the essence of things impossible.

““ Modern grammar believes it must be based exclusively upon
psychology and the other empirical sciences. On the other hand

1 Edmund Husserl : Logische Untersuchungen, Bd. ii, Teil 1, Halle, 1913,

p. 294-5.
P Cf. Rudolf Carnap: “Uberwindung der Metaphysik durch logische
Analyse der Sprache,” Erkenntnis, Bd. 2, 1931, PP 219-241.

Cf. likewise the article of Professor Kasimir Ajdukiewicz entitled * Sprache
und Sinn,”” Erkenninis, Bd. 4, 1934, pp 100-138.

Cf. A. F. Bentley: The Linguistic Analysis of Mathematics, Blosmington,
Indiana, 1932, a book which contains an interesting classification of the
different degrees of meaning in mathematics.
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the view is advanced here that the ancient idea of a wniversal
and in particular of an apriori grammar obtains by our proof an
indubitable foundation for the possible forms of meaning of the
determining laws, and in any case determines ¢ delimited sphere
of validity.” 1

I have intentionally interpreted certain paragraphs of the
original text, although it may be difficult to decide whether
this has been done correctly. I have given an interpretation of
this passage because I would like the reader to be able to
orientate himself in some degree and because Husserl’s concep-
tion is so vague and confused.

In the first place in order to conduct apriori investigations an
appeal must be made to some system of thought which can
rightfully be regarded as correct. If every-day language is to be
subjected to criticism it is necessary to have at our disposal
some other language which is better and which can be relied
upon with complete confidence. However, the language of
Husserl does not awaken complete confidence. Not only is it
not better than every-day language but it is considerably worse.
His language is unusually difficult to understand. It contains
new linguistic creations, quotation marks, sentences which are
much too long, parentheses, marks of notation, etc. It is
difficult to discover the principle which permits this awkward
mixture of triviality and subtle distinctions to be regarded as
scientific language. There are indeed people who can intuit these
things after a certain length of time but I fear that it is possible
to intuit the most profound nonsense, as it is evident from the
history of mythology.

As a result of his doctrine of apriorism, Husserl ascribes to
expressions intentional correlates, i.e. certain fictional objects
which are independent of us. .

This is obviously a return to medieval realism. The doctrine
of intentional correlates was developed in great detail but led
to no concrete results. The belief in intentional correlates is
fundamental to Husserl’s views and any one who believes in
this doctrine is subject to tragic despair and hopeless struggles
with himself.

An interesting example of such an inner struggle may be
found in a book devoted to a consideration of literature by
Professor Ingarden, a well-known disciple of Husserl. In this
book Ingarden tries to show that a literary work is the so-called

1 Husserl: lc., p. 295.
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heteronomical object which is independent of individual
concretions.
Professor Ingarden writes as follows :

“ And if one spoke only of ‘intentional correlates’ and not
simply of ‘ representations * as the psychologistic approach does,
would this not be a mere quarrel over words ? If the concept
here developed of literature is more sensitive and subtle and if
talking of ‘representations’ is still very crude and primitive,
does it not amount to the same thing in the end...? But can
literature really be reduced to a manifold of concretions? Do
not the numerous differences which we have exhibited between
the work of literature and its concretions bear witness to the
contrary ? The retort might be given : These differences exist
only when one initially apprehends the Idea of the identical
literary work which is manifested in its concretions as actually
happened in our previous considerations. But what guarantees
to us the identity of the literary product in contrast to its con-
cretions especially if one concedes that the individual concretions
differ from each other considerably and that the reader very often
makes absolute the concretions which happened to be given to
him and believes that he grasps in them the literary product
itself ? and what in particular guarantees the identity of the
literary work if it is read by different readers, i.e. what guarantees
its sntersubjective identity ? and what is identity in this case?
Would it not perhaps be most correct to say when all of us read
one and the same literary product that although similar ‘ con-
cretions * grow out of individual readings there is only one genuine
illusion or error ? and finally : if the literary work is only an
image of subjective operations which do not exist substantially
(seinsautonom) the question arises how the literary creation
exists when it is being read by no one.” 1
The only argument employed by Ingarden in dealing with

these questions is that if the intersubjective meaning of propo-
sitions were abandoned there would be no common ideal science
for all men. He still deludes himself that this meaning of
propositions which is common to all men can be brought to the
light of day through phenomenological investigations although
he himself encounters many difficulties. New investigations
which would have to be both extensive and difficult would be
necessary to discover this common meaning. It would also be
necessary to write a new book. Ingarden does not mention these
difficulties but follows another method. He assumes the
substantial existence of ideal concepts and bases his hetero-
nomical objects upon them. I explicitly say he assumes because

! Roman Ingarden : Das literavische Kunstwerk, Halle, 1931, p. 371.
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coming from a phenomenologist these words seem very para-
doxical. They lead to the overthrow of this faithful disciple
of Husserl, but at the same time they are the exultant cry
of productive creative philosophy.!

Karl Biihler, the German linguist, follows in the footsteps of
Husserl. While he abandons eternal and immutable processes,
he fully believes in an intersubjective world. He complains that
contemporary linguists, in particular the famous de Saussure,
do not share his opinion.

Biihler writes :

““The peculiar standpoint of De Saussure with regard to
abstractions and generalizations and a similar opposition (korror
abstracti) to my thesis of the ideality of linguistic forms among
contemporary philologists whom I respect, is not very intelligible
tome.” 2

He also appeals to the argument that the political economist
who writes about the dollar or the zoologist who writes about
the species of animals are also dealing with abstractions. But
the point is precisely that the political economist who writes
about the abstract dollar is under the illusion that it is a real
existent and he cannot understand that the dollar is a plague
which must be eradicated at all cost. Similarly, the zoologist
who takes seriously the species about which he is writing will
stubbornly oppose Darwin’s theory. Even if he should accept
this theory he will make advances only with great difficulty.

5. The discussion concerning every-day language centres
about the problem whether the difficulties raised in connection
with it can be eliminated through the use of the analytic
method, ie. through an explanation of them and the
classification of the material at hand, or whether a complete
reconstruction is necessary. Undoubtedly such a necessity
follows from the existence of paradoxes which arise because
this language permits the individual to define words by means
of words, to speak about the fact that he is speaking, to think
about the fact that he is thinking, etc., without any restrictions.

Logical paradoxes must be distinguished from semantical
paradoxes.

The traditional Epimenides antinomy does not appear unless
a proposition is affirmed. It is therefore neither a logical nor a
semantical antinomy. Rather it should be called a dialectical

1 Cf T. V. M., p. 65

* Karl Biihler: * Axiomatik der Sprachwissenschaften,” Kanfstudisn,
Bd. 38, 1933, p. 56.
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antinomy. It should be noted that it is not a formal antinomy,
although it involves the vicious circle fallacy.

Epimenides the Cretan affirms that all Cretans are liars, i.e.
that the Cretans always affirm false propositions. It is clear that
this statement of Epimenides could never be true if it were
assumed that it falls within its own scope. A proof that some
Cretans are not liars can be given by employing the simple
statement of Epimenides, which is a lie.

Since this conclusion is based upon the vicious circle fallacy,
it must be agreed that the statement of Epimenides cannot fall
within its own scope. This very important remark was first
enunciated by Poincaré.l

Russell 2 reformulated the statement of Epimenides as the
simple statement “I am lying.”’ He interprets the latter
statement as * There is a proposition which I am affirming and
which is false ”’ and obtains a formal antinony. This interpre-
tation of the paradox can be explained in the same way as the
original Epimenides antinomy.

It might be assumed that the proposition *“ I am lying *’ falls
within its own scope. Such an interpretation of this proposition
is not correct. No correct statement can be made about a
proposition E unless the idea of a propositional function F(X),
whose value F(E) is identical with the original statement, is
abandoned. It is clear that E must be different from F(E).
Consequently no proposition can ever fall directly within its
own Scope.

This paradox is very instructive because it undoubtedly shows
that the phrase : all propositions like the phrases all properties,
all expressions, all classes, etc., is not clear and therefore leads to
paradoxes. These paradoxes were of great importance in the
history of logic because they led to the famous theory of logical
types of Bertrand Russell. Later the opportunity to study the
various kinds of paradoxes will present itself. Here I will
consider only the paradox of Grelling which is of interest
because like the paradox of Eubulides it occurs only in every-
day language. It is much more suggestive because it does not
depend upon facts but is purely formal in character.

A word which defines a property that belongs to itself will be
called awutological. The word short, for example, is autological

1 Cf. Henri Poincaré : ‘‘ The Latest Efforts of the Logicians,”” The Founda-
tions of Science, translated by George Bruce Halsted, New York, 1929,

sections vii and 1x.
3 Bertrand Russell and Whitehead : Principia Mathematica, 1st ed. Cam-

bridge, 1910, vol. i, p. 62.
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because it is short and thus defines a property which belongs to
itself. Words which do not have the property they define will
be called heterological. The word long, for example, is hetero-
logical because it defines a property which it does not have,
since it is not long. It may now be asked whether the word
heterological is autological or heterological. If it is autological
it has a property which it does not define and is therefore
heterological. But if it is heterological, it does not have the
property it defines and therefore is not heterological but
autological.l

These paradoxes decided the fate of rational metaphysics,
because it turned out that if reasonings which lead to paradoxes
are avoided, no progress can be made in metaphysics. The
essence of metaphysics depends upon the fact that everything,
all one’s thoughts, all possible thoughts, all properties, all
objects, etc., are being spoken about at once.

If the principle of contradiction is accepted this sort of
reflection must be rejected as meaningless. In particular an
individual cannot talk about what he is saying at the very
moment he is saying it. It therefore follows, as has long been
known by the philosophers of India, that the subject cannot be
rationally investigated. An individual can speak about the
subject ex post, i.e. the moment it becomes an object but not
at the moment he is this subject. In a word the present time
cannever be the object of an individual’s investigation. Not until
later can the object of investigation be distinguished from the
means by which the investigation was conducted. But at this
time a new investigating subject appears which cannot be
investigated objectively.

It follows from these considerations that the principle of
contradiction does not permit complete knowledge, i.e. know-
ledge which includes the answer to all questions. The attempt
to secure such knowledge will sooner or later conflict with
sound reason.

6 A solution of the problem is given by the doctrines of the
positivists on the one hand, and by dialectical materialism on
the other. Both these doctrines reject the existence of objects
which differ fundamentally from those encountered in experience.
From the standpoint of methodology the difference between
them lies in the fact that the positivists fixed considerably
narrower limits for knowledge which is based upon sound
reason and interpreted the suppositions of the natural sciences

1 Cf. Hermann Weyl: Das Kontinuum, Leipzig, 1918, p. 2.
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as hypotheses, while the materialists accept these suppositions
without restrictions.

Both these doctrines developed from a common stem which
goes as far back as the perpetually changing stream of existence
of Heraclitus. The struggle of the sophists on the one hand and
of the atomists on the other against the Greek idealists was
their cradle. During the Middle Ages these doctrines lost their
separate identity and their joint doctrine was called nominalism.

The doctrines of the nominalists completely overthrew
idealism. These doctrines depend upon the complete elimination
of such objects as concepts and propositions. It is affirmed that
only certain sounds (fatus vocis) to which can be added certain
expressions, i.e. certain combinations of letters, are involved.
In addition to the previously mentioned Roscellinus, the
representatives of medieval nominalism during the fourteenth
century were the Dominican William Durand de St. Pourgain
and the Franciscans Petrus Aureoli and William of Occam.
Occam’s Razor : Entities should not be unnecessarily multiplied.
(Entia non sunt multiplicanda praeter necessitam) is important
even to-day, and is employed as an argument against the claims
made by the idealists.

It is obvious that the nominalistic position is compatible with
the theses of both positivism and materialism because every-
thing is reduced to what at first sight seems unattainable, i.e.
sense data.

I think that the truth of nominalism follows irrefutably from
our earlier discussion concerning every-day language. Probably
nothing can make an idealist abandon his belief in the existence
of ideal objects, but without question in practice only words and
the automatic reactions evoked by these words are involved.
This is hardly the perfection postulated by the idealists. These
facts can be confirmed experimentally and consequently are
indubitable. They constitute a foundation sufficient for con-
structing a theory of knowledge based upon sound reason.

David Hume was the first thinker to propose that sound
reason rather than metaphysical criteria be regarded as the
exclusive source of knowledge.

In contrast to the Greeks who saw no intermediate path
between truth and complete agnosticism, Hume followed the
path of compromise. He was convinced that it is better to
abandon great pretensions than to be governed by a wild
imagination. Because of his mild and resigned temperament
he was able to avoid extreme scepticism but he was therefore
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unable to oppose the tendencies of his epoch. Consequently
while he attained great success during his life, he had no great
influence upon the important social movement which was to
develop during the post-revolutionary period.

Hume was the type of sybarite who was well liked in elegant
society and knew how to win its regard. His life was governed
by the motto of Aristippus : Only the present moment is ours.

Because of his mild temperament, Hume made no dangerous
enemies in the course of his life. He wrote :

“ And though I wantonly exposed myself to the rage of both
civil and religious factions, they seemed to be disarmed in my
behalf of their wonted fury.” 2

Furthermore his social success was very great. Natanson
writes as follows on this subject :

“ When Hume arrived in France he was received with the
adoration due the royal family ; the noblemen idolized the great
philosopher, the ladies implored him to join them in their boxes
at the theatre ; le gros David Hume was like a sultan surrounded
by charming slave girls in fableaux.” ®

It can easily be understood that such an atmosphere influenced
Hume’s work. He completely ignored the creative power of ideas
and reduced them to weak reflections of sense impressions. He
did not dare dream that they can lead to an alteration of one’s
view of the world and ultimately transform life on earth. Thus
his philosophy was a very narrow fragment and left much scope
for romantic anti-rationalism.

Hume’s relation to the mathematicians was especially
unfortunate. His criticism of the infinitesimal calculus of the
time was indeed justified but was too radical for that day and
prevented the further development of the infinitesimal calculus.
Its effect was, however, counteracted by the creative power of
the calculus itself.¢ Thus Hume prepared the ground for Kant’s
apriorism and Hegel’s anti-rationalism.

Hume’s position was extremely individualistic. August
Comte, the creator of the positivistic view of the world, applied

1 Cf. Pawlhcki: /.., p. 425.

® David Hume: ‘“My Own Life,” Axn Enquiry concerning Human Under-
standing, Chicago, 1930, p. xvL
g;smadz}(r)slaw Natanson : Porzqdek natury (The Ovder of Nature), Krakéw,
1928, p. 201.

4 Cfl.) David Hume © A4 Tyeatise of Human Nature, Oxford, 18986, book i,
part i1, section 1v.
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it to the realm of society.* Positivism is the apotheosis of sound
reason. It involves the complete rejection of metaphysics and
of irrational dialectic. Its proponents were the first to attempt
to formulate the aims of science and of social life in conformity
with the principles of sound reason.

Comte’s conception characterizes the scientist as one who can
predict facts and make progress toward intellectual self-
perfection or evolution. This view was a significant advance
over the metaphysical and irrational fictions which prevailed at
the time. Yet even in Comte’s doctrine too much compromise
was involved. He did not observe the very important law, that
science and all life on earth do not develop in accordance with
law but through the supplementation and perfection of that
which has already been. Even the power to predict without
conscious effort what will happen does not suffice. It is also
necessary to be able to predict that if such an apparatus is con-
structed, with its help it will be possible to deal with that which
threatens. In other words it must be possible to construct, it
must be possible to create. The construction of new systems of
thought, new criteria of beauty, and new forms of life is the
essence of progress in science, art, and life. Creative power is not
the result of slow evolution. There has been no continuous
transition from the wings of Daedalus to aeroplanes. The
discovery of radium and Roentgen rays and the invention of
radio were as sudden and unexpected events as revolutions.
Beginning with Byzantine and Gothic art and ending in the
impressionistic art of the present day, the development of art
has been characterized by a series of revolutions. Life on earth
has developed in a similar fashion. It is a well-known fact that
the path of progress is marked by pools of blood and uncondi-
tional revolutions.

Everything which has been brought about through evolution
might have been accomplished elsewhere and much earlier
through revolution, but in any case it would inevitably have
been accomplished. This important truth was discovered by
Karl Marx, the creator of the theory of historical materialism.
Comte’s successors disregarded this discovery. Although the
adherents of positivism were very great thinkers, they have had
no significant influence upon the history of culture in recent
times.

Ernst Mach, one of the most vehement critics of the

1 Cf. Uberweg-Heinze : Grundriss der Geschichte dey Philosophis, Bd.
9 Aufl.,, Berlin, 1802, p. 366 £.
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metaphysical deceptions in contemporary science, was un-
doubtedly the greatest of Comte’s successors.

One of Mach'’s greatest merits was that he did not hesitate to
reduce mathematics to the same level of triviality and banality
as communication and trade. However, his views had no
immediate influence upon the development of contemporary
mathematics, which under the influence of Georg Cantor was
extremely idealistic in character. But recent work, which will
be considered later, completely corroborates his opinions.

Mach wrote :

“ Numbers are often characterized as ‘ free creations of the
human mind’. The admiration for the human mind expressed
here is very naturally opposed to the complete and imposing
edifice of arithmetic. However, much more is required for the
understanding of these creations if their ¢ustinctive beginmings
and the circumstances which engendered the need of them are
considered.” 1

Mach saw no essential difference between the most sublime
mathematical constructions of our day and the calculations of
children and primitive peoples. Mach was right. But it must be
kept in mind that he lacked the arguments necessary to support
this thesis. Such arguments can only be furnished by detailed
investigation of all the intervening stages in the development of
mathematics, beginning with these economic calculations and
ending with the system of rational metamathematics. Likewise
is required the clear conviction that only the consistent per-
formance of the elementary operations necessary in performing
economic calculations and suppositions which formulate
precisely the results of such operations, are involved. This
matter will be considered later. Here I only wish to observe
that this economic point of departure must be justified. The
reader has the right to expect me to do more than merely make
promises on this score and to employ some theoretical principles.
However, I am sure that I will be able to fulfil my obligations.

It should be pointed out that the late Professor Moritz Schlick
was one of the philosophers of our day who was aware that
there is no essential difference between scientific knowledge and
the knowledge of daily life. He observed that it is not proper to
apply the concept of probability to measurements which are
made within wide limits. For example the assertion that the
distance between one’s home and the university is greater than

1 Ernst Mach : Erkenntnis und Irvtum, 5. Aufl., Leipzig, 1926, p. 327.
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10 ¢m. is a true proposition.? If a proposition of this type were
regarded as dubious, it would be impossible to define the concept
of probability because there would be nothing upon which this
concept might depend. I think that this remark is very
important for the understanding of the role of the elementary
criteria of sound reason. These criteria give the greatest amount
of certainty which can be obtained and that is why it is
believed that the propositions derived by their use are true.

Nevertheless Schlick succumbed to the illusion that there are
propositions which define a certain state of affairs unequivocally.
He called such propositions true ex definitione.?

7. The struggle concerning a view of the world which is based
upon the criteria of sound reason was reduced by the eighteenth
century materialists to a critique of Cartesianism on the one
hand and of Berkeleyanism and the sensualism of Locke and
Condillac on the other.

The prejudice concerning the substantiality of the soul led
Descartes ® to the paradoxical assertion that in contrast to
people animals are machines. But it is clear that there is no
essential difference between men and animals. If animals are
machines, it immediately follows that men are likewise machines.
De la Mettrie, who was born in 1709, was the first thinker who
dared enunciate this simple truth publicly.4

Diderot, one of the authors of the Ewncyclopedia, openly
mocked Berkeley :

“In a moment of madness, the sentient piano imagined that
it was the only piano existing in the world, and that the entire
harmony of the universe was accomplished within itself.” 5.

The conception of sound reason was advanced very far by the
activity of these thinkers. The sound reason of Socrates was
pure mythology compared with this new conception.

The second period of development of thorough criticsim,
based upon a materialistic world view, began when Das Kapital,
by Karl Marx, was published in 1867.

Because of the historical connection between dialectical

1 Montz Schlick : Aligemeine Erkenntnislehre, 2 Aufl., Berlin, 1925, p. 133.

2 Schlick : l.c., p. 55.

8 Renée Descartes: ‘‘ Discours sur la méthode,” (Euvres, nouvelle ed.
par J. Simon, p. 37.

4 Cf. Julien Offray de la Mettrie: Man, a Machine, 1785, translated by
Gertrude C. Bussey, and revised by Mary W. Calkins, Chicago, 1912, pp. 89, 148.

8 Denis Diderot : (Buvres Complétes, Paris, 1875, vol. ii, p. 118. Cf. Nikolai
Bukharin : Historical Materialism, authorized translation from the 3rd
Russian edition, New York, 1925, p. 58.
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materialism and Hegel’s anti-rational dialectic and because the
very name dialectical materialism has many anti-rational
associations, this doctrine is generally regarded with a certain
prejudice. Actually, as has already been emphasized, it is not
only the negation of anti-rationalism but it is a doctrine which
is based upon the principles of sound reason entirely. Itsstrength
is its complete opposition to idealistic metaphysics and its
introduction of the constructive method into sociology. Marx’s
reduction of the concept of economic value to the concept of
human labour has nothing in common with the aims of anti-
rationalism. On the contrary it is an example of scientific
precision and uncommon simplicity.

Bukharin wrote the following concerning the dialectic of
Marx :

‘“For Marx, dialectics means evolution by means of contra-
dictions, particularly a law of ‘ being’, a law of the movement
of matter, a law of motion in nature and society. It finds its
expression in the process of thought. It is necessary to use, the
dialectic method, the dialectic mode of thought, because the
dialectics of nature may thus be grasped.” 1

This definition seems to me to be unfortunate. No special
method is necessary to understand the changes which occur in
nature and in particular to understand the fact that all disturb-
ances in nature tend to a state of equilibrium. Hegel thought
that motion can be understood only in terms of moving thought.
This is plainly absurd. The prejudice which results from this
unfortunate conception is the source of misunderstanding.
Sound reason and the constructive method which among
other things lead to the establishment of equilibrium with
regard to motion are sufficient to understand the changes which
occur in nature.

These means are sufficient to understand changes in nature
of the type with which Marx and his successors were concerned.
Only if an intuition of the essence of movement in the sense of
Bergson 2 were desired, would it be possible to complain with him
of the ineptness of the constructive method. But the representa-
tives of Marxism did not have such lofty ambitions. As a
result, when they talk about the dialectical method they mani-
fest a confusion of concepts which is entirely unnecessary. But

1 Cf. Nikolai Bukharm: l.c, p. 75

8 Cf. Henr1 Bergson: Matter and Memory, translated by Nancy M. Paul
and W. Scott Palmer, London, 1911, pp. 290-1, 321.



THE LIMITS OF SOUND REASON 49

Marx himself observed the dangers which are involved in Hegel’s
dialectic. He wrote on this subject :

“In its mystified form, dialectic became the fashion in
Germany, because it seemed to elucidate the existing state of
affairs. In its rational form, it is a scandal and an abomination
to the bourgeoisie and its doctrinaire spokesmen, because, while
supplying a positive understanding of the existing state of things,
it at the same time furnishes an understanding of the negation
of that state of things, and enables us to recognize that that
state of things will inevitably break up; it is an abomination to
them because it regards every historically developed social form
as in fluid movement, as transient; because it lets nothing
overawe it, but is in its very nature critical and revolutionary.” 1

The fundamental thesis of Marxism is mutability. According
to Engels it depends upon the conception of the world as a
process, i.e. as something which continually develops.? This
thesis must be accepted to-day by all philosophers because it is
based upon unquestionable natural and historical facts. If it
were desired that this thesis be rejected, troublesome contra-
dictions would result or at best artifical subterfuges would have
to be employed. Such would likewise be the case if the second
fundamental thesis of Marxism, namely the close dependence
of intellectual life upon physiological processes were rejected.
Confirmation of the fact that it is possible to forget one’s mother
tongue following injury to certain regions of the brain, although
a foreign language which was imperfectly known is still remem-
bered, makes it difficult to doubt that this dependence is
complete.

Thus the establishment of these theses is based only upon the
results of investigations in the exact sciences and there is no
need to employ special methods of reasoning to establish them.
It suffices to keep in mind that the realm of applicability of
concepts is always restricted. Bukharin pointed this out when
he wrote :

‘“ Hence our distinctions, as made above ; they hold good—
as we have said—when understood dialectically, i.e. within certain
bounds, conditionally, according to circumstances.” 3

It is clear that if this were all that is meant by dialectical
materialism, all discussion would be superfluous.

1 Cf. G. Plekhanov: l.c, pp. 30-1.

3 Cf. A. Deborin* Wuwedeme w filosofiu dialekticzeskogo materializma,
Moskwa-Leningrad, 1931, p. 205.

2 Bukharin: l.c., p. 85. (Author’s italics.)
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Actually the Marxists keep their reasonings within these
bounds. For example the works of Bukharin, one of the
foremost contemporary Marxists, at no point go beyond the
bounds of sound reason. It may even be said that they are
written unusually clearly and in this respect might be regarded
as a model for western philosophers. The only weak point in the
work of the Marxists is connected with their discussion of the
Hegelian tradition and is difficult to explain. The moment they
begin to speak about Hegel, confusion of concepts appears.?
They speak of Hegel as earnestly and in the same style as they
speak of other matters and in one breath they cite improbable
Hegelian nonsense and very important scientific theories. The
impression given is either that the author has fallen into
momentary error or that he is laughing at the reader. It may be
said in defence of the Marxists only that this same weakness may
be found among professional logicians.

It may also be observed that this defect is a secondary result
of the persecutions undergone by the Marxists in pre-war years.
When people who in general are guided by sound reason, can-
not or do not wish to accept certain truths which are obvious to
us, we tend to have an irrational reaction. I observed such a
tendency in myself when almost everyone I knew tried to
dissuade me from going on with logic, because it is a fruitless
plaything. My position was even more difficult because the few
professional logicians of the time were proponents of the formal
approach to logic, a method which was foreign to me. Who
knows what would have happened if this situation had not
changed ?

I will now quote the following passage from Bukharin in order
that the reader may familiarize himself with the attitude of the
Marxists toward Hegel’s dialectic. He wrote :

“We have now to consider the final phase of the dialectic
method, namely, the theory of sudden changes. No doubt it is a
widespread nothing that ‘nature makes no sudden jumps'
(natura non facit saltus). This wise saying is often applied in order
to demonstrate ‘irrefutably’ the impossibility of revolution,
although revolutions have a habit of occurring in spite of the
moderation of our friends the professors.” 2

It is difficult to imagine more convincing reasoning. But why
is this method dialectical when it is clear that simple reference
to facts is involved. Bukharin, however, was not satisfied by
this. It is possible that just because he wished to give the

1 Bukharn : lc., p. 75. 2 Bukharin : lLc., p. 79.
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reader the impression that some extraordinary method is
necessary, he asked whether nature is really as temperate as it
is said to be.

After the above discussion this question might seem super-
fluous, but it would do no harm to keep in mind such cosmic
catastrophes as the diremption of satellites, volcanic eruptions,
avalanches, etc., and last buf not least quantum physics.

Instead of this a quotation from Hegel’s Science of Logic is
found which contains the following sentence :

“ Yet we have seen cases in which the alternation of existence
(of that which is, which exists, des Sesns) involves not only a
transition from one proportion to another, but also a transition,
by a sudden leap, into a gquantitatively, and, on the other hand,
also qualitatively different thing (Anderswerden) ; an interruption
of the gradual process (esn Abbrechen des Allméihlichen), differing
qualitatively from the preceding, the former, state.” 1

If it is supposed that Bukharin understood these words I
could never take him seriously. I prefer to think that he quoted
them because of a certain snobbery and because he wished to
astound the reader.

Dialectic appears to even less advantage in the writings of
Thalheimer. He openly comes forward as an opponent of logic,
which he identifies with the doctrine of Aristotle on the basis of
the Hegelian dialectic. Thalheimer holds forth in phrases
worthy of Hegel and attacks the principle of identity 4 =4 on
the ground that movement is continuous as Heraclitus had
maintained.

I suppose that the Chinese students to whom Thalheimer
lectured in Moscow, being in a desperate state of mind, were
inevitably influenced by his views.

Thereis a simple answer to this type of argument : Heraclitean
changes in the letter 4 are not sufficiently strong to affect our
relation to this letter. Consequently it is utterly pedantic to
take into account changes of this kind, which by their very
nature necessarily lead to paradoxes. There are obviously other
kinds of changes which may cause serious difficulties. For
example another letter might be substituted surreptitiously for
the letter 4 and it is impossible to be absolutely sure that this
has not been done. But this state of affairs will distress only
those with excessive pretensions who are not content with
ordinary human certainty but strive for absolute and therefore

i Bukharin: /¢, p. 80. (Italics Bukharin’s.)
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superhuman certainty at any cost. There is no remedy for
pretensions of this kind. The situation is similar to the case of a
person who does not wish to ride on a train because an accident
might occur and who therefore makes his journeys on foot.
Such problems will not be considered here.

It follows from these considerations that dialectical material-
ism like positivism was caught on a shoal which rises from the
weaknesses at the bases of the exact sciences. If these sciences
are regarded as complete in spite of their omissions and in spite
of the presence of idealistic and metaphysical elements in them,
progress becomes impossible. Even the keenest minds and minds
which oppose the aims of the anti-rationalists cannot escape
the chaos of the problems which present themselves if work is
not begun at the very bottom and if the sources of the simplest
human knowledge, e.g. the knowledge required to learn multi-
plication tables, are not examined. Whether it is desired that
life on earth be elevated to heights unknown, or simply that the
truth be obtained and impatient curiosity be satisfied, ant-like,
it is necessary to examine the foundations of science, even those
which are most elementary. Considerable confusion of concepts
and very marked differences of opinion will be found concerning
these foundations. Progress will be made only at the cost of
great effort and stubborn patience. If any progress is actually
made the results of these efforts will recompense us a hundred-
fold. Self-confidence and confidence in the bright future of
humanity will be developed and independence of the welter of
confused concepts about us will be obtained. I think that these
values are worthy of great sacrifice.



CuapPTER III

THE DEVELOPMENT OF THE CONCEPT OF
NUMBER

1. As is well known it is very easy to teach a child to count
with pebbles or apples. However, difficulties arise when one
attempts to introduce pure numbers. This is evident if one but
considers the history of human thought. The arithmetic of the
Egyptians and the Babylonians was confined to the sphere of
practical applications and therefore was entirely clear.
Difficulties first arose when the Greeks created the concept of
natural number. This very important step was taken in a
manner which is hard to describe ; nevertheless this process was
certainly far less simple and clear than the related processes in
the arithmetic of natural numbers. The arithmetic of the Greeks
was part of metaphysics and never was separated from the
disturbing problem : how it is possible that natural numbers
have independent existence ?

The Pythagoreans are known to have favoured the view that
natural numbers are the only real substances and that the
existence of all things may be reduced to them. They held that
all things with the exception of the natural numbers have no
independent existence and they regarded these things as relations
between numbers. They associated with this conception of
number a mystical cult and a feeling of awe toward the mystery
of existence which may be found even to-day among the
metaphysically inclined.

Pythagoras observed that the lengths of the strings
corresponding to the four tones which he knew : C, F, G, ¢, are
expressed as certain relations of the numbers 1, 2, 3, and 4.
Pawlicki writes :

“...seeing that in the decimal system, which he introduced
into Greece from the East, all other numbers originate from the
first ten through addition, he declared that all numbers are
contained in the first decade. Furthermore because the first ten
numbers or the first decade is the result of the addition of the
first four numbers (1 +2 + 3 + 4 = 10), which are the basis
of musical harmonies, it seemed to him that the first decade
and all other numbers which are possible, are contained in the
‘ first divine group of four’ (retpoxtls). Likewise all harmonies
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arise from the first divine Tetpaxris. The latter will be the
creator of all spiritual and material laws because these laws must
also be harmonies.” !

I have intentionally dwelt at length upon these speculations.
It will be seen later that the speculative element, which
originated at the same time as Greek mathematics, has survived
up to our times and even to-day is very strong although it has
been somewhat curbed. It is difficult to decide whether or not
this element influenced the development of mathematical
theorems ; however, it greatly hindered the construction of the
foundations of mathematics.

However Nichomachus of Gerasa, the Pythagorean, who lived
during the second century A.D., did not have the courage to
derive all natural numbers from the number 1 by means of
repeated additions. He was of the opinion that the number 2 as
well as the number 1 has an exceptional position in the world
of numbers, because the law :

axXa>a+a
is satisfied by all natural numbers with the exception of 1 and 2.2
For Nichomachus numbers were clearly fetishes of some kind.

The worship of natural numbers is evident at every step in
the work of Nichomachus. Among other things he considered
the theory of perfect, deficient, and abundant or super-abundant
numbers.

Perfect numbers are equal to the sum of their factors.
Numbers greater than such sums are called deficient ; numbers
less than such sums are called abundant or super-abundant. 3

For example, the number 6 is a perfect number, because

1+2+4+3=6;

the number 8 is a deficient number, because
I+2+4<8;

the number 12 is an abundant number, because
1+2+3+4+6>12

It should be noted that the common factor I is invariably
added to each sum of the factors. If it were omitted the
perfect number 6 would immediately become a deficient number.
Nichomachus did not observe this danger and employed

1 X. Stefan Pawlicki. Historja filozofji greckiey (The Hustory of Greek
Philosopky), Krakéw, 1890, p 200.

2 Cf. Nichomachus of Gerasa : Introduction to Arithmetic, translated by
Martin L. D’Ooge, University of Michigan Studies, Humamistic Series, vol.
xvi, New York, 1926, p 117.

8 Leonard E. Dickson: History of the Theory of Numbers, Washington,
vol. i, 1919, p. 4.
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metaphysical arguments to establish the importance of this
classification. He wrote the following concerning deficient
numbers :

“It is, as if some animal should fall short of the natural
number of limbs or parts, or as if a man should have but one
eye, as in the poem, ¢ And one round orb was fixed in his brow ’ ;
or as though one should be one-handed or have fewer than five
fingers on one hand, or lack a tongue, or some such member.” *

Later he added the following words :

“It comes about, that even as fair and excellent things are
few and easily enumerated, while ugly and evil ones are wide-
spread, so also the superabundant and deficient numbers are
found in great multitude and irregularly placed—for the method
of their discovery is irregular—but the perfect numbers are easily
enumerated and arranged with suitable order.” 2

These statements have been cited intentionally because,
while nothing similar is to be found in mathematical treatises,
closely related methods of appraisal may be met in conversation
with prominent mathematicians, who as far as possible try not
to go beyond inherited ideas.

The conceptions of perfect, deficient, and abundant numbers
had a great influence upon medieval thinkers, and even today
have not ceased to be important. In the ninth century Alcuin
attributed the imperfection of the human race to the fact that
in Noah'’s ark there were 8 souls and 8 is a deficient number.?

In addition to deficient, perfect, and abundant numbers there
arelikewise amicable numbers, i.e. numbers such that each equals
the sum of the aliquot divisors of the other. The numbers 284
and 220 are examples of amicable numbers.

Amicable numbers are important even to-day, especially in
America where Dickson has been concerned with them. He has
even invented a new kind of amicable number called amicable
triples.

5. Investigations concerning the essence of natural numbers
have made the matter of numerical symbolism seem unreal.
The Greeks had no simple numerical signs but denoted the
numbers 1, 2, . . ., 9, 10, 20, ..., I00 and I0O, 200, . .., I000
by the letters of the old Greek alphabet.4

1 Nichomachus of Gerasa : l.c., p. 208.

3 Nichomachus of Gerasa : l.c., p. 209.

8 Dickson : l.c., p. 4.

4 Cf. Frank E. Robbins and Louis C. Karpmski: ° Studies in Greek
Arithmetic,” contained in Nickomachus of Gevasa, l.c., p. 68.
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They performed addition by writing the numbers side by side
and then writing a stroke above the line. Multiplication was
characterized by the sign X, but was performed by writing one
of the two numbers to be multiplied beneath the other and
drawing a line beneath them both, just as addition is performed
to-day. Fractions were represented in a very complicated way :
The fraction 1 was written t£'xe”xe” where £” denotes 17
and «e” denotes 25. Sometimes the denominator was placed in
the position occupied by an exponent to-day.

Operations on fractions were already known to the Baby-
lonians. It may be that this method of notation was trans-
mitted to Greece from Babylonia since there is evidence that
the methods of the Babylonians influenced Greek science.?

The analogy between the arithmetic of natural numbers and
the arithmetic of irrational numbers was not observed because,
from the standpoint of metaphysics, natural numbers and
fractions differ in character. Natural numbers are regarded as
independent existences, while fractions are regarded as fictions.
Karpinski contends 2 that the preponderance of metaphysical
considerations in Greece was due to the fact that the Greeks had
no well worked out system of notation.

The whole matter reduces to the fact that the concept of a
fraction cannot be derived from that of a natural number. To
define a fraction it is necessary to employ one of the following
concepts : segment, class, relation, or expression. But in each
of these cases the natural numbers cease to have an exceptional
role and the Greeks wished to avoid this consequence at all cost.

In an interesting discussion, Heinrich Scholz 3 noted that the
essential reason why the Greeks did not develop a concept of
irrational numbers was that they had no concept of rational
numbers. In support of this theses Scholz cited a passage from
Plato’s Republic from which it is clear that the Greeks regarded
fractions as paradoxical constructions. They were of the opinion
that units cannot be subdivided and therefore did not believe in
the existence of fractions. They tolerated operations on
fractions as purely practical activities with no scientific value.
Consequently it is not suprising that fractions were attributed
to the world of illusion and disdainfully thrust aside.

1 Cf. Otto Neugebauer ‘‘ Zur vorgrieschischen Mathematik,” Erkenntnis,
Bd. 2, 1930, pp 122-134.

? Robbins and Karpinski: /¢, p 68

8 Cf. Heinnich Scholz: ‘‘ Warum haben die Griechen die Irrationalzahlen
nicht aufgebaut? ”, Kantstudien, Bd. 33, Berlm, 1928, p 65.
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This view was aiso supported by the fact that the theory of
geometric proportions created by Plato’s contemporary
Eudoxus ! made operations with fractions possible without
introducing any special signs by means of a circumlocution. It
is known that instead of writing: @ = 3 b, the auxiliary segment
k can be used and an appeal made to the equalities 2 = 3 & and
b = 5 k. For geometrical purposes this method is sufficient.

It seems to follow from considerations in Aristotle’s Metaphy-
stca that Aristotle was on the road to emancipation from the
prejudice concerning the primacy of natural numbers. Aristotle
did not regard natural numbers as independent existences but
sought independent units in the sphere of daily life. However,
he encountered here the vagueness of popular concepts and
became involved in dialectical investigations on this theme. And
so Aristotle was concerned with the fact that :

I

. . . of things that are called one in virtue of their own nature
some are so called because they are continuous....Of these
themselves, the continuous by nature are more one than the
continuous by art. A thing is called continuous which has by
its own nature one movement and cannot have any other.” 2

This appeal to the concept of a rigid body is but a step
removed from reliance upon geometrical segments. Yet
Aristotle was satisfied to make ontological investigations,
although he did not draw the consequences which follow from
them.

It should be observed that the prejudice concerning the
primacy of natural numbers made very difficult the adjustments
which became necessary when new kinds of numbers were
created as mathematics developed. Young writes as follows
concerning the discovery of negative numbers :

“ The first writer who appears to have recognized the existence
of negative roots of a quadratic equation was the Hindu Bhaskara,
in a work written about the year A.p.1150. He gives ¥ = 50
and ¥ = — 5 as the roots of x2 — 45 x = 250 ; * but,’” says he,
‘the second value is in this case not to be taken, for it is in-
adequate; people do not approve of negative roots.” For
centuries thereafter people did not approve of negative roots.

1 Cf. Jan Sleszyniski: ‘O pierwszych stadiach w rozwoju pojeé nies-
koficzonoéciowych,” Poradnik dla Samoukdw (‘‘ Concerning the first stages
of the development of the concept of the infinitesimal,” Home Study Course),
tom. ii, Warszawa, 1923, p. 60.

3 Aristotle : Metaphysica, translated by W. D Ross, Oxford, 1908, bk. v
(4), ch. vi, 10155, 11. 36-1018a, 1. 8.
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The German mathematician Michael Stifel, speaks, in 1544, of
numbers which are “absurd’, or ‘ fictitious, below zero’, and which
arise when ‘ real numbers above zero ’ are subtracted from zero.” 1

Even during the nineteenth century complex numbers were
still regarded as fictional constructions. For example, the
German psychologist Theodor Lipps placed them on the same
plane as square circles and other contradictory objects.

3. The Pythagorean philosophers maintained that whole
numbers are actual substances and real phenomena are relations
between numbers. However, Nichomachus of Gerasa, who was
influenced by Plato and Aristotle, admitted other categories
than that of quantity. He therefore regarded numbers as

“ superior kind of forms, out of which the other forms are
made and under which they are classified.”’2

This modification resulted from the great catastrophe which
befell the doctrines of the Pythagoreans during the period when
the school was still greatly influenced by the works of the
master. The problem of the determination of the numerical
relation between the side and diagonal of a square was the
source of this catastrophe. This apparently simple and elemen-
tary problem led to entirely new and unexpected phenomena.

The investigations on this problem conducted by Pythagoras
led to the discovery of incommensurable segments. In particular
Pythagoras was convinced that the side and diagonal of a
square are not commensurable. This theorem is generally known
to-day. I will now give a proof of this theorem which seems to
me to be unusually simple.

If in a given square the length of the
side @ is marked off on the diagonal ¢ and
the remaining segment denoted by a,,
and if at the point M which divides the
diagonal into two segments having

" the ratio a : 4,, the perpendicular to the
diagonal is constructed, the right
isosceles triangle A M N will be obtained.

It may easily be confirmed that N, the

point of intersection of the perpendicular

and the side 4 C, divides 4 C into two
segments having the ratio a — 2y : «,.

1 John Wesley Young: Lectures on the Fundamental Concepts of Algebra and
Geometry, New York, 1930, p. 107
2 Robbins and Karpinski: le., p. 97.
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Let it now be supposed that there exists a certain segment j
which is contained in the segment ¢, y times without remainder,
and in the segment 4, o times without remainder, i.e. a = aj,
and c¢=yj. Let the difference y—a be denoted by «,, the differ-
ence a—a; by y, and the segment a—a, by ¢,. It is clear then
that

¢, = yjand g, = a4J.

If then the side and the diagonal of a square have a common
measure, there must exist a smaller square, whose side and
diagonal have the same common measure. In this way is
obtained an infinite sequence of ever decreasing squares whose
side and diagonal invariably have the same measure. But it is
clear that there can be at most y—1 segments less than ¢ which
are measurable by the same measure j and there cannot be
infinitely many different squares with diagonals less than ¢
which contain the segment j without remainder. The supposition
which has been made is therefore false and it must be agreed
that there is no segment which can be obtained without
remainder in both the side and diagonal of a square.

Immediately upon its discovery this theorem made a strong
impression upon the Pythagoreans. It was the first theorem
ever met which contained an example of an infinite regress. This
was the first time that a transgression of the bounds of finite
arithmetic was ever observed.

Sleszynski writes as follows concerning this discovery :—

* According to tradition although Pythagoras sacrificed one
hundred bulls to the gods, he ordered his disciples to keep this
discovery a secret because he regarded it as dangerous to his
doctrine that everything must be a number.” *

This phenomenon and similar manifestations of restraint in
connection with infinite processes were the bases of the prejudice
of the Greeks concerning finitism.

" Sleszynski strongly opposed this prejudice. In a recent
discussion with Spengler, Scholz ? touched upon this matter.

Because of the importance of this whole discussion, this theme
is worthy of further consideration.

The prejudice of the Greeks concerning finitism is a
consequence of a simple misunderstanding. This prejudice goes
so far, that even euclidean geometry which is based upon the

1 Jan Sleszyfiski: l.c., p. 59. 2 Heinrich Scholz : l.c., p. 60.
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concept of the infinitely long straight line is regarded as the
product of finitistic thinking. Professor Schrodinger, the
famous creator of wave mechanics, made such a statement in
one of his popular lectures. He compared “ the clear, trans-
parent and rigid structure of euclidean geometry ” with ““the
plain, simple and limited forms of the Grecian temple.” 1

It should be observed that in the Greek world, which was
finite and one in which circular motion was regarded as the most
perfect motion,? the discovery of the infinitely long straight line
was difficult and required a special effort of the creative
imagination. Minds which from childhood are accustomed to
operating with the concept of parallel lines which never intersect,
require the expenditure of a certain amount of effort to under-
stand that what is concerned here is something not only in
itself unintelligible but also something very hard to grasp
intuitively. It should be kept in mind that the illustrations of
parallel lines given in school, for example, perpendiculars, the
rays of the sun, etc., are examples of lines whose point of inter-
section while very remote, actually exists. Examples of parallel
lines cannot be given and consequently they must be regarded
as fictions. Contemporary physicists who accept Riemannian
geometry as well as Einstein’s general theory of relativity, take
this fact into account and do not admit the existence of infinite
lines. If this fact is carefully considered the idea suggests itself
that precisely the minds of present-day men rather than those
of the Greeks are finitistic. Actually the Greeks, whose world
was invariably closed, created the concept of the infinite line,
while present-day physicists, who among other things must
account for the phenomenon of the infinitely expanding world,
have relied upon the concept of the finite straight line.

4. There was ecstatic admiration for the mysterious properties
of natural numbers even in the days of the passing of Greek
arithmetic. The rebirth of arithmetic was brought about through
the introduction of purely formal accounts. It resulted from the
collective efforts of the Arabs. (Al Battani, Al Biruni, Nasir
Eddin, and others.) In the ninth century the Arabs began to
study Greek mathematics and eagerly turned to the issues raised
by it. They thrust metaphysical questions aside. They did not
reflect upon the essence of natural numbers, fractions, orirrational

1 Erwin Schrodinger: * Is Science a Fashion of the Times? ", translated by
Dr, James Murphy, Science and the Human Temperament, New York, 1935,
101

'3 Cf, Aristotle : Metaphysica, l.c., 1018b, 11. 16-17.
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numbers, but created the present-day system of decimals and
operated withsinesand cosines. These purely formalachievements
made the Arabsthereal creators ofalgebraand trigonometry.! In
thetwelfthand thirteenthcenturiestheirinvestigationsinfluenced
the famous Leonardo Fibonacci and in the fourteenth century
Leviben Gerson? who added important and orginal contributions
to those of the Arabs. However, it was not until the end of the
fifteenth century that Europe freed herself from the beliefs about
natural numbers inherited from the Greeks through Boethius.
At that time because of the development of commercial interests
the problems of the theory of perfect, deficient, abundant, and
amicable numbers became secondary. The first arithmetic in
which these problems were omitted appeared in Venice in 1484.
It was a commercial arithmetic written by Pietro Borghi.® The
first trigonometry text was written by Johann Miiller who was
also known as Regiomontanus.4

The thinkers of the sixteenth century followed the formal
procedures initiated by the Arabs. The solution of third degree
equations achieved by Scipio Ferro ¢ was a result obtained by
calculations alone. It might even be called a pasigraphic result
because it was of no practical value.

Systematic attempts to set up a system of numerical signs did
not begin until the seventeenth century. Historians have
mentioned three investigators who worked on this problem :
Oughtred, Hérigone, and Leibniz.¢ The last mentioned became
known as the co-creator of the infinitesimal calculus because he
established an adequate symbolism for this branch of mathe-
matics which has been retained up to the present day. Leibniz
was an enthusiast for symbolism, and expected considerable
progress in science to result from the use of symbolism. He
wrote to L'Hépital on April 28, 1693 :

“I dare say that this is the last effort of the human mind,
(characteristica gemeralis), and, that when this project shall have
been carried out, all that men will have to do will be to be happy,
since they will have an instrument that will serve to exalt the
intellect, not less than the telescope serves to perfect their vision.” 7

1 Gino Loria : Storia delle Matematiche, Torino, 1929, p. 327 £.

3 Lona: !c., p.422.

3 Cf. David Eugene Smith: ‘' The First Great Commercial Arithmetic,”
Isis, vol. 8 (1), 1926, pp. 41-9.

¢ Cf Loria: lc., p. 434.

8 Cf. Loria: l.c., vol. 1.

¢ Cf. Florio Cajori: *‘Leibmz—The Master—Builder of Mathematical
Notation,” Isis, vol. 7, 1925, p 412.

‘7 Cf. Cajoni: Lc., pp. 417-18.
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In the same letter, Leibniz defined his general characteristic
as follows :

“One of the secrets of analysis consists in the characteristic,
that is, in the art of skillful employment of the available signs...”?

Holder writes as follows on the views of Leibniz concerning
natural numbers :

‘“ Leibniz does not say very clearly how he conceives number ;
nevertheless because he designates the numerical formuli :

2=1+41
3=241
4=3+41
as the definitions of thenumbers 2, 3, 4 . . ., it can well be supposed

that he wishes to regard number as the place sign (of the decimal
system of numbers ?) and that he denotes an advance of one
member in the series of place signs, as the addition of the
number 1.” 3

The conception of Leibniz was ingenious but contained one
weakness. The differential sign dx which he introduced concealed
the absurd concept of the infinitesimal which threatened to lead
to contradictions. During the eighteenth century criticism of this
concept was begun by D’Alembert and at the beginning of the
nineteenth century systematic work on its elimination from
mathematics was undertaken by Cauchy and Abel. The
discussion of these matters will be continued later. ¢

At this time, however, it need only be observed that this whole
discussion led to the realization that it is not possible to create
signs arbitrarily, because subsequent contradictions still remain
a possibility. Consequently in the course of the nineteenth
century there followed a return to the realistic conception of
natural numbers.

However, in the second half of this century natural and
psychological investigations on the one hand, and the failure of
efforts to reduce real numbers to natural numbers on the other
hand, prompted a reversion to the sign conception with natural
experience as the guarantee against contradictions.

Helmholtz wrote :

“1 regard arithmetic or the study of whole numbers as a
method based on purely psychological facts by means of which

1 Cf. Cajori: lec., p. 417.

2 Remark of the author.

3 QOtto Holder : Die mathematische methode, Berlin, 1924, p. 163.
¢ Cf. 8.3. 8.4. and 8.7
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is taught the correct use of a system of signs (namely of the
numbers) which can be extended and improved without limit.
In other words afithmetic investigates the different ways of
combining these signs . . . which lead to the same final result.” 1

I think that Helmholtz discovered the essence of arithmetic.

Frege in criticizing this passage, maintained that for Helmholtz
signs aquired a magic power. He thought that Helmholtz mixed
theory with practice and added that he never encountered a less
philosophic conception.?

Frege’s argument is of interest because it raises the question
whether an appeal to a psychic automatism is a species of magic.
However, it must be kept in mind that if this were the case
everything would be magic,because without such an automatism
no progress can be made. The objection, that in such a view
theory was mixed with its applications, is without foundation,
because propositions concerning the properties of expressions
are true or false in the same degree as are propositions concern-
ing the properties of numbers. Actually thoughts about the
numbers denoted by the signs belong to the realm of interpreta-
tion. However, Frege was right in so far as at the time when he
wrote it was not possible to reduce the propositions of arithmetic
to propositions concerning expressions.

Frege pointed out that E. Heine and J. Thomae formulated
very clearly the formalistic conception of arithmetic recently
developed by Hilbert. The difference between the views of Heine
and Thomae lay in the fact that Heine regarded numbers as
signs, while Thomae rejected as meaningless the problem : what
are numbers ?

Frege characterized Thomae’s position as follows :

“In arithmetic only the signs of numbers are necessary ; but
these signs are not treated as such, but as forms. The rules in
accordance with which these forms are employed are also
necessary. We do not learn these rules from the meanings of the
signs but posit them on our own authority, reserving the right
and acknowledging no need to justify them, although at the
time when we exercise this freedom, we keep an eye on possible
applications because without applications arithmetic would be
a game and nothing more.” 3

1 Hermann von Helmholtz: ‘‘ Zahlen und Messen erkenntnistheoretisch
betrachtet,” Philosophische Aufsdtze, Eduard Zeller zu sevnem 50-jéhy. Doktor-
jub. gewrdmet, cited by Gottlob Frege : Grundgesetze der Anithmetik, Bd. 1,
1903, Jena, pp. 139-140.

¢ Frege: lLc, Bd. ii, p. 140.

3 Frege: l.c. p. 102.
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This position was undoubtedly motivated by the obvious
observation that only propositions concerning signs, at least
those formulated in writing, can be completely determined.

If an appeal is made to the counting of pebbles or nuts, or the
measurement of segments, it is no longer true that operations
are being confined to that which can be formulated. In the first
case the reader must have had certain experiences which can be
pointed to only in a general way. In the second case wholly
fictional objects are being employed.

However, it is true that arithmetic must be constructed with a
view to its subsequent application to the measurement of
segments.

Because signs can be counted the arithmetic of natural
numbers can be constructed without appealing to pebbles or
apples. However, the situation is different in the case of
measurement. A science about real numbers can be constructed
which requires only two fundamental concepts, the concept of a
sign and the concept of a class.! However, in making this
construction the properties of segments must be analysed in
terms of these concepts. This means that segments are not
discussed but rather relations between signs (natural numbers)
are constructed in such a way that they imitate certain proper-
ties of segments, namely the properties involved in making
geometrical measurements.

The study of real numbers should therefore be preceded by
the study of geometrical measurement. This study leads to the
semantical conception of number and to familiarity with the
fact that no mysterious existences are employed in mathematics.
The weakness of this theory lies in the fact that segments are
mysterious existences. However, the role of segments is
provisional and when the fundamental concepts of arithmetic
have been established, the segments will be eliminated. Later
such a segment-theory of real numbers will be introduced.?

5. The belief in the primacy of natural members which was
inherited from the Pythagoreans continued to be very influential
during the nineteenth century and has persisted to' some extent
to the present day. Max Black writes :

“ Weierstrass had tried to demonstrate that all mathematical
entities could be developed as constructions of natural numbers ;

1 Richard Dedekind employs the terms symbol and system. Cf. “ The
Nature and Meaning of Numbers,”” Essays on the Theory of Numbers, translated
by Wooster Woodruff Beman, Chicago, 1901, pp. 44-5.

3 Cf 386.
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Kronecker went further and declared that only the natural
numbers were ‘real’ and that all mathematical results must
actually be results about the natural numbers. Thus not only
were irrational numbers, fractions, and complex numbers never
to occur in mathematics, but even negative numbers were taboo.
As Kronecker himself said in a striking sentence, which will
perhaps bear repetition once more, ‘ God made the natural
numbers ; all the rest is man’s handiwork ’.”’ 1

The famous French mathematician Henri Poincaré was an
ardent advocate of the theory of the primacy of natural numbers
but did not ascribe independent existence to them. Poincaré
thought that the concept of natural number cannot be reduced
to still simpler concepts because no proposition can be con-
structed without tacitly employing the concepts one and two.
He derided those logicians who attempted to construct the
concept of the number 1. The following passage will give the
reader an idea of Poincare’s polemics on this subject :

“I hasten to add, that the definition M. Couturat gives of
the number 1 is more satisfactory.

““One, says he, in substance, is the number of elements in a
class in which any two elements are identical.

. “It is more satisfactory, I have said, in this sense that to
define 1, he does not use the word one; in compensation, he uses
the word fwo. But I fear, if asked what is fwo, M. Couturat
would have to use the word one.” 2

These arguments are based upon a misunderstanding. It does
not follow from the fact that the number 2 can easily be
interpreted intuitively, that it is a different kind of object than
for example 10 It is clear that such objects as 10'° must be
defined because they correspond to nothing in immediate
experience. The concept of the number 2 and the concept of the
number 10!° must therefore be constructed in the same way.
Even if it were necessary to employ an intuitive concept of two
in such a construction there would be no vicious circle. Actually
it is unnecessary to employ such a concept because the sym-
bolical method places adequate means at our disposal.

Despite the marked tendencies and often even uncomfort-
able narrowness of his ideas, Poincaré’s discussion with the

1 Max Black. The Nature of Mathematics, New York, 1934, p. 175.
2 Henry Poincaré : Foundations of Science, translated by George B. Halsted,
New York, 1929, p. 458. (Italics inserted by the author.)
1
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logisticians yielded many valuable results. Among the most
interesting is his explicit emphasis upon the extensiveness of
applications of the principle of complete or mathematical in-
duction.

The traditional form of the principle can be formulated as
follows :

If 1 has some property and if this property is transitive, every
whole number has this property.

In this connection by a fransitive property is meant one which
the number # 41 has, if the number # has it.

For example the property of being greater than a certain
number is such a property.

The understanding of this principle will be facilitated by its
application to the following interesting formula :

n
The symbol == " 2 denotes the sum of the squares of the
1 =1

natural numbers from 1 to # inclusive, i.e. it denotes

12 224324 .. +n2
The proof of this formula requires that it be verified first for
# = 1. On the one hand

1
> 1?=1
i=1
On the other hand : 2-i63—+—} = 1. Itisnow clear that the
formula is valid for n = 1.
Let it now be supposed that the formula is valid for some
natural number p, where the choice of p is entirely arbitrary.
In other words let it be supposed that

L a_zpie3piap

i =1 b
Under this condition it can be shown that the formula is
valid for p 4+ 1. In the first place in conformity with the

P
definition of the symbol => — 7%
t =1

p+1 ?
; . 1,"2=S' 24 (p 4+ 12
1 =1 1 =1
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The equality
p+1
2“=zz>3+3z>2+z> + (p + 1)
1= 6

=206 +1°+36 +1* + (6 +1)
6

follows from the supposition which has been made.
On the other hand if (p + 1) is substituted for # in the
expression

z2nd43n?+4mn,
6
20+ 1+ 30+ 1)+ (P +1)
6

is obtained.

The given formula is therefore transitive with respect to #.
On the basis of the principle of induction it can be inferred,
that the formula is true for any natural number.

The nature of this reasoning will not be discussed. The
rea,sonmg is altogether convmcmg here but it is not so con-
vincing when the principle is applied to theorems which can-
not be stated as formula.

Let it be supposed that the proof of the following theorem
is desired :

If the side of a triangle is divided into (# 4 1) equal parts
and from each point of division a line is drawn parallel to the
second side, the third side will also be divided into (# + 1)
equal parts.

Here not a formula but a proposition which is expressed in
words is to be proved. It is to this proposition, which will be
denoted by the symbol ¢ (), where » is the letter occurring
in the proposition, that the principle of induction will be
applied.

The first step in proving this proposition is to verify it for
the simplest case, i.e. where the third side is divided into two
equal parts. It is clear that in this case » must be taken equal
to the number 1. The theorem :

$ (1)
will be obtained from brief considerations on the congruence
of the auxiliary triangles.

To demonstrate the transitivity of the condition ¢ (x) let
it be supposed thata certain natural number p, chosen
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arbitrarily, satisfies the condition, i.e. that ¢ (p) has been
established.

The theorem ¢ (p + 1) follows from the supposition and a
geometrical construction similar to the preceding one.

It therefore follows that the theorem :

$ (n)
is valid where # is any natural number.

I have not the slightest doubt concerning this proof, but
because it does not conform to the principles of sound reason
I would not undertake to explain it to a layman in such a way
that he would really understand it. The proof concerns a
propositional function, ie. an expression which contains the
letter » and which becomes a proposition if a number is
substituted for this letter. But the discussion of literal
expressions requires the use of every-day language with all its
ambiguities. I do not doubt that on the basis of the illustrations
of formulae, pupils willingly believe the teacher when he says
that no paradoxes are possible concerning mathematical
propositions. But this same pupil will not be too pleased to
learn suddenly that he must study grammar as well as mathe-
matics, since at present neither mathematical formulae, nor
geometrical constructions are sufficient. If errors are to be
avoided the material of investigation must be extended to
include certain propositions which as a matter of fact are
formulated correctly from the point of view of grammar. But
to avoid misunderstandings I explicitly remark that I am not
referring to the mere use of propositions. Even in elementary
arithmetic propositions are necessary. But the means and
the material of investigation differ there. Here a proposition
is not only the means but at the same time the object of
investigation and this is surely an invasion of the domain of
grammar.

The subconscious desire to avoid this unpleasant consequence
leads to the tendency to substitute for propositions such
symbols as ¢ (#) which was given above. But it is clear that
nothing is gained thereby. On the contrary the reader is likely
to have new doubts concerning the introduction of a symbol
which is unknown to him and the notion of a propositional
function which is even less familiar to him. Special training
seems necessary but it is well known that suitable training can
make us agree to even malicious nonsense.

The situation of classical mathematics is indeed disagreeable.
Mathematicians can disdainfullysmile at their critics and retain
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their conviction that no errors result from this state of affairs.
But this is small comfort. Mathematicians deride the physicists
because they employ simple calculations, but the physicists
laugh at the mathematicians because their simple calculations
lead them to discoveries which transform the surface of the
earth, while the precise demonstrations of the mathematicians
are not of much use for this purpose.

Later such primitive induction will be employed in the hope
that in the discussion of certain material the reader will agree
to accept it as an auxiliary means employed for purposes of
orientation. The moment the analysis of the complete system
of logic and mathematics is undertaken, it will be seen that
all these difficulties can bé completely removed. In fact with
the introduction of the symbolic language of rational semantics,
the principle of complete induction can be formulated much
more generally and in such a way that it does not differ
intrinsically from the other rules of demonstration.

Poincaré interpreted the principle of induction falsely. He
wrote :

‘... This rule, inaccessible to analytic demonstration and to
experience, is the veritable type of the synthetic a prior? judgment.
On the other hand, we cannot think of seeing in it a convention,
as in some of the postulates of geometry.

“ Why then does this judgment force itself upon us with an
irresistible evidence. It is because it is only the affirmation of
the power of the mind which knows itself capable of conceiving
the indefinite repetition of the same act when once this act is
possible . . .’

Poincaré did not take into account the fact that strictly
speaking no logical rule is an analytic proposition because each
rule introduces something essentially new. He also neglected
the fact that no rule can be proved and that no rule can be
regarded as a convention.

The reason for his misunderstanding lay in the fact that he
regarded the natural numbers as the only true objects of
mathematical analysis.

The famous German mathematician, Professor Hilbert, also
succumbed to the lure of whole numbers.? In his system whole
numbers have an exceptional role, although it is acknowledged

! Poincaré: l.c., p 39.

2 Cf. David Hilbert: “Uber die Grundlagen der Logik und der Arith-
metik,” Verhandlungen des III Internationalen Mathematiker—Kongresses,
Heidelberg, 1904, pp 174-185, reprinted in Grundlagen der Geometrie, 7. Aufl.
Berlmn, 1930, pp. 247-261.
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that they are expressions. But for Hilbert numbers were also
the basis of the intuitive method with whose aid he sought to
prove the consistency of his system. This proof is conceived
in such a way as to rely upon those finitistic reasonings which
are necessary to verify a formula which contains the separate
whole numbers. Actually it depends upon the application of
complete induction, as Poincaré rightly observed.?

6. A schoolboy can understand the four operations on whole
numbers. He also can understand the reduction of fractions
to a common denominator. But the moment he comes to the
multiplication of fractions he is blocked and very often can
make no progress. Clever schoolboys become convinced that
if the teacher says that fractions are to be multiplied by
multiplying the numerator by the numerator and the
denominator by the denominator, this is the custom and it is
necessary to submit to this fate. But schoolboys who are not
acute feel instinctively that the teacher is being inconsistent,
because up to now he has explained all the operations by using
pebbles and apples but he is not explaining multiplication in
this way.

Poincaré advised lectures on the theory of proportions first,
and thought it desirable to appeal to geometric images.2 But
it is clear that all this is not of much use. Even if this were
done no one would ever understand why multiplication of the
numerator by the numerator and the denominator by the
denominator should be the method of multiplying fractions.

Professor Zaremba defined operations on fractions by appeal-
ing to the measurement of segments and thus removed this
difficulty.® It will be shown that if a sufficient number of
illustrations is given, an arithmetic which is based upon the
measurement of segments can be constructed in such a way
that it becomes a collection of trivial rules which are in-
telligible to every one. I regard the segment-method as the
only sensible method which can be employed which does not
require the semantical calculus. Even when this calculus is
employed the segment-method retains its value as an auxiliary
system for purposes of orientation. All other attempts to
develop arithmetic are either fragmentary and therefore
not entirely clear, or are based upon certain metaphysical

! Poincaré : l.c, pp. 465-7.

? Poincaré : l.c., pp. 441-2.

3 Cf. S. Zaremba : Wstep do analizy, Cz@éé I1 (Introduction to Analysis,
part 1), Warszawa, 1918 (hectographed), p. 2
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suppositions which contradict the principles of sound reason.
The first 6bjection applies to the axiomatic method which was
employed by Peano and Hilbert, the second to such systems
as the system of Whitehead and Russell and even to my
theory of constructive types,® in which it is necessary to
presuppose the existence of infinitely many objects without
giving an example of even one of them.

Professor Zaremba accepts the theory of natural numbers
as something already completed.  This supposition is$
unnecessary because the moment an intuitive idea of segments
and their subdivision into parts is accepted, it is possible to
construct the theory of natural numbers. It is necessary only
to decide to regard natural numbers as expressions and to
agree that there are no such individuals as the number 1, the
number 2, etc.

The expressions : 1, 2, 3, 4, . . . which belong to the decimal
system of natural numbers will be called natural numbers.

The class of expressions of the decimal system is precisely
determined in the popular sense of this word. There is some
reason to believe that in every case in which such expressions
are employed, it can be shown that they really belong to the
decimal system. There is no need to be concerned with ex-
pressions which are written indistinctly or which are too long.
Consequently they will not be considered.

Let it be supposed that the usual segments which are known
from geometry can be employed and that the method of
comparing them and of constructing new segments by com-
bining them, are known.

If it is supposed that the method of constructing a segment
n times as long as a given segment E, is known, the resultant
segment will be denoted by the symbol (» E). In particular
the segment (1 E) is simply the segment E. If » and # are two
whole numbers such that in the decimal system s appears
immediately before #, the segment (z E) is obtained by adding
the segment E to the segment (m E).

The comparison of natural numbers reduces to the com-
parison of relative segments. For example :

m > n
means that the segment (m E) is longer than the segment
(n E) for any E.

The addition of natural numbers reduces to the construction
of relative segments.

T.C.T, T.C.T,ii.
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The expression (m + %) is a number equal to the natural
number which is obtained by measuring with the help of
segment E the segment constructed by subtracting the segment
(m E) from the segment (n E).

Multiplication is obtained if it is observed that the segment
(e E) can in its turn be employed as a unit of measure. This
observation permits such segments as (8 (a E)) to be obtained.
For example the segment (3 (5 E)) is obtained as follows : first
a segment five times as long as E is constructed and then a
segment three times as long as the new segment. It is clear
that the latter segment is equal to the segment (15 E).

The product a.f can therefore be regarded as the number
obtained by measuring the segment (8 (a E)) by means of the
segment E.

The same method permits the calculation of differences and
quotients with little effort.

Dr. Nikodym does not regard sums, differences, products,
and quotients as numbers, but as certain expressions whose
values are numbers.! In practice this distinction makes no
difference but in theory it becomes necessary to distinguish
between numbers and the results of operations as well. The
latter distinction might lead to the illusion that numbers have
ideal existence.

The theory of rational numbers is a natural extension of this

a

B

theory of natural numbers. If o and B are natural numbers

is said to be a rational number.
The following additional rule is accepted :

If E is a segment and a and B are natural numbers, then (gE )

B
is a segment obtained as follows :
First the segment I is marked off in such a way that the
segment (B 1) is equal to the segment E. Then the segment

(aI) is constructed. The expression (%—E ) denotes the segment

(e I). The definitions which have been given for natural
numbers apply without change to rational numbers except
that the quotients of any two rational numbers can be con-
structed.

L Cf. Otto Nikodym : Dydaktyka matematyki czystey (The Teaching of Pure
Mathematics), Warszawa, 1930, p. 84.
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The rules governing operations are derived from those which
have previously been given and no other rules are required.
Without discussing the general theory the building up of

]

1.5 will now be considered.

N

The problem reduces to the construction of the segment

(2(%)) with the help of the rules which have been given.

First it must be confirmed that this segment is equal to the

E

segment ( 55(—)(%0 —) ) - It is necessary to divide the segment E
into six equal parts and to take ten such parts. The division
of the segment so obtained (—169 E) into ten equal parts yields
the segment (%E) If five of these parts are taken, the result
is (% E) In this way the equality

I.s_3

2 3 b
is obtained.

Thus the method of Professor Zaremba solves the annoying
problem of the multiplication of fractions in a very simple
fashion.

The concept of irrational numbers will be explained with the
help of the following example :

The problem is to measure the hypotenuse B 4 of the isosceles
triangle A4 O B by means of theleg O 4. If the relative measure
is to be denoted by x,

AB = (x0 4).

If a right isosceles triangle is constructed in such a way that
A B is one of the legs and if the hypotenuse is
denoted by 4 C,

AC = (x4 B)

Consequently A C = (x (x O 4))

B On the other hand
AC=204

If then the rule of multiplication which has
0 "q been accepted is to be applied to this example,

Fie.2. it must be agreed that

x?=2
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A new sign 4/2, which will be regarded as a number, will
therefore be accepted and the relation between this number
and the rational numbers is fixed by the equation :(4/2)? = 2.

The construction given makes it certain that this number
differs from all the rationals.

Operations on irrational numbers are obtained by applying
automatically the rules established for rational numbers.

Clearly there is no important difference between rational and
irrational numbers. Each is a certain kind of sign which is
employed in measuring segments. The only difference between
them lies in the fact that there is no general construction rule
for irrational numbers.

A construction with ruler and compass cannot be made in
all cases. Large aggregates of segments, for example the
segment equal to the circumference of a circle, cannot be
marked off in this way. But there is no reason to allow only
constructions made with ruler and compass. If, for example,
a piece of string is superimposed on the circumference of a
circle and the string unfolded, from the physical point of view
this construction is equally as good as a construction made
with ruler and compass. In each case different rules are
required and a system of rules covering all cases cannot be
given.

Dedekind attempted to dispose of the matter by accepting
the axiom of continuity.

Let the following construction rule for the segments An Bn

be posited :

1. To any natural number, 1, 2, 3, 4, ... corresponds a
segment
A,B,,A,B, A;B,, A B, ...
2. Each subsequent segment is contained within the pre-
ceding one.

3. Among the segments An Bn may be found one which is

smaller than any of the previous segments.

In conformity with the axiom of continuity the segments
will have one and only one common point M which will be
called the common Lmit of the points An and Bn

1 Cf. Ruichard Dedekind: ‘ Continuity and Irrational Numbers,” Essays
on the Theory of Numbers, l.c., p. 11.
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If numbers are co-ord- Az A; M By B
inated with the points S S VA —
An and B in such a way A, B,
that to the point An there F16. 3.

will always correspond a number less than the number corre-
sponding to the point Bn’ and if to the point M a certain

real number is assigned, the latter number is the upper limit of the
numbers co-ordinated with the points An and at the same time is

the Jower limit of the numbers co-ordinated with the points Bn'

Generally speaking the upper limit of the numbers satisfying
a certain condition is the smallest number which is greater
than the numbers determined by this condition.

If among the given numbers there is a greatest, it is said to
be their upper limit.

Analogous definitions can be given for the lower limit.

For example 4/2 is the upper limit of the rational numbers
whose squares are less than 2 and at the same time is the lower
limit of the rational numbers whose squares are greater than 2.
The number 7 is the upper limit of the semi-circumferences of
the polygons inscribed in a circle of radius 1, and is also the
lower limit of the semi-circumferences of the polygons circum-
scribed about this circle.

The method of Dedekind is seen to be very general. However,
a certain rule which governs the construction of the numbers
must be presented. The sole question to be discussed concerns
the methods of constructing such rules. Only the science of
semantics can lead to the answer to this question.

The concept of the upper limit is sufficient to understand
the foundations of the infinitesimal calculus. However, funda-
mental questions concerning the exiraction of roots and other
methods of approximating the real numbers must be discussed.
These methods lead students to feel that 4/2 and # are
unknowns of a certain kind whose approximation is sought,
but which cannot be accurately determined. This state of
affairs results in a complete confusion of concepts and the
illusion that the attainment of infinity is desired. Actually
4/2 is equally as good a sign as 2 and its approximation depends
upon the setting up of certain inequalities.

The number 0 can be defined as a point. But an intuitive
basis for the definition of operations on 0 cannot be obtained
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in this way. These operations must have a conventional
character because it is impossible to talk about measuring
a point by means of a segment or about measuring a segment
by means of a point. It is accepted as a convention that :

(* 4+ 0) = x and
(#.0)=0.

Division by 0 is rejected and fractions are defined in such a
way that they cannot have 0 as their denominator, ie. the

symbols (x :0) and g are held to be meaningless.

There is a group of philosophers who on the basis of onto-
logical categories, would like to do away with this restriction.
This can be done without any difficulty. In the system of

Whitehead and Russell for example g is the null class. Never-

theless this restriction cannot be eliminated if only the
elementary concepts of geometry and arithmetic are accepted.
Without a prior theory of classes attempts of this kind are
of no advantage and are unnecessary. Furthermore they
contribute to the creation of the illusion that mathematics
can be constructed without regard to the concept of an
expression and in particular without regard to the concept of
meaningless expressions. It should immediately be noted that
all attempts to construct a system of mathematics without
regard to these concepts cannot succeed. There is to-day no
system of expressions in which every expression has a deter-
minate meaning and it is vain to hope to have such a system.
Moreover why should such a system be sought? Such an
attempt may gratify the desires of metaphysicians of the type
of Plato, but runs counter to the fact that the concepts to be
considered are not themselves clearly defined. Consequently
they have no clear meaning and can only obtain such through
man’s intervention.

The transformation of segment-arithmetic into algebra
requires only the substitution of the concept of a vector parallel
to an arbitrarily chosen straight line for the concept of a
segment.

If this substitution is made 1 is denoted by a certain vector
7,—1I by the vector which has the same length but the opposite
direction. The relation between two vectors which have the
same direction is expressed by a positive number ; the relation
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between two vectors with opposite directions is expressed by
a negative number.

The addition and subtraction of numbers reduces to the
corresponding operations on vectors; multiplication is per-
formed by applying the rule given for segments to vectors.
This rule enables one to prove with ease that (— 3. — 5) = 15.
Consequently this result which was always regarded by
students as artificial and strained is presented as a natural
phenomenon.

If any vector j is selected, a vector a equal to the vector
(— 3 j) can be constructed by applying the given rules. It is
three times as long as j but has the opposite direction. If the
vector « is taken to be the unit, the vector & which is equal to
the vector (— 5 a) can be constructed. It is five times as long
as a but has the opposite direction. It follows from what has
been said that the vector & is fifteen times as long as the vector j
and has the same direction. Thus the vector 4 has been shown
to be equal to the vector (15 j).

It follows from the definition which has been given that
(=3. —35) =15

8. The discovery of the fact that entirely sufficient con-
struction rules cannot be given for real numbers is due to
Jules Richard. Richard formulated his conception as follows :

“Let us consider everything which we can write down if we
write only » letters. Inasmuch as there are twenty-six letters
in the French alphabet, if we write down # letters, this is an
n-uple arrangement of these twenty-six letters, provided that the
same letter can be repeated. The number of these arrangements,
is, as is proved in combinatory analysis, twenty-six raised to the
nth power. All these arrangements can be enumerated. It is
necessary only to order them alphabetically. Let us take the
double arrangements first, then the triple arrangements, then
the quadruple...and then the #u-uple arrangements...,
ordering them in every case ; in this ordered sequence, any #-uple
arrangement will occupy a certain place however great » may be.
The majority of these arrangements will not even form words.
Let us erase them. Let us also erase those which form a meaning-
less collection of words. The remaining arrangements will form
meaningful propositions...” 1

If among these propositions all the propositions which do
not define real numbers less than 1, are removed, a sequence

! Jules Richard: Sur la philosophie des mathématiques, Paris, 1903,
pp. 107-8.
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of propositions which define the real numbers less than 1 will
remain.

When such a sequence is given, a new real number which is
not defined by any of the propositions in this sequence, can
be defined by employing the so-called diagonal method of
Cantor. If the number defined by the nth proposition of the
sequence has the figure % in the nth place, where % is different
from g, the new number will have %2 + 1 in the nth decimal
place. If the number defined by the nth proposition has the
figure 9 in nth place, the new number will have the figure 0
in the nth place.

If it is assumed that this last proposition is found in the
sequence, the so-called paradox of Richard immediately results.?
Richard recognized such an assumption as inadmissible because
it involves a vicious circle. Actually if the above construction
is to have meaning it must be supposed that the sequence of
propositions is determined and consequently this sequence
cannot be a member of the sequence itself. It is difficult to
remove this contradiction from every-day language. Poincaré’s
own definition of the concept of predicative propositions, i.e.
those which do not refer to themselves, was itself criticized
as not being predicative.2 However, this difficulty can be
removed if a suitably constructed language is employed.

From this state of affairs Jules Tannery inferred that there
must exist real numbers which cannot be defined in a finite
number of words.? Such a conclusion is clearly metaphysical.
It presupposes the ideal existence of numbers only some of
which can be known. If such an assumption is accepted the
conception of a mathematics based upon sound reason must
be abandoned.

Henri Poincaré, the greatest mathematician of that time,
came out immediately against such a concept of mathematics
with great vehemence.

He very positively asserted that real numbers do not form
a determined class and that it is meaningless to speak of all
real numbers. In the spring of 19og I heard him deliver a
lecture at Gottingen, in which he expressed his point of view
very emphatically although in bad German. The youthful and

1 Jules Richard : ‘“ Les principes des mathématiques et le probléme des
ensembles,” Revue générale des sciences puves et appliquées, vol. 16, 1905,
pp. 541-3. Cf. Henri Poincaré : l.c., p. 480.

2 Cf. Pomncaré: l.c., p. 481. Emst Zermelo - “ Neuer Beweis fur die
Moglichkeit einer Wohlordnung,” Mathematische Annalen, Bd. 65, 1908, p. 117,

8 Ruchard : Sur la philosophie des mathématiques, l.c., p. 113.
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brilliant Hermann Weyl, an acknowledged disciple of Hilbert,
was present at this lecture. Undoubtedly it influenced his
conception of real numbers.

Poincaré’s words made a strong impression upon me. A few
years after that Gottingen experience, I plucked up enough
courage to come out openly against those who accepted numbers
not definable in a finite number of words. I considered the
system of Whitehead and Russell, but recently published at
that time, as contradictory only because it permitted a proof
of the existence of the universal class of real numbers.? This
view was unquestionably too radical. The system of White-
head and Russell contains no contradiction. Similarly there
should be no fear that the supposition of the existence of the
universal class of real numbers might lead to contradiction.
Not until later did I understand that the situation here is
comparable to the story of the guardian angel and the devil.
No contradiction develops from Russell’s assumption because
the guardian angel prevents its occurrence. The occurrence
of a contradiction would be due to the fact that the devil has
gained the upper hand. If thisis kept in mind no contradiction
will ever occur. In any case contradiction is not concerned
here. What is involved is that a system of mathematics which
assumes the existence of no non-constructive objects be
developed.? I have been concerned with this problem over a
period of years, as have W. Hetper and J. Herzberg. Later the
reader will be able to judge whether we have succeeded in
solving it.

As mathematics developed these matters were neglected.
The great majority of mathematicians became reconciled to
non-constructive numbers. While an imposing series of results
was obtained on the basis of this hypothesis, the presence
of metaphysical speculations remained a fundamental
flaw.

If it is asked whether the development of mathematics in
this way was of any value, without hesitation my answer would
be in the affirmative. There is always time for the reconstruc-
tion of foundations and for criticism. If it were desired to
analyse every detail and to depend only upon oneself, no
progress would ever be made. However, provisional results
should not be overrated, and it should be recognized that in
time they must be precisely and systematically formulated,
and be subjected to thorough criticism,

! Cf.my article, Z.S., pp. 316 . 2 Cf. Richard . lc., p. 111.



8o THE LIMITS OF SCIENCE

There is no general concept of real numbers and there never
will be one. It is a waste of time to discuss this fact. But it
by no means follows that a pattern for the creation of real
numbers cannot be given and that it will always be necessary
to employ intuition. It will be seen later that it is possible
to construct patterns which can be applied automatically to
the construction of higher and higher types of real numbers
by means of operations previously defined. In turn the theory
of these patterns can be included in a pattern. It will also be
seen that this method leads to a system of mathematics which
is as rich as the system based upon the supposition that the
class of real numbers exists. The transition from these patterns
to the universal class of real numbers will always prove to be
possible provided that it is assumed that there exist certain
expressions which are not constructible in this system.

If this method of formalization is employed, obviously a
conception of mathematics contradictory to that of Poincaré
results.

Poincaré was impressed by the Kantian idea of synthetic
apriori judgments and believed that mathematical intuition
can never be included in a pattern. Consequently he stubbornly
opposed constructions which are based upon the use of logical
symbolism. But he did not indicate how to treat the founda-
tions of modern mathematics and he was forced to reject the
whole theory of classes of Cantor. He ignored the fruitfulness
of this imposing structure merely because of his unsubstantiated
fear that contradiction would result.

The Dutch mathematician Brouwer made an attempt to
construct the foundations of mathematics entirely on the basis
of Poincaré’s doctrine.

Confining himself only to time, Brouwer created the con-
ception of neo-intuitionism which does not deal with a space
separated from the time of Lobaczewski. In his inaugural
address at the University of Amsterdam in 1912, Brouwer
held that :

‘ This neo-intuitionism considers the falling apart of moments
of life into qualitatively different parts, to be reunited only while
remaining separated by time, as the fundamental phenomenon of
the human intellect, passing by abstracting from its emotional
content into the fundamental phenomenon of mathematical
thinking, the intuition of the bare two-oneness.’”?

1 Cf. Max Black. lc., p. 189. This book contains an accurate summary of
Brouwer’s views. .
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Thus Brouwer begins with metaphysics and can never
extricate himself from it.

In particular I am referring here to his conception of real
numbers. Real numbers are the members of infinite sequences
of the integers o, I, ..., 9. In infinite sequences of integers
chosen at random, the sequences can be regarded as con-
structed by successive arbitrary choices, each of which is com-
pletely independent of the previous choices.! The method
of extracting square roots, which is taught at school, is the
height of precision in comparison with this conception. Cantor’s
ideal class of all real numbers seems clear and crystallized in
comparison with the chaos which characterizes Brouwer’s
obscure ideas. Yet, in the name of clearness of concepts,
Brouwer undertook a critique of the foundations of the
elementary logical calculus. He substituted for the banal
rules derived from daily life, a fantastic logic in which in-
different as well as true and false propositions appear. I will
have occasion to discuss Brouwer’'s views later. Here I only
wish to remark that despite the defects which have been
mentioned they were not wholly fruitless because they greatly
contributed to the rise of that new science called meta-
mathematics, which proved to be very fruitful.

Weyl's metaphysical way of thinking is even more marked
than that of Brouwer. Yet his conception of real numbers is
very similar to the one at which I will arrive later. Weyl
maintains that real numbers can be obtained only by creating
a hierarchy of constructive rules. He considers absurd the
view that the continuum or the class of real numbers is some-
thing completed.2 Weyl’s conception seems very important
to me because he differs from the mathematicians who do not
wish to consider the limitations of their views but prefer to
abandon their goal, the consistent construction of the founda-
tions of arithmetic. Yet Weyl’s constructive method is not so
precise that it can effectively oppose this view of the mathe-
maticians. If some sacrifice is to be made, something must
be obtained in exchange. Either free construction of numbers
or a formal system whose rules are not ambiguous is necessary.
My system which was based upon the theory of constructive
types 8 and which permits the reconstruction of all classical

1 Cf. Black* lc., p 203.

¢ Cf. Hermann Weyl - * Uber die neue Grundlagenkrise in der Mathematik,”
Mathematische Zestschrift, Bd. 10, 1921, pp. 39-79.

$ST.C.T.,T.C. T, il
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mathematics ? satisfies the latter condition. But this system
is not completely satisfactory, because it requires an unlimited
number of verbal definitions and does not permit the proof
of the theorem that there exist infinitely many natural numbers
to be obtained. The system of rational metamathematics,
which will be introduced later, removes these difficulties.

1Cf. M. L.



CHAPTER IV
THE ELEMENTARY CONCEPTS OF SEMANTICS

1. Systematic investigations concerning the structural
properties of mathematical expressions were initiated by
Hilbert. He wrote :

“ Mathematics like all other sciences cannot be established
by means of logic alone : rather, something is already given us
in the imagination as a condition preliminary to the use of logical
inference and the application of logical operations ; prior to all
thought there are certain extra-logical concrete objects which
are present intuitively as immediate experience. In order that
a logical inference may be certain, these objects must be com-
pletely surveyed in all their parts and their mode of production,
their differences, their succession or their juxtaposition with the
objects is at the same time given directly and intuitively as
something, which cannot be reduced to anything else, or as
something, which requires no such reduction ...”1

Later he adds:

*“ And in particular, in mathematics, the concrete signs them-
selves whose form is immediately clear and recognizable, are,
as a consequence of our arrangement the object of our considera-
tion.” 2

With this in mind, Hilbert supplemented the axioms of logic
by purely mathematical axioms and regarded both types of
axioms as simple juxtapositions of signs. His only concern
was to show that the theorem : I = oisnot one of the theorems
which can be obtained from these axioms by applying purely
formal rules of procedure.

To show this, the structure of mathematical expressions
obviously had to be analysed. In particular such questions
as the following had to be examined : what expression will
be obtained if the expression G is substituted for the expression
F in a given expression E ? Hilbert gave no systematic con-
struction rules for expressions; he was satisfied with general

1 David Hilbert: ‘ Die Grundlagen der Mathematik,”” Abhandlungen des
mathemabischen Seminars zu Hamburg, Bd. 6, 1928, p. 65, reprinted as ** Anhang
IX ” in Grundlagen der Geometrie, Leipzig and Berlin, 7 Aufl, 1930,

Pp. 289-290.
1 7¢., p. 290.

83
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hints, which, however, his fellow-workers (Bernays, Ackermann,
von Neumann) later made more precise. These intuitive con-
siderations with regard to the construction of expressions,
which at every step involve induction either openly or in a
concealed form, were only apparently simpler than the problems
of mathematics itself. Actually some new science, at least as
profound and with as far reaching consequences as mathe-
matics, was required.

I resolved to formalize this science. At first I based it upon
two fundamental concepts, the concept of the ordered juxta-
position of two expressions and the concept of substitution,
(E F G H), which is to be read:

H is the vesult of the substitution of G for F in E.1
Later the concept of the juxtaposition of expressions proved
to be derivable from the pattern, (E F G H).? Mr. Hetper
later showed that the concept of substitution, i.e. the pattern,
(E F G H) can be reduced to an even simpler pattern { E F },
which is to be read :

The expression F is contained in the expression E.3

These investigations immediately led to the construction
of a system of elementary semantics, i.e. the science of
expressions. Later it appeared that mathematics and meta-
mathematics can be constructed with the help of this system.
The axioms of elementary semantics are, as will be seen, the
usual rules for operating upon expressions, symbolically
formulated. Consequently they can be regarded as the most
elementary and natural statements which can be constructed.

The intuitive semantics, upon which Hilbert and his school
rely in their investigations, raises many questions requiring
further consideration. A number of judgments varying in
clarity and precision can be made concerning expressions.
The questions which arise, because letters are not written with
sufficient clarity, have already been pointed out. At every
step questions of this kind may be raised. For example it may
be asked whether given copies of the letter 4 are alike or whether
they differ. Because there are no two identical copies of the
letter a, serious difficulties may be encountered at the very
beginning. To talk about the class of letters 4 rather than
about the letter «, as some people wish to do, does not remove

1 N.G.L. M., p. 704.

2 N.G.L. .M, u,p. 527.

8 Cf. W. Hetper: ‘ Podstawy semantyki*’ (* The Foundations of Seman-
tics ), Wradomoscr Matematyczne, t 43, Warszawa, 1936, pp. 57-86.
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the difficulty because, while one can deal with separate copies
of the letter a, the class of letters 4 is a confused and unclear
concept, since & cannot always be distinguished from o or 4.

It follows from the discussion between Professor Bernays
and Mr. Miiller,! concerning the Hilbert conception of
expressions, that the use of an intuitive approach in reflections
upon expressions can lead to such complicated results, that
instead of producing simplicity and clarity, a hopeless chaos
seems to be characteristic of investigations concerning the
form and individuality of signs. This discussion teaches that
even with regard to the simplest objects one cannot say with
impunity anything which enters one’s mind. It is necessary
to confine omeself to purely practical statements concerning
the problem of the construction of expressions from given
elements. Only thus can the clarity and simplicity sought
be obtained.

During his sojourn in Cracow, Professor Zermelo remarked
to me that expressions are much more complicated structures
than numbers or classes and that many serious questions may
be raised in connection with them. I answered that this would
undoubtedly be so, if one wished to enter upon metaphysical
investigations. But if one confines oneself to constructing new
expressions by applying previously given rules to given
expressions, doubt is simply pedantry.

It should be added that the use of signs in no way depends
upon one’s concept of reality. It makes no difference whether
signs are regarded as things, collections of atoms, or expressions.
Since visions are one type of signs, the latter might be regarded
as ideal existences. A vision and a cult connected with it
can be associated with signs as well as with concepts. If one
has investigated the individual properties of signs, one can
even come to believe in the existence of signs which cannot
be written. In any case it is possible to talk about expressions
which cannot be constructed with the help of a given system
of signs and rules. However, it must be kept in mind that in
so doing one oversteps the bounds of sound reason. It is
possible to talk significantly only about specified signs or
about words which can be constructed from them by applying
given rules. The concept of a sign as such is very confused
and vague. Everything can be regarded as a sign, but no thing

1 Cf. Paul Bernays * ‘* Erwiderung au ' die Note von Herrn Aloys Muiller :
‘ Uber Zahlen als Zeichen,”” Mathematq' iche Annalen, BAd 90, Berlm, 1923,
pp. 159-163.
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by itself is a sign. Everything depends upon the convention
adopted in advance.

2. Elementary semantics is not concerned with any
expressions whatsoever. The concept of any expression and
the concept of any name whatsoever is completely undetermined
and cannot be the object of precise study.

To be able to talk of expressions it is necessary first to give
the rules of their construction. Expressions which constitute
the subject-matter of semantics will be called proper expressions.
Proper expressions can be classified as either constant or
variable expressions.

First the construction rules for constant expressions will
be given :

I. 0is a constant expression.
II. If E and F are constant expressions, then « EF is a
constant expression.

With the help of these rules as many constant expressions
as desired can be constructed.

It can easily be confirmed that the only expression which
can be constructed containing no stars is Q.

Of course there is no way of proving that § for example
is not a constant expression, but it is easily seen that the sign §
is not one of the expressions which can be constructed. It
differs from 0, contains no stars, and consequently cannot be
obtained by applying either rule I or rule II.

It may easily be confirmed that it is possible to construct
only one constant expression with one star, namely :

+00,
only two constant expressions with two stars, namely :
#0400, ««000,
only five constant expressions with three stars, namely :
#*#%0000, +04++000, «++«0+000,
#*0+0+00, «+00.00.
and only twelve constant expressions with four stars, namely :

+%+«+00000, #+0++%+0000,
+%0+«+«0000, #0+40+4+000,
+++x0+0000, #0+4+0+000,
+%x0+0+000, #0+0+04+00,
+%0+%004+00, +%00+0+00,
***OOP*OQ #++#00++000,

1 Cf, the metaphysics of signs in the article of Jan F. Drewnowski: ‘‘ Zarys
program filozoficznego ”’ (** Outline of a Philosophical Program ), Przeglad
filozoficzny, rocznik, 37, 1934, pp 3-38.
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It should be observed that this method has nothing in
common with the traditional method of definition. Neither
the genus nor differentia specifica of the concept of a constant
expression can be given. Only the fact that one can construct
constant expressions is essential. The situation is more or less
like that of any tradesman. For example, while no printer
can say what a book is nor prove that an advertisement is
not a book, any printer can print as many books as material
conditions permit.

The above rules will now be supplemented in such a way
that variable as well as constant expressions can be
constructed.

The following rules are posited :

ITI. If E is a constant expression, E is a proper expression.
IV. The letters u, v, w, . . . are semantical letters.
V. If E is a semantical letter, E is a proper expression.
VI. If E and F are proper expressions, « E F is a proper
expression.
VII. If Eis a proper expression which contains the semantical
letter I, E is a variable expression.

These rules permit the construction of the following variable
€xpressions :

%0, eeuvw, 0%u0, etc.

Thus the material dealt with in elementary semantics has
been determined.

It can easily be shown that this symbolism is uniquely
determined.?

In proving this theorem, the following formulation of the
principle of complete induction is employed :

If O and the letters have some property, and if when the proper
expressions E and F have this property, the proper expression

EF also has this property, then all the proper expressions
whickh can be constructed by means of the stipulated rules have
this property.

The proof is based upon the theorems of the arithmetic of
natural numbers and the topological properties of proper
expressions. For example, the fact that if E contains m stars
and F contains # stars, « E F contains m 4 n -+ I stars is
accepted as one of the premises.

Pedantically precise proofs will not be insisted upon here.
Precision is possible only in semantics itself. Here the degree

1 Mr, Skarzefiski proved this theorem in 1928.
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of precision which can be obtained in ordinary arithmetic
must suffice.

To prove the uniqueness of the system of expressions which
has been given, it will first be shown that every expression
which has been constructed in accordance with the stipulated
rules and which contains # stars, contains # -+ I letters.

If E is a letter or zero, E is seen to contain o stars and
0 + I letters.

It will now be supposed that this law is valid for the
expressions E and F.

If it is now supposed that the expression « E F has been
constructed, on the basis of the suppositions which have been
made, E, for example, will have K stars and % + 1 letters,
while F will have m stars and m + 1 letters. « E F is seen
to have m + & 4 1 stars and (m + & + I) + I letters. Thus
it is clear that this property is transitive.

If the principle of complete induction, as formulated above,
is invoked the theorem will have been proved for the general
case.

Clearly this proof like all intuitive proofs is of interest only
for orientation.

It will now be proved that every segment of an expression
from the right side contains more letters than stars. An
inductive proof will be given.

If E is a letter or zero, every segment of the expression E
contains less stars than letters.

It will now be supposed that the theorem is true for the
expressions E and F.

Let any segment of the expression « E F from the right side
be considered. If this segment does not contain part of the
expression E, it is a.segment of the expression F and therefore
contains less stars than letters. If it does contain part of the
expression E, this part is a segment of the expression E and
therefore contains less stars than letters. Since F also contains
less stars than letters, the whole segment contains less stars
than letters.

On the basis of this theorem it can easily be proved that if
E, F, E’, and F’ are expressions and if « EF=«E' F,
then E=E’ and F = F'. The sign = denotes semantical
identity here.

For if E’ for example were longer than E there would be
a certain segment R such that E R = E’. However, since R
must contain less stars than letters, R would have at most
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» stars and # + I letters. On the other hand because E’ has
p stars and p + 1 letters, E must have p — s starsand p —#
letters, which is precluded by the previous theorem.

3. The construction of the rules of substitution of constant
expressions for constant expressions in constant expressions
will now be considered. )

The proposition: (EFGHY) s true, is to be read as
follows : The constant expression H is the vesult of the substitution
of the constant expression G for the constant expression F in
the constant expression E.

The uniqueness of this pattern follows immediately from
the considerations of the last article. For example in the
proposition: (#0+00+0004+00) the values of the
expressions E, F, G, and H respectively can only be the
expressions «0+00, «00, 0 and «00 respectively. No
other reading is possible.

The way in which these operations are to be performed will
be established by means of recursive rules as was the method
of construction of constant expressions. First the method of
substitution in the expression 0 will be established. Then
substitution in the constant expression « E F will be reduced
to substitution in the constant expressions E and F.

(4) The following rules of substitution in the expression 0
are to be accepted :

I. If Fis 0, then (0 F G G) is true.
II. If Fisnot 0, then (0 F G 0) is true.

Theoretically these rules do not decide the question of the
uniqueness of substitution ; however, in practice they always
yield a unique result, for there are no other methods of making
a substitution in the expression 0.

These rules obviously include the case when G is substituted
for a proper expression different from 0, in the expression 0.
Clearly the substitution must be fictional in this case and
cannot produce any change in the expression 0. Consequently
0, which was given initially, is regarded as the result of the
substitution.

() If (EFGH) and (E' F G H') are true, the following
two cases occur :

I'. If Fis the expression « E E', then (&« E E' F G G) s true.
IT’. If F differs from « E E’, then (« E E' F G « H H') is true.

Because only expressions constructed by successive applica-

tion of the operator « E F to expressions previously con-
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structed, can be dealt with, it is clear that substitution is
performed in every concrete case and in but one way.

The next question to be answered is: what is the result of
the substitution of the expression 0 for « 0 0 in the expression
#0+00° The answer will be formulated with the help of
the pattern (« 0 « 0 0 « 0 0 0 A ) and is obtained by successively
making substitutions in the process of constructing the
expressions « 0 « 0 0.

First, on the basis of rule II, it is seen that

(0+40000) is true.

If 0 is taken for E, G, H, E' and H’ and & 0 0 for F, on the
basis of rule I" it follows that (#00 «0000) is frue.

If 0 is taken for E, G, H and H’ and « 00 for E’ and F,
on the basis of rule II’ it follows that « 0 « 00 differs from
#00. It may then be concluded that

(#040040004+00) 7s true.

It may easily be ascertained that no other result can be
obtained by examining the structure of the expression
*0+00.

The theorems :

0000),
0+00++«000

(00+400400),

(#00+.0000),
(#000+00+4+004.00),
(#0+40+400+,0+4004+00.0.00)

may be investigated in an analogous way.

4. Expressions of the form (EFGH) where E, F, G
and H are any proper expressions will now be considered.
If at least one of the proper expressions E, F, G or H contains
a semantical letter the expression (E F G H) will be called
a propositional function and the semantical letters contained
in it will be called real variables. It is clear that functions
of one, two, three, etc., variables can be constructed in
accordance with the number of semantical letters to be found
in the proper expressions E, F, G, and H. A theory of substitu-
tion for semantical letters in a propositional function is
unnecessary, because such substitutions will be made only
in concrete cases in which a semantical letter really occurs
in the propositional function. If, for example, the expression E
is substituted for the variable # in the propositional function
(#0 %4000 %) in such a way that the expression E is merely

0),
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written for the variable #, the expression («0E+«000E)
is obviously obtained. The expression obtained by substituting
a proper expression for a real variable in a propositional
function is called the value of the propositional function.
Obviously the values of a propositional function can be either
propositional functions or propositions. The latter case occurs
when and only when the value of the propositional function
does not contain a semantical letter. The rules which have
been given enable one to determine whether the propositions
which are values of semantical functions are true or false.
If true they will be characterized by the letter V, if false by
the letter A.

The analogy between algebraic equations and inequations
and these propositional functions is evident. Constant
expressions which, when substituted in a propositional function
make this function a true proposition, will be called the roots
of the propositional function. As a result of the conception
of dead substitutions, it may be said that all constant
expressions are roots of the proposition ( E F G H), which
has no semantical letters, if this proposition is true. No
constant expression is a root of this proposition if this pro-
position is false. It can be ascertained that propositional
functions can have either a finite or infinite number of roots,
or no roots, and that all constant expressions can be roots of
propositional functions.

Propositional functions will be investigated with the help
of tables.

(4) If the function (#00 «) is considered it is seen to
become a true proposition if 0 is substituted for ». If it is
supposed that (EQ0OQE) and (GO0O0G) are true, « EG
cannot be identical with @ for in every case the result contains
at least one star. Then on the basis of rule II’ it follows that
(+EGO00« EG) is true. On the basis of the principle of
induction it follows that all constant expressions are roots
of the function (# 00 «).

This state of affairs may be represented by the following
table :
ul(u00u)

E v

(B) It may easily be seen that no constant expression is
a root of the function (000« %0). This follows simply
from the observation that no substitution of a constant
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expression for # in « # 0 can yield 0 as its result because in
every case at least one star will be contained in the result.
This state of affairs would contradict rule I.

To illustrate this case, the following table is employed :

#u | (000x2%0)

E A

(C) The determination of the roots of the function
(#+000 4 00) will now be attempted.

Clearly 0 is not a root of this function (cf. rule II). Con-
sequently if this function has a root, the root must be some
expression « E F. Then either E and F are identical with 0
and therefore by rule I', « E F is not a root of the given
function, or E and F are not both identical with 0 and therefore
by rule II' (E+0000), and (F«0000) are true. These
conditions can be satisfied only when E and F are 0 or « 00.
In the first case rule II is applied ; in the second, rule I’ is
applied. Since rules I and II’ cannot be applied here there
are three possibilities : either Eis 0 and Fis « 00, Eis« 00,
and F is 0 or E and F are both « 0 0. The case where E and F
are both @ has already been rejected. This state of affairs
may be illustrated by the following table

ul(u*OOO*OO)

(D) It will now be shown that all constant expressions
except #00 and ++000 are roots of the function
(#+000%#04++000). It may first be seen that ++000
is not a root of this function because if rule I’ is applied a
different result is obtained. If E is not « « 0 0 0 the application
of rule I’ yields the expressions :

(#x00E04+00) and (0 E 00) which are true.

Two possibilities now present themselves. If E is «00,
then in view of considerations analogous to those of a moment
ago, E is not a root of the function («00#0+00). If E
is not « 00, this function reduces to the function (0#00)
which is satisfied by any substitution for #, since when 0 is
substituted for #, rule I may be applied, and when another
expression is substituted for 0, rule II may be applied. The
values of this function are therefore seen to be true.
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The following table illustrates this case:
ul (#+«000%0%+000)

00 A
«»x000 v
......... A

The function (+#+«000%04++000) thus leads to the
determination of all the expressions contained in the expression
+ %+ 000 with the exception of 0. Actually in addition to 0,
the expression %« 000 contains only the expressions « 00
and « « 000, ie. the expressions which are not roots of the
given function.

Similarly the function (#0+0+0+40020+0+0+0.00)
is satisfied by all expressions with the exception of
#040+404+00, +0404+00, «0+400 and « 00, which are
all the expressions contained in the expression + 0«0+ 0+ 00
with the exception of 0.

The proposition : { E F} is true, will signify that the expres-
sion F is contained in the expression E. Later it will be seen
that the symbol { E F } may be constructed with the help
of the symbol ( E F G H) and the symbols of the elementary
calculus of propositions.

(E) Examples of functions whose roots form a sequence
will now be considered.

If the function

(+2us000u)
is considered, 0 is seen to be a root of this function. (Cf.ruleI")

If « E F is a root of this function when rule II’ is applied, the
conditions: (« EF«000E)and (« EF « 000 F) are true,
are obtained.

E must be identical with F if the operation of substitution
is to be uniquely determined. Consequently (« EE«000E)
must be true.

If « E E is a root of the function, then in conformity with
rule Il', ¢« « EE « EE is also a root of the function. The
function is therefore seen to be franmsitive with respect to the
substitution of « £ E for E. On the basis of the principle of
complete induction it follows that the roots of this function
form the sequence :

0, 00, «%004+00, +++00+004+.00+00, . ..

It can be ascertained analogously that the roots of the

functions
(£«0#+000«) and
(#20+4000%)



04 THE LIMITS OF SCIENCE

form the sequences
0, «00, +0+00, «+0+404+00 ... and
0, «00, «+«000, +++«0000, . . . respectively.
(F) A function of two or more semantical letters corresponds
to equations in two or more unknowns.

(a) If the function (#002v) is considered, the following
table may be constructed :

u l v l(uOOv)
E E l v
0 +« EF A

This table is not complete-because the method of constructing
the pattern of an expression which differs from a given
expression E is unknown. Nevertheless the roots of the function
are seen to be those and only those pairs of constant expressions
whose elements are identical. Consequently ( EQ 0 F) is true
may be read: E is identical with F. Later (E00F) will
be abbreviated by the symbol = E F.

(6) The function ( E » 0 E ) may easily be seen to characterize
all the expressions contained in any given expression E with
the exception of 0.

(0200) is seen to be satisfied by all constant expressions.
No expressions other than 0 is said to be contained in 0.

If it is supposed that the functions (EvQ0 E)and (Fv 0 F)
are satisfied by all expressions with the exception of those
contained in E and F which are different from 0 and if the
expression (EFv0Q« EF) is constructed, two cases may
be distinguished. If v is « E F, only rule I’ which requires
the identity of 0 and « E F may be applied. Since this identity
cannot occur, it is obvious that « E F is not a root of the
given function.

If v is not « EF the matter reduces to the conditions :
(EvOE) and (FvOF) are true, which determine all the
expressions contained in « E F with the exception of 0 and
« E F. Therefore the given function leads to the determination
of all the expressions contained in « E F with the exception
of 0.

5. The arithmetic of whole numbers will now be considered.
The system of the arithmetic of whole numbers constructed
by Hetper,! will be the basis of this discussion.

The expression (#« EE«000 E) will be abbreviated by

1 W. Hetper: ‘ Semantische Arithmetik,” Sprawozdania £ posiedzehs
towarzystwa naukowego, Wydzial III, t. 27, 1934, pp. 9-26.
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the symbol Integ £ and will be read: E is a whole number.
The numerical expressions of the decimal system will be
regarded as abbreviations of certain constant expressions in
accordance with the following table :

Abbreviation | Expression

1 00

2 *1

3 *22

4 338

5 44

8 *55

7 88

8 * 77
9 «88
0| .99
11 *1010

The reader should observe that a vinculum is placed above
two-figured numbers and above all other multi-figured numbers
in order to avoid ambiguity.

The comparison of whole numbers reduces to the problem
of inclusion.

The proposition: E s greater than or equal to F is said
to be the abbreviation of the proposition :

E and F are whole numbers and { E F }, ave true.

This proposition is denoted by the symbol 2 E F ¢s true.
I shall employ a method of notation similar to that of
¥.ukasiewicz,! although it may displease the reader who is
accustomed to place the sign » between E andF. I see no
reason for abandoning the notation of Lukasiewicz merely
because the ordinary notation is more familiar. Symbolical
language requires the elimination of so many habits, that
there is no reason to give the habit of using the ordinary
method of notation special consideration.

The proposition : E ¢s greater than F is the abbreviation
of the proposition: 3 E F ¢s frue, and it is not the case that
= E F is true.

This proposition is denoted by the symbol > E F s frue.

Theorem I: -

If Integ E is true, if { EF } is true, either = EF or
{ E«FF} is trie.

1 Jan Lukasiewicz : Elementy logiki matematycznej (The Elements of  athe-
matical Logic), ithographed, Warszawa, 1929, p. 40.
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Proof: The second part of the antecedent and the con-
sequent of this theorem will be abbreviated by the symbol
S E. By applying the principle of complete induction
D(0) and if @ (E), then & (+ EE) will be proved. This
simplified formulation of the property of transitivity is proved
by the fact, that if Integ « E K, then & £ K, which was-con-
firmed above. The letters employed stand for whole numbers
and therefore are to be regarded as constant expressions,
which require no special discussion here.

(a) I£{ O F } s true, then = F 0 is true and consequently & (0).
(b) Suppose, that @ (E), i.e. if { EF } is true, then either
=EFor{E«FF}is true.

If now {#*EEF } is true, then either =« EEF, or
{EF} is true. ¥

If =« EEF, is true, then @ (& E E) because one of the
two postulated conditions is satisfied.

If { EF } is true, it follows from the supposition that
either = EF or { E« FF } is true.

If-=FEF is true, then { « EE « FF } is true, whence it
follows that @ ( « E E) since the second condition is satisfied.

If { E &« FF }istrue, it follows that { « EE « F F } is true
and therefore @ (« E E) because the second condition is
satisfied.

Thus the transitivity of the condition @ ( E) has been
confirmed.

A reader who is not accustomed to precise reasonings will
think that this proof is very complicated. However, it must
be kept in mind, that the difficulty of the proof lies in the
fact that a series of conditions must be distinguished. Because
there are many conditions, it is easy to make a mistake and
the impression that the proof is difficult arises. Actually
very trivial observations are involved.

Theorem II :

If Integ E is frue, then if Integ F s true, either { EF } or
{ F E}is true.

Proof : Here again the second part of the antecedent and
the consequent will be denoted by @ (E) and once again
it will be proved that @ (0) and: +f @ (E), then D(«x EE).

(a) If F is any constant expression, one has { F 0 } is frue,
therefore the second alternative is always satisfied. Con-
sequently & (0) for any F.

(b) Suppose that @ ( E), i.e. if Integ F s true,

either { EF } or { F E } is true.
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If { EF } is true, then { « EEF } is tyue, and therefore
P(+«EE).

If {FE} is true, then it follows from Integ F 4s true
and from theorem I that either = F E 4s #rue or
{F « EE } is true.

If = F E 1s true, then { « E E F } is true and consequently
once again @ (« E E).

If {F«EFE} is true, the second alternative is satisfied
and again in this case @ (« E E).

The condition @ ( E ) has been shown to be transitive.

It follows from conditions () and (b) on the basis of the
principle of complete induction that the theorem is true.

The addition of whole numbers is denoted by the symbol
4 E FG. The proposition: + EF G ¢s true is to be read :
G 1s the sum of the whole numbers E and F. This proposition
is the abbreviation of the proposition :

Integ E ¢s true, Integ F is true and (« E E1 F G) is true.

The reduction of multiplication of whole numbers to addition
will now be exhibited.

The proposition: & E F G s true, which is to be read:
G s the product of the whole numbers E and F, is introduced.

For e)%mple X 3412 is written instead of the traditional
3.4=12

To construct the semantical proposition which corresponds
to the symbol X 3 412, the finite sequence of pairs of whole
numbers :

+31, +62, 498, «+124 is formed.

The first pair is seen to contain in its first place the
multiplicand and in its second place the number 1, and the
last expression has in its first place the product and in its
second place the multiplier. Every expression % C D different
from «31, which belongs to the sequence is comstructed
from a certain expression « 4 B which belongs to the finite
sequence such that 4 A3 C is true and 4 B 1D is true.

It is clear that « 12 4 may be found in this sequence only if
the latter contains #9383, and *983 may be found in this
sequence only if the sequence contains « 6 2, the pair which
is derived from « 81 by performing the indicated operations.

It is easy to see that this finite sequence can be obtained
by constructing a certain constant expression.

If the expression :

+24431462.93.124
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which is denoted by W, is constructed, in it the pairs which
have been mentioned, can all be found, but such pairs _of
numbers as #1111, «1010 may also be found in this
expression because every whole number with the exception
of 0 has been defined as a pair of whole numbers.

Hetper? introduced still another expression in order to
avoid this ambiguity.

In the case being discussed, from W, and the pairs which
have been mentioned, the following expression may be con-
structed :

wrreaeWoe3le W 4682+W,498+W,+124.

This expression will be denoted by L.

If now, one speaks of such pairs of expressions « 4 B as
enter into L, by means of the expression « W, 4 B, all
ambiguity is removed. Actually pairs which are contained
in whole numbers are eliminated because they are not included
by this pattern. For the same reason such pairs as for example :

*xWoe3leW, 462

are eliminated.

A definition of multiplication will now be given. Where
E and F are natural numbers ¥ E F G is the abbreviation
of the following proposition : If either E or F are 0, G equals 0 ;
if E and F differ from 0, a certain constant expression L has
the following properties :

1. There is a constant expression W such that

{L«WaxEL} is true.
2, There is an expression M such that

=L«Mu«WaGF s true.

3. If { L+« W« CD} is true, where C and D are constant
expressions such that it isnot the case that = « C D « E1 ¢s true,
there are certain constant expressions 4 and B that
{LeWasAB}istrue and 4 A EC and + B1D are true.

This definition seems rather intricate because the expression
L cannot be given explicitly but must be described. In a
symbolical system this description is obviously a certain
semantical expression. Here I have confined myself to a
literal representation.

6. The introduction of rational numbers presents no

1 W. Hetper: ‘ Podstawy semantyki,” l.c., p. 74.
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difficulties. They are simply pairs of expressions constructed
as follows :

Abbrewviation {Ex pression

1
T #+1«01
1
5 *1x02
2
T *2x01

In these pairs the numerator is found in the first place
while a pair of numbers composed of 0 and the denominator
occupies the second place. Clearly the latter pair can never
be a whole number because the denominator is never 0. The
whole fraction can never be a whole number because the
first member of the couple is always a whole number and
the second member is never a whole number.

The equality of rationals cannot be reduced to semantical
identity.

The proposition: = E F is #rue, which is to be read:

R
The rational numbers E and F are equal, is introduced. This
proposition is regarded as the abbreviation of the following
proposition : There are whole numbers A, B, C, D and G such
that it is not the case that = 0B is true and = E « A «0 B,
=F&«CxOD,and X AD G and X B C G are true.

Obviously use is made here of the ordinary criss-cross
multiplication.

Inequality may be defined analogously.

The addition of rational numbers may be reduced to the
addition and multiplication of whole numbers as may the
multiplication of rational numbers.

Subtraction and division of rational numbers may be reduced
to the subtraction and multiplication of whole numbers;
however, it is stipulated that division by 0 is precluded.

2. While it is true that this method does not permit the
construction of sums, differences, products and quotients
directly, it permits the construction of the symbols:
+EFG, —EFG, XEFG, :EFG. Consequently the
R R R R )
moment the logical calculus is constructed the arithmetic
of rational numbers may be regarded as a chapter of elementary
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semantics, provided that the principle of complete induction,
conceived as a construction rule for theorems, is added to it.

The following objection to the construction which has been
given in this chapter must be answered. It is maintained that
in order to prove the uniqueness of the structure of expressions,
the principle of complete induction and the concept of a whole
number must be employed, and consequently the construction
of a whole number involves a vicious circle. This objection
is only apparently correct. The proof of the uniqueness of
this construction of expressions is based upon an intuitive
concept of a whole number but is merely an auxiliary proof
and not an integral part of the system. The moment this
construction has been shown to be unique the rules of the
system can be formulated, and these rules in turn permit the
construction of the formal arithmetic of whole numbers.

Whether or not this formal arithmetic is covered by intuitive
arithmetic cannot be decided since it is not precisely defined.
Nevertheless it may be observed that it makes no difference
whether one writes:

0, 00, «+004+00, +%+00+,004++004+00 etc., or
0, 1, 141 14141 etc.,

and that the rules governing the operations upon them in
every case give results which are compatible with the results
of ordinary arithmetic.



CHAPTER V
THE CALCULUS OF PROPOSITIONS

1. The calculus of propositions originated during the Middle
Ages. Credit should be given Professor f.ukasiewicz! for
having discovered pertinent data mentioned in Prantl’s great
history of logic which no one previously had appraised.

In the first place it is worthwhile to observe the following
example obtained from the works of Albert the Great
(x193-1280) :

I. “It does not follow: Ewery rose is intelligible, therefore all
which is a vose is intelligible, for if one posits that- there
are no roses, the antecedent would be true but the con-
sequent false.” 2

Albert affirms that one can make no valid inference, if the
antecedent is true but the consequent false. The problem of
null classes, which as was seen Aristotle did not consider, is
also of interest here. If it is kept in mind that Aristotle
neglected this problem, even though our contemporary
Sleszynski ® tried to justify him, the importance of Albert’s
idea must be acknowledged.

The following rules of reasoning may also be found.

II. “If B follows from the conjunction of A and some necessary
proposition, B follows from A alone.” ¢

III. “ Implications of the following type are formally admissible :
Socrates exists and Socrates does not exist, therefore a walking-
cane stands in the corner.”

IV. ““The denial of the antecedent follows from the denial of
the consequent.”” &

All these rules were subsequently formulated symbolically
and included as theorems of the calculus of propositions.

1 Cf, Jan Eukasiewicz: “ Zur Geschichte der Aussagenlogik,’” Erkenntnis,
vol. 5, 1935-6, pp. 111-131.
3 Cf. Carl Prantl: Geschichte dey logik im Alendlande, Leipzig, 1870, Bd. 4,
p. 74, n. 285, no. 16.
3 Jan Sleszyfiski: Teoria dowodu (Theory of Proof), tom 1, Krakéw, 1925,
L1231
P 4 Prantl: lc, p 73, n 285 no. 7.
$ Prantl: lLc., pp. 73-4, n. 285, no. 8.
8 Prantl: Lc., p. 73, n. 285, no. 4.
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Rule IT introduces the logical product : 4 and B.

Rule IIT affirms that a false proposition implies any pro-
position. This rule is especially important. At first sight it
seems a little strange. It will be seen later that it is entirely
natural.

Rule IV gives the so-called principle of conversion which is
of great significance in the calculus of propositions.

In the Dyalectice introductiones Illuminats doctoris et martyris
Raymundi Lulli may be found the principle of the elementary
syllogism. Lull (1234-1305) was the widely known creator
of the logical machine.

I. “In every valid formal implication, that which follows from

the consequent follows from the antecedent.” *
The following important rules may also be observed:
II. “ Every implication whose antecedent contradicts the denial
of the consequent is valid.” 2
III. The so-called principle of logical identity: “ Implication
from one synonym to another . . . is valid.” 3
Because of its self-evident character this most banal of all
principles was perhaps most difficult to understand.
Duns Scotus (1265 ?~1308) formulated the following rules :
I. “From any impossible proposition any other proposition
follows, not on the basis of formal implication but on the
basis of valid, simple 5 material implication.” %

II. “ Every true proposition follows from any other proposition
on the basis of valid material implication, ¢ #nunc. . ..” 5, &

The fundamental idea of these rules was already to be found
in Albert the Great. But the novel element in them is the
introduction of the concept of material implication as distinct
from formal implication. In practical life one employs only
formal implication, which relies on the passage from one
proposition to another connected with it in certain ways on
the basis of its form. However, if the truth values of a set of

! Prantl: [c., 1867, Bd. 3, p. 141, n. 623.

2 lc., pp. 1412, n. 623.

3 lc., p. 142, n. 623.

4 J¢., p. 141, n. 621.

5 The distinction between a simple implication and an implication #¢ nunc
is not usually drawn in modern logic. The former 1s an implication which
holds universally irrespective of the time at which the statement is made.
The latter 1s one which holds only at the time when the statement is made.
(Translators’ note.)

¢ Jc., p. 141, n. 622.



THE CALCULUS OF PROPOSITIONS 103

propositions are given, namely, if with regard to each of them
one can decide whether it is true or false, one can also speak
of material implication. This matter will be treated later in
detail.

The examples here cited give irrefutable evidence that the
Scholastics went far beyond Aristotle and created the founda-
tions of what to-day is called the calculus of propositions.
They were unable to construct a calculus because they lacked
both the conception of a perfect system of logic and the symbolic
language. Consequently their ideas did not influence the
further development of logic.

Nevertheless the Ars Magna of Raymund Lull may be
regarded as the first outline of a system of logic, although
still confused. In that work the problem is to arrange three
concepts as three concentric circles and to form from them
all possible combinations. This is analogous to the con-
struction of an astrological horoscope and thus to rank magic ;
none the less there is here a recognition of the need to mechanize
logical operations.!

Contemporary historical investigations have shown that
the development of logic advanced systematically, gradually
conquering constantly new domains. And as Vaillati noted
the sixteenth century Jesuit, Clavius, discovered the following
principle of reasoning in the Elements of Euclid :

If from the denial of a proposition the truth of this proposition
follows, then this proposition is true.

Fukasiewicz discovered that in the writings of the Polish
Jesuits, in particular in Adam Krasnodebski's Philosophia
Avistotelis explicata, Varsavia, 1676, this principle was highly
praised and called Consequentia mirabilis.?

A clear idea of the system of symbolic logic was not developed
until the seventeenth century.

It originated in the ideas of Joachim Jungius who noted
that the implication :

If A is the father of B, then B is the son of 4,

is not reducible to syllogistic form. Thus Jungius definitively
overthrew Aristotle’s authority and exerted a fruitful influence

1 Cf. Otto Holder : Die mathematische Methode, Berlin, 1924, p. 4.

3 Cf. Jan RLukasiewicz: ‘‘ Philosophische Bemerkungen zu mehrwertigen
Systemen des Aussagenkallkiils,” Comptes rendus des Séances de la Société
des Sciences et des Lettves de Varsovie, Classe III, vol. 23, 1930, p. 67,
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on his contemporaries.! Dalagranus (4rs Signorum) and
Wilkins (Essay towards the Real Character) * were the first to
attempt to apply symbolic language to logic. But Leibniz
as was noted above was the first to work out a clear conception
of the system of symbolic logic. The works of Leibniz deal
with the calculus of classes ; they do not, however, go beyond
fragmentary attempts.

The disciples of Leibniz, Lambert, and Segner ? continued
these efforts but their work had no direct influence on the
development of the calculus of propositions.

The real creator of the calculus of- propositions was the
English mathematician, George Boole (1815-1864).

Concerning Boole’s discovery, Sleszyaski writes as follows :

“ Boole’s thought arose on the basis of the symbolism peculiar
to English mathematicians of the first half of the last century.
This symbolism is employed especially in algebra, where all the
calculi can have different interpretations. According to the
practice of these mathematicians we operate with certain symbols
without regard to their meaning. All the properties of algebraic
symbols then result from their definitions and vary with the
different kinds of algebras. But these different properties of
symbols become evident only indirectly; for one can prove
certain fundamental theorems common to all kinds of algebras,
from which likewise follow the rules of the calculus, also common
to all kinds of algebras. Boole as a mathematician frequently
adopted this symbolical point of view in his excellent and very
original works. We will shortly see what mark this point of
view left on logic.” 4 ’

And later 3:

“In discussing the subject matter of logic' Boole notes, that
logic deals with two kinds of relations: the relations between
things and the relations between facts. Here Boole is introducing
the distinction between the logic of classes and the logic of
propositions, Thus Boole calls propositions of the first kind
primary, and propositions of the second kind secondary. . . .
In the logic of propositions he introduces the concept which
Frege later dealt with as a logical function.”

In addition to Boole one should mention De Morgan, whose

! Cf. Federigo Enriques: The Historic Development of Logic, translated by
Jerome Rosenthal, New York, 1929, p 118.

3 Enriques: Ic., p. 82.

2 Enriques : /l.c., p. 164, pp. 98-100.

4 Sleszyfiski : /o, Tom. IT, 1929, p. 13.

§ Sleszyniski : lc., pp. 14-15.
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works had great influence on the development of the calculus
of propositions.

MacColl made the first attempts to construct the logic of
propositions (The Calculus of Equivalent Statements).r During
the same period W. S. Jevons, C. S. Peirce, J. Venn, E. Schrder
worked on the foundations of logic. The joint efforts of these
investigators led to the rise of what is to-day called the algebra
of logic.

The algebra of logic was not intimately related to life and
science. It was entirely neglected by official science. The
opinion of Kant,? that Aristotle’s logic was a completed and
closed work, had a restraining influence on nineteenth century
philosophers. They did not believe in the value of logical
investigations and restricted their efforts to psychological
analysis of the process of exact thinking and to epistemological
problems (J. S. Mill, C. Sigwart, W. Wundt, and others).4

Reflecting on this development it is difficult not to imagine
that some mysterious force manifests itself here, which is
intrinsic to human minds, and leads to attempts to destroy
efforts at thorough-going criticism. It is universally admitted
that before modern science could attain its present position,
it had to exert great effort in combatting medieval prejudice.
Medievalism defended itself in terms of the principles of
scholastic logic. Perhaps just because of that logic has become
a synonym of retrogression and unproductiveness and has
been abandoned. One must note, however, that the identifica-
tion of logic with scholastic logic led to great confusion of
concepts. Vague psychology of thinking was identified with
logic and the creative efforts of the logicians were completely
disregarded and logic was considered a mental plaything.

There is no doubt that perhaps just because nineteenth
century logic was cut off from the main line of scientific
development, it was a purely formal construction. The logical
calculus received great elaboration at Schréder’s hands, but
none the less it is not related in any way with either every
day thinking or with scientific thinking. The problem of

1 Cf. Alessandro Padoa. ‘ La logique déductive dans sa dernitre phase de
développement,” Revue de Métaphysique et de Movrale, Paris, année 19, 1911,
p. 878.

% Enriques: [c., p. 156.

3 Cf. Sleszyniski: Ic¢., Tom I, p. 28.

4 Cf., e g., Christoph von Sigwart : Logic, translated by Helen Dendy, 2nd
ed. revised and enlarged, London, 1895, vol. 1, p. 20. Wilhelm Wundt. Logzk,
2 Aufl. Stuttgart, 1893, Bd. 1, pp. 1-2.
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constructing a symbolic system of mathematics based upon the
calculus of propositions was first considered toward the end
of the nineteenth century. Peano and Frege! solved this
problem each in his own way, independently of one another.
Frege’s work was neglected because of his unusually difficult
symbolism. Guiseppe Peano, on the other hand, created a
very simple and clear symbolism and achieved greater simplicity
in the construction of his system. His Formulaire de mathe-
matigues * became universally known ; it called forth vehement
opposition from Poincaré, but great enthusiasm on the part
of Couturat and Russell.? At the beginning of the twentieth
century, a spirited polemic, conducted on a very high plane,
resulted. It would seem that discussions of the type carried
on by Socrates and Protagoras in Athens have returned.
From all this, it is clear that a completely new logic is required
and that the vegetation of logic in the antechamber of science
has ended once and for all.

But the construction of a system of logic free from con-
tradiction was not accomplished. This problem was not
solved even in principle until Whitehead and Russell, ¢ although
the idea was fascinating to many minds. On the other hand
Poincaré, as the representative of traditional intuitionism,
was beside himself with anger.

He wrote :

“Thus, be it understood, to demonstrate a theorem, it is
neither necessary nor even advantageous to know what it means.
The geometer might be replaced by the logic piano, imagined
by Stanley Jevons ; orif you choose, a machine might be imagined
where the assumptions were put in at one end, while the theorems
come out at the other, like the legendary Chicago machine
where the pigs go in alive and come out transformed into hams
and sausages. No more than these machines need the mathe-
matician know what he does.” 8

In another place Poincaré wrote® :
‘“ The symbolic language created by Peano plays a very grand

1 Cf. Enriques. l.c., pp. 1624.

? Guiseppe Peano: Formulaive de mathematiques, Turin, 1st ed., 1895.

3 Cf. Revue de Métaphysique et de Morale, 1905-1906, 1909-1911, années 13,
14, 17-19.

¢ A, N. Whitehead and B. Russell: Principia Mathematica, Cambridge,
vol i, 1910

5 Henri Poincaré . Foundations of Science, translated by George B. Halsted,
N Y., 1929, p. 451.

¢ Henr Poincaré : I.c., pp. 456-7.
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role in these new researches. It is capable of rendering some

service, but I think M. Couturat attaches to it an exaggerated

importance which must astonish Peano himself.

“ The essential element of this language is certainly algebraic
signs which represent the different conjunctions: if, and, o7,
therefore.l That these signs may be convenient is possible, but
that they are destined to revolutionize all philosophy is a different
matter. It is difficult to admit that the word if acquires, when
written ), a virtue it had when not written #f.”

Poincaré forgot, that getting rid of ambiguity has very
great merit and importance and that a symbolic language
does just this. He forgot that thereis a great difference between
the construction of expressions in terms of certain symbols
and the use of everyday language with all its confusions and
traps.

& This invention of Peano was first called pasigraphy, that is
to say, the art of writing a treatise on mathematics without
using a single word of ordinary language. This name defined its
range very exactly. Later it was raised to a more eminent dignity
by conferring on it the title of logistic.” 2
This name angered Poincaré, for it seemed that a revolution

in logic had been brought about. Poincaré.did not take account
of the fact that this name showed excessive modesty. It was
as if someone wished to call the old doctrine of Galen medicine
and contemporary medicine, for example, medicamentis.

However, that which to-day is still called logic differs from
that which is called Jogsstic in so far as it is less precisely
formulated, does not form a compact whole, and is inseparably
connected with the problems of grammar.,

The adberents of the old logic make very subtle analyses
of the results of present-day logic in order to show that it is
not true logic.

Feys, for example, would like to show that the symbolic
method cannot reflect accurately what the thought contains.?
But no one has ever known what the thought contains. Actually
everything which the old logic had to say in connection with
this problem was pitifully primitive and was full of con-
tradictions. It must be recognized that there is no hope for
learning anything about mental processes until the con-
struction of a symbolic logic is begun.

1 Italhics Chwistek’s.

3 Poincaré: [c., p. 457.

8 Robert Feys: ‘‘La transcription logistique du raisonnement. Son
interet et ses limites,” Revue Neo-Scholastique de Philosophie, vol. 27, 1925,
pp. 67-8.
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Symbolic logic was the inevitable reaction to the banalities
and confusions of traditional logic. It is a familiar fact that
traditional logic is cultivated even to-day. Whatever the
cost may be attempts are still being made to modernize it
and to obtain from it something deserving consideration.
Time after time these attempts have proved disappointing.

To convince oneself of the truth of these words it suffices
to pick up Professor Goblot’s logic text, published after the
war and thus after the completion of the work of Whitehead
and Russell. Professor Goblot completely disregarded this
work, since he felt that it belongs to that branch of study
which is called logistic.

Although he concedes that logistic has the merit of having
recogmized, derived, and classified the different kinds of con-
structive operations used in mathematical veasoning, he maintains
that he is concerned with the general laws of thought and
not just with mathematical reasoning.! He does not take
into consideration even for a moment the fact that mathematics
must employ general laws of thought and that a system of
mathematics cannot be constructed without appealing to
these laws. Neither does he observe that Celarent, Camestres,
and other similar banalities to which he devotes much space
are of no use in the derivation of mathematics and con-
sequently are not general laws of thought. Professor Goblot’s
book is not a logic—it is a popular journalistic column on
the theme of traditional logic. It is a sad commentary on the
impermanent and short life of great scientific centres. When
Poincaré scoffed at Couturat, he did not realize that he was
substituting retrogression toward medievalism for enthusiasm
and creative ambition.?

However, it must be kept in mind that Poincaré’s position
was very close to pragmatism and that he took Bergson’s
irrationalism seriously.? He was of the generation of mathema-
ticians who wished to see exact thought confined within the
limits of mathematics and he did not realize that if rigorous
criticism is not undertaken in connection with all the problems
of life, a detrimental confusion of concepts will occur. He
did not observe that the old logic has presented and even
to-day presents a double danger. On the one hand, crude
orientational rules are identified with exact laws of thought

1 Edmond Goblot ' Traité de logique, 5iéme ed. Paris, 1929, p. xux.
% Cf. Poincaré. l.c., p. 450, pp 472-6.
3 Cf. Powncaré : l.c., The Value of Science, Ch 10.
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and on the other hand disbelief in exact thought leads to the
return of an extremely individualistic irrationalism.

If Aristotle’s work is regarded as the beginning of the
struggle for a rationalistic view of the world and if the principle
of contradiction which he formulated is regarded as a guide-
post, by means of which it is continually possible to make
advances in the construction of a system of logic, his work is
one of the most valuable attainments of the human mind.
But if the syllogistic system is taken seriously and if with
Kant it is believed that this system is a closed but barren
science, serious dangers may result. Under these circumstances
it is not surprising that an irrationalist such as Hegel maintains
that contradiction is the basis of knowledge, nor that the
communistic philosopher Thahlheimer asserts simply that the
principle of identity is false because there are no immutable
concepts. The pragmatic reaction then must be accepted as
completely true because it is difficult to pretend constantly
that there are exact foundations of thought if everything is
but roughly determined.

If a critique of the old logic is desired, the book of Schiller?,
the pragmatist, is a document of honest sincerity and keen
observation. But it is sad that he completely ignores con-
temporary logic and fails to mention Boole, De Morgan, Peirce,
Jevons, Venn, and Whitehead. He mentions Bertrand Russell
only incidentally in connection with a certain paradox.?
Intentionally I have mentioned only famous English logicians,
whose names should have been familiar to Schiller if only from
book catalogues. It is worth observing that the names of
Jevons, Venn, and Couturat are listed on the jacket of Schiller’s
book, as the authors of a number of works published by
MacMillan and Co., 1td.

Such occurrences seem particularly interesting because
they exhibit the danger of a return to barbarism which lies
at the basis of present-day culture and which is constantly
discussed.

Professor Holder, who was cited above, was not well
acquainted with Whitehead and Russell's Principia Mathe-
matics. He dismissed logistic with the brief remark that it
does not enjoy the recognition of philosophers.? Professor

1 F, C S. Schiller: Formal Logic, 2nd ed., London, 1934.
2 Schiller, l.c., p. 373, n. 2.
3 Holder: lec., p. 272,
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Hélder does not hesitate to write that the calculus of pro-
positions not only does not contribute to the solution of logical
problems but introduces confusion into them.!

This view was propounded over fifteen years ago. To-day
such a position is rare. Since the famous mathematician
Hilbert became reconciled to the calculus of propositions and
in collaboration with Ackermann ? wrote a very interesting
book on the foundations of this calculus, it is difficult to
conceive that any mathematician would hazard such a dis-
dainful judgment.

The struggle concerning the conception of the foundations
of mathematics still continues but its result can already be
foreseen.

Whitehead and Russell’s work gave the basis of the calculus
of propositions of to-day. Sheffer,® Nicod,* and Lukasiewicz &
made important improvements. Sheffer reduced the concepts
of the calculus of propositions to one fundamental concept.
Nicod reduced the calculus of propositions to one axiom and
separated the rules of procedure from the symbolic axioms.
Fukasiewicz introduced a symbolic method that makes possible
the elimination of the dots and parentheses which are employed
to separate expressions. This method proved to be very
fruitful, and will be employed in the remainder of the text.

Hilbert and his school employ a symbolism which is not
suitable for precise formal calculi. The great merit of this
school is that it initiated metalogical investigations, i.e.
investigations concerning the properties of a system of symbolic
logic.

2. Lectures on the;calculus of propositions usually begin
with the conventional affirmation that there are true and false
propositions. An analysis of the relations between propositions
is then undertaken. This method requires that certain
allowances be made even at the outset because the propositions
which are concerned are not known. If everyday language is
employed fundamental difficulties are encountered because,
not every proposition of everyday language has a clearly

! Holder: le., p 277,

2 David Hilbert und W. Ackermann : Grundzuge der theovetischen Logik,
Berlin, 1928, 2 Aul., 1938,

8 H. M. Sheffer: “ A Set of Five Independent Postulates for Boolean
Algebras, with Application to Logical Constants,” Transactions of the American
Mathematical Society, vol. 14, 1913, pp. 481-8.

4 Jean Nicod : ‘‘ A Reduction in the Number of the Primitive Propositions

of Logic,” Proceedings of the Cambridge Philosophical Society, vol. 19, 1916-19,
pp. 32-41. ¢ Jan Rukasiewicz : Elementy logiki matematycznej, l.c.
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determined meaning and because, since questions might be
raised about every proposition considered, it is very difficult
to set up the criteria for the truth and falsity of the propositions
of everyday language. The possibility still remains that some
simply and clearly defined discipline, for example, elementary
arithmetic, can be employed. However, it is known that in
constructing the foundations of elementary arithmetic in a
precise manner, great difficulties are encountered and this
construction cannot be accomplished without employing the
auxiliary concepts of semantics. Under these conditions pure
formalism might seem the only way out of the difficulty.
If this were the case, the foundations of logic would go far
beyond the bounds of sound reason and the abyss between
formal logic and ordinary reasoning would have to be regarded
as a sad but inescapable necessity. It will easily be ascertained
that this is not the case. It will be seen that it is not hard
to give examples of true and false propositions whose meanings
are completely and exactly determined. One need only turn
to the fundamental concepts of elementary semantics to find
such examples..

First the concept of a logical expression will be constructed.

The following rules are posited :

1. If E, F, G and H are proper expressions (EF G H)
is a logical expression.

2. p,q,7, s, t...are logical letters.

3. If E is a logical letter, E is a logical expression.

4. If E and F are logical expressions / E F is a logical
expression.

The new pattern: /E F which is called a logical pattern
will now be introduced. The meaning of this pattern is explained
by the following table or matrix :

E|F|(]EF

ViV A
ViAl V
AV A
Al A v

This table sets up the following rule : The logical expression
/ EF has the value A when and only when the logical
expressions E and F have the value V.

In everyday language this expression may be read: not
both E and F occur. The pattern / E F was first proposed by
the American logician Sheffer.!

1 Sheffer: /l.c., p. 482.
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Logical expressions which contain neither semantical nor
logical letters will be called elementary propositions. The
logical expressions obtained by substituting constant
expressions for E, F, G, and H in the pattern (EF G H)
are seen to be elementary propositions. Each of these pro-
positions has, as may be seen, either the value V or the value A.

If E and F are elementary propositions which have either
the value V or the value A, / E F is an elementary proposition
which, on the basis of the above table, will have either the
value V or the value A.

It follows from this observation that every elementary
proposition which is constructed must have either the value ¥
or the value A, and that the value of a particular elementary
proposition can always be determined.

Logical expressions which contain logical but not semantical
letters will be called logical functions.

Logical expressions which contain both logical and semantical
letters will be called semantico-logical functions.

Logical expressions which contain semantical but not
logical letters will be called semantical functions.

Examples of logical functions:

/22, //M/qq, /?/qq, //M/zbq, ///M/qc_l/zbq,
/(0000)p, /2/(+00000) 7.
Examples of semcmtwo logzcal Sfunctions :
[p/(u00u)(u00u), [(u000)/pq

Examples of semantical functions :

//(«000) (uOOO)//(quu) (quu)/(quu)(quu)
/(0000) (04000

3. The pattern / E F proves to be very useful in constructing
the fundamental logical concepts.

(a) First the negation of a given logical expression will be
constructed.

If we consider the truth table:

JEE
V| A
Al V

it is evident that / E E has the value A when and only when E
has the value V. If E has the value A, / E E will have the
value V. The expression / E E may therefore be regarded as
the negation of the expression E. This expression will be
abbreviated by the symbol ~ E.

(b) The logical sum will now be constructed.
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The table of truth values of the pattem //EE/FF
is as follows :

E|F||EE|/FF|[|EE|FF
viv| A | A v
VIA| A v 4
Alv| v v v
AlAl vV A A

Clearly / / E E | F F has the value A when and only when
the logical expressions E and F have the value A. Thus the
pattem / / E E [ F F corresponds to the algebraic condition :
%.y=0.

Obviously this condition is not satisfied when both % and y
differ from o.

The condition x . y = 0 is read :

¥ =o00ry=o,
where both x and y may equal o.

This is very much like saying: My. X or My. Y will help
in comnection with this mattey where it is not precluded that
both Mr. X and Mr. Y may help.

The pattern //EE | FF is abbreviated by the symbol
V E F, which isread : E or F. It is called a logical sum.

If now the pattern:

/~=FO0(EFO0E)
is constructed, it follows from the above discussion that this
pattern is equivalent to the pattern V=F0 ~(EFOE).
As a consequence of this equivalence it follows that the pattern
in question has the value V when and only when the expression
E contains the expression F. Consequently the inclusion
pattern { E F } which was introduced in the previous chapter
may be regarded as the abbreviation of the pattern:

/~=FO0(EFOE)

A consideration of the pattern y =F0 ~(EFOE)
makes it clear that these patterns are entirely compatible.

Actually it is obvious that for any constant expression E,
{ EQ} ¢s true, i.e. any constant expression contains 0. If
F is not 0, the substitution of the expression 0 for F in E gives
E if and only if the substitution is a dead one, i.e. if E does
not contain F, because a real substitution of the expression 0
for the expression F different from 0, in the expression 0,
will produce a modification in the expression E.

Thus it is apparent that the substitution-pattern (E F G H)
and the logical pattern / E F are sufficient for the construction
of the concepts of semantical identity and semantical inclusion.

M
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This state of affairs may be illustrated by the following
example :

u |~(**000u0**000)|=u|0 V=u0~(+x000%04+x000)

0 A v v

«00 v A v
++000 v A v
....... A A A

If an expression different from 0, « 00 and from «+000
is taken for u, it is seen that a dead substitution will be involved
and that (#+000%0++000) will become a true propo-
sition and the logical expression ~(#+#000%04++000)
must have the value A. But because = « 0 also has the value
A, in thiscase, V=0 ~(«+#000%04++000) will like-
wise have the value A. Thus it has been confirmed that the
expression &« 000 contains only the expressions «+ 000,
«00,0.

(¢) The patterm //EFJEF, ie. [EF is called the
logical product and is abbreviated by the symbol A E F.

The table of truth values of this pattern is as follows :

E|F|/EF||EF|EF

ViV A v
ViAt V A
AlV V A
AlAl V¥ A

This pattern corresponds precisely to what is intended
when one says both E and F occur.

(@) The pattem ///EEJ/FFJEF,ie. [VEF/JEF
is abbreviated by the symbol =.

This pattern obviously corresponds to what is intended
when one talks about the equivalence of two algebraic equations.
The table of truth values for this pattern is as follows :

E|F||EF |VEF |EEF

V|V A v v
ViA v v A
AV v v A
AlA v A v

Thus = E F has the value V when and only when E and F
have the same truth value. If E and F have different truth
values, = E F has the value A.

To facilitate the understanding of the meaning of the equiva-
lence pattern it will be applied in solving semantical equations.

The concept of a semantical equation is introduced with
the help of the following rules :
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(1) If = E F is a semantical function, = E F is a semantical
equation.

(2) If E and F are semantical equations, / E F'is a semantical
equation.

A constant expression such that, when it is substituted in
a semantical equation this equation will become a logical
expression which has the value V, will be called a root of this
equation.

Two semantical equations which have the same roots will
be called equivalent.

The following assumptions are sufficient to solve equations
in one unknown, ie. equations which contain only one
semantical letter :

N ==u0=0u

(2) =uu

B ==suvewvsA=uw=yvx
4 ~=0xuv

It is easy to verify that the expressions in these assumptions
are semantical equations. The acceptance of these suppositions
requires that all constant expressions be roots of equations
in one unknown. These assumptions simply describe the
operations performed in comparing two proper expressions.

For illustrative purposes the equations :

=+%%100++0x0
will be solved.
Apphcatlon of assumption (3) yields
E=++%00: 040 A =%u0+0u=00 ( a)
and
=E=+u4u0+0u A=u0=0u (®)

The relations which occur here can be explained by means

of the following table :

=u0|=0u|/\=u0=0u l=*u0*0u|A=*u0*0u=00|=**u00**0
v l v | v ‘ v ‘ v ‘ v
A A A A A A
In passing from the first to the second column assumption (1)
is employed, in passing to the third column () is employed,
in passing to the fifth column assumption (2) and the pattern
of values of the logical product are employed and in passing
to the sixth column (@) is employed.
From a consideration of this table it is obvious that 0 is
the only root of the given equation.




116 THE LIMITS OF SCIENCE

The equation
= %0400 4%2u
will now be examined.
Application of assumption (3) yields :
=E=%0+00suu A =0u=4+00u
If the matrix
% |=0u| =4+00u |A=0u=*00u|=*0*00*uu
o| v ' A ’ A l A
+EF| A VorA A A
is examined, it is clear that the equation under consideration
has no roots, since all constant expressions, which are not 0,
fall under the pattern « E F.
It should be observed that an elementary proposition can

be equivalent to a semantical equation. For example one can
have:

==00==%40=0x«
==+000=%04+00+xuu

Such equivalences occur when and only when the semantical
equation has a constant truth value.

It will be agreed that all constant expressions are roots of
an elementary proposition with the value V but no constant
expression is a root of an elementary proposition with the
value A.

This agreement corresponds to the convention which was
established concerning dead substitution.

(¢) The concept of implication will now be considered.

Equation E is said to imply equation F, if the latter has all
the roots of the former.

It is clear that equation F might well have roots which
are not roots of equation E. The proposition : E wmplies F
will be represented by the symbol ) E F.

If the equations V=%0=4%00 and =« 0
are considered, it is seen that

Y=u0V=40=u+00
will become true, whatever value » may assume, but that this
is not the case for

YV=u0=u+00=xu0.

If the matrix
u |=u0|V=u0=u*OOI)=u0V=u0=‘u*00
0 \' v v
«00 A v v
*»x000 A A v
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is examined it is apparent that implication is characterized
by the following truth values :
If the antecedent is false, the consequent is either true or
false. If the antecedent is true the consequent is true.
Because it has been stipulated that all constant expressions
are roots of an elementary proposition which has the value V
any equation implies any elementary proposition which has
the value V.
Analogously an elementary proposition which has the value
V implies any semantical equation.
Under these conditions one has
YE=00
)=4+000EF
The question may now be raised whether the pattern
) E F can be derived from the elementary logical pattern

/EF.
The table of values of the pattern ) E F is the following:
E|F| >EF
vV v
VIA A
AY v
AlA v

On the other hand the table of values of the pattern
| E | FF is as follows :

E{F|/EJFF
V|V v
VA A
AlY v
AlA \4

Obviously the distribution of values in both tables is identical.
Consequently the pattern /E /FF gives the relation
E implies F.

Under these conditions a special symbol ) E F need not
be introduced. This symbol will, however, be regarded as the
abbreviation of the symbol / E / F F.

4. It is easy to confirm that the calculus of propositions
can be constructed without employing the pattern ( E F G H ).

It is necessary only to confine oneself to elementary logical
functions, i.e. functions which do not contain constant
expressions. The pure calculus of propositions so obtained
contains only logical letters and the pattern / E F. Every
problem of this calculus can be solved by the table or matrix
method. In particular it is always possible to determine
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a logical function of an arbitrary number of variables by
accepting values prescribed in advance for given values of
the variables.

The following problem can be solved :

To determine the function ¢ (2, ¢,7) which satisfied the
conditions :

Tasre I Tasre II

$(p.0.7)||VapVagar VapVog~r|VpVagar|VpVygr

Bbbdddd |
bhddbbdd [
<dbbdbabd|
db><dbdbdb
<d<d<d<d<tdgdi>
<d<d<d<d<dbdd
d<d<didddd

g dddgdd

Table IT contains functions each of which has the value V
for all combinations of values of the letters p, ¢, and » with
the exception of one and in the case of each function the
combination is different. The function sought is seen to be
AVAapVageyAVapVgarAVIV ~qgarVPVagr.

This method is a simple application of what Hilbert called
the normal form for logical expressions.! Hilbert showed
that every elementary logical function can be represented
as the product of sums of logical letters and their negations.
This reduction teaches that every theorem of the pure calculus
of propositions can be represented as a normal form in which
each sum contains both the letter E and the expression ~ E.

The matrix calculus as may be seen permits the proof of all
the theorems of the calculus of propositions.

5. In conformity with the procedure of Nicod, the French
logician who died at an early age, the calculus of propositions
will be developed from two axioms, the first of which is called
the syllogism of Nicod ? and the second the principle of logical
tdentity.® These axioms are the following :
gg ;/25/97)/89/158,

Nicod showed that these two axioms can be reduced to one.
This interesting result will not be employed because it is
desired that needless complication of the calculus be avoided
and because axiom (2) follows from certain axioms which

1 Cf. David Hilbert und W. Ackermann : Grundziige der theoretischen Logik,

II Aufl.,, Berlin, 1938, p. 10.

3 Nicod: Ic., p.38.
2 Nicod: /¢, p. 34.
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must be accepted in the complete system of elementary
semantics.

In addition a rwle of substitution which permits one to
substitute letters or any elementary logical functions for letters
will be accepted here just as it was accepted by Nicod. The
rule of modus ponens, i.e. If E and ) E F are theovems, then
F is a theorem, will also be accepted.

It will now be seen how these axioms and rules are employed.

If p is substituted for ¢ and » in (1), and (2) applied,

_ , Y365/ splps ,
will be obtained, from which follows on the application of
the rule of modus ponens the so-called principle of permutation :

(3) ) o dlspl s ,

If now ~ s is substituted for s and ~ p for p, a variant of this
principle :
(39) DVspVps,

will be obtained.
If the principle of permutation is applied to the principle of
identity,
@ [ ~tt
will be derived.
If ~¢ is substituted for ¢ and the result abbreviated,
(5) ~~i
will result ; this is the first principle of double negation.
Since (5) is a theorem, if ~ ~ ¢ is substituted for p and ¢ for ¢
and 7 in (1) and the rule of modus ponens applied to the result

Y/st]~~ts
will be obtained.
Since (2) is a theorem, if ~ s is substituted for ¢/ and the
rule of modus ponens applied to the result
/ ~ o~y ~§S
will be derived.
If (3) is applied and- the result abbreviated, the second
principle of double negation :
6) Is~~s
will be obtained.
It should now be noted that principle (5) yields the so-called
principle of tautology :
@) AR Z ¥
if appropriate abbreviations are made.
If ¢ is substituted for » in (1) the principle :
(1a) , DIPgd/sqlps
will be obtained.
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In practice this principle permits the use of the rule of the
syllogism.

If it is supposed that the theorems: )EF and )FG
have been proved the latter theorem may be transformed
in the same way as the principle of identity was transformed
into theorem (4). In other words if the principle of permuta-
tion is applied, the theorem [~ G F will be obtained. If
then E is substituted for p, F for g, and ~ G for s in (14)

YYEF)/~GF[E~G,
will be obtained.

If the theorems ) E F and / ~ G F are asserted and the
rule of modus ponens applied twice, the theorem / E ~ G
will result. This theorem when abbreviated has the form
DEG.

It is therefore clear that the theorem ) E G can always
be proved if the theorems ) E F and ) F G can be proved.

If ~ sis substituted for s in (14), the principle of permutation
applied and theresult abbreviated, the principle of the syllogism:
(8) 3364)das)ps
will be obtained.

In all further proofs obviously the usual rule of the syllogism
can in practice be employed as an abbreviation.

From this principle the so-called principle of conversion
may be derived without difficulty.

If after ~ ~ g is substituted for 2 the rule of modus ponens
is applied to (8) and to (5).

. dIgs[~~g~s
will be obtained.

On the other hand application of the principle of permutation
yields :

/~~g~s./~§~~ .

If now the rule of the syllogism is applied to the last two
theorems and the result abbreviated, the principle of conversion
(9) , ddgs)~s~g
will be obtained.

If ~ s is substituted for p, ~ ¢ for ¢, and » for s in the
principle of the syllogism,

) d~s~g) y~qgr)~sy
will result. When abbreviated the latter theorem has the
form:

d~s~qg)VgrVsr.

If the rule of the syllogism is applied to (g) and to the last

theorem, the principle of summation :
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(10) YDgs)VgrVsy
will result.
To obtain the so-called principle of addition first the
principle of permutation is written in the following form :
. [r9~197 .
If the principle of permutation is applied to this theorem :

) /~1qr]7rq
will result.

If in axiom (1) ~ /g7 is substituted for p, », and ¢ and
g for 7, and if the rule of modus ponens is applied to the result.

, , Y sr[~]q7s
will be obtained.

If ~ s is substituted for » in the last theorem and the rule
of modus ponens applied to (2),

, [~]q~ss
will result.

If the principle of permutation is applied to this theorem
the result is :

s~fgms,
which may be written in the alternative form
(1T) Ds)gs

If ~ g is substituted, for ¢ in (11) and the result abbreviated,
the principle of addition :

(12) YsVgs
will be obtained.

The principle of associativity can easily be derived by
employing the principles of addition and summation, the rule
of modus ponens and the rule of the syllogism. If after making
the necessary substitutions the principle of summation is
combined with the principle of addition and then to the
result of this operation, the theorem :

YV VLrgVVVpgryg
will be obtained.

On the other hand on the application of the principles of
permutation, addition, and the rule of the syllogism to the
principle of addition :

daV Vpgr
will be obtained.
If now the principle of summation is applied to this theorem
YV V VpgrgVV VdgrVVpgy
will result.
By the application of the principle of tautology and of the
rule of the syllogism the theorem :
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YV V VpgrgVVspgr

will result.

The application of the principle of the syllogism to these
two theorems yields
(13) DV VprgVVpgr

This is the principle of associativity.

This proof was given independently by Bernays! and
Lukasiewicz.?

The theorem which is necessary for the conmstruction of
Hilbert’s normal form must still be derived.

The derivation begins with theorems

(14) d)pPgV ~2g
(15) dV~2q9) 2y

whose demonstration depends upon the application of the
principles of double negation.

These theorems permit the derivation of theorem
(16) )8) gApg
which is obtained by first substituting A p ¢ for p in the
principle of identity and then employing (14), the principle
of double negation, the principle of associativity, and finally
principle (15).

Where A $ g¢is substituted for s in the principle of summation
and principle (14) is applied, the theorem
(x7) DIeAPgV ~VgrV Apgr
will be obtained.

If the principle of the syllogism is applied to (16) and (17)
(18) Y2V ~VgrV Apgr
will result.

The application of the principle of summation to theorem
(18) yields
(x9) YVprrV V~VgrV Apgrr.

By following the procedure used in proving the principle
of associativity and applying this principle
(20 YVVAVgrVADgryrV~VgrVV ApgrV Apgr
will be obtained.

The principles of tautology and summation yield
(21) YV~VgrVV ADgrVApgrV~VgrV Apgr.

If the principle of the syllogism is applied to (xg) and (20)
and then to the result of this operation and to (21)

P. Bernays: ‘ Axiomatische Untersuchung des Aussagen-Kalkiils der

Principra Mathematica,” Mathematische Zeitschrift, Bd. 25, 1926, pp. 312-13.

3 Jan LFukasiewicz : Elementy logiki matematycaney (Elements of Mathe-
matical Logic), l.c., p. 87.
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(22) dVprrV~VgrV Apgr
will result,

The application of (15) to this theorem yields
(23) DVpPrIVagrV Apgr.

If (14), the principle of associativity and the principles of
double negation are successively applied, theorem
(24) DV ADPrVgrV Apgr
will follow from (22).

Application of the principle of conversion to (24) yields
(25) A VigrV ADPrAgr

Theorems (24) and (25) constitute the basis of Hilbert’s
reduction. It must still be shown that in the implications
involved in these theorems the role of the consequent and
the antecedent can be interchanged.

By applying the principle of permutation and theorem (15)
theorem
(26) DIrPdd7gdr Apyg
follows from (23).

In this theorem V A p g7 is to be substituted for », V p »
for p, and V g7 for ¢ and the following theorems :

DV Apgr VN py

YV ApgrVaygr,
which are obtained by applying the principle of conversion
to the principle of addition and then using first the principles
of double negation and then the principle of summation, are
to be employed.

This method permits the double application of the rule of
modus ponens so that finally the theorem
(27) DV ADPgrAVIrVgr
will be obtained.

By applying the principle of conversion to (27)

(28) DV ApPrAgr AV pgr
will be obtained.

The interesting part of the calculus of propositions terminates
with these theorems. All the other theorems of the calculus
can be proved by reducing them to the normal form of Hilbert.
A long series of tedious operations is required to achieve this
end, but no real difficulties are presented.

It can easily be shown by the use of Hilbert’s method that
the elementary calculus of propositions which has been
presented yields all the results which can be obtained by means
of the matrix method and no others. From this point of view
the consideration of Hilbert’s method is of no great intrinsic
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interest, but it must be considered in the development of
the complete system of elementary semantics.

6. The logic of Aristotle was based upon the propositional
patterns: AWl S are P, (S a P), No S is P (S e P)
Some S are P (S i P), and Some S ave not P (S o0 P).2

Aristotle sought the relations between these patterns and
it must be acknowledged that with the exception of the
fundamental mistake which he made in regarding the inference
of SiP from Sa P as valid, he solved his problem in an
impressive way. Nevertheless his choice of these particular
patterns was connected with the linguistic tradition of his
day and the question whether the fundamental relations
between these patterns are independent or whether they can
be simplified was left open. Unfortunately the relations were
presented in such a way that mankind thrust the problem
aside and did not thoroughly consider it until recent times.
Even to-day logic texts are employed which contain the
logical square and the erroneous theorem that SiP is a
consequence of S a P. Even to-day the ontological pattern:
A is B is employed despite its fundamental ambiguity. Finally
the Eulerian method of comparing the extension of concepts
by means of circumlocutions is still employed although it
fails in even the simplest cases.

The critical analysis of the patterns of Aristotle is due to
the great contemporary English logician, Bertrand Russell.2

Russell’s analysis led to the reduction of the patterns of
Aristotle to the pattern: xis B where x denotes any individual,
the concept for all %, which is abbreviated by II # and which
is called a quantifier, and the concepts of the elementary
calculus of propositions.

Russell’s analysis may be summarized by means of the
following table :

SaP H:?)(;?issg(a?isP)
SeP| M%) (ZisS)~(Zis P)
SiP|l~I%)(FigS)~(ZisP)

SoP| ~MT%)> (%isS)(%is P)

The proposition: All men are mortal for example reduces
to the proposition: Al individuals who ave men are mortal.
The proposition: No man 1s mortal is replaced by the pro-
position All men are immortal. The proposition Some men are

1 Cf. Aristotle : Analytica Priora, translated by A. J. Jenkinson, Oxford,
1928, Bk. 1, 2, 25a.

2 Cf. Bertrand Russell and Whitehead * Principia Mathematica, 1st ed.,
Cambridge, 1910, vol. 1, p. 21.



THE CALCULUS OF PROPOSITIONS 125

mortal is the contradictory of the proposition : No man is mortal
and the proposition: Some men are not mortal is the con-
tradictory of the proposition : A« men are moytal.

If now the abbreviation 3 £ F is introduced for propositions
of the form ~II% ~ F, after the usual transformations of
the calculus of propositions have been made one obtains

A% A (%isS) (Zis P)instead of SiP and
A% A (%isS)~(Zis P)instead of So P.

To say that not all individuals satisfy the condition ~ F
is, in conformity with the principle of excluded middle, to
say that some individuals satisfy the condition F, or that
there exist individuals which satisfy the condition F.

Thus the calculus of propositions leads to the conclusion
that the contradictory of the proposition: No man is mortal
is equivalent to the proposition: There exist individuals who
are men and who are mortal. The contradictory of the pro-
position : AIl men are mortal is equivalent to the proposition :
There exist individuals who are men and who ave not mortal.
These results are consistent with primitive intuition.

The comparison of the patterns :

Ox)(xisS)(#is P)and
~Mz)(xisS)~(%isP)
which replace the patterns Sa P and Si P respectively lead
to the conclusion that formal implication between the first
and the second patterns is not valid. This result is compatible
with the intuitively confirmed thesis that it is invalid to infer
SiP from S a P in the logical square.

On the basis of this analysis Russell reduced Aristotle’s
theory of the syllogism to the elementary calculus of pro-
positions and the calculus of propositional functions.

The late Professor Leéniewski! opposed the calculus of
names to the method of analysis given by Russell. The two
methods differ in so far as the former is based not upon the
general pattern of a propositional function but upon the pattern
A is B, where A is not an element of the class B but the class
whose only element is a certain element of the class B.

This modification is justifiable only because of Le$niewski’s
desire to employ the traditional pattern 4 s B. It does not,
however, yield anything essentially new. Ome can hardly
agree with Professor Kotarbinski that Ledniewski’s

1 Stanistaw LeSniewski: ‘° Uber die Grundlagen der Ontologie,” Comptes
yvendus des séances de la société des sciences et des lettres de Varsovie, Classe 111,
Année 23, 1930, pp. 111-132.
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1

. system of the calculus of names is the most mature,
natural, and practical . . . in its applications of all the systems
known to us .2
On the contrary it seems to me that this system is artificial

and’ complicated. However, I agree with Kotarbiaski that

Lesniewski’s calculus of names

“. .. 1is very closely related to the traditional Aristotelian

formal logic .2
but this is no great recommendation. A calculus which is
based upon the vague concept of a name and which postulates
the existence of only one designate of a name is clearly meta-
physical and consequently cannot be employed as a constituent
element of the system of the mathematical sciences.

7. On the level of everyday language it is possible to speak
only of rough orientation. Everyday language contains no
universal propositions with precisely determined meanings
because it has no precise substitution rules.

Quite otherwise is the case in the sphere of operation of the
rules of the system of elementary semantics. If, for example,
the proposition: IIZ(Z00Z%) is constructed it is plain
that this proposition by itself has no clear meaning. However,
within the system of elementary semantics it can be completely
determined if precise construction rules for such propositions
and for theorems in which such propositions appear, are
accepted. This is the fundamental difference between intuitive
and symbolic logic. Intuitive logic in itself is but roughly
determined. However, certain simple rules which permit the
construction of precisely determined expressions and theorems
can be derived from it. Thus the logic of universal propositions
can be obtained automatically without employing any universal
propositions in its constructions in the following manner :

The calculus of quantifiers is usually constructed for patterns
of propositional functions such as @{x}, ¥Y{«x} f(% ),
g (%), etc.

To accept such patterns a special act of intuition is required.
Consequently the foundations of logic becomes a domain
which is difficult to understand. Later it will be seen that
these patterns can be constructed with the help of the concepts
of semantics. On the other hand it is easy to show that the

1 Kotarbuiski : Elementy fteorji poznania, logiki formalnej i metodologyi
nauk (Elements of the Theory of Knowkedge, Formal Logic and the Methodology
of the Sciences), Lwéw, 1929, p. 253,

? Kotarbifski: Ic.
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calculus of quantifiers can be constructed without employing
these patterns.

Semantical functions alone will be employed. The semantical
letters %, y, Z... may be employed as apparent semantical
variables.

The following rule will also be accepted :

If E is a semantical function which contains the semantical
letter I and which does not comtain the appavent semantical
vaviable K, and if F is the vesult of the substitution of K for I
in E, then L K F is a logical expression.

Consequently the following expressions are logical
expressions :

Dz(200z), Mz0j(£7%7), ~I%~=0%, etc.

The pattern ~II K ~ F will be abbreviated by the symbol

dKF.

The expression II K F is to be read:

for all K, F occurs.
The expression ~II K ~ F is to be read :
theye exists a K such that F, ov for cevtain K’s, F occurs.

The whole calculus of quantifiers reduces to the following
rule of procedure which is called the rule of generalization.

If ADLMMN
1s a theorem, iof M does not contain the apparent variable K, and
contains the semantical letter 1 which is not contained in L and
if finally F is the vesult of the substitution of K for I in M, then

AD)LIOIKF)IKFN
is a theovem.
The proof of the theorem :
Yaz{zv}{uv
will now be developed with the help of this rule.
AdYAp~p{uv}d{uo}{uo}
is a theorem.

If A p~p is substituted for L, { v } for M, and {#v }
for N in the rule which has just been given, M obviously
does not contain the apparent variable ¥ and does contain
the semantical letter » which is not contained in L, and finally
{ Zv } is the result of the substitution of # for #» in M. Con-
sequently the application of the given rule yields the theorem :

ADAp~pTOz{zv}dOx{xv}{uv}

The desired theorem follows immediately when simple
operations of the elementary calculus of propositions are
performed.

It is obvious that the latter theorem is a special case of the
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so-called axiom of deduction, which can be formulated in
terms of the functional pattern @ { x } as follows :
YOz P{z}P{u}

This formulation of the axiom is possible only if functional
patterns are accepted. However, for purposes of orientation
it can be employed as a provisional abbreviation. This axiom
can be proved by the same method as that employed above
if the pattern @ { « } is substituted for the semantical function
{uv}

'I‘he} principle of disjunction will now be developed for any
semantical function @ { « }.

The application of the principle of deduction to the function
V p @{ u } yields the theorem

YOXXVHDP{z}VpD{u}

Simple operations of the elementary calculus of propositions

transform this theorem into the theorem :
JAIDXVHP{Z}~pDP{uj}.

In order to apply the rule which was given above, the
theorem :

ADALDEV pP{x}~pP{u})P{u}P{u}
must now be proved.

AZV pDP{Z}~p will be substituted for L, ®{u }
for M and for N. It is clear that the logical expression L
cannot contain the semantical letter » because @ { % } was
derived from @ { # } by substituting % for ». The moment
Iz V pDP{ %} was accepted as a logical expression, it was
supposed that @ { « } does not contain the apparent variable %.
Otherwise the expression II%¥ V » @ { % } could not be con-
structed. The conditions of the rules are therefore satisfied
and the theorem :

ADANIOZEV )P O{2}~pTMzP{z}DAN2zDP{x}DP{u}
can be obtained.

From this theorem it is easy to pass to the so-called principle
of disjunction :

YOx2Vpo{z}VrOZzP{x}

Like the principle of deduction the principle of disjunction
is a metalogical pattern which tells how the principle of dis-
junction is to be proved for any given semantical function.
If for example it is desired that this principle be proved for
the semantical function { # v } already considered, it would
be necessary to repeat the above proof, substituting the
function { #v } for the pattern ®{ # }. In practice this
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is obviously unnecessary since the pattern of the principle
of disjunction can be employed.

‘It will now be seen that the rule which has been given
permits the generalization of theorems. If it is supposed
that the theorem & { # } has been proved, the theorem

S AP O{uIB{u}D{u}
can certainly be proved.

The application of the rule of generalization to this theorem
yields the theorem :

AYYppTz®{z UL O {7} D{u}
provided that @ { # } does not contain the apparent variable Z.
If it does contain # obviously another variable will be em-
ployed.

The theorem II % @ { % } is derived from the last theorem
by performing simple operations of the elementary calculus
of propositions.

This method permits the derivation of various theorems
of the calculus of quantifiers in a simple manner.

For example to derive the sylloglsm Barbara first the theorem
>N $L2} 4 (IR HLTa L2y Ad 9 Lu 4 (v}
dYfuo{u
will be proved, by applying the principle of deduction separately

to the functions
Yé{u}yf{uyand p{ultofu}

This theorem leads to the theorem
AN ${ 2}y {23 MDY {2}af{Z}I¢{u} o {u}

The application of the principle of generalization to the
last theorem immediately yields the theorem
YATZ)${7}p{s} M2 pL7}o{s} ML) ${5} o {5}
which is the symbolic transcription of the syllogism Barbara.

8. In addition to two-valued logic there exist wvarious.
systems of many-valued logic.

The oldest is the system of Professor N. A. Vasiliev who
published his work between 1910 and 1913. Vasiliev mentioned
these works briefly at the meeting of the International Congress
of Philosophy which was held in Naples.?

Vasiliev accepts not only the propositions: S ¢s P and
S ¢s non-P but also the proposition S ¢s P and non-P. He
constructs a consistent system on the basis of these suppositions.
Clearly such propositions as S ¢s P and non-P are undecidable

1 Cf, N. A. Vasihev: ‘ Imaginary (non-Aristotelian) Logic,” At del
Quinto Congresso Internazionale di Filosofia, Napoli 5~9 Maggio, 1924,

pp. 107-109.
N
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propositions. For example it can be said of some things that
they are white and not-white ; it can be said that electrons
are real and not-real.

Such propositions play a large role in actual life and are
undoubtedly very interesting because they lead one beyond
the sphere of exact thinking. It is difficult to predict whether
interesting results will be obtained if these phenomena are
included within a system. The supposition that concepts have
a determinate meaning is the basis of efforts of this kind.
But actually the propositions: this is white and not white,
and electrons are real and not real merely confirm that the
concepts involved have no precisely determined sphere.

Vasiliev’s theory was directed against conceiving the
principle of contradiction in too general a fashion.

Professor YLukasiewicz went even further than Vasiliev in
this direction. He was of the opinion that if in the exact
sciences the existence of contradiction were demonstrated,
the contradiction should be accepted as a valuable result.!

However, it must be acknowledged that ¥ ukasiewicz soon
abandoned this unfortunate position and devoted his complete
attention to another matter, namely the discussion of possible
propositions. Yukasiewicz is rightly regarded as the highest
authority to-day on questions concerning the calculus of
propositions and he has actually obtained far reaching results
in this field. His conception of a many-valued logic, which
contains } true and } true propositions, etc., as well as true
and false propositions is undoubtedly worthy of consideration.
He advances ideas akin to those of Brouwer,? Post,® and C. L
Lewis,* but presents his views with far greater clarity and
simplicity.

Yukasiewicz appeals to the fact that while Aristotle was
familiar with the principle of excluded middle he did not
accept it without reservations because it is not applicable to
propositions which refer to future contingent events. The

1 Jan Eukasiewicz: O zasadzie sprzecanosci u Arystotelesa.  Studyum
Kyytycane (On the Principle of Contradiction in Avristotle. A Critical Study),
Krakéw, 1910, p. 151.

2 L. E. J. Brouwer: * Begrtindung der Mengenlehre unabhdngig vom
logischen Satz von ausgeschlossen Drnitten, I.” Vevhandelingen der Koninklijke
Akademie van Wetenschappen te Amsterdam, Eerste sectie, vol. 12, no. §5,
Amsterdam, 1918,

8 E. L. Post: ‘“Introduction to a General Theory of Elementary Proposi-
tions,”” American Journal of Mathematica, vol. 43, 1921, pp. 163-185

4 C. I, Lewis: ““ Note Concerning Many-valued Logical Systems,” Journal
of Philosopky, vol. 30, 1933, p. 364.
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Epicureans did not accept this principle. Its actual creator
was Chrysippus, a founder of the Stoic school.!

If it is desired to account for possible propositions, the
principle of excluded middle must be regarded as false.

If for example, following ¥.ukasiewicz, the proposition :

“I will be in Warsaw next year on the 21st of December at
noon,” 2

is considered, it must be admitted that this proposition is
neither true nor false. Neither the value 1, which corresponds
to the value true, nor the value 0 which corresponds to the
value false, can be assigned to it. Its truth value can only
be }.
Clearly the signs 1 and 0 correspond to the signs V and A
which were introduced above.

On the basis of these remarks, ¥ukasiewicz develops the
calculus of propositions in a three-valued logic. He then
passes to a many-valued logic.? I will confine myself here
to the presentation of a matrix which explains the values of
the patterns ) E F and ~ F in all possible cases. I will use
the signs 1, 0, and .

E F ~ E YEF
1 1 0 1
1 3 0 3
1 0 0 0
3 1 3 1
3 3 3 1
3 0 3 3
0 1 1 1
0 3 1 1
0 0 1 1

The calculus itself is interesting, but several serious questions
must be considered. In the first place it is clear that many
restrictions are imposed upon the structure of a system of
mathematics and it is dubious whether the calculus can do
without a theory of types. In other words it is doubtful
whether a many-valued logic is of any use in constructing a

1 Cf, J. Lukasiewicz * ‘* Philosophische Bemerkungen zu mehrwertigen
Systemen des Aussagenkalkuls,”” Comptes rendus des séances de la société des
sciences et des lettres de Varsovie, Classe III, année 23, 1930, p. 63.

2 Pukasiewicz: lc., p. 64.

8 Cf. Jan Eukasiewicz and Alfred Tarski:  Untersuchungen uber den
Aussagenkalkiil,” Comptes rendus, etc., Lc., PP. 3, pp. 3842,
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complete system of mathematics and metamathematics. On
the other hand since the calculus of probability can be developed
within the framework of two-valued logic it is difficult to see
what advantage might be derived from the use of the calculus
of Lukasiewicz.

The philosophical arguments which Eukasiewicz employs
and in particular the Aristotelian classification of events into
contingent and necessary are quite naive and antagonize the
reader.

The question whether or not my stay in a given place at
a definite time is a matter of chance cannot be decided as
simply as Mr. Lukasiewicz seems to think. It suffices to point
out that unknowingly I might have swallowed poison early
this morning and consequently I will die within a few hours.
If this is the case it is certain that I will be unable to meet
my classes next year.

In any case a thorough reconsideration of all these matters
is necessary.



CHAPTER VI
THE THEORY OF CLASSES

1. The calculus of classes developed from investigations
concerning the comparison of the domains of concepts. Classes
are denoted by the letters 4, B, C ... and symbolic relations
between these letters are introduced. The symbolism of
Peano * will be employed, but to avoid parentheses the symbol
will be written first followed by the letters, in conformity
with the suggestion of Lukasiewicz.?

The equality of two classes 4 and B will be denoted by the
symbol = 4 B. The sign = denotes class equality and is to be

Cl Cl
distinguished from semantical identity. Classes are equal
if they have the same elements. However, this does not imply
that the classes are identical. For example, when' one has
= (man) (featherless biped), the concepts man and featherless

biped are not identical. The notion of the identity of two
equal classes has raised problems which have long troubled
logicians. Recently the so-called axiom of extensionality which
assures the identity of two equal classes ® has been generally
accepted. This axiom has proved to be superfluous because
one can confine oneself to extensional classes.4

If the elements of a class 4 are at the same time elements
of class B one writes (A B, and it is said that A4 7s a subclass
of the class B. 1If A is a class = A is the class of objects which
are not elements of class A. If 4 and B are classes n A B
is the class of objects which are elements of the classes 4 and B,
w A B is the class of objects which are elements of the class 4
or the class B. The class m 4 B is called the product of the
classes A and B, the class, v 4 B is called the sum of the
classes 4 and B.

The first analysis of the relation A4 B was made by Leibniz *

1 Giuseppe Peano: Formulaire de Mathématiques, Turin, 1895, Tome 1.

2 Jan LZukasiewicz: Elementy logiki matematycznej (Elements of Mathe-
matical Logic) (lithographed), Warszawa, 1929, p. 40.

* Rudolf Carnap: Der logische Aufbau der Welt, Berlin, 1928, pp 59 £

SCL.T.C.T.,p 421.

8 Dic philosophischen Schriften von Gottfried Wilhem Leibniz, Heraus-
gegeben von C. J. Gerhardt, Bd. VII, Berlin, 1890, p. 223.
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who proved among other things the following theorem, which
he called the praeclarum theovema :
If (ABand (CD, then (AACABD.

The modesty of this result is striking when it is contrasted
with the great ideal of Leibniz.

Sleszynski writes the following concerning this matter:

“Leibniz seeks a logic which will be the instrument of
investigation and which will lead to the discovery of new truths
as well as to the proof of known truths. He developed a logic
with a form very different from the one about which he dreamt.

Thus mathematical logic even in its earliest days took the form

of the algebra of logic or the logic of classes. Although this

logic has interesting and important applications, for example
in the calculus of probability, the number of such applications
is small. A comparison of the gigantic mathematical discoveries
of Leibniz with his meagre achievements in logic reveals the
difficulties involved in the development of logic. It is apparent
that the foundation of logic is rocky and barren and it is difficult
to make any real progress in it. However, Leibniz himself showed
by his activities how very useful to other sciences studies in

this sphere may be.” 1

Leibniz’ disciples, Segner and Lambert, introduced the
signs » and { to denote the relation (A4 B.

Segner wrote : animal ) vertebrate to indicate that the
denotation of the concept animal is greater than the denotation
of the concept vertebrate. Lambert wrote animal { vertebrate
to denote that the connotation of the concept verfebrate is
richer than the connotation of the concept animal.?

In 1871 Lambert discovered the distributive law of the
sign ~ with respect to the sign \v.? The relevant theorem
can be formulated as follows :

=ACvABuAnCAANCB.
Cl

Lambert also proved a number of other theorems of the
calculus of classes, but this was only the beginning. Lambert
and Segner had no immediate successors and exerted no direct
influence on the further development of the calculus of classes.

Euler’s 4 method, which involves the comparison of domains
of concepts and which utilizes circles to represent these

19;912“1 Sleszyfiski: Teorja dowodu (The Theory of Proof), Tom II, Krakéw,
, P- 4.

? Cf. Alessandro Padoa . ‘‘ La logique déductive dans sa derniére phase de
développement,”” Revue de Métaphysique et de Movale, année 19, 1911, p. 848.

¥ Padoa : l.c. Année 20, 1912, p. 58.

¢ Cf. Sleszyfiski . l.c., Tom I, 1925, p. 65.
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domains became very popular, and despite its inaccuracy is
employed to this very day in textbooks. To become convinced
of its inaccuracy, the comparison of the concepts non-Pole
and non-German should be attempted. This

is a question a clever schoolboy might well

ask his teacher. In as much as two circles

Germans| whose areas represent the extension or conno-
tation of the two concepts cannot be drawn,

these concepts cannot be compared. If the area

Non-Poles of the smaller circle represents the extension of

Fic. 4. the concept Germans, and the area of the larger
circle represents the extension of the concept non-Poles, the
whole plane outside the smaller circle represents the non-
Germans. Consequently the plane outside the circles as well
as the area of the circles themselves must be considered.
It should be observed that even here it is not sufficient to
employ circles and that a closed plane must be- used.

The concepts (4): a man with at least one son, (B) : a man
with at least one daughier, (C): a man with one child cannot
be compared even if both circles and the portions of the
planes exterior to them are employed. However, they can be
compared if polygons are used. In
Figure 5 the polygon HNPQSL
represents the extension of (4), the
polygon I M O Q S K that of (B), and
the square O P T R that of (C). The
square M N O P which is common to
the two polygons representing the ex-
tension of (4) and (B), represents the
men with at least one son and one
daughter. But these supplementations cannot save Euler’s
method, since the latter is not applicable to null classes and
consequently presents a false representation of classes, which
is based upon the assumption that a class is a material
collection.

In the middle of the nineteenth century a new series of
attempts to construct the calculus of classes appeared.

In 1858 De Morgan proved the following theorems :

==wvABA=~A—=EB
Cl

== NABwe—=A4—~B1
Cl

1 Padoa: ., année 20, 1912, p. 207.
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which even to-day bear his name. It is difficult for the layman
to understand these theorems. The following examples illustrate
them :

To say : it is not true, that this man is eithey stupid or bad,
is to say : this man is not-stupid and not-bad. To say : it is not
true that this man is stupid and bad, is to say : this man is either
not-stupid or not-bad.

In 1854 George Boole ! discovered the associative property
of the sign m. Not until 1877 was the associative property
of the sign w discovered by Schréder.?

The concept of the wumiversal class and that of the null
class were introduced by Boole,® who denoted them by the
numbers I and o respectively. A universal class contains as
elements all the objects about which we are speaking. For
example, in arithmetic the class of numbers is a universal
class. The universal class will be denoted by the symbol V
in conformity with the notation of Peano. The class =V
is then the null class and will be denoted by the symbol A.
In arithmetic an example of the null class is the class consisting
of the roots of the equation: % + I = x. :

The late Stanistaw Leéniewski did not like the concept of
the null class. He cited the following passage from Frege in
support of his position :

“If a class is composed of objects, is a set, a collective com-
bination of objects, it must disappear if these objects disappear.
By burning all the trees of a forest, we burn the forest itself.
Consequently there cannot be a null class.” #

Leéniewski boasted that :

“. .. throughout my life there was, on the whole, no time when
I was not in agreement with this concise remark.”” &

One could tell that throughout Leéniewski’s life there was,
on the whole, no time when he understood the concept of
a class. A forest is not a class, and a class is not a collective

! Padoa: l.c., p. 57.

2 Padoa: .., p. 57.

* George Boole: The Laws of Thought, reprinted in the Collected Logical
Works as vol. ii, Chicago, 1916, pp. 46-52.

¢ Gottlob Frege : * Kritische Beleuchtung einiger Punkte in E. Schréder’s
‘ Vorlesungen tiber die Algebra der Logik’"’, Archiv fir systematische Philo-
sophie, Bd. 1 (1895), pp. 436-7, cited by Stanistaw LeSmewski, *“ O podstawach
matematyki,” (“* On the Foundations of Mathematics,”’) Przeglad filozoficzny,
tom, 30, 1927, p. 196.

8 Leéniewski: le.
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combination of objects, nor need it disappear if these objects
disappear.

If the concept :

the root of the equation . % + I =%
is considered, it is clear that it does not denote numbers and
therefore does not denote the roots of the equation : x + 1 = «.
This equation has no roots. The concept is a null class.

If null classes were rejected as illegitimate constructions,
a theory of equations could not be developed. The question
might be raised whether the function f(x) becomes zero at
some point. To discover the answer to this question, the
equation : f(¥) = o must be investigated. This cannot be
done if null classes are held to be illegitimate constructions.
Similarly the so-called reductio ad absurdum proof could not
be employed in geometry.

A critique of the assumptions upon which the development
of science has been based is absolutely necessary and is one
of the main ways of obtaining a view of the world which
is based upon sound reason. However, a critique which is
based upon common misunderstandings and which is imposed
on the reader by the use of powerful dialectical devices, must
lead to confusion of concepts.

Les$niewski spoke as if it were a common mistake to employ
null classes. Actually mathematicians are to be censured only
because they interpret classes as material collections. Con-
sequently it is indeed difficult to understand what a null class is.
But just as it does not follow that there are no infinitely
small numbers, merely because the differentials of Newton
and Leibniz were not defined precisely and intelligibly, it
does not follow that there are no null classes.

Logic and mathematics can deal only with certain expressions.
Obviously therefore classes are certain expressions. Null
classes are equally good expressions as universal classes.
Nothing further need be said.

Leéniewski’s argument that in daily life null classes are not
handled cannot be sustained. It can be confirmed repeatedly
that certain classes which are regarded as universal classes
are in fact null classes. Progress could not be made if discussion
were limited to non-null classes ; discussion of unknown stars,
unknown roots, etc., would be precluded. Artificial language
like that of Leéniewski would have to be employed.

Peirce, MacColl, Jevons, Venn, and Schréder continued
the work of Boole and De Morgan.
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In 18647 Peirce discovered the distributive property of the
sign \ with respect to the sign m. In the symbolism of this
book the theorem in question may be written :

=vlnABAanuvuCAuCB?

Cl
In 1878 MacColl discovered the following laws :
(1) =CAnBCACABCAC.
This is the distributive law of the sign  with respect to the
sign /.2
(2) =CwBCAA(CBACCA
Huntington brought these investigations to a definitive
conclusion.? He formulated the calculus of classes with the
help of a table of axioms, which is given below in a slightly
modified form, i.e. the construction rules are separated from
the general axioms.
1. Construction rules.
(a) If A is a class, then = 4 is a class.
(b) If A and B are classes, then «w 4 B is a class.
(¢) If A and B are classes, then ~ 4 B is a class.
2. Axioms.

In =wvAAA
Cl
It =AAAVA
Cl
IIes = ABwBA
Cl
II6 =~ABABA
Cl
Il =AvABwACVAANABC
Cl
Il =vwAN"ABAnACAAwvwBC
Cl
IVea = A —-=A4AA
Cl
IVE =A== AV
Cl
V ~=AV¢
Cl

1 Cf. Padoa: l.c., p. 58.

2 Cf, Padoa: Il.c., p. 59.

8 Cf. Edward V. Huntington: ‘‘ Sets of Independent Postulates for the
Algebra of Logic,” Transactions of the American Mathematical Society, July,
1904, vol. 5, pp 292-3.

¢ Cf. A. N, Whitehead and B. Russell ; Principra Mathematica, vol. 1,
Cambridge, 1910, pp. 205-6.
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2. The failure to determine precisely the univers du discours,
ie. to specify the objects which may be discussed, was the
essential defect of the calculus of classes. Paradoxes resulted
from this obscurity when Cantor passed from the calculus
of classes to the general theory.?

The concepts of elementary semantics and the calculus of
propositions permit the calculus of classes to be placed upon
firm foundations.

All the propositions of elementary semantics which can be
obtained from the pattern II T F, i.e. all those which begin
with the general quantifier, will be regarded as classes. In
particular the following are classes: IId=a4, Da=40,
Ha=dd, Ma{++0002} Ma(+ai«0002).

The first of these classes is the universal class, since
=EE is always #rue. 0 is the only element of the class
II 3 = 30, since it alone satisfies the condition = E 0 s frue.
The class I 4 ~ = a4 is a null class, because no expression
satisfies the condition ~= E E ss frue. The classIId{ «++0004}
has three elements, i.e. the expressions 0, «00, «+«+000
because these expressions alone satisfy the condition
{+««000E} is true. The class IId(+33+000a) is the
class composed of the infinitely many expressions which
satisfy the condition (« EE «000E) s frue. It is these
expressions which are called whole numbers.

If J is an element of the class F, this fact is expressed by
the pattern: € J F. The following theorems can be proved :

seulla=aa,

e0la=a0,

~sulld=aad,

AcO0IIi{+«+0000}Ac+000i{+«+«000:}
€+«#0000a{++000:}

Yeulld(+3d%«0003)evuulld(+«dd«0004a).
If the pattern £ 4 B is employed the calculus of classes
can be reduced to the calculus of propositions. To perform
this reduction it is necessary to accept the following additional
rule, which will be called the transformation rule :

If in the propositional function F the apparent variable K,
not contained in F, is substituted for the veal vaviable I, and if

1 Cf. Georg Cantor : Contributions to the Founding of the Theory of Trans-
finite Numbers, translated by Philip E. B. Jourdain, Chicago, 1915.
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the vesult of this substitution is G, then = FeIIIKG is a
theorem.t
For example the following are theorems :
=(+0%+0004)exulla(+035+000a)
={+0+00x}eulla{+«0+00a} etc
If the pattern ¢ ( X ) is employed
=d(u)eullad(a)
In addition to this rule only the following abbreviations
are necessary :

Abbreviation Expression
- A Ma~gad
nAdB IMapcadgaB
vAdB IIaVgadgaB
=A4B IIz=¢%2d4¢czB
cl
¢ 4B Mz)g#dgzB
v Ha=aa
A Ma~==aa

The reduction cannot be regarded as complete because the
symbol € 4 B and the transformation rule have been accepted.
Rational metamathematics, which will be introduced Iater,
permits a complete reduction to be obtained.

To become familiar with the role of the above abbreviations,
the following examples will be considered.

The following are theorems :
= A II i («0040002)I1 2 { #0002 }II 2 A (+0240002) { #4000}
Cl
=Nn0i{++0002}0z{02}Ila=a0
Cl
=vili=d0uwlli=d+00Ii=3G++000II2{++000a}
Cl

It will now be shown that

A4,
is a theorem, where 4 is any class.

Let the class Il 3 ~ = 44 and the class pattern Il 2 ¢ (4)
be substituted for A and A4 respectively. In conformity with
the calculus of propositions

Y~=uud(u)
since a false proposition implies any proposition.

1 The necessity for such a rule was pointed out to me by the late Stanistaw
Lesniewski. I first introduced 1itin T. C. T, p. 25.
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If the transformation rule is applied, the theorem :
deulla~=adaceullad (a)
will be obtained.

By the introduction of the symbol A for I 4~ =44 and
the letter 4 for the pattern I d ¢ (2),

deunlAeud
is obtained.

The application of the rule of generalization yields the
theorem :

Ix)ezAex 4
which on abbreviation becomes the desired theorem.

It should be observed that the methods given above do
not permit the proof of the general theorem. However, it has
been pointed out that it can be proved for each separate class.

The following example will now be considered :

The expression II2{ «0+«004 } can be regarded as the
class of expressions contained in « 0 # 0 0. On the other hand
the expression

OiaV=30V=3d+00=ad+0+00
represents the class, whose elements are the expressions :
0,400 +«0,00. Itcan be shown that both classes contain
the same elements, i.e. that the two classes are equal.

First the theorem :

={+0+00%} V=40V =4+00=%u+0+00
will be proved.

The proof of this theorem is based upon the analysis of the
expression « 0 « 0 0 into its component expressions in accordance
with the pattern =« E F G.

If the transformation rule is applied to this theorem, the
theorem
=eulld{+«0+00a}cullaV=ad0V =3+00=3+0+00
will be obtained.

The application of the rule of generalization to this theorem
yields :

Ni=exMi{+0+00a}exMaV =3d0V =3+00=2+0+00

This theorem can be written in the following form :
=Hi{+0+005}M4V =40V =3+00=3+0+00
Cl

This theorem can be read as follows: The class
Mi{+0+004} contains the same elements as the class

NaV=3d0V=3+00=2+0+00.
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The calculus of relations was developed parallel to the
calculus of classes. Until recently it was regarded as an
independent discipline. However, not long ago Kuratowski
showed that it can be reduced to the calculus of classes.?

Instead of talking about the relation R it is possible to
speak about the class of pairs of elements, between which
this relation holds. For example, instead of talking about
the relation which holds between father and son, it is possible
to speak about the class of pairs of men in which the first
element is the father and the second element the son.

In other words the concept of an ordered pair of elements
to the concept of a class.

Kuratowski’s procedure was as follows : From two elements
X and Y, where X occupies the first place and Y the second,
he forms the classes E and F such that E contains only one
element X, and F is the class of elements X and Y. The class
whose elements are the classes E and F represents the pair of
elements X and Y. It is obvious that the element X belongs
to both classes E and F, while the element Y belongs only to
the class F. If X is identical with Y, the classes E and F
reduce to one class, and the pair of elements (X, X) which
completely characterizes the element X, is employed.

The calculus of relations can be reduced to the calculus
of propositional functions in a way analogous to that which
was employed in the case of the calculus of classes.

The relation between two expressions, where the first
expression contains the second, will be represented by the

symbol :
MzIy{%5}
The converse relation will be represented by the symbol :
Mz05{5%}

The proposition : relll ZIL5 H (I K) is true will be read :
I stands to K in the relation M 1L 5 H

The transformation rule is as follows :

If in the propositional function F, the apparent variables
K and H are substituted for the veal variables I and E respectively,
where neither H nor K is contained in F, and if the vesult of
this substitution is G, then = F relIL a1 b G ( J H ) ts a theovem.

1 Cf. Casimir Kuratowski: * Sur la notion de I'ordre dans la théorie des
ensembles,” Fundamenta Mathematicae, tom, 2, Warszawa, 1921, pp. 161-171,

See also N. Wiener, “ A Simplification of the Logic of Relations,” Proceedings
of the Cambridge Philosophical Society, vol. 17, 1912-14, pp. 387-390.
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In particular
E{uv}relnd]IEEciE }(«000){+«000}
S{uv}relllab{ab}(0+00)~{0.00}
are theorems.
Once again a table of abbreviations is posited. This table
is as follows :

Abbreviation Expression

= A4 Mallb~reld(db) .
AAB |HalbAreld(ab)relB(ad)
vAB |HallbVreld(ab)relB(ab)

R=1AB IzZMysEreld (Z7)rel B(%5)
)

.¢CA4B OzIy dreld (zy)rel B(z5

v Héﬂ%l\:ﬁ '(=%E (+3)
Rel

A Mallbp~=d5~=055
Rel

If X and Y satisfy the condition rel R (X Y ) ¢strue, X is
called the anfecedent and Y the comsequent of the relation R.
The class of the antecedents and consequents of the relation R
is called the field of this relation.

3. To account for the fruitfulness of the calculus of classes
it suffices to see the way in which it permits the elimination
of the concept of segment from the arithmetic of real numbers.
In accordance with Dedekind’s ! method, arbitrary classes
of rationals, which are less than a certain whole number will
be regarded as real numbers. -

The following relations will be postulated between real
numbers conceived in this way and rational numbers :

(@) The null class is arithmetically equal to O.

(b) The class containing elements greater than every rational
number which is less than the rational number E and not
containing elements greater than E, is arithmetically equal
to E.

(¢) The class all of whose elements are less than a certain
rational number which is less than the rational number E,
is arithmetically less than E.

(@) The class which is neither arithmetically less than nor
arithmetically equal to E and which is a real number, is
arithmetically greater than E.

For example, the class of rationals less than g, the class

1 Cf. Richard Dedekind * Essays on the Theory of Numbers, translated by

Wooster Woodruff Beman, Chicago, 1901, * Continuity and Irrational
Numbers,” pp. 15-19.
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whose only element is 3, and the class whose elements are
obtained from the pattern ;, where » =2, 8, . . . are seen to
be real numbers which are arithmetically equal to ;.

Real numbers are compared by applying the following
rules :

The number E is greater than the number F, if one of the
elements of the number E is greater than the number F.

The number E is egual to the number F, if neither E is
greater than F, nor F is greater than E.

Operations are performed on the real numbers E and F by
performing them on pairs of elements of these numbers.

For example, ( E 4 F) is the class of sums obtained by
adding an arbitrary element of the class E to an arbitrary
element of the class F.

Obviously the systematic construction of the arithmetic
of real numbers requires considerable work, but the fundamental
conception is very simple.

It should also be noted that 4/2 is simply the class of rationals
whose square is less than 2.

Such real numbers as I, the base of the natural logarithms,
e, etc., can be constructed in similar fashion.

If it is observed that the semantical method permits classes
to be regarded as certain expressions, it will be easy to
understand that expressions are the concrete objects which
replace pseudo-concrete segments in arithmetic. Thus
arithmetic ceases to be a science about ideal objects.

It is clear that the construction of the universal class of real
numbers is impossible. If it is constructed Richard’s paradox
will result. However, just as it was possible to construct
classes of segments, it is possible to construct separate classes
of real numbers and to talk about the upper limit of such
classes.

Thus this method permits a simple definition of the upper
limit of a class of real numbers.

The upper limit of a class of real numbers is simply the class
of rationals which are elements of at least one of the real
numbers of the given class.

If this class of rationals contains elements which are greater
than any whole fumber, the upper limit of the given class is
said to be infinite. Otherwise it is a real number.

If a given interval of real numbers (ao B,) is divided
successively into parts by introducing the intervals of numbers
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(ay B1), (ay, Bs), (ay, Bs) in such a way that a, < a, .1
0, 4+1<PBn+1 Bssi1<Bn wheren =o,1, 2, ..., the existence
of the upper limit of the numbers a, is obviously a trivial
matter. The upper limit of the numbers «, is the class of
rationals which are elements of at least one of the numbers a,. It
isa real number because its elements are all less thanany rational
number and are arithmetically greater than Po.

This method simplifies the proofs of theorems in elementary
geometry concerning the proportionality of segments, the
measurement of areas and circumferences, etc.

4. The classical theory of classes developed from an extremely
idealistic, platonic view of the world. It is the only case in
the history of modern science of a fruitful reaction to platonic
idealism.

Georg Cantor was the creater of the theory of classes. His
only precursor was the Austrian clergyman, Bernard Bolzano
(1781-1848). Bolzano believed in the actual infinite. He
devoted his entire life to showing that the paradoxes attached
to the infinite are illusory.? He invented the idea of a one to
one correspondence between'two infinite classes. The class
of even numbers can be made to correspond in a one to one
manner to the class of whole numbers by the equation :

k=2.1.

It is clear that to any whole number 7 corresponds the even
number 2 .4. Conversely to any even number % corresponds
the whole number (%2:2). It follows that the class of even
numbers is similar to the class of whole numbers since the
former is part of the latter. Bolzano maintains that the
paradox which might be seen in this fact is only apparent,
because the essential characteristic of the infinite is that part
of an infinite class can be similar to that class.

Cantor extended the investigations of Bolzano on the
similarity of classes. In particular he proved that the class
of rationals is similar to the class of whole numbers.? Classes
which are similar to the class of whole numbers are called
denumerable. In other words it may be said that denumerable
classes have the property that from their elements a sequence
can be formed. It may be seen that from the elements of the
class of rationals the following sequence may be formed :

If only irreducible expressions are considered, i.e. fractions

1 Federigo Enriques : The Historic Development of Logic, authorized transla-
tion by Jerome Rosenthal, New York, 1929, p. 137.
8 Cf. Georg Cantor: Lc., pp. 434, p. 111.
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which cannot be simplified, the fractions, the sum of whose
numerator and denominator is 1 are placed first. Since there

% the first expression of the sequence
is therefore 0. Irreducible fractions the sum of whose numerator
and denominator is 2, are considered next. Since there is

is but one such fraction :

only one such fraction, %, the second term of the sequence
is therefore 1. There are two irreducible fractions the sum

1
2)

and % The smaller is placed first. The third term of the

sequence is therefore 1 and the fourth is 2. In this way the

2
following sequence is obtained :

1 1 123 1 12345
0Lg2gdzgetsydprayel
It is easy to give the general construction rule for this

sequence. If the sums of the numerator and denominator of
two irreducible fractions are computed, the fraction with the
smaller sum precedes the fraction with the larger sum. If
the sums of the numerator and denominator of the two fractions
are equal that fraction which is smaller precedes.

Cantor’s principle discovery was based upon the proof that
the real numbers do not form a denumerable class,! i.e. that
there is no denumerable class of real numbers which contains
all the real numbers.? Cantor did not hesitate to operate
with the concept of the class of all real numbers. In consequence
this concept is generally employed in contemporary
mathematics without any questions being raised in connection
with it. Mathematicians disregarded the objections of Richard
and Poincaré because they held that semantical questions
are not part of mathematics.

Cantor’s second great discovery was the conception of well-
ordered classes.?

of whose numerator and denominator is 8. They are:

! Cf. Cantor: Il.c, p. 381,

* The proof of this theorem was given m 3.8 and the difficulties which arise
in connection with the conception of the class of all real numbers were also
pointed out.

3 Cantor: lc., pp. 60-1, 75, 137 ff,
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A class is said to be well-ordered, if each of its not-null
subclasses has a first element.

The class of rationals is obviously not well-ordered with
regard to magnitude, since, e.g., the class of rationals greater
than 1 has no first element.

However, every sequence is a well-ordered class.

The terms of a sequence of sequences can be ordered in
such a way that the term a;, precedes the term a ; 4 , m)
and the term 4 ; . ma» In other words, of two terms which
have the same first index and therefore belong to the same
sequence, the term which is earlier in the given sequence is
regarded as earlier. Of two terms which belong to two different
sequences the term which belongs to the earlier of the two
sequences is regarded as earlier.

If, for example, the sequence of sequences :

A1 A9 19 A g+ -

21, A2 A3 A2yg ¢+

@31, A32, %33 A3 -«
is considered, it is easy to show that its terms can be well-
ordered on the basis of the above rule.

It will be agreed now that two ordered classes are to be
called ordinally similar if a one to one correspondence can be
set up between them in such a way that the image of an
earlier element is invariably earlier than the image of a later
element.?

Classes of well-ordered ordinally similar classes may be
regarded as numbers.2

First there are finite ordinal numbers, which correspond
to whole numbers. They are succeeded by the ordinal number
o, which is the class of denumerable classes. ¢ is succeeded
by the number ¢ + 1, which3is the class of classes such that :

1,23 ..., w
i.e. the class which is obtained by adding still another term
to the terms of the sequence.

It is clear that the possibilities of forming well-ordered
classes are unlimited.

The reader will feel that these ideas are very alluring.
“ Eodem modo literis atque arte animos delectari posse.” 2

1 Cantor: lc., p. 112,

2 Whitehead and Russell: Principia Mathematica, Cambridge, 1912,

vol. 2, p. 291 £ . Lo
8 Cantor’s motto, cited by Adolf Fraenkel : Einleitung in die Mengenlehre,

Berlin, 1928, 3 Aufl,, p. 1, n. 2.
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Unfortunately difficulties similar to those which were
encountered in the theory of real numbers are met at every
step.

The theory of ordinals enabled Cantor to construct the theory
of cardinals. By the cardinal number of a class is understood
the class of classes similar to a given class.?

The class of classes similar to the class of natural numbers
is denoted by x,.

The class of classes similar to the class of the ordinal numbers
of denumerable classes is denoted by the symbol X,.

It can be shown that classes whose cardinal number is ®,,
like the class of real numbers, are not denumerable. The
problem whether X, is the cardinal number of the class of
real numbers has not been solved. This problem is con-
ventionally decided in the affirmative by accepting the
so-called Aypothesis of the continuum.

5. The fundamental difficulties encountered in these
magnificent conceptions led to the great drama in Cantor’s
life and gave evidence of his genius.

Professor Adolf Fraenkel writes 2:

*“ Rarely in the history of mathematics and perhaps in the
history of all science has such a vast discipline been created and
developed to such heights by a single man, as the theory of
aggregates was developed by its creator, Georg Cantor (1845-
1918). In the face of the opposition of almost the entire mathe-
matical world he pursued and maintained his ideas.”

In the introduction to his excellent text on the theory of
aggregates, Fraenkel writes as follows 3 :

‘“ Beside the fruitful intuition and the creative power of a
genius, which guided Cantor in his discoveries, unusual energy
and persistence on his part were necessary to apply his intuitions
and carry his point regarding them ; for a long time, even up to
the last decade of the nineteenth century when Cantor had
already concluded his literary activity (1897), much to his
sorrow, his intuitions were attacked by the vast majority of his
mathematical contemporaries (above all by L. Kronecker) as
obscure and false, or at the very least—by his well-wishers—as
‘ having been propounded a century too early ’.” . ..

! Whitehead and Russell : Lc., p. 13.

3 A. Fraenkel: “ Die Entstehung der Mengenlehre,” Scientia, vol. 48,
1930, p. 361.

3 A. Fraenkel : Einleitung in die Mengenlehre, Berlin, 1928, 3 Aufl,, pp. 1-2.
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Cantor’s spirit was broken by his opponents. It could
hardly be foreseen that in time, even those of his successors
who rejected his metaphysics but sought to defend those of
his results which have decided the fate of mathematics, would
be combatted with equal fervour.

Whether disputes about new views concerning the founda-
tions of a science will always result in misery, contempt, and
erroneous opinions can hardly be foreseen. In any event
such has always been the case up to the present day. Thinkers
who have developed familiar ideas have always been honoured
and secured material well-being. . Conquerors of new domains
of thought have always been exposed to and threatened with
danger.

Cantor’s theory is an apparent triumph of idealism. At all
events it manifests his creative power.

If all idealists were of the type of Husserl and his pupils,
the struggle with idealism might be pointless. But a con-
sideration of Cantor’s genius shows that it was inseparably
connected with a firm belief in the world of ideal objects and
an almost mystical religiosity. Consequently all desire for
a thorough-going critique of the bases of human genius is lost.
We are possessed by the same perpetual desire to glorify our
creations to eternity as were the Pythagoreans.

Human nature is strangely weak and capricious. It is
stronger than the experience accumulated during the course
of centuries. However, it must be understood once and for all
that the value of all thoughts which have ever been produced
depends upon some mysterious profundity, and their meta-
physical character, if any, does not affect their scientific value.
What Cantor directly associated with the actual infinite was
his personal survival, which has nothing in common with the
fruitfulness of his ideas. The greatness of his doctrines has
nothing in common with the mysterious allure of the infinite.
It lies in the fact that certain operations can be performed with
the help of signs which have been defined. However, it must
be kept in mind that if Cantor had confined himself to per-
forming these operations and if the fires of a mystical yearning
for infinity had not burned in his soul, he would never have
discovered the simple laws which he left mankind as a
permanent acquisition (aere perennius).

However, it must be confessed that Cantor’s metaphysics
became the source of tragic errors which decided its fate.

He employed the term aggregate.
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“By an ‘aggregate’ (Menge) we are to understand any
collection into a whole (Zusammenhang zu einem Ganzem)
M of definite and separate objects m of our intuition or our
thought. These objects are called the ‘ elements " of M.” 1

The reader can readily observe that this concept has the
characteristics of such contradictory constructions as Ingarden’s
heteronomical expressions which were described above.2 The
discovery of this fact was made by Bertrand Russell.

In constructing Russell’s famous antinomy, it should be kept
in mind that according to Cantor, every class (aggregate) is
a definite, separate object of our thought and can therefore
in turn be regarded as an element of a class. In particular
it can be asked whether or not a given class is an element
of itself. For example, the class of non-men is an element of
itself because this class is not a man. Similarly the class of
all classes must be an element of itself, etc. The class of all
classes is an object so sublime, that it might arouse a desire
to seek the exact relationship between the theory of classes
and theology. In view of Russell’s construction, dreams of
this kind disappear.

Russell formed the class of all classes which ave not elements
of themselves.

In our symbolism the expression

DOz~cx%
represents this class.
This expression will be denoted by the letter Q and the

proposition
£eQQ

will be considered.

The application of the principle of transformation to this
proposition yields the equivalence :

=eQQ~eQQ

Thus the proposition £ Q Q is equivalent to its own negation.

In ordinary language this paradox can be expressed as
follows :

If Q is the class of classes which are not elements of them-
selves, Q) can be neither an element of itself nor not an element
of itself.

I{ Q is an element of itself, it is not a class which is not an
element of itself and therefore cannot be an element of itself.

! Cantor: I ¢., p. 85.  Cf.2,. 4.
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If Q is not an element of itself, it is a class which is not an
element of itself and therefore is an element of itself.

It follows immediately from this antinomy that the question
whether or not a class is an element of itself has no precise
and determinate meaning.

Russell’s discovery was one of the most dramatic awakenings
ever experienced by science. The entire structure of the
theory of classes which had required such effort to erect and
which had promised so much, ceased to be a clear and simple
edifice. A flaw appeared in its foundations which threatened
complete catastrophe.

Gottlob Frege wrote at the end of the second volume of his
Grundgesetze dey Avithmetik :

*“ Hardly anything more unwelcome can happen to a scientific
writer, than that after the completion of a work, one of the
foundations of his edifice should be shaken. I was placed in this
position by a letter from Mr. Bertrand Russell, when the printing
of this volume was nearly completed.”

And a little later:

“ Solatium miseris socios habuisse malorum. If it is any con-
solation, all those who have employed the extension of concepts,
classes, and aggregates in their proofs are in a situation similar
to mine.” 1

The Italian mathematician, Burali-Forti,2 was the author
of the first published antinomy. This antinomy can be
formulated as follows :—

If the class of all ordinals is comsidered, it forms a well-
ordered class and therefore can be employed in creating a new
ordinal, which must be greater than all the ordinals.

This paradox is perhaps even more disturbing than that of
Russell because of its uncanny simplicity.

Both these paradoxes irrefutably show that Cantor’s naive
concept of a class cannot be maintained.

However, it does not follow that Cantor’s theoryis invalidated.
It will be seen that it can be saved by placing very simple
restrictions upon the language to be employed and that it
can be reconstructed in such a way that the elements of meta-
physical idealism which are involved in it, will be preserved.

1 Gottlob Frege: *‘ Nachwort,” Grundgesetze der Avithmetik, Bd. 2, Jena,
1903, p. 253

2 Cesare Burali-Forti: ‘‘ Una questione sui numeri transfiniti,”” Rendiconti
del Circolo Matematico di Paleymo, vol. 11, 1897, pp. 154-164.
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But the dream of an absolute mathematics which is indepen-
dent of logical constructions vanished.

6. To remove Russell’s antinomy it suffices to accept the
simplified theory of logical types. Bertrand Russell was the
creator of the theory of types. This theory is complicated
and cannot be clearly formulated in a few words. However,
it can be simplified in such a way that it can be explained by
a few simple sentences.

A so-called univers du discours which is composed of objects
called individuals will be accepted. No further properties of
these individuals nor any concrete examples of them will
be given.

Classes of individuals, classes of classes of individuals, etc.,
will also be accepted.

Thus clearly the concept of a class as such has no meaning.
Only classes composed of certain determinate objects can be
discussed. Consequently the question whether or not a class
is an element of itself is meaningless.

I formulated the simplified theory of types for the first time
in an article published in 1921, which contains the following
sentence 1:

““To remove this antinomy (Russell’s antinomy is concerned
here) the simple theory of types, which depends upon the dis-
tinction between individuals, functions of individuals, functions
of these functions, etc., is sufficient.”

In this context the concept of a function may be regarded
as equivalent to the concept of a class.

The following year I formulated the same conception.2

In 1925 I published an article based upon the simplified
theory of types.? Nevertheless I have never maintained that
this theory definitively settles the foundation-problems of
logic.

In 1925 F. P. Ramsey advanced such a thesis and referred to
my article of 1922, although from a completely different point
of view.# Ramsey’s article rapidly gained popularity. Professor

1 4. L. F., cited by Alonzo Church: ““ A Bibliography of Symbolic Logic,”

The ] Urn l of Symbolw Logie, vol. 1, 1936, p. 172, no. 220 (3).

3 U.A.P. M., p. 241.

* U. H. M., p. 439 ff.

¢t F P. Ra.msey “ The Foundations of Mathematics,” Proceedings of the
London Mathematical Society, Ser. 2, vol. 25, 1926, reprinted in The Foundations
of Mathematics and Other Logical Essays, London, 1931, pp. 1-61.
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Carnap in a recently published article unreservedly recognized
my priority in regard to this matter.?

It should be added that in 1925 Professor Wilkosz constructed
a theory of classes, based upon the simplified theory of types.2

The simplified theory of types is very important because it
permits simple intuitive foundations to be obtained for the
theory of classes and does not require the use of a symbolic
apparatus.

Yet this theory does not permit everyday language to be
employed to its fullest extent. In particular semantical con-
siderations must be abandoned if the antinomy of Richard is
to be avoided.

The method of constructing the concept of real number on
the basis of the simplified theory of types will not be given
here. Itis a fact that if we accept the so-called axiom of infinity
from which it follows that the class of classes of individuals
is infinite, it is possible to construct the whole theory of real
numbers without difficulty as was proved by Whitehead and
Russell.® Real numbers can be conceived as certain classes
of rationals. In virtue of the simplified theory of types all
classes of rationals are of the same type. It therefore follows
that the Cantorian number on the diagonal is of the same
type as the numbers which form the fundamental sequence.
The consequence of this state of affairs is the antinomy of
Richard. This antinomy can be avoided only if the theory of
classes is acknowledged to be a closed discipline from which
all semantical investigations are excluded.

This is a very odd state of affairs. On the one hand we speak
of all the properties of the real numbers. On the other hand
we neglect the properties of real numbers which can be
represented by the expressions of our system. It is as if we
were concerned only with those properties which actually
can be constructed in our system. Thus a careful consideration
of the implications of this conception seems to show that the
idealism involved in the simplified theory of types is illusory.
If the class of real numbers is said to be non-denumerable
and if this assertion does not lead to contradiction in spite
of the fact that we are actually concerned with the numbers
constructible with our system, such a statement can be made

1 Cf. Rudolf Carnap: ‘‘Die Antinomien und die Unvollstindigkeit der
Mathematik,” Monatshefte fuv Mathematik und Physik, Bd. 41, 1934, p. 265,

2 Wilkosz : Podstawy ogdine; teorji mmnogoéci (Foundations of a General

Theory of Aggregates), Krakéw, 1925,
8 Whitehead and Russell: Lc., pp. 183.
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only because our system provides no means to form the
sequence of these numbers.?

From this point of view the actual infinite disappears and
what is called non-denumerability is but an awkward description
of the poverty of our system.

Thus the theory of types is a strange mixture of idealistic
and nominalistic elements.

The idealistic character of this doctrine manifests itself in
the supposition that there exist infinitely many classes of
individuals about which nothing is established.

Furthermore if we do not wish to accept the altogether
superfluous and completely metaphysical axiom of extension-
ality, it is possible to prove the existence of a non-constructive
class in our system.?

The determining factor leading to the rejection of the
simplified theory of types is its incompatibility with the
axioms of semantics. Detailed investigations on the founda-
tions of the exact sciences are impossible if semantical con-
structions are not studied in full detail. From this point of
view the simplified theory of types has outlived its value.
It must be replaced by a new and much more general logic.
The simplified theory of types is of course well-suited for
semi-intuitive investigations. But such investigations can
be carried on just as easily with the help of the axiom system
given by Professor Zermelo, which was perfected by Professor
Fraenkel. It is also possible, following Hausdorff and
Sierpinski to disregard the difficulties involved in the theory
of classes, to avoid complicated constructions, and to be
governed by sound intuition. It is well known that this method
has proved very fruitful and led to a great increase in the
number of investigations on the theory of classes. A large
number of such investigations have been made on Polish soil.
The journal, Fundamenia Mathematicae, founded by the late
Mr. Janiszewski and published in Warsaw by Professors
Sierpinski, Mazurkiewicz, and Kuratowski contains a mass
of results which are difficult to understand but which are of
great value for investigators working on the foundations of
mathematics. The further development of these investigations
was hindered by grave difficulties connected with the fact that
a concept of a class which is not associated with the concept

1 Carnap gave this interesting interpretation of the theory of types m
Carnap: lLc.
3 Cf. N.G. M., p. 369 £.
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of an expression is not uniquely defined. These difficulties
clearly bring out the fact that in time the theory of classes
will become part of that much more general science, rational
metamathematics.

7. These difficulties will be considered in 6.8. I would now
like to say a few words about the pure theory of logical types.
Bertrand Russell developed this theory in such a way that the
use of intuition was required. According to this theory neither
classes of individuals, nor classes of classes of individuals, etc.,
form a definite logical type ; they fall rather into types which
in this case can be called orders.

To avoid misunderstandings it should be observed that
Russell speaks of propositional functions and not of classes.
By a class he understands a certain fictional construction
which cannot be given in simple fashion. I will not go into
these matters here, but confine myself to the remark that
this method proved to be unfortunate and led to great confusion
of concepts. I have already fully criticized Russell’s conception
of classes.?

I will rather consider his theory of types.

Predicative classes of imdividuals are the lowest type of
classes. They cannot be defined; mneither is it possible to
construct an example of such a class within the system of
logic. It is therefore clear that this view is extremely idealistic
in character. If now any class of predicative classes of
individuals w is formed, its sum and product can be constructed.
The sum of the classes w, which is denoted by ¥. w, is the class
of individuals belonging to a certain predicative class which
is an element of the classes w.

The product of the classes w, which is denoted by II w,
is the class of individuals belonging to all classes of individuals
which are elements of the classes w.

The classes T w, II w are examples of non-predicative classes
of individuals. They are constructions of a higher order.
These constructions form a separate type of objects.

If now we have objects of any type it is possible to construct
predicative classes of these objects. The sums and products
of these classes provide objects of a new type, etc.

This theory has been called the branched theory of types,
because, as is clear, the types do not form a sequence.

In order to reconstruct the theory of Cantor with the help
of this radical theory, Russell added the following idea. He

1¢£7.C.T,T.C. T, 11
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accepted an axiom which he called the axiom of reducibility.
This axiom says that fo every class corresponds a certain
predicative class which is equivalent to ¢f. In view of this axiom,
the classes ¥ w, Il o have their equivalents among the
predicative classes of individuals. In practice, therefore, the
situation is such that in speaking of all predicative classes of
individuals we also have in mind those classes which contain
the same elements as ¥ w, or II w, and propositions concerning
constructive classes are never considered. In the entire theory
of classes predicative equivalents of given classes are employed.
These equivalents are obviously non-constructive. We are
satisfied with supposing that they exist.

This is clearly an idealistic view in which great advances
have been made over that of Cantor. This theory can be said
to be the highest triumph of idealism because it is clear that it
eliminates all fear of the occurrence of paradoxes in the theory
of classes and also of the occurrence of semantical paradoxes,
such as that of Richard. Idealism cannot be combatted on
the grounds of contradiction alone. If it were possible to
derive a contradiction from the idealistic views, this matter
would be settled once and for all. However, the problem of
existence is not so simple. The belief in the existence of ideal
objects can never be completely overthrown. We can only
contrast concrete constructions with it and show that every-
thing which is fruitful and productive in idealism can be
obtained with the help of these constructions.

It is possible to obtain thereby everything but a certain
state of mind which is, for certain people, synonymous with
the beauty of life. Exact arguments cannot counteract this
factor. I can only make the following comments.

I myself have experienced both the state of mind which
accompanies idealistic metaphysics and the pleasures which
result from it. However, it is accompanied by serious danger.
All is well so long as the rigours of life do not actually touch us.
Just as the turtle locks himself up in his shell, we shut ourselves
up and look disdainfully at the wickedness about us, until
a brutal hammer crushes our shell, leaving only sorrow and
solitude. It would be much better to combat the difficulties
of idealism at an initial stage. This struggle affords far more
pleasure than does an idealistic state of mind.

Russell’s method of removing Richard’s paradox will now
be considered. Every real number can be regarded as a class
of pairs composed of a whole number which indicates a certain
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decimal place, and one of the numbers 0, 1, 2, ...,9 which
indicates the number found at that place.

I assert that the class of predicative classes of this type is
non-denumerable. Actually the Cantorian number is not a
predicative class, but it follows from the axiom of reducibility
that there exists a predicative equivalent of this number.
This equivalent cannot belong to the sequence which was
employed in constructing the Cantorian number. This number
was actually constructed, but its equivalent which is not
constructible is what is concerned. Consequently all attempts
to express it in semantical terms are to be scorned.

The axiom of reducibility is a typical synthetic apriori
proposition. On the appearance of Russell’s theory, Poincaré
pointed out this fact.l If logic were based upon such axioms,
it could not be regarded as a science which is independent of
metaphysics. If no other path were open, metaphysics would
be the chief science and Plato would have to be regarded as
the discoverer of the mystery of existence. Fortunately such
is not the case. It was shown that the pure theory of types
could be developed independently of the concept of predicative
classes. The investigations which I conducted along these
lines led ultimately to the erection of foundations for logic
which involve no metaphysical presuppositions.

In particular it was shown that the rejection of the principle
of reducibility did not involve the overthrow of Whitehead
and Russell’s fundamental idea of constructing a system of
the apriori sciences which would be based upon logic. It is
necessary to accept only the axiom of infinity, which, however,
cannot be regarded in the same way as the axiom of reducibility.
The latter principle postulates the existence of non-con-
structive objects. In the case of the former we appeal to
the existence of any number of different individuals and
therefore to something dealt with directly in semantics. From
this point of view, the axiom of infinity combines both logical
and semantical elements. A system of logic based upon the
pure theory of types and the axiom of infinity permits the
reconstruction of classical mathematics and fails to include
only the theory of Cantor.2 From the point of view of philosophy
this result is very important. The exact sciences can then

1 Cf. Henri Pomcaré : “ La logique de I'infini,” Revue de métaphysique et de
morale, vol. 17, 1909, pp. 461-482. Reprinted in Derméres Pensées, Paris,
1913, as Chapter IV, pp. 101-139.

# CL.T.C. T, i, pp. 92, 137.
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be made independent of metaphysics and only certain portions
of them are connected with metaphysics. Nevertheless this
state of affairs seems to show that in a certain sense idealism
is necessary and that there are heights of human thought
which it is impossible to attain by nominalistic methods.
This conclusion is undoubtedly false and requires severe
criticism. The supposition must be made that this situation
may be like that observed in geometry. The view that geometry
is an idealistic science obviously is derived from the fact that
it is not an independent science but merely a certain method
of interpreting the theory of numerical functions. May not
logic likewise be a dependent science? Do not perhaps its
weaknesses arise from the fact that it has been artificially
separated from semantics, which necessarily is the basis of
all sciences? The reader who has studied the previous chapters
with care will not hesitate to answer this question in the
affirmative. Logic without semantics is a fragment and it is
not strange that the use of the methods of logic does not take
us very far. It will be seen later that not only nominalistic
logic but even the extremely idealistic logic of Russell must
be supplemented by new hypotheses as mathematics develops
more and more. Therefore it is impossible to hesitate. It is
necessary to set about constructing a system of rational
metamathematics based upon the axioms of semantics. It
will be seen that this method liquidates the claims of idealism
once and for all by attaining its most mysterious heights.

The semantical method enables us to formulate the original
conception of logical types of Richard and Poincaré.

It suffices to say that expressions used in speaking about
given expressions must be of a higher type than those
expressions. In this way is obtained a sequence of expressions,
each member of which is of a higher type than the previous
member, Such a hierarchy of expressions will be constructed
below.

A theory of expressions based upon this rule can be built
up in many ways. I have worked out such a theory in collabora-
tion with Messrs. Hetper and Herzberg.?

Another much more natural theory will be introduced in full
detail in Chapter VII.

8. The difficulties which have been mentioned in 6, 6,
in connection with the construction of a theory of classes
will now be considered.

1Cf. F. M. R.
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I am concerned above all with the famous axiom of choice
or selection, also called the principle of Zermelo

It is clear that to every not null class of natural or rational
numbers there belongs a selected element which can be regarded
as its representative. )

In the first case the selected element is a natural
number which is not greater than any element of the given
class.

In the second case the selected element is a rational number
which is not later than any rational number in the sequence
of rationals given above.

If now any class of real numbers is imagined. If the class
is given explicitly and if it can be proved of at least one of
the real numbers, that it is an element of that class, this
number which was chosen freely can be said to be the
representative of the class. But such an individual choice is
not very useful because it can be made only in a limited number
of cases. Moreover it is impossible to dream of a construction
rule which would enable us to assign a representative to every
class of real numbers as was done in the case of classes of
natural numbers. This state of affairs greatly restricts the
theory of classes and reduces it to a useless fragment. To get
out of this difficult situation, Zermelo proposed the acceptance
of the following axiom : fo every class of classes belongs a class
of representatives of this class.

Since Zermelo’s axiom is independent of the other axioms
of the theory of classes, only 2 the following problems are of
interest here :

(1) Is it possible to construct a fruitful theory of classes in
which Zermelo’s principle would be false?

(2) Is it possible to construct a theory of classes in which
Zermelo’s principle would be unnecessary?

The second question can be answered in the affirmative
since the theory of classes can be regarded as a part of rational
metamathematics. In rational metamathematics only
denumerable classes are treated. They can therefore be
representatives of classes. The only question which remains
concerns the domain of the metamathematical theory of
classes, since we would not like to have to abandon the

1 Cf. Ernst Zermelo: ‘ Beweis, dass jede Menge wohlgeordnet werden
kann,” Mathematischen Annalen, Bd. 59, 1904, pp. 514-16.  Unter-
suchungen tiber die Grundlagen der Mengenlehre,” i, 1b. Bd. 65, 1908, p. 266.

3 Cf Adolf Fraenkel : “ Untersuchungen iiber die Grundlagen der Mengen-
lehre,” Mathematische Zeitschrift, Bd. 22, 1925, pp. 250-273.
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important results obtained by means of the theory of classes
in recent decades. There are significant indications that it
may be unnecessary to do so. A detailed analysis of this
matter will be made in the following chapter.

The first of the two questions formulated above will now
be considered. It can also be decided in the affirmative. My
investigations on the role of Zermelo’s principle in the theory
of classes,! led to the conclusion that there is a striking analogy
between this principle and the postulate of Euclid. This
analogy indicates that it is possible to construct a theory of
classes as fruitful as that of Cantor in which Zermelo’s principle
is false.

The simplified theory of types and the axiom of infinity
will be taken as the basis of our inquiry. In a system based
upon these suppositions it is possible to prove the existence
either of classes of individuals which contain # elements where »
is any whole number, or of classes to which all individuals
belong with the exception of # individuals, where again =
is any whole number.

While it is true that I did not succeed in proving this theorem,
it is obvious to every one who is familiar with the methods of
investigations of the theory of classes. But even the reader
comparatively unfamiliar with this subject will understand
that so long as it is supposed with regard to individuals only
that infinitely many classes of classes of individuals can be
constructed we will not have means which are sufficient to
construct sequences of individuals. In such a case the only
means of constructing classes of individuals which is at our
disposal is to write down a certain number of letters and to
suppose that these letters denote different individuals.

This state of affairs is described by the following principle
which I have called the principle of transcendence :

If o denotes a certain class of individuals, either a or = a
wmust contain n individuals when n is a whole numbey.

It follows from this principle that an infinite sequence of
individuals cannot exist. Otherwise the class of the even
elements of this sequence would be infinite, as would the
class of all other individuals. This state of affairs contradicts
the principle of transcendence.

If an infinite sequence of individuals cannot exist, neither
can a well-ordered class of individuals exist. But it follows
from Zermelo’s principle that to every class of individuals

1Cf. U .H .M.
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belongs a relation which establishes the well-ordering of its
elements. This is the famous theorem of Zermelo, published
in 1904 in an article which Fraenkel regards as amazingly
acute.! Thus it necessarily follows from this theorem and from a
consequence of this principle of transcendence that there exists
no sequence of individuals, that the principle of choice is false.

On the basis of the axiom of transcendence I constructed
a theory of whole generalized numbers 2 to which complete
induction is not applicable. This result indicates that in a
certain sense the axiom of transcendence extends our domain
of investigation.

To prevent the loss of these theorems of a theory of classes,
which is based upon Zermelo’s principle, it is sufficient to
accept the following axiom :

The class of classes whose elements are well-ordered is
likewise well-ordered.

It follows from this axiom that the real numbers are well-
ordered.

This axiom is obviously but one of the many axioms of this
kind which might have been accepted. It is therefore clear
that only roughly defined concepts are employed here.

It should be observed that Zermelo’s principle is not sufficient
to define the concept of class. It is not adequate for solving
the previously mentioned problem regarding the hypothesis
of the continuum.

Furthermore it is impossible to predict whether the decision
of this hypothesis in the affirmative would remove the indefinite-
ness involved in the concept of class.

All this indicates that the theory of classes is not an
independent study and is a powerful argument for the necessity
of employing semantical methods in investigations concerning

aggregates.

1 Cf. Fraenkel : Einleitung in die Mengenlehre, l.c., p. 196.
3 Cf. U. H. M., p. 462.



CHAPTER VII
FOUNDATIONS OF RATIONAL METAMATHEMATICS

1. Intuitive metamathematics was developed by Hilbert
and his school. Hilbert regarded metamathematics as a device
to be employed in proving the comsistency of the axioms of
idealistic mathematics; he did not, however, attempt to
formulate the methods of metamathematics precisely. Because
of the development of elementary semantics the attempt to
do so can be made successfully.

Hilbert’s view is deceptive. It is now known that when
metamathematics is correctly comstructed, the introduction
of special mathematical axioms is unnecessary. It is therefore
possible to eradicate completely all idealistic elements from
mathematics without imposing any restrictions upon the
domain of metamathematical investigations.

If the so-called epsilon axiom :

D4 ()4 (ed)?
is considered, the idealistic character of Hilbert’s axiom system
becomes very evident.

This apparently innocent little formula conceals within
itself a whole metaphysics. It says that in every class 4
which is not a null class, a distinct element € A is contained.
The only justification for this axiom lies in the fact that it
makes the calculi simpler. )

If, for example, the class K of irrational numbers is con-
sidered, it is clear that none of these numbers is better or
worse than any other. None of the elements of class K is
distinct. But if the existence of such an element is assumed
and the symbol g K is introduced in a definition, the illusion
that an actual object is involved is created. This is a typical
deus ex machina. 1 recall that I hit upon a similar idea when
I was a student at Gottingen. I wrote to Bertrand Russell
about it and he replied that by such a procedure I would not
gain anything and would only disguise the existing difficulty.

So much effort was expended by Hilbert and Bernays?*

1 David Hilbert: “ Die Grundlagen der Mathematik,” Gekiirzter Abdruck
aus den Abhandlungen des mathematischen Seminars zu Hamburg, Bd. 6, 1928,
pp. 65-85, reprinted as ““ Anhang IX ”’, Die Grundlagen der Geometrie,7 Aufl.,

Leipzig, 1930, p. 292.

8 Cf. D. Hilbert and P. Bernays: Grundlagen deyr Mathematik, Bd. II,
Berlin, 1939.
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in defending this axiom, and so many complications ensue,
that the practical advantage resulting from its acceptance is
almost nil. Hermann Weyl’s opinion on this subject is very
similar to mine, but he only goes so far as to doubt its
advantage.? .

This objection would be decisive even if Hilbert had
succeeded in proving the consistency of his axioms. But as
a matter of fact no such proof has been given and there is no
indication that such a proof will ever be given. Up to the
present time the work of von Neumann and others on this
subject seems to indicate that proofs of consistency can be given
only if the system in question involves constructible objects
alone.?

Hilbert’s procedure conceals grave methodological dangers ;
it justifies anything which is at all useful and which does not
lead to a contradiction, even though it may be sheer nonsense.

As is known, magic, astrology, and the like cannot be shown
to be absurd and it is probable that their utility can be success-
fully defended. For example, the supposition that there exist
higher beings, who can exert no influence upon us, never
leads to a contradiction, and is of great use to the supporters
of the hierarchy of classes. Nevertheless the fact remains
that this supposition is a fiction which contradicts sound reason
and greatly hampers the development of intellectual culture.

2. There are undoubtedly portions of mathematics which
are very useful to us, even though they are based upon con-
structions which as yet are not entirely clear. Such is not the
case with regard to metamathematics. Metamathematics
yields nothing fundamentally new. Its problem is merely
the attainment of a higher degree of certainty, the elimination
of metaphysical presuppositions and the reduction of proofs
to elementary forms. If such a science is to have any value
it must be formulated precisely. That which is presupposed
and the procedure to be followed must be explicitly stated.
This requirement seems to involve a vicious circle for if that
upon which mathematics depends is specified, the problem
seems only to have been pushed one step further back. That
upon which metamathematics depends would now have to be
specified and consequently a metamathematics of higher order

1 Cf. H. Weyl: “ Diskussionsbemerkungen zu dem zweiten Hilbertschen

Vortrag tiber die Grundlagen der Mathematik,” Abhandlungen des mathe-

matischen Seminars su Hamburg, l.c., p. 87. .
2 Cf. J. v. Neumann: * Zur Hilbertschen Beweistheorie,”” Mathematische

Zeitschrift, BA. 26, 1927, pp. 1-46.
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would be required. This is by no means the case. It will be
seen that it is possible to begin with a very simple finitistic
system which will be called the auxiliary system. The system
of elementary semantics can be constructed with the help of
this system. With the aid of both these systems an infinite
sequence of systems of metamathematics can then be con-
structed such that each subsequent system can be investigated
in the preceding system.

The construction of the fundamental system of semantics
will now be begun. First the system will be given without
any explanations. Actually only the rules of the system are
necessary to construct the expressions and theorems of the
system. However, a purely mechanical construction of
expressions and theorems would not be very economical. It is
necessary to interpret the constructions of the system to obtain
the particular expressions and theorems in which we are
interested. Such an interpretation is also necessary in order
to become convinced that the system really describes the
operations performed in intuitive semantics. Consequently
the rules are analysed and a few examples are given.

The system which is formulated here has as yet not been
published. It is a modification of the system published in
collaboration with Hetper.! The changes introduced were
motivated by the desire for the greatest possible simplicity.

The unwieldiness of expressions and apparent tediousness
which results from following the rules of this system are an
unavoidable consequence of the fact that everyday language
is confined to a minimum. The abbreviations introduced in
the various tables reduce long expressions to a form which is
easier to handle. Actually the system is conceived in such
a way that it might have been developed without the use of
abbreviations. The construction of such a system would be
facilitated if there were a machine at our disposal to designate
very long starred expressions and automatically analyse them
into simpler expressions. It must always be kept in mind that
actually the directions given here are for the use of such a
machine.

I think that those readers who do not wish to learn the
symbolism given here confirm the fact that the least possible
use has been made of everyday languages in constructing this
system.

In contrast to the systems of Whitehead and Russell, the

1 Cf.N.F. F. M.
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system of Hilbert and Bernays and my own system of the
pure theory of types, everyday language is confined to a
minimum in this system.
The language employed may be represented by the following

patterns :

a. E is an expression,

b. E is a theovem,

c. If X, then Y,

where E denotes any expression, and X and Y denote any
propositions of the form @, b, or ¢. The rules of intuitive
reasoning which are employed are the rule of substitution
and the rule of modus ponens. Obviously the unconscious
use of negative or universal propositions is excluded. It may
be seen that the intuitive logic which is employed is much
poorer than that of Brouwer. From the point of view of the
logic which will be presented, negation is an operation of higher
order which first appears when a symbolic language is employed.
This state of affairs is compatible with the theory of Steinberg
who holds that direct affirmation of facts never has a negative
form. His theory is based upon that of Sigwart,® who regarded
negative propositions as propositions about propositions.
I think that this is worthy of note because on the basis of this
view it is possible to understand the fact that the productivity
of intuitive thought has its origin in the construction of concrete
objects.

I should also like to point out that the superiority of a method
based upon the use of a restricted everyday language over
other methods, was stressed very emphatically by A. F.
Bentley and Max Black.

3. Therules of the fundamental system of semantics consist of
(1) The rules for expressions,
(2) The rules for the auxiliary system,
(3) The rules for the proper systems,
which will be denoted by (R E), (R 4), and (R P) respectively.
These rules will now be built up with the help of abbreviations.
It should be noted that while abbreviations permit diffuse
expressions to be avoided they are not proper elements of the

fundamental system of semantics. No rules for the use of
abbreviations will be assumed. Only when these abbreviations

1 Christoph von Sigwart : Logic, translated by Helen Dendy, New York,
1895, vol. 1, p. 118.
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are eliminated will correct theorems of the system be obtained.
It is obvious that this could be done by means of a special
machine. .

Neither descriptions nor names will be employed in building
up expressions. The expressions are given simply as material
objects. In our system any occurrence of an expression can
be replaced by any other occurrence of it, i.e. in the language
of this system no distinction is to be made between the various
occurrences of a given expression.

The letters E, F, G, H, J, K, L, M, N, X, Y, Z are employed
as real variables in the fundamental system of semantics.
Their domain of substitution is defined by the rules (R E).
The use of these variables might be avoided but complications
of the rules would result.?

To construct the theorems of the fundamental system, the
following rules are employed :

1. substitution of expressions for real variables,

2. modus ponens.
(R E)
I. C 1S an expression.
2. If E and F are expressions, then « EF ¢s an expression.
By means of these rules it is possible to construct as many
expressions as are desired. Since in accordance with rule
the letter ¢ is an expression, it can be taken as a value of the
variables in rule 2. After the verification of the hypothesis
of 2 in this way the application of the rule of modus ponens
yields :
* C C 1S an expression.
Similarly
% C & C C 7S an expression.
% % C C C 7S an expression.
% % CC % C C 1S an expression, etc.
The following abbreviations will be employed to construct
the theorems of auxiliary system.
IfE, F, G, H and L are expressions

OL is an «LL Integers of type
1L abbrevia-| .0.0L L.
2L tionof | 0.1L

1 Cf, K. P. Z., pp. 290-1.
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IL
JIL

is an
abbrevia-
tion of

HO
on—t

Auxiliary
asymmetrical
expressions.

(EFGH)[L]

»+»* JLOEOFO0G.0H

Thefundamental
pattern of sub-
stitution.

/EF

The fundamental
pattern of
Sheffer’s stroke.

Pattern of func-
tions of the
logical calculus.

Pattern of
identity.

Pattern of
inclusion.

Pattern of
propositions.

Pattern of
expressions of
type L.

(Integers of
type ¢)
Fundamental
integers.

Fundamental
auxiliary
asymmetrical
expressions.

H)

Semantical
patterns of
type ¢.
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HETPER’S RULES FOR THE AUXILIARY SYSTEM!1!
(R 4)
1. Expr 0 7s a theorem.
If Expr E, Expr F, Expr G, Expr H, Expr J and Expr K

are theorems, then

2. Expr « EF s a theovem.

3.1 ~=0+«EF isa theorem.

3.2 ~= «EF 0 is a theorem.

3.3 If ~=EF is a theorem, then ~= «EG+«+FH s a
theorem.

3.4 If ~=EF is a theorem, then ~=«GE+HF is a
theorem.

4.1 (0« EF GO) is a theorem.

42 (EEFF) is a theorem.

43If ~=G+«EF, (EGHJ), and (FGHK) are
theorems, then (« EF GH « J K)) ¢s a theorem.

5. If ~=HJ and (EFGH) are theorems, then
~(EF GJ) is a theorem.

6.1 If E and F are theorems, then ~ [ EF s a theorem.

6.2 If E and ~ F are theorems, then /| EF is a theorem.

6.3 If ~E and F are theorems, then [ EF is a theorem,

6.4 If ~E and ~ F are theorems, then [ EF is a theorem.

It can easily be seen that these rules conform to the rules
of the elementary semantical calculus and the elementary
logical calculus.

EXAMPLES
(1) ~ =01 7s atheorem [3.1]
(2) (0100 ) s a theorem [4.1]
(3) (1100) s a theorem [4.2]
(4) ¥~ =10 11s a theorem [(x), 3.4]
(5) (+ 1101) is a theorem [(4), 2); (3), 4.3]
(6) ~(#0110«01) is atheorem [(4), 3), 3]
(7) ~]~(%0110%01)~(%110401)satheorem
[(6), (6), 6.1]
(8) ~~~(+0110401) s a theorem ()]
(9) /~=01~~(%01104+01):satheorem
| [(1), (8), 6.2]
(10) V=01~(%0110+01) s atheorem [(9)]
(1) {+011} [(z0)]

1 Cf. Wiadyslaw Hetper: ‘ Zagadnienie zupelno$ct elementarnej
semantyksy,"” ‘° The Problem of the Completeness of Elementary Semantics,”
Archvwuwm Towarzystwa Nawkowego we Lwowie (unpublished).
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It should be noted that Hetper’s auxiliary system leads to
significant simplifications of semantical methods. It can be
proved without any difficulty that it is consistent and decidable.

INTERPRETATION OF THE FUNDAMENTAL
PATTERNS OF THE AUXILIARY SYSTEM

IfE F G and H are expressions, if Prop (EF G H ), Prop Y
and Prop Z are theorems, then

H ig the result of the substitution | istheinterpreta-{ (EFGH) is a true

of G for F in E. tion of symbolic proposition.
Either it is not the case that ¥ /Y 2 is a true symbolic
is a true symbolic proposition proposition.

or it is not the case that Z is
a true symbolic proposition.

Application
Prop (0000 ) vs a theorem. .
Prop ((0000)00(0000)) is a theorem.
Prop /(0000) ((0000)00(0000)) ¢s a theorem.
0 is the result of the substitution | is the interpreta-|{ (0000) is a true
of 0 for 0 in 0. tion of symbolic proposition.
(0000) is the result of the ((0000)00(0000)
substitution of 0 for 0 in is a true symbolic pro-
(0000). position.
Either it is not the case that 0 is /(0000)((0000)
the result of the substitution of 00(0000))isatrue
0 for 0 in O, or it is not the symbolic proposition.

case that (0000) is the
result of the substitution of
O0for0in (0000).

In the symbolic proposition /(0000) ((0000)00(0000))
the first occurrence of (0000) is called a propositional
component, the other occurrences of (0000) are called
semantical components. It is obvious that the method of
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interpretation which has been given permits the elimination
of the propositional components of a given proposition. Only
its semantical components are present in the final result.
It is also clear that this method of interpretation is unique
and is compatible with ordinary language. However, since
the expressions have no intrinsic meaning but only an assigned
meaning, there can be no doubt concerning their use.

The patterns of expressions (EFGH)[L], and /EF
have been employed to build up the propositions of the
auxiliary system. The expression L is the fype of the pattern
of substitution.

The following table contains expressions of the lowest types :

Type Expressions Original expressions

¢ 0, 00, x0200, 2000, »«00+00 ]| 0, 0200, +2000
1, 11, #1411, #1111, #211+11 | 1, #1211, #2111
1 2, %22, %2222, 2222, 2222222 | 2, 22222, #2222

It is clear that the types of expressions are built up from ¢
and the fundamental integers.

Expressions which can be built up from the star «, and the
fundamental integer .0 K, are expressions of type K.

Any expression of type K which is not an expression of
type .0K is an original expression of type K.

The patterns of the expressions to be found in the abbrevia-
tions are invariant with respect to type. For example,
(EFGH)LL] can denote either (EFGH)[c]
(EFGH)[0] or (EFGH)[1], etc.

In this way patterns of substitution of types ¢, 0, 1, etc.,
are obtained.

The expressions are built up in conformity with Hetper’s
theory of mutually independent patterns. This method leads
to the elimination of all ambiguity of interpretation, for all
values of the real variables.?

4. The following table of abbreviations will now be accepted :
IftE,F, G, H J,K,L M N, X, Y, Z are expressions, then

1 Cf. W, Hetper: ‘ Rola schematéw niezaleznych w budowie systemu
semantyki,”’ ‘“ The Role of Independent Patterns in the Structure of the
System of Semantics,” drchiwum Towarzystwa Naukowego we Lwowie, Dzial 11T,
tom IX, 1938, pp. 253-264.
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0Oy, isan |OL Integers of
1, abbre- | .0 0y, type L.

R viation .
. of .
10, 09,
Integ[L]E (OELO0LE)[L] The pro-
positional
Integ E Integ [¢] E functions of
integers.
ag »»JK1g.IL Proposi-
Bey »+ JEK2.1IL tional
. . variables.
(33 Gorrn
fy, Qirrp
agL +»+x JJEK1x IL Semantical
br1 *»x JIK2¢ IL variables.
iy, aorLp
51, 8111
I[MN]IXE ++x JMOX.O0E.IN General
IITMN]XYE II[MN]XI[MN]YE quantifiers.

The symbols a and B occurring in tables on pp. 171, 180, 185, 311-312, and
in notes on pp. 308, 309, 316, have the same significance as those (ct and ﬂ)
occurring in text on pp. 173, 175, 176, 177, 186, 306, 307, 308, 318.
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A[MX]XE isan |~ II[MN]X~E Particular

A[MN]XYE abbre- I[MXN]X3I[MN]YE quantifiers.

. viation .

. of

AxlogEFGH >/E/FG>/HEF/EH Nicod’s
syllogism.

Axgem, EFGH[L] J)V=EOL[L]= H.OL[L]| The seman-
=(EFGH)[L tical axiom
VA =HE[L]~= EF[L]A/| of start.
=FE[L]=HG[L]

Axzem; EFGHJIK[L] =(+EFGH+JE)[L] The seman-
VA=H:JEK[L] tical axiom
=G+EF[L] of recur-
A~=G+EF[L] sion.
A(EGHIJ)[L]

(FGHEK)[L]

AxsemgEF[L] ~=0L«EF[L] Semantical
axiom of
diversity

AxsemEFGHJIK[L] AAxgsem;, EFGH[L] The seman-
AAxgsem; EFGHJK[L] | ticalaxiom.
AxsemgEF[L]

E[MN]E *» JMOEIN The pattern
of theorems
of the
system
[MN]

((EFGH))[L] A(EFGH)[L] The special
A{EF}[L]~{EG}[L] substitution.

((EFGH)) ((EFGH))[c]

gen[EL]z(EJ)FG AIN[MN]«+«JEIH The pattern
(F+xJE.IH of generall-
*»*JEILG)[H] zation.
A{F**JE.IH [H]
~{F**JE.IL [H]

gen[KL](EJ)FG gen[KEL].(EJ)FG

The expressions in this table are the patterns of the concepts
of the system [ M N'], or symbolic descriptions of these concepts.
They will be elucidated after the rules of proper systems have

been formulated.

The rules for the construction of proper systems will now

be stated.

(R P)

IftE, F, G H J, K L MN, X, Y, Z are expressions, then
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I. Axioms

hIf AIntegeMA{ML}A{LON}ExprN is a theorem,
then

1.1 [ MN] Expr[L] .0 Lis a theorem.
[Axiom of constant expressions.]

1.2 E[LMN] Expr[L] o, , ¢s a theorem.
[Axiom of propositional variables.]

1.3 E[MN] Expr[L] ag , is a theovem.
[Axiom of semantical real variables.]

1.4 EIMNI) =45, BoxncL-ONIDaoxoBoxe

[Logico-semantical axiom.]

L5 FIMN]Axsem=z,o 5 o¥.o N oWo N V.o N oW N oZo x c[LON]
[Semantical axiom.]

Construction rules

2. Construction of expressions

2.1 f E[MN]Expr[L] «« JEKEIand { M.OK }are
theorems, then

EL[MN]Ezir[L] « « I.0K.0EX s a theorem.
[Rule of propositional real variables.]

22 If EFLMN]Expr[L] «« IIKEI and { M.OK } are
theorems, then
ELMN]Expr[L] « « JI.0K .0EI:s a theorem.
[Rule of semantical real variables.]
2.3 If ELMN]Expr[L] « « J EL 75 a theorem, then
ELMN]Ezr[L] « « J.0 E1és a theorem.
[The recursive rule of real variables.]
24 If E[LMN]Expr[L]E and E[LMN]Expr[L] F are
theovems, then

ELMN]Expr[L] « EF is a theorem.
[Rule of the star-operator.]

3. Construction of propositions

31 If E[LMN]Expr[L] «+« IKEI 45 a ftheorem, then
EELMN] Prop « « IK EI is a theorem.
[Rule of simple ambiguous propositions.]

32 If ELMN] Expr[L] « «  « OLEF G H s a theorem, then

ELMN]1Prop (EFGH)LL] is a theorem.
[Rule of pattern of substitution.]
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3.3 If E[MN]PropF and gen[KN] (EJ) F G are theovems,
then
EL[MN] Prop G is a theorem.
[Rule of general quantifiers.]

3.4 If Expr N and [ M .0 N] Prop E are theorems, then
EELM N] Prop E ¢s a theorem.
[Rule of systems.]

35 f E[MN]PropE and =E[MN]Prop F are theorems,
then
ELMN]Prop / EF is a theovem.

[Rule of the stroke-operator.]

4. Rules of demonstration
4.I If E[MN]Prop///EF GH s a theorem, then
EL[MN] AxlogEF G H s a theorem.
[Nicod’s syllogism.]

42 f E[MN]E and LM N] ) E F are theorems, then
EL[MN]F is a theorem.
[Modus ponens.]

43 If Agen[KL](EJ)FG(F++«JEIXH) and
ELMN] A Expr[ K] X Prop / F G are theorems, then
(@) If =3 IK and = [ M N] Prop X are theorems, then
ELMN])GH is a theorem. )
(6) If = J .M K s atheorem, [ MN1]) G H is a theorem.
[Deduction.]

4.4 If Agen[KL](EJ)FG~{H++«JEI} [E[MN]PropG
and [ M N] ) HF are theorems, then
ELMN])HG s 2 theorem.
{Generalization.]

4.5 If A (Fzg ,.0KE) A ((Fxg Y& .G)) (Fxg ,#Xg , Y& H)
and E[MN]JAE)AFGH are theorems, then
EE LM NJ] F s a theorem.
[Induction.]

It will be seen that where M is any fundamental integer
greater than N, the proper system [ M N] can be constructed.

The systems [20] and [21] will be discussed.

The application of axiom 1.1 to [ 2 0] yields the theorems :

() FL20]Expr[1].01
(2) FL20]Expr[2].02

These theorems state that .01 is an expression of type 1
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and .0 2 is an expression of type 2. These theorems can also
be regarded as axioms of semantical identity.

If rule 2.4 is employed together with the theorems (I)
and (2) as many expressions of types 1 and 2 as are desired
may be obtained.

Axioms 1.2 and I.3 involve real variables.

If K is any integer greater than 0, ag, Bge --- 8K
bg . . . are K-type variables, the expressions ag o, g o - - - are
propositional real variables and the expressions ag,, bge- - -
are semantical real variables. It is clear that these real
variables are always original expressions of type ¢. The
values of the semantical K-type variables are expressions
of type K. The values of the propositional K-type variables
are expressions of type K which are propositions.

From 1.2 and 1.3 it is possible to derive :

3) FL20]Expr[1]ay,
4 EL20]Expr[2] o,
(5) EL20] Expr[1] a;,
6) FL20] Expr[2] a; .

These theorems state that any values of «;, and ag,
are expressions of type 1, and any values of oy, and a,,
are expressions of type 2.

The difference in the interpretation of these theorems
and theorems (1) and (2) is obvious since here original
expressions of type ¢ which cannot be discussed by means
of the patterns (EFGH)[1] and (EFGH)[2] are
involved.

These theorems and the rules 2.1, 2.2, and 2.3 can be used
to prove the theorems :

7) ELR0]Expr[1] e,
(8) EL20]Expr[1] a,,
(9) EL[20]1Expr[1] B; ., and so on.

These theorems together with 2.4 will yield as many variable
expressions of types 1 and 2 as are desired. For example,
the following theorems can be derived :

(10) F[20] Expr[1] « %1 ,¥1,
(11) EL20]ExprL1] ¢« o % 01w X1 F1.01,V10%WioZ10

Theorem (10) states that for any values of %; 4 ¥1, the
expression « X; , ¥ is an expression of type 1.
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Theorem (11) states that for any values of X1, ¥10 U1,

Vie Wie and z;, the expression
e wn 0l eX; V1,01 V1o%*WioZ1,
is an expression of type 1.

It should be noted that the construction of variables which
has been given enables us to see at once, whether a given
expression is a constant or a variable expression of type K.
In the first case it does not contain I or II. In the second it
must contain either I or I

It should also be noted that no individual property of a
real variable can be proved in a proper system, because its
components I or II are original expressions of type ¢ which
cannot be expressions of a proper system.

The rules of propositions permit the derivation of the
following theorems :

EL[20]Propa,,
EL[20]Prop A,

................

................

These theorems state that any value of a propositional
real variable is a proposition.
The application of rule 3.2 yields the theorems :
EL20]Prop=a;,8;,.[1]
EEL20] Prop (21,51,11,71,)[1]
EL[20]Prop=x,, .01[1]
E[20]Prop=v;,.01[1]
EL20]Prop=.01+x;,¥;.[1]
EL20]Prop (X1.¥1001¢V1cW1021,)[1]
Now with the help of 3.5
I=[20] Prop) - aloﬂlo[]-J )aloplo
FEL[20] Prop AXsem X; V10016 V10W1o21,01]
are proved.
To obtain general quantifiers 3.4 will be employed.
We have the theorem
gen[21] (1, IR) ~cp JI[21] @y~
Then by the application of rule 3.3, it is possible to obtain
the theorem :

EL21]PropO[21] g 3 ~ag,
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From this theorem, the application of rule 3.4 yields the

theorem :
FL20]PropI[21] @y ; ~p
Then by the application of 3.5 the theorem :
EL[20]Propd[21] oy ;g
will be obtained.
It can be seen at once that

gen[20] (1, I2) =2, ,a, [1]JII[R0] 8, ., = 3, .3, .[1]
is a theorem. Thus by 3.3
EL20]PropII[20]a;o =a50a50L 1] 7s a theorem.

With the quantifiers the list of the primitive propositions
which occur in the proper systems is completed. In proper
systems there are

I. Patterns of substitution.
2. Sheffer’s strokes and quantifiers.

If a pattern of substitution or a Sheffer’s stroke is a pro-
position of a proper system, it may be interpreted in the same
way as were the corresponding propositions of the auxiliary
system.

If a pattern I[XN]XF is a proposition of a proper
system, then the proposition: All values of ILTXN]XF
are frue symbolic propositions is the interpretation of
II[LKN] XF is a true symbolic proposition.

It is clear that a value of I[21] ey ; ~x ; is any
expression of type & which is a proposition, and a value of
HE20]ayo=as0a30L1] is any proposition = EE[1]
where E is any expression of type 2.

It should be noted that the propositions ILMN]XF
are never expressions of [MN]. For example II[21Jog ; ~05 1
is not an expression of [217] but is an expression of [20].
Consequently it cannot be discussed in [21] but it can be
the object of metamathematical research in [20]. This
fundamental property of the quantifiers prevents the
occurrence of vicious circle fallacies in our proper systems.

The logico-semantical axiom is required to construct the
theory of classes and relations. It should be noted that
although it can be proved for any particular case, its con-
tradictory is consistent with the other axioms and rules
of the proper systems. If its contradictory were assumed
an idealistic system would be obtained which would be of

Q
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the same type as Plato’s mythology and which as a matter
of fact is consistent.

The logico-semantical axiom permits the fundamental
laws of identity to be proved in simple fashion, but Hetper
obtained the same result by employing the rule of induction.
He proved that there are simple systems [ .0 NNJ] g which
contain all the axioms and rules of [.ONN] with the
exception of those which contain propositional variables.
These systems can be employed for the construction of
rational arithmetic and also for the fundamental meta-
mathematical researches. This remark will be amplified
below.1

With the exception of the rule of induction the rules (R P)
of demonstration conform to those of the ordinary calculus
of quantifiers. Since the rule of induction is a simple descrip-
tion of semantical facts, here it is as general as the other
fundamental rules. It is therefore not a synmthetic apriori
judgment.

5. If AIntegL A (NO.OLM)(EO.OLF) and E[NO]E,
are theovems, then F s a theovem of the metasystem (M .1 L).
The corresponding symbolic proposition will be constructed
in the system [ .0 L L]. It will be abbreviated by the symbol :

b (M.1L)F

It should be noted that the same symbol will be employed
if a construction is made in the meta-system (.QLL). If
our proposition is true, it states that F is an element Z of
a recursive finite class, whose initial member

AxEF(M.1LL)Z
determines the axiom, and whose recursive member
DEFGHJK(M.IALL)XYZ

determines the theorems of (M .1L).

This construction is based upon Hetper’s concept of
intervals? and a remark of Pepis. It may be found in
N.F.F. M ?*

The theory of metasystems and Hetper’s theory of simple
metasystems permits a formal discussion of the decision

3 Cf. W. Hetper: “ Simple Systems, Meta-systems, and Generalized Meta-
systems " (unpublished).

3 Cf. W. Hetper: * Relacje ancestralne w systemie semantyki’’ (‘‘ Ancestral
Relations in the System of Semantics ”, drchwum Towarzystwa naukowego
we Lwowie, Dzial III, Tom IX, 1938, pp. 265-280,

s Cf.N.F.F. M., p. 35.
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problem. It is known that in the elementary system of the
logical calculus it can be decided whether or not a given
propositional function is a theorem of this system. Hetper
proved that a similar problem can be handled in the case
of an elementary system of semantics, on the basis of the
relation { EF }, where the system contains no apparent
variables.! The question has also been raised whether it is
possible to construct a system of mathematics in which
every question that can be formulated would be decidable.
When I was working in the domain of pure theory of types,
a sphere where, of necessity, many questions are undecidable,
I always regarded with great scepticism the efforts made
to show that the propositions of mathematics are decidable.
My position was completely .onfirmed by the work of Gddel
who proved that in any < .tem which contains the system
of natural numbers, it is .ot possible to speak about the
decidability of all problems.2 Gddel had to expend great
effort to obtain his result, and had to create ad %oc intuitive
semantics. It is obvious that matters of this kind can be
investigated very easily with the help of the theory of
metasystems.

If the simple meta-system (82 ) is considered, it can be
supposed to be a simple metasystem of Hetper and therefore
cannot contain classes. The following theorems can be
derived.®

EL10]1)k,(32)t;, 30105, A (£1,0:R18:,)[1]

Fo(32)F2(54)s10
EL10]0(32) ) 2 (54)1:,3[32] 832 A (s 10525855 ) [3]
F2(54) Fa(76) 832
Now we assume the following construction :

GL(E)| isan {3[OLL]Z FiZi UG A=ENR2L1L]F%[0L]
abbre- | A(E.00; 02, %) [OLIA (B V5 8:) [OL]
viation| ~ g (2L .1, Lﬁn

G(r) of G (IM[2LILJ]E 1G4 (8a1))

1 W. Hetper: ‘‘ Zagadnienie zupelnoéci systemu elementarnej semantyki
(' The problem of the Completeness of the System of Elementary Semantics **),

..
* Kurt Gédel : “ Uber formal unentscheidbare Sitze der Principia Mathe-
matica, etc.,” Monatschefie fir Mathematik und Physik, Bd. 38, 1931, pp. 173-
198.
8C{L.F.P.G T



180 THE LIMITS OF SCIENCE

The following theorems can be derived :
ELL01)V -o(32) G 2 F-o(3R)~G (3 F-0(82) -2 (541 =0515[5]
EL10]) Fo(32) ~ 2 (54) =0s15[5] - (3%) = 051,[3]

These are Godel’s theorems. It is obvious that the pro-
position G, is not decidable in the metasystem (32).
If it were it could be proved that the metasystem (5%)
contains a contradiction. It can also be seen that it is not
possible to prove the consistency of (54 ) in the metasystem
(32). If this were possible this metasystem would contain
a contradiction.

If it is now supposed that the theorem :

EL[10]~F,(32)=0,1;[3]

has been proved, step by step using the same method, it
would be possible to prove the theorem :

EL[10]Fo(32)~F:(54)=0s15[5]
From this theorem and from Godel’s theorem, the theorem
FL10]F,(32)=0;1[3]
can be derived. Then we have the theorem :
EL10]A ~F,(32)=0;L[3](32) =0, L[3]

It is obvious that our hypothesis implies a contradiction
in the simple system [10].

6. The following abbreviations will be employed in develop-
ing the elementary theory of classes and relations :

Subst [ ML]JEFGXH | san |A=FIO[MOL]JEGIL[OL]}
abbre- A{GE}[.OL](GEXH)[OL]
viation
of
Class[ML]F IOIML]xy 3{1LL]G&GI[OLL]E:
Subst [ML] ay .o F &L 2 1 G
e[MLIXF 3[.1LL]GA&G3I[O0LL]E
Subst [ ML]an . . FE. X a;
Relat [NML]E O[NL]yy: 3[O0LL]K
Aclass[ML]hnaé._OLL]_fL
Subst [ML]by oo Efiynw by
rei[NML]JE(XY) A[OLLIb As[MLIYh [ O0L]E
Subst [NL]by o EfL X by
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These symbols are identical with those which were
introduced in Chapter VI, but in addition the types have
been indicated.

If any proposition M[M.OL]Jam.ocF is given, it
can be shown that it is a class. If any proposition
OLNOL]bxorIILM.OL]amor F is given, it can be
shown that it is a relation between expressions of type N
and expressions of type M. .OL is the type of our classes
and our relations.

It is now possible to prove the following theorems :

FL[20]=Ezpr[2]x,.c[20]x, II[21]a,; Expr[2]a,,

FL[20]=Integ[2]x,.e[20]x, . II[21] a; ; Integ[2] a, ,

EL30]1=¢[42] % %, rel[430]II[31]b;,II[41]a,
€e[42]as;bs 1 (f5.%sc)

It is clear that there is a complete analogy between our
constructions and the primitive idea of a class.

It is now possible to build up sums, products, and the
complementary classes of given classes by employing classical
constructions.

—[ML]E |isan | H[ML]awr~&¢[M.OL]axr E

abbre-

viation
of

~[ML]EF NO[ML]JaurAtIMOL]awu  Ec[MOL]a F
v [ML]EF NO[ML]aw:Ve[MOL]ax Ec[MOL]ax F

These are the patterns of the complementary class of E
and the product of the classes E and F and the sum of the
classes E and F. It can be proved that there exist classes
of type .1L, ie. of the same type as the classes E and F
which are equal to their complementary classes and to their
products and sums. The demonstration of these theorems
is based upon the logico-semantical axiom. The postulates
of Huntington can now be proved in a very simple manner.
Analogous results may be obtained for relations.?

It is evident that the same method can be applied in the

1Cf.N.F.F.M,VI,2.
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case of relations having any number of members. Con-
sequently it is possible to construct matrices, tensors, etc.,
in a very simple way.

It should be noted that our classes and relations are general
propositions, but their truth-values are never considered
because it is desired to avoid new fundamental patterns.
If their truth-values were considered a simplification in the
use of types would result.

Our theory of classes permits the introduction of real
numbers. Given any two real numbers of the same type it
can be proved that their sum and product is a number of
the same type. Nevertheless we cannot obtain a general
theorem on this subject without employing Hetper’s
generalized system, which will be introduced later.

With this theory of real numbers it is possible to build up
an elementary theory of functions of real variables in the
meta-systems. An incomplete continuum more or less like
that constructed by H. Weyl ? is involved here.

To see how Richard’s paradox is avoided, it should be
observed that here as well as in the pure theory of types
there are orders of classes,

The difference between the type of a class and the type
of its elements will be called the order of this class.

The following construction will be assumed.

is an = -

N IN[3LL]asrI[1LOL])X o AClass[ 3LOL]X
C () | abbrevia- 0L
tion of | A(Xo1 01,0885 ) [ 1L]~e[BLOL]agrRo1

It is clear that Cg is the class of classes of type § whose
elements are expressions of type 7 intertypically different
from them. C is a class of order = 4. It can be shown
that it is different from all classes of order = 2. As a matter
of fact, given any class E of order =~ 2, where E’ is the
expression of type 7 which is intertypically equal to E, two
cases are possible. If E’ is an element of E, it is not an
element of Cg,); if it is not an element of E, it is an element
of Cg. Then (g cannot have the same elements as E.
It is clear that Cg) is strictly analogous to the number on

1 Cf. J. Herzberg: “ Sur la notion de collectif,” Annales de la Société
Polonaise de Mathématique, tom xvii, 1938, pp. 232 £.
3 Cf. H. Weyl: Das Kontinuum, Leipzig, 1918
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the diagonal used by Cantor to prove that the continuum
is a non-denumerable class. The class €, is of fundamental
importance for our researches on the reconstruction of
Cantor’s theory. A brief account of these investigations will
be given below. ‘

It should be noted that a discussion of the antinomies
based upon the idea of a class or relation is as a matter of
fact superfluous because if there were a contradiction in our
calculus of classes or relations it would be a contradiction
of the simple semantical calculus. It should be observed that
Russell’s paradox about classes which are not elements of
themselves can be introduced. The proposition

e[10]JIM[21]a; ;% . MI[21]a; %5,
and the proposition
e[10]JIM[21]a, % JIL21] a1~ %,
can be shown to be always false.

7. We begin with the system (L)oo of rational meta-
mathematics. For this purpose we will employ the pattern
JLOLL] oy by (M. lL) E

which will be abbreviated by - E.

If -t E is a true proposition of [10], then E must be
a true proposition of a meta-system (M .1L). It is obvious
that this construction permits the discussion of all types
of expressions which contain .0.1L. Thus in the system
(0)e we have all types of expressions which contain 3,

i.e. the numbers
03:13:28:38:- ..

04: 14: 24: o e
51 55 ¢ ¢

It is clear that the number n of type m equals the number
n ~1 of type m 4 1. There exists a very simple relation
between equal numbers of different types which can be
called intertypical equality. To construct this relation the
symbol = (GH)EF[K] will be introduced. This
expression is an abbreviation of

A(EOGOHF)[XK]JA=EE[G]=FF[H].

If= (GH)E F[ K] is a true proposition of (0)e,E and F
will be said to be intertypically equal with regard to the
types G and H.
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Now :
E[10]F,=(34)45[3]
EL[10]F,=(35)46[3]
=[10] 1= (34)56[37
EL[10]F,=(35)57L3]

It might be thought that two intertypically equal classes
have intertypically equal elements. It will be seen that this
is not the case. Let the following construction be considered :

R abiren: | TI[.1LL] . AClass [.3L.OL] 3 A3 [3LOL] X350

tion of A(ﬁnuoln.osnx,an,on) [.1L]~E[.3L.0L]X,3L.ox,§x.

By an elementary calculation the following theorem can
be proved :

FL10]ko=¢[52]1R(s)Rs)~eL74]1R7)Res)

It is clear that the classes R¢5y and R(;y and the classes
R(7, and R(s, are intertypically equal. Yet if R¢sy is an
element of R(s), R(y) cannot be an element of R(5, and
vice versa.

This construction is very instructive. It can be seen that
just as G(gy was undecidable, so is the proposition
e[52]R(s)R(s). But there is an essential difference
between them. If G,y were a false proposition, presumably
it would be a decidable proposition. Now G , cannot be
decidable unless (82 ) contains a contradiction. As it is
not assumed that (32) is a contradictory system, it must
be assumed that Gy, is a true proposition of (32). We
will say that while Gy, is not a decidable proposition of
(32), it is a discutable one. It will be seen that
e[52]R(s)R(s) is not a discutable proposition. Any
discussion of this proposition involves an infinite regress.
Since the propositions e[§2] R(5,R(3) and e[74]R(7,R(s)
are entirely analogous, they are equiponderant. However,
they are contradictory. Then there is a complete symmetry
between the truth and falsehood of e[ 52] R(5)Rs).

l'I‘he following construction rules can be assumed for equal
classes:
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I. Two classes of expressions are equal if their elements are
intertypically equal.

II. Two classes of classes are equal if their elements are equal
classes.

In the metasystem (M N ) the quantifier ILMX J] XF
could be employed instead of HI[LK J]XF to eliminate
propositions which are not discutable.! In this way any
metasystem ( M 0) would have separate general propositions
and R( 3y and R( 5, would not be strictly analogous. If this
theory were employed, it would be possible to avoid the
residues of idealism which are implied by our method.
Nevertheless it is of interest not to limit our domain of
research in this way and so arrive at a reconstruction of the
fundamental concepts of the general theory of classes.

The pattern :
expr,[M] X

will be employed. It is a Hetper interval which defines
constant expressions of type M. I omit its construction.
The following abbreviations will be posited :

Expr(L) isan |I[.ALL]bya,exor ou[brlie
abbrevia-
tion of
typ, (MY X) Alnteg [OLIMA {M.IN}[.OL]Jexpr, [.ON]X
IHVLU n[.1LL]éninﬁnAtyp.oL(énﬁnin)
E | [.1L.0L]6.0LA6.on=6.uU[.1L]
Cl(L) Invy, Class [ C; By 15
um[ML]E Class[ML]JE3[ML]uu  I[ML] vy
Ze[ML]lvwiE=umrverl
Un(L) Inviun [ & br 15

Expr (9) is the relation between types and the constant
expressions belonging to their domain.

It is the fundamental invariant of expressions.

It corresponds to the primitive idea of the class of
expressions.

Cl1(7) is the relation between types of expressions,
types of descriptions of classes, and the corresponding classes.

1 K. P. Z., p. 330.
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It is the fundamental invariant of simple classes.

It corresponds to the primitive idea of the class of classes.

Cly (L), ie. the fundamental relation of classes of
classes, Cly (L) the fundamental relation of classes of
classes of classes, etc., can be constructed analogously.

It may also be remarked that Un (7) is the relation
between types of expressions, types of descriptions of classes,
and the corresponding unit classes.

It is an invariant of the same degree as C1 (7).

It should be noted that the use of by, &, and by is quite
different from the use of &, and &,. In the first case we have
type-parameters, in the second class-parameters.

The value of Expr (9) which corresponds to any value
of the type-parameter by is either a class of expressions
of the given type or a null class. In the first case it is the
class-value of Expr (9). The corresponding value of hg
is its proper value.

The same concepts can be applied to any invariant. For
example, the class-value of C1(7) for the values I2 and 10
of its type-parameters is the class ;

IIL9715; A typs (12108, ) IL98Tcs A =5 Class[121015,[9]

This class is equal to the class

IMEI110] &, Class[ 12107 3y
It can be seen that it is the class of classes of type I1 of
expressions of the type 12. _

If the same proper values of & and by are taken in
Un (7) and C1{7), two class-values of our invariants are
obtained. The first is a sub-class of the other. Un (7)
is said to be a sub-invariant of C1 (7). It can be seen that
any invariant is a sub-invariant of the fundamental invariant
of the same degree. A one to one relation between two
invariants will now be defined.

If Un (7) and Expr (9 ) are considered, to any element E
of a given class-value of Un (7 ) belongs as relatum in any
class-value of Expr (9) the expression X which is inter-
typically equal to the element of E.

Likewise to any element X of a given class-value of Expr (9)
belongs as referent in any class value of Un (7)) any unit
class whose element is intertypically equal to X.

We may therefore say that there is a one to one relation
between Un (7 ) and Expr (9) and these invariants can
be called similar.
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It has been seen that there is a sub-invariant of €1 (7)
which is similar to Expr (9). It will now be proved that
there )is no sub-invariant of Expr (9) which is similar to
C1(7).

If it is supposed that J is such an invariant, then an
expression X of type 18 which is an_element of the class-
value of J corresponding to the value 13 of by, should belong
as relatum to Cantor’s class C¢g ).

The same expression should be the relatum of a class E
of type I1, which is an element of the class-value of C1 (7)
corresponding to the values 18 and 9 of its type-parameters
¢, and b;. Now since C¢g) is different from all classes of
type I1, X should have two different classes as referents in
two different class-values of C1 (7). Consequently a con-
tradiction is obtained and it is said that no sub-invariant of
Expr (9 ) can be similar to C1 (7).

Let it now be supposed that the invariant E which is a
sub-invariant of F is similar to G. The cardinal number of E
is said to be greater than or equal to the cardinal number of G.

If this relation holds between E and F as well as between
¥ and E, E and F are said to have egual cardinal numbers.

If this relation holds between E and F but not between
F and E it is said that the cardinal number of E is greater than
the cardinal number of F.

It can be seen that the cardinal number of C1 (7 ) is greater
than the cardinal number of Expr (9 ), and that this result
does not depend upon the types 7 and 9 which have been
used.

Our theory of cardinal numbers, therefore, seems to
conform to Cantor’s fundamental ideas, but is more com-
plicated. To construct it it is necessary to begin with two
infinite systems (0)e and (2)e. We have, for example,
the following theorems :

(¥ EL[10] ;) typs (me 11 1% 1)
b2 =1el[99961C1(7) (mp 109 ;X5 1) ClassEmg 189 ;1% 1

2) EL10] |-o) ~typs (mg 115 1 X9y)
b ~1el[99963CI(7) (mp1ng1%p1)
(1) corresponds to the proper values of type-parameters
and (2) to the other values.
Then we obtain, for example :

ELL10] b2 =rel[9996101(7) (1210xy7 ,) Class[ 12107 x11
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It should be noted that this is a theorem of (2 )¢ which
contains the real variable %57, of (0 )oo. Such real variables
are arbitrary constants of the system (2 )¢. Nevertheless
to develop our theory further it is necessary to supplement
them with the real variables of (2 )e. For this purpose
Hetper’s postulate of generalized systems * will be employed.

We have 2:

0107 F,,=rel[9996]C1 (V) (12102175 ) Class[1210] =17 5

The pattern j=¢ 3 E has been employed to denote Hetper’s
generalized system.

I shall not discuss here the very interesting problems
connected with the reconstruction of Cantor’s theory. I wish
simply to state that the analogy seems to be complete.?
This may be verified by observing that we have invariable
sequences of expressions, but that the sequences of classes
which are contained in them are variable with regard to
change of types. Consequently Zermelo’s axiom cannot be
proved for classes of classes, but it can be proved for classes
of expressions.

On the other hand Zermelo’s axiom can be proved for any
classes in a finite system.¢ Thus we have infinite systems
similar to those of classical mathematics. It should be noted
that we can define Lebesgue’s measure in these systems.®
With the help of Hetper’s generalized systems the arithmetic
of real numbers is obtained with no restrictions. In this way
a system of mathematics can be developed which is broader
than classical mathematics and which contains neither the
idealistic elements of Cantor’s theory mnor indiscutable
propositions.

8. In both the system [10] and in the corresponding
simple system of Hetper, it is possible to construct any
system of symbolic logic. Here the systems of the pure and
simplified theory of types will be constructed with the help
of ordinary language. It should be noted that this con-
struction differs from that of Russell but in practice the two
are equivalent. An adequate construction would be much
more complicated.

1 Cf W. Hetper. “ Smmple Systems, Meta-systems and Generalized Meta-
systems "’ (unpublished).

:lccf. P.O.T.K.

¢ T L.
5 M. L.
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I. PURE THEORY OF TYPES

(a) Construction of Propositions and of Classes

1. If o (M2) Prop ClassL K L] « H.I1 ¢s a theorem of the
meta-system (M), then |-, (M2),Prop ClassfKL] +H.I1
is a theorem of the system (M2)p of the pure theory
of types.

2. If Fo(M2)pPropF is a theoremn of (M2)p, and
EL[10]A~=E.IK[1]gn[KL],(EIXOK)FG
ts & theorem, then -y (M 2 )p G is a theoremn of (M 2 )p.

3.1 o (M2),PropIILK.0 L]XF s a theovem of
(M2)p,and =E[10] (FXag 1 G (L1] s a theorem,
then o (M2)p Class[KLIIO[K.OL]ag o1 G s 2
theorem of (M 2 )p.

4. If o (M2)p Class[KLIF is a theorem of (M2)s,
then -, (M 2)p Prop ClassLKL]F s a theorem of
M2),.

5. I1f o (M2)Prope[KL]+G.I1+H.I1 is a theorem
of(M2),then |- (M2 ) Prope[KL]+GI1+H.I1
is a theorem of (M2 )p.

6. If o (M2)pProp e LKL]XF and |-, (M2); Class[KL] G
are theorems of (M2 )p, then |-, (M2);Prope[KL]1X G
s a theorem of (M 2)p.

7. Tf | (M2),Prope[ .OKLIXF and |-, (M2);Class [JK1 H
are theorems of (M2), then |-, (M2)pPrope[ .OKL]HF
is a theorem of (M 2 )p.

8 If o (M2); PropE and o (M2 )p Prop F are theorems
of (M2)p, then b (M2)sProp /EF is a theorem
of (M2);.

(b) Rules of Demonstration
Nicod’s syllogism.

Modus ponens.

. The Principle of Generalization.

@ N H

. The Principle of deduction as applied to the propositions
of (M2);.
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5. THE PRINCIPLE OF LIMITED REDUCIBILITY

(@) o (M2)p Class[KLJIO[K.OL] ag , 1
[e[KdAL]ag oreer1eLK.1L]ag .o,y
tsatheoremof(M2)p,then|—o(M2)pReduct(KLL)
/e[K1L] ag 0132518[K dL]agorfsr
s a theorem of (M2 )p.

() If E[10]1gen[K.1L];(2BBK.IK)FG is a theorem, if
l—o (M2)pReduct(KLLF) and l—O (M2)pCIaSS [KL] axg OLG
are theorems of (M2)p, then |-, (M2); Reduct (KLL)G
is a theorem of (M 2 )p.

6. THE PRINCIPLE OF TRANSFORMATION

If Fo(M2);Prope[KL]XIO[K.OL]ago G is a
theovem of (M2)p, if E[10]1(Gag o, XF)[1] 7s a
th607’em thenl—-o (M2)p = FC[KL]XH[K OL] ag OLG
is a theovem of (M 2 )p.

Here Reduct ( KN L ) F has been employed as an abbrevia-
tionof IL.2NL] gon  I[RKL]Zw = ¢[K.IN]2x 8251
CEKL] xKLH[K-OL] a,x_“,F.

All propositions of (M2); are propositions of (M2),
all theorems of (M2)p, would be theorems of (M2), if
the principle (b) of limited reducibility were not employed.
The c0n51stency of (M2 )p can then be proved very simply
if it is supposed that (M 2) is consistent. If principle (b)
of limited reducibility is employed Hetper’s generalized
meta-system ( M 2 )g is used rather than (M 2).

Then we have (M2)gp instead of (M2)p and the
consistency of (M 2)gp follows from the simple remark
that all the theorems of (M 2 )y p are theorems of (M2 )g.
It is obvious that the consistency of ( M 2 )z must be assumed.

II. THE SIMPLIFIED THEORY OF TYPES

In order to obtain the system (M2 )g of the simplified
theory of types, the rules of limited reducibility are replaced
by the following rule of general reduc1b111ty

If o (M2)s PropReduct (KNL)F is a theorem of
(]1;11 233, then }=, (M 2 )s Reduct (KNL) is a theorem of

2)s

It is obvious that in all the other rules (M 2); is to be

replaced by (M 2)s.
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The proof of the consistency of ( M 2 )g cannot be obtained
in a simple way because the principle of general reducibility
is not compatible with (M 2).

However, the classical methods can be applied here without
any difficulty. For example, G6del’s theorem can be proved
in its primitive form and Church’s theorem can also be
proved. The latter theorem as applied to first-order classes
of expressions states that there exists no effective method of
deciding which propositions are provable.l It is a very
important theorem since it enables us to see why the researches
on this subject inaugurated by Loéwenheim 2 and Skolem 2
and continued by the most eminent mathematicians could
never be successful.

1 Cf. B. Rosser: ‘ An Informal Exposition of Proofs of Godel’s Theorem
and Church’s Theorem,”” Tke Journal of Symbolic Logic, vol. 4, 1939, p. 535.

* Teopold Lowenheim : * Uber Moglhchkeiten im Relativkalkdil,” Mathe-
matische Annalen, Bd. 76, 1915, pp. 447—470.

3 Th., Skolem: * Logisch-kombinatorische Untersuchungen tuber die
Erfullbarkeit oder Beweisbarkeit, etc,”” Skrifter uigit av Videnskapsselshapet
i+ Kristiania, i, Matematisk-naturvidenskabelig klasse, 1920, no. 4, 36 pp.



CuarTER VIII

THE FUNDAMENTAL CONCEPTS OF MATHEMATICAL
ANALYSIS

1. It has been shown that the foundations of arithmetic
were obscured by confused metaphysical discussion, and that
the theory of classes developed from the confused idealism
of Cantor. A similar statement may be made concerning
classical mathematical analysis. It may be said that the very
mathematicians who sought to remain within the domain of
accurate reasoning made no progress and did not attain the
desired end. On the other hand those who did not hesitate
to trust their vision of reality triumphed decisively.

It has previously been remarked that in so far as the Greeks
created euclidean geometry they cannot be regarded as finitists.
However, the Eleatics were undoubtedly finitists and did
everything in their power to check the development of the
concept of the infinitesimal. This attitude characterized the
arguments of the famous Zeno of Elea to whom some ascribe
uncommon profundity and whom others deride unmercifully.
It will now be seen that these arguments of Zeno were funda-
mentally false and can be justified only in terms of the confused
concepts dominant in his day.

Zeno desired to prove that motion is impossible. With this
in view he proposed the following arguments :

(1) «If everything is in rest or in motion n a space equal to
itself and if what moves is always in the instant, the arrow in its
flight is immovable.” 1

This argument is hopelessly confused.

According to Russell and Bergson, Zeno makes much of
the point that the correspondence between the points of space
and the moments of time does not cover the phenomenon of
change which occurs during actual motion.

Russell disposes of this argument by rejecting the concept
of change as having no clear meaning.2 Bergson on the other
hand makes this concept fundamental and therefore denies

1 Bertrand Russell: The Principles of Mathematics, Cambridge, 1903,
2nd ed., New York, 1938, p. 350.
* Russell ; l.c., pp. 350-352.
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any profound significance to an interpretation of movement
with the help of an analysis in terms of points.!

Here it must be noted that an analysis in terms of points
permits a certain number called the velocity, which in the
case of rest is 0, to be assigned to every world point,® i.e. to
every set of numbers which fixes the position of a moment of
time and of the point of space which corresponds to it. Con-
sequently it may be asserted that the attribution of a velocity
to a world-point suffices to represent the fact that the state
of a moving body undergoes change at that world-point.

It must be added here that according to contemporary
physicists, the concept of velocity for a precisely determined
position in space does not correspond to reality and becomes
meaningless.? However, if it is desired that a purely sensationa-
listic position be maintained, no meaning can be attributed
to the concept of a world-point and a space cannot be said to
be equal to self. This apparatus of concepts was borrowed
from geometry, where alone it is possible to construct the
concept of the velocity at a point, but neither is there any
basis for the formulation of Zeno’s argument.

(2) ““There is no motion, for what moves must reach the

middle of 1ts course, before it reaches the end.” 4

In other words this means that motion is impossible for it
cannot even begin.®

In this argument the fundamental supposition seems to
be that it is possible to speak significantly of a temporal
segment but not of a moment of time.

Actually there is no first temporal segment in which motion
could begin, unless the division of temporal segments ad
infinitum be permitted. If, however, such an operation is
held to be permissible, the purely geometrical thesis, that
moments of time correspond to points is being maintained.

If the concept of a moment is accepted, the answer to Zeno’s
question is simple. Motion begins at the moment a body is
at the beginning of its path but at each subsequent moment

! Henri Bergson : Time and Free Will, translated by F. L. Pogson, London,
1921%fp%6112—117.

* Cf. Erwin Schrédinger : ‘‘ Indeterminism in Physics,” translated by
W. H. Johnston, Science and the Human Temperament, New York, 1935, p. 62.

¢ Russell: l.c., p. 348.

8 Cf. Jan Sleszyfiski: ‘“ O pierwszych stadjach rozwoju pojeé mnieskod-
czonosciowych ,, Poradnik dla Samoukéw (*‘ Concerning the First Stages of

the Development of the Concept of the Infinitesimal,” Home Study Course).
Warszawa, 1923, tom iii, p. 56.

R
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the body is not in motion. In other words motion begins at
the earliest limiting moment of each of the temporal segments
in which motion occurs.

Despite this explanation Sleszynski writes *:

“ The following fact is involved in the arguments of Zeno :
There exists no point which lies next to a given point. Similarly
there exists no moment of time which immediately follows a
given moment. These facts make all change unintelligible.
Thought is composed of a number of acts each of which requires
a finite interval not less than a certain size. The number of these
acts is therefore finite for everyone. Consequently it is impossible
to know an infinite number of moments.”

More confused reasoning can hardly be imagined. In the
first place the motion observed must contain exactly as many
elements as there are acts of thought. In the second place
while it is true that an infinite number of moments cannot
be conceived, this has nothing to do with the fact that the
number of acts of thought is finite, since no one has ever
counted his acts of thought and since it is impossible to do so.

It is difficult to maintain that the character of motion is
understood but neither can it be maintained that what is
meant by such questions as: What is a table? What is a
cow?, is understood any better. Zeno’s arguments become
even more unintelligible if they are taken seriously. Because
he took them seriously, Bergson fell into the hopeless con-
fusions of irrational metaphysics.

(3) It is worth while to discuss still another of Zeno’s
paradoxes : that of Achilles and the tortoise. I will employ
Richard’s ? formulation of this paradox.

Achilles runs ten times as fast as the tortoise. If the first
distance is denoted by 1, when Achilles has traversed this
distance, the distance between Achilles and the tortoise will
be 0-1, since the tortoise will have traversed the latter distance.
When Achilles will have traversed the segment 0.1, the tortoise
will have covered the distance 0.01 and the distance between
Achilles and the tortoise will be 0.01. At subsequent moments
the distance between Achilles and the tortoise will be 0.001,
0.0001, 0.00001, etc. Thus the distance between them is
always decreasing, but will never equal 0.

Richard calls this paradox crude and he is right. If Achilles
requires the time ¢ to cover the distance 1, he will require

1 Sleszyfiski: lLe., p. 57.
? Jules Rachard : Swr la philosophie des mathématiques, Paris, 1903, p. 118.
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the time 0.1¢ to cover the next segment, etc. Consequently
the times
; 1.1¢, 1.114, 1.111¢, 1.1111¢, 1.11111¢, ... etc.,
which are measured on a clock, correspond to the following
distances between Achilles and the tortoise :
1, 0.1, 0.01, 0.001, 0.0001, 0.00001, .. .etc,

Obviously the total time cannot exceed %9 ¢ and therefore the

entire race not only does not last an infinite length of time
but is actually very short. It is true that to enumerate separately
the ever decreasing distances between Achilles and the tortoise
would require an infinite length of time, but this fact leads
to nothing of any great interest.

The distance between Achilles and the tortoise at the

1 . .
moment —9(—) ¢ will clearly be 0. If it were greater than 0, e.g. x,

it would be possible to assign a natural number » so large

that 10" would be greater than—lx— and the fraction l(l)—n would be

1 .
Ton the
form 0.00...1, where # —1 =zeros follow the decimal
point. To this distance would correspond the time 1.11...1
where there are # 1’s after the decimal point. But this number

less than x. But it is possible to write the fraction

is certainly less than lgg

2. The explanation of the sophism of Zeno of Elea which has
been given, reduces to the determination of the limits of the
given sequences.

In the third paradox, the following sequences of numbers
were involved :
1,1.1,1.11,1.111, 1.1111, .. . etc.

1, 0.1, 0.01, 0.001, 0.0001, . . . etc.
The number 130 is the upper limit of the first sequence. This

. 10
means that the terms of this sequence are always less than T

and there is no positive number which is so small, that the
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difference between %Q and a certain term of the sequence

would not be less than this number.

0 is the lower limit of the second sequence. This means that
the terms of this sequence are always greater than 0 and
there is no positive number which is so small that a certain
term of the sequence would not be less than this number.

Thus the determination of upper and lower limits is a new
mathematical operation which is no worse than other
mathematical operations and in general is not difficult.

For example, it can be seen at once that the natural numbers
have no upper limit and that their lower limit is 1, since
there is no positive number so small that the difference between
the first term of this sequence (i.e. the number 1) and the
number 1 was not less than this number.

Further the so-called sum of the geometric series

1+g+qz+qa+q4+,..,wherel>q>0,

which, as is known, is
1
I-g
is seen to be the upper limit of the sequence: 1, 1+ g,
1+g+g¢...

The concept of a limit is much simpler than that of a bound,
but the two concepts do not differ essentially.

Anyone who understands that the determination of limits
is a mathematical operation which does not depend upon
approaching ‘infinity and which can be performed in various
ways, even by guessing, will have overcome the only real
difficulty in the foundations of infinitesimal analysis. Every-
thing else is an elaboration of this fundamental idea.

The theory of limits contains some interesting surprises.
For example, the series

I+14141+...
2 3 4
has no upper limit, i.e. the sum of this series is greater than
any natural number, if a sufficient number of terms is con-
sidered. But the series
1+14+1414...
wOF P

3
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has an upper limit which can be ascertained without too much
difficulty.

It might be supposed that such surprises made it difficult
for the Greeks to discover the concept of a limit. It can right-
fully be inferred from the mode of reasoning they employed,
that an operation which can be performed in certain cases but
not in others was not to their taste.

Archimedes actually knew how to determine the limits
of series in special cases, but did not construct the general
concept of a limit. He determined the upper limit of a geometric
series and gave an example which involves the determination
of the area of the segments of a parabola.l

Sleszyniski writes :

““ We see therefore that Greek scientists could deal with infinity,
but not, I say, in a clear way. The great mind of Archimedes
saw the general method which clearly involved infinity, but he
was fully aware of the need for scientific precision. He realized
that this method is not logically established but is a heuristic
method, whose results and applications must be verified in
another way.?

““ Whether or not this was the case, it is a fact that modern
scientists had to invent the infinitesimal calculus in their own
way.”” 2

This was accomplished with the help of generally confused
and dubious images. Sleszynski quotes the following passage
from Kepler 2:

“ Archimedes uses an indirect proof which leads to the
~ impossible. Various opinions have been advanced on this type
of proof. It seems to me

that its meaning may be G

derived from the following

example. The circumfer-

ence of the circle B G has

as many parts as points,

ie. an infinite number;

each of them can be re- B F E c

garded as the base of a Fic. 6.

certain isosceles triangle

whose legs are equal to 4 B, so that the area of the circle consists

of an infinite number of triangles whose vertices intersect at the

centre of the circle. Let us now straighten out the circumference
of the circle BG. Let B C be equal to this length and 4 B be

1 Cf. Sleszyniski: Zc., p. 65. 2 Sleszyfiski: Zl.c., p. 66.
3 Sleszyniski* I.c., p. 68.
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perpendicular to it. Let us now imagine that all the bases of
these triangles or sectors are placed on the straight line B C.
Let one such base be B F and then let a part which is equal to
it, however small it may be, C E, be drawn. Furthermore let the
points F, E, and C be joined to 4. Because there are as many
triangles 4 B F, A E C on the straight line B C as there are
sectors in the area of the circle and because the bases B F, E C
are equal to the bases of the latter, and because their common
altitude is B 4, the altitude of the sectors, the triangles E 4 C
and B A F will be equal and each will equal one of the sectors of
the circle. All the triangles having bases on the line B C, i.e. the
triangle B 4 C which is composed of them all will be equal to
the sum of all the sectors of the circle, i.e. the area of the circle
is composed of all of them. The Archimedian method, which
leads to the impossible is exemplified here.”

This is an example of faulty reasoning which leads to a
correct result. It suffices to observe, that Kepler speaks of
triangles which have infinitely small bases and deals with
them as he would deal with a finite quantity. He does not
pay attention to the paradoxes which concern infinity. Never-
theless he obtains the correct result and becomes the great
pioneer of the new mathematics.

This fact can be accounted for as follows: Kepler employs
concepts which are not clear, but he does so within narrow
limits and confines himself to the sphere within which they
function correctly. He simply proceeds in the way in which
one must proceed if the concepts cannot be stated as formuli.
The reader will easily observe that this method is employed
in the chapters of this book which deal with philosophical
problems.

Cavalieri, Wallis, Pascal, Gregory St. Vincent, Fermat,
Barrow, and others followed the footsteps of Kepler.!

Newton was undoubtedly the real creator of the infinitesimal
calculus,

Leibniz introduced a convenient symbolism which determined
the course of its further development.

3. A strange history which raises very disturbing questions
is associated with the discovery of the infinitesimal calculus.

In 1666 Isaac Newton discovered the integral calculus. He
collected his results in a work called De Analysi per Aequationes
Numero Terminorum Infinitas, which, however, he did not
publish. In 1673 Leibniz visited London, where he bought

1 Cf Sleszyniski: l.c.
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on the recommendation of his friend Oldenburg a book entitled
Lectiones tum Opticae tum Geometricae, which was written by
Isaac Barrow, the teacher and collaborator of Newton. On
his return he immediately began studies on the integral
calculus. In 1675 he invented the integral sign fy dx. This
apparently purely formal result was actually the turning-
point in the development of the infinitesimal calculus. In
1684 he published the results of his investigations, but referred
to neither Newton nor Barrow. This fact caused unprecedented
indignation in London. Leibniz alleged that he knew nothing
of the work of Newton and that he had not employed that
of Barrow. He did, however, use the letters ¢ and 4 which
had been employed by Barrow to denote infinitely small
increments and he employed the expression momentum which
had been invented by Newton, although the latter assigned
a different meaning to the term. It is also certain that he had
read Barrow’s book because a copy of his notes has been
preserved. Moritz Cantor sought to prove that the notes
were made later because he did not want to suppose that
Leibniz had lied. But it is plain that the character of a man
like Leibniz warrants this supposition. Moritz Cantor wished
to clear Leibniz of the charge of plagiarism at all cost, and
therefore employed dialectical tricks.

Desiring to prove that while in London, Leibniz did not
make the acquaintance of Collins, who was familiar with
Newton’s results, Cantor cited Oldenburg’s letter to Leibniz
in which Oldenburg informed Leibniz that he had transmitted
his work to Collins. Cantor wrote :

*“ Leibniz would have learnt this from Collins if he had met
him, but their meeting without the knowledge of Oldenburg is
inconceivable in the light of the close relations between the
members of the London Society.” *

All this is fine, but Oldenburg might have known of the
meeting between Leibniz and Collins and that Collins informed
Leibniz that he had received the latter’s manuscript and
therefore might have thought it suitable to let Collins know
of this. Besides, in view of the relations of the time it would
not be difficult to get possession of Collin’s secret even without
knowing him, if one were as skilful a diplomat as Leibniz.

To me the crucial facts are that after his stay in England

1 Moritz Cantor: Vorlesungen wber Geschichte der Mathemahk, Leipzig,
1898, Bd. III, p. 28.
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Leibniz began his studies on the infinitesimal calculus and
that he did not acknowledge his familiarity with Barrow’s text.

For this reason Cantor’s arguments do not convince me and
I am surprised that Sleszynski thought that they were decisive.!
Moreover I am convinced by the following argument of
Dithring :

‘““ Moreover it is not to be overlooked that the Newtonian
method of fluxions originated in a way which was both natural
and comprehensible to the investigators interested in inquiring
into nature, while Leibniz’s method of differentials when regarded
from this point of view seems completely unmotivated and in
the hands of its alleged discoverer remained without suitable
applications to the system of nature.” 2

This entire dispute should be regarded as futile. Even if it
were agreed that Leibniz dishonestly sought to deprive Newton
of his invention, the only conclusion which would follow
from this admission would be that Leibniz was not a man
of great measure. But this conclusion is not new. Leibniz
was a courtier who flattered powerful lords, and heroes are
rarely found among such people. Moreover it is possible
to be both a man of genius and a man without character.
In any case while Leibniz sought to deprive Newton of his
invention he did perfect it to such a degree that, as has already
been stated, its future development was determined.

Bertrand Russell writes :

““ The English were misled by patriotism into adhering to his”
(Newton's) *methods where they were inferior to those of Leibniz,
with the result that after his death English mathematics was
negligible for a hundred years.” 3

4. Familiarity with the concept of bound, the basic concept
of the infinitesimal calculus, is not necessary to understand
the essence of this calculus. It is quite sufficient to understand
the concept of limd. The latter concept alone is necessary
to define the velocity of a point at a given moment in all
elementary cases of accelerated motion. Since the velocity
is the relation between a distance and the time required to
traverse that distance, velocities during very short periods
of time can be discussed ; but it is meaningless to speak of

! Sleszyhiski: lc., pp. 53—4.
* Eugen Duhning : Kritische Geschichte der Philosophie, Berlin, 1869, p. 831.
3 Bertrand Russell : The Scientific Outlook, New York, 1931, p. 39.
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the velocity of a point at a given moment. If, however, the
motion is such that the velocity invariably decreases or
increases with the time, the velocity at a given moment can
be regarded as the limit of all the velocities during the period
from the given moment to some following moment.

If the motion of a freely falling point is considered, the
relation between the time of descent, which is represented
by ¢ and the ordinate %, is ¥ = — 5# + ¢, where ¢ is the
ordinate of the point at the moment represented by 0 and
— 10 is the value in round numbers of the acceleration. This
equation leads to a figure which is a parabola intersecting the
%-axis at the ordinate ¢ and the f-axis at a point which represents

the moment &/ -g

If the moment represented by ¢ and a subsequent moment
represented by ¢ + % are considered, the ordinates: — 512 + ¢
and — B(t + A)? + ¢ correspond to the abscissas which represent
these moments. The number which represents the distance
traversed by the point during the interval denoted by % is
the negative of the difference between these abscissas,
ie. 10¢- A 4 5h2 The negative of the number which is
the ratio of the number measuring this distance and the
number representing the interval of time 4, i.e. — (10¢ 4- 5 4)
denotes the mean velocity of the point during the interval
between the moments represented by ¢ and ¢ 4 %. It obviously
depends upon the number representing the length of the
interval % and therefore decreases in absolute value as this
number decreases. Obviously this formula cannot be employed
in computing the velocity of the point at the moment repre-
sented by £ since in this case no interval occurs. However, it
can be said that the velocity of the point at the moment represented
by t is the wpper limit of the number which vepresents the mean
velocity computed from the moment represented by t to the moment
vepresented by t + h. This limit is —10¢, i.e. the number
which denotes the velocity of the point at the moment
represented by £, is — 10 1.

It should also be noted that a negative rather than a positive
increment might have been employed. Analogous reasoning
would then be carried through until the end, when the lower
and not the upper limit of the number which denotes the
mean velocity would have been taken. The result would
again have been — 10+
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The value of this device lies in the fact that at the end the
velocity of a point at a definite moment can be obtained.

At0,1,2,3,... seconds the point has the velocities 0, — 10,
— 20, — 30, ... meters per second respectively. There is no
need to refer to the number which denotes the mean velocity
during a certain period of time.

The concept of the velocity at a point is not at all complicated.
It proves to be a natural concept and what is more important
it has little more in common with the infinitesimal than the
concept of the least odd or perfect number.

Hence it follows that in a strict sense there was no reason
to construct the fiction that some non-terminating sequence
of approximations must be employed in solving this problem.
In plain terms Zeno of Elea obstructed progress and his
suggestion hampered even those who created the infinitesimal
calculus.

As long as the motion under consideration is of such a
kind that the mean velocity computed from the moment
investigated to some subsequent moment or from some prior
moment to the investigated moment invariably decreases or
increases during some interval, no matter how short, only the
concept of a limit is necessary to calculate the velocity. More-
over other types of motion are encountered only in dealing
with cases which do not involve elementary problems. Not
until then does the concept of bound prove necessary. This
concept is not difficult, but to understand the traditional
construction a certain skill in manipulating inequalities is
necessary. I will give a simple construction of this concept
below. Lectures on the infinitesimal calculus usually start
with the concept of bound, and the concept of limit is introduced
later. This is a wholly unnecessary complication of the subject.

The first attempt to formulate precisely the concept of bound
was made by D’Alembert.

In the first half of the nineteenth century Cauchy gave the
first entirely accurate definition of this concept.

Newton and Leibniz defined the velocity at a point as the
ratio between an infinitely small increment of the distance to
an infinitely small increment of the time. Leibniz denoted
these increments by the symbols dx and df; the velocity at

ax

a point was denoted by the ratio e

The calculus was conceived somewhat as follows: The
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increment of the distance denoted by dx is the difference
between the ordinates which corresponds to the increment
of the time denoted by df. Consequently at the moment ¢,

dx =— (10¢ + 5 di) dt
and the ratio ax satisfies the equation :

at
dx

= = — (107 +5a).

The symbol g—f was said to represent the derivative of %

with respect to the variable §.
This notation is employed even to-day and it is said that
the number which represents the velocity at the moment

denoted by ¢ is %—; and that %;ﬁ = —10{. However, this is no

longer regarded as the ratio between two increments but
simply as the upper limit of numbers which can be obtained
from the expression — (10¢ + 5 4) by substituting an arbitrary
positive number for A.

It is therefore clear that the concept of infinitely small
increments was not indispensable.

5. The definition of the concept of a function of a real
variable which is given in classical texts raises serious questions.
In Goursat’s Cours d’analyse mathématique, the following
passage may be found.

““ When two variable quantities are so related that the value
of one of them depends on the value of the other, they are said
to be functions of each other.” !

The reader may think that concrete quantities, for example,
a moment and the number which is thrown at that moment
at dice-playing or a number just thought of, are functions of
each other. These quantities are in fact related in such a way
that the value of one depends upon the other.

Examples of this kind are often adduced to explain the
concept of functions. Consequently the meaning of this
concept has been completedly obscured.

1 E. Goursat : A Course in Mathematical Analysis, translated by Earle R.
Hedrick, Boston, 1904, vol. i, p. 2.
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The following much more accurate definition is found in
Tannery’s Introduction & la théorie des fonctions d'une variable :

“ A function y of x is defined in the interval (g, b) if to each
value of x, belonging to this interval corresponds a determinate
value of y.”” 1

But this definition also leaves much to be desired. The
value for % or y is unknown because x and y are letters which
have no characteristic which can be called a value. The
meaning of the word corresponds is also unknown.

This information cannot be obtained until specific examples
are examined. If, for example, it is said that a function of
the letter x is defined in the interval (, b), whenever the value 0
corresponds to any rational number which is contained in this
interval and whenever the value 1 corresponds to any irrational
value, some idea of the meaning of this definition is obtained.
If it is said that sin x is a function of the variable %, since
a certain value of sin x corresponds to every wvalue of x, the
definition seems much clearer. When finally it is realized
that every expression which can be constructed with the
help of the signs of the given system and which contains a
variable letter, is a function of that letter, the feeling arises
that the meaning of a function is understood.

But then the following question may be raised :

Why did not the author simply say that every expression
which can be constructed with the help of mathematical
signs and which contains the letter #, is a function of that
letter in the interval (a, b), if this expression becomes a number
whenever any number greater than 4 and less than & is
substituted for x ?

Would it not be preferable to say that x is a letter and that
what is intended is not a metaphysical correspondence but a
correspondence between an expression which contains the
letter ¥ and the expression which is obtained from it by
substituting a certain number for x?

The very use of the expression (x + 1) involves the concept
of a mathematical function. The great mistake of teaching
in the past and even at the present time (although recently
school syllabi show definite improvements in this regard) is
that this fact was not taken into consideration even in the
most elementary studies. As a result the student imagines

! Jules Tanmery: Introduction & la théorie des fonctions d’ume variable,
Pans, 1886, p. 99
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that letters and the expressions which can be constructed
from them are a new kind of general number. Later he must
combat with great effort and frequently without success the
prejudice which arose in this way. It must be recognized
explicitly that (x + 1) is not a new number, but an expression
which becomes a number when and only when some number
is substituted for x. This means that this expression will
not become a number until some number is substituted in it
for the letter x.

It should be observed that the function (x + 1) is determined
in all possible intervals, because any number can be substituted

for x. The function 4/x + 1 is governed by the condition
% » —1, and therefore is determined in all intervals (4, )
whose lower limit satisfies the condition ¢ > 1.

The conditions which must be satisfied by a number so
that in a given function it may be substituted for x will be said
to fix the domain of this function.

Classical mathematicians do not simply say that functions
are expressions because they have not sufficiently well developed
methods of construction. The methods at their disposal do
not even suffice to construct as simple a function as the function
whose value is 0 at the point 0, and 1 at all other points.

Such functions can be described but not constructed in the
theory of relations. They can, however, be constructed if
functions are regarded as expressions. To demonstrate this
fact the function just mentioned will be constructed. Signs
of type will be neglected because it would be pedantic to
employ them where no misunderstandings can occur.

The construction of the propositions : Real E, Z El, E FA,

presents no difficulty.

The first proposition may be read : E s a real number, and the
others: E s a rational number avithmetically equal to the number1,
F is the null class. By means of these propositions can be
constructed the proposition :

ARealEA ~CIEAAF1,

which is abbreviated by the symbol @ (EF).

The expression Iy @ (xy ) is the desired function. It is
the class of all rational numbers which are equal to 1, when
the real number x is not the null class and therefore differs
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from 0. When x is zero, the class is the null class and therefore
equals 0.

Attention will now be directed toward a problem which
has long been known but was not settled or even formulated
precisely by mathematical students until the present day.
In classical mathematics relations between functions were
not clearly distinguished from relations between their values.

Frequently in texts on analysis, the function y = f(x) rather
than the function f(x) is discussed. It is difficult to imagine
a more ambiguous way of talking. In the first place y = f(x)
is an equation or, more correctly, a propositional function,
but in no case is it a mathematical function. In the second
place, when it has been realized that f(x) is a function, it
cannot be said that the equation y = f(x) is a relation between
two functions.2 The letter y is a function of the variable
¥, f(%) is a function of the variable x. These two functions
are therefore fundamentally different. The equation in question
is simply a relation between two unknowns x and y, and that
is all which may be said. The very fact that the domain of
the variable in the equation can differ from the domain of
the variable in the two functions, shows that the equation
is not a relation between functions. For example, the domain

of the function ;-6 contains all numbers with the exception of 0 ;

i :i contains all numbers
with the exception of 1, and the domain of the equation
x _x-—1
x x~—1
It is frequently said that functions are equal throughout
the interval (a, b) if they are defined throughout this interval
and if they have the same values at the same points. It
therefore follows, that the functions 4/%2 and ( 3/x)® are
equal throughout every interval. Yet in the first case the
cube root of x? is being considered and in the second the
square of 4/%. This state of affairs requires that it be shown
that the operations introduced do not depend upon the structure
of the functions, but upon their values alone. Only too often

but the domain of the function

contains all numbers with the exception of 0 and 1.2

1 Examples of other such constructions may be found 1n M M.4 , p 258.

3 Cf. Gottlob Frege : Grundgesetze der Arithmetik, Bd. 11, Jena, 1903, p. 148.

3 Cf the interesting note i Gutkowski and Wilkosz - Algebra elementarna
(Elementary Algebra), Warszawa, 1925 (5th edition), pp 125-6.
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classical mathematicians fail to take account of the fact that
in investigating this problem they are not working in the
field of mathematics but in that of semantics. At all events
they do not mention this fact to their pupils, who therefore
remain perplexed.

If certain wide fields are excluded from the domain of
functions, reasoning is governed by a theory of types. For

example, when a function of a real variable % is distinguished

from a function of a natural variable —1 (i.e. a variable which

takes only integers as values), it is clear that the distinction
drawn is based upon a theory of types. Under these conditions
the apparently greater clarity of the classical formuli in com-
parison with the semantical formuli is a result of the abandon-
ment of precise notation. However, it must be kept in mind
that once the symbolic apparatus of semantics has been worked
out, a simplified symbolism can be introduced with no fear of
misunderstandings.

Signs of type can be neglected where there is no fear of
misunderstandings.  Semantical symbolism thus becomes
clearer and simpler than classical symbolism.

6. The weakness of classical symbolism is revealed in the
discussion of sequences and series. To this day a sequence is
represented by the description :

al: Az, A3, « « +y An,

It should, rather, be explicitly said that a sequence is a relation
between the values of a function of a natural variable #.
What is even worse is that the functional pattern «, is used
simultaneously with the pattern f(») and it is not stated that
both patterns serve identical ends. Moreover it should be
observed, that if a,, a,, 4,, . . . are given numbers, they could
not at the same time represent an infinite sequence, since it is
possible neither to write down nor think of infinitely many
numbers. In order that it might be possible to speak of a
sequence or progression of numbers, a function of a natural
variable a4, or f(n) must be given, for only then can it be
said that the xth term of the sequence is 4, or f(n).

This confusion of concepts appears in especially troublesome
form in connection with series.
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The symbol :
Ay +a, +az ...+ a, .

is still in continual use despite the fact that it suggests the
completely false idea that it is possible to add ad infinitum.

n
To this symbol is subjoined the sign — —a,, which denotes
k=1

the sum of the first » terms of the series. Thereby is emphasized
the idea that it is possible to deal with other sums in addition
to such as have been explicitly indicated.

Actually the study of series reduces to the investigation of ex~

n 7 n
pressions of the form == _azor = _ f(k)oralso > _ f(k, %), etc.
k= k=1 k=1

These expressions are simply functions of the integral
variable » and in some cases of other variables. The letter %
is an apparent variable of a type for which nothing can be
substituted.

It must still be explicitly stated that these functions cannot
be formulated with the help of the usual concept of a sum.
In constructing such functions it is absolutely necessary to
employ such intervals as Dr. Hetper?! used in defining the
operations of multiplication and involution.

With the introduction of the patterns a,, f(), f(x) it is clear
that the investigation has been carried into the field of
semantics, because such patterns as these are neither numbers
nor functions, but rather certain particular expressions which
become functions if suitable substitutions are made. Students
tend to treat the pattern f(x) in the same way as they treat
the function sin x. I must confess that this gross error is not
entirely their fault.

The patterns which have been mentioned are constructed
in such a way that they can be employed in performing a
series of operations which cannot be carried out within pure
mathematics. In particular it is possible to construct from the
old patterns such new ones as f(x + %), f(f(¥)). These opera-~
tions demand exactness and precision. For example, it might
happen that f(z) is not a whole number. It would then be

1 Cf. W, Hetper : “ Semantische Arithmetik,”” Sprawozdania Towarzystwa
Naukowego Warszawskiego, tom XXVII, 1934, Wydzat III, p. 17 £.
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necessary to keep in mind that f(f(¢)) has no meaning. It must
also be kept in mind that in an expression in which f(0) appears

1 . .
p cannot be substituted for f(x); if, however, one confines

oneself to real numbers the substitution of +/x —1 is not
permissible. It is evident that a large apparatus of tacitly
accepted conventions is involved here. I think that silence
on this point gives many mathematicians and virtually all
theoretical physicists the impression that mathematics is an
occult science.

It will suffice for our present purposes to construct the
class :

H[ML] aM 1. A Ratua,ul, A Real[M.lL] X
AJ[A4LOL]ysr.oo AReal[M1L]Vur 01

A CEM.].L] aaMLY.4L.oL1‘31[.4L.4L.0L]F(Xy,‘;L.oL):
which can be abbreviated by Fy 1 (X).

It is obvious that Fyy ( X ) is the same symbol as f (x)
except that in the former the types are indicated.

Real [M .1 L] X has been employed here rather than just
Real X since the types are not to be omitted. The symbol
Raty E has been introduced to denote rational numbers of
the type M.

It is clear that Fy 1, ( X)) is the real number whose elements
are rational numbers contained in a real number which has
the relation F to X.

An analogous construction can be made in the system of
Whitehead and Russell, but not in the pure theory of types
since it is impossible to deal with variable types in the latter
theory.

It should be observed that the semantical theory of functions
has not been considered here. I hope, however, to develop it
fully in the near future.

7. The elimination of the differential from mathematical
analysis by Cauchy made the construction of a system of
theoretical physics much more difficult. For this reason
mathematicians working in the field of analysis have never
abandoned the concept of the differential but introduced it
by means of the concept of a function which approaches 0
at the point 0. Until now the theory of differentials has never
been precisely worked out. In courses on analysis only rather

S
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general remarks concerning differentials can be found. This
state of affairs seems to confirm the old prejudice that there
exists an abyss between algebra and analysis which cannot be
bridged.

To remedy this evil it is absolutely necessary to show that
the concept of number can be generalized in such a way as
to include the concept of a differential by employing only the
concepts upon which algebra is based. The apparatus of
concepts of rational semantics permits the complete solution
of this problem.

Instead of speaking of functions of a real variable which
approaches 0 at the point 0, it is possible to speak of arbitrary
sequences of real numbers. Sequences which invariably take
on the same value at points sufficiently far from 1, i.e. sequences
which beginning with a certain term are equal, can be assembled
in separate classes which are called sequential numbers.

Nevertheless in conformity with a remark of Herzberg,
sequences will be dealt with directly.

The following definitions are posited :

1. If E is a real number, E is an 0-order number.

2. If E is an n-order number, for any value of a natural
variable I, then the sequence [ E of the values of E is an
(n + 1)-order number.

If a, a;, ap and ay,; are functions of the natural variables
1, £ and I, the following are numbers :

Ta,Ta, Ria;, TRas, IBa,, LREap, LRTan:. ..
The following are likewise numbers :

Order |Number| The corresponding sequence

1 £0 0,00, ...
1 i1 1,2,38 ...
2 150 k0, k0, kO
2 tkk ER ER KR
2 tki k1, k2 k3
2 ki E1, k2, k3

Eo FOFE

!

Numbers which contain an infinity of members all of which
are equal to 0 will be called null numbers.
Convention: In these constructions of sequential numbers

1CL U H M,p 463 &
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the number 0 will be taken for any expression g—unless there is

an infinity of such expressions. In the latter case the correspond-
ing pattern will not be used at all.

For example 7 -

; is the sequence 0,1, § . ..

—1
1

7 is a meaningless expression.

. T
sin — ¢
The nth member of the sequence X will be denoted by
[n] X. For example :
] Ta=a
n] 2a, =a,
(#] Riaw="Fan
Note that the symbol [N]E should not be employed if
E contains N.

Small latin letters will be employed to denote the real
numbers and large latin letters to denote sequences.

THE DEFINITION OF EQUALITY

I. I n]X = a for almost all values of #, i.e. except for
a finite number of .values of =,

X=a
II. If ] X = [n] Y for all values of » then
X=Y
Examples :
a=1, a=10,a=1031%a..
__ m—1 .1
AW o= NI —
mm — 1) m

DEFINITION OF GREATER AND LESS
I. If [#] 4 ) a for almost all values of #, then :
A>a
II. Ia)[»n]X for almost all values of #, then:
a>X
III. If[#] X ) [#] Y for almost all values of #, then:
X>Y
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DEFINITION OF FUNDAMENTAL OPERATIONS

HX =Xand Y =Y, where X’ and Y’ are of the same
order, then

X+Y=i(mX +HY)
X - Y=a(mX —nY)
X -Y=a(nX - nY)
X WX
Y= Y

where Y is not a null number.
For example
Ttd+a=n(nii+Hlia)=nn-+al
71 I —1)=nn(n—1)

DEFINITION OF POSITIVE AND NEGATIVE NUMBERS

Positive numbers are greater than 0 and negative numbers
less than 0.

DEFINITION OF DIFFERENTIALS

Positive numbers which are less than any positive
(n — 1)-order number are n-order differentials.

The n-order differentials are denoted by d,x, d. ¥y, duz ...

For example ¢ % is a 1-order differential
k7 —is a 2-order differential

1 E7~1s a 3-order differential

DEFINITION OF A LIMIT-VALUE OF A SEQUENTIAL
NUMBER

The #n-order number G is an xn-order limit-value of A if for
the differential d, ,

—d, s x<A—-G<d, .
Then we write :
lim#n) A=G
It can be proved that there are never two different n-order
limit-values of a given number.
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We have, e.g. lim (0) d,x = 0
lm (# + p)dux =dux
lim (0) 2 =a
1
(42 —

lim (0) 7 ———— = 2%
7

DEFINITION OF #-ORDER FUNCTIONS

The expression f(X) is an #-order function of X in the
domain £, if for any #-order value of 2, f(X) is a uniquely
determined #-order number.

If the recursive pattern

fX) =nf(n] X)

is employed, the following s-order elementary functions are

obtained :
—X=n(—[MmX)
|X| =2 |[n] X|
=7ne [} x
(E) log X =nlog[n] X
sin X =#nsin (n] X
arcsin X = # arcsin [n] X
Also:

EX) =nE (n] X),
where E(x) is the next integer not greater than x.

We have the following definitions for series

E( E([n] X)
]%f(k,z =i > _  [#f(k 2)

k=1

LIMITS
The following definitions are posited for n-order functions.
lim f(X) =lim (n) A(Z + 4, . 1%)
Z<X

im  A(X) =lim (n) AZ —d, .+ %)
X~Z
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im f(X) = lim f(X) = lim £(X)
= X X

X%;ﬂm=%mwgﬁ;>
XL o ) =lim () f (=)

for any 4, . .
The derivative and the definite integral are then defined

as follows :
@) —Ax)
fX) = tim =
zZ=X Z-X
B
ﬁf(X)dX:){lir;n (n)E(B——A)(X} 4Rt
%i (“ %)z

Thus the definite integral is the limit of an infinite series of
infinitely narrow rectangles.

MULTIPLE SEQUENTIAL NUMBERS

A simple analysis of multiple series and multiple integrals
cannot be given in terms of simple sequential numbers. For
this purpose multiple-sequential numbers which are double,
triple, etc., sequences are employed.

THE FULFILLED LINEAR CONTINUUM OF 1-ORDER
NUMBERS

We will begin with the real 1-order numbers 7 ¢, and 77 ; the
fundamental operations and the elementary functions (E) will
be assumed, where the domain of X in sin X is limited to
the real numbers.

In this way a set of numbers is obtained which is called the
elementary continuum of 1-order numbers. Step by step this
continuum can be completed by constructing new numbers.
With the help of Zermelo’s axiom it can be proved that there
is a fulfilled continuum, i.e. a linear field which cannot be
supplemented by a larger linear field.

It should be noted that there is no way of defining a norm
of sequential numbers. This conclusion is derived from a
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general theorem of the theory of functional operations of
Banach,! which was proved by Mazur.?

NORMAL 1-ORDER FUNCTIONS
The 1-order function f(X) will be called a normal function if
fX) =7 fu ([n] X)

where £, (X) is a function of a real variable.

The theorems

f(X) =nf (n]X)

B [»]B
JAX) X =n [ () d
A n]A

can be proved without any difficulty.
The theorem :

[eo] [eo]
SAX)dX =7 [ f, (x) dx
0 0
can also be proved.

DIRAC'S FUNCTIONS

The 1-order function
1 d,a
7 X2+ (d,a)?

denoted by & (X) is clearly a normal function. ~ The ordinary
calculus of classic analysis can therefore be applied to this
function. It will be shown that it is a Dirac’s function.

If X is a member of a fulfilled linear continuum, the corre-
sponding value of § (X) is also a member of this continuum
and & (X) has the following properties :

X (X)

0 1

d;a
nvda | L
n* 4+ d;a

n—1
(dya) " dyy
© 0

' S Banach: Théorie des opérations linéaires, Warszawa-Lwéw, 1932,
1 S, Mazur: ‘ Sur les anneaux linéaires,” Comptes Rendus Hebdomadaires
des Séances de I Académe des Sciences, Paris, Tome 207, 1938, pp. 1025-1027.
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The value of 8 (X) at the point 0 is infinite. It decreases
to a real number in the infinitely small interval (0, n+/d; a).

n—1
In the infinitely small interval (n\/gl-a: (@ya) 2n )
it decreases to a differential and it is constantly decreasing
n —1

along the axis ((ci1 a) _2-”_—, 0 ), its limit being 0.

For negative values of X the same values are obtained for
8 (X).

Therefore :
, 1 2Xd,a

8 (X) - _7;_ (X2 + (dla)g)z

and 8 (™ (X) is obtained by the elementary calculus.

By applying this calculus the following equalities may also
be obtained : 4

1 A4
jO 8 (X)dX = - arctan ia
S 8 (X)dX == — —arctan v/, a
0 2 =
«© 1
[ sXaX =5
0 <
@
S d(X)dX =1



CHAPTER IX

PROBLEMS OF THE METHODOLOGY OF THE EXACT
SCIENCES

1. The system of rational metamathematics can be regarded
as a tool quite similar to a counting machine. The former
enables us to obtain results in addition to those obtained by
a counting machine. In particular this system can be utilized
to obtain expressions which permit the prediction of other
expressions at a later stage. While a counting machine permits
the prediction of the results of definite experiences, namely
of the results of counting, the scope of the experience which
can be apprehended by the system of rational metamathematics
cannot be established in advance.

The ability to formulate in terms of a pattern experiences
which depend upon making spatial measurements was the
first advance over a counting machine. In other words the
system of rational metamathematics includes the science
called geometry.

Geometry is an experimental science. It depends upon the
measurement of segments, angles, and areas. The Egyptians
conceived it in this way and it has remained essentially the
same up to this very day. To-day what is generally regarded
as geometry, ie. what is included in textbooks, is the peculiar
mixture of experimental geometry and the geometrical meta-
physics which was inherited from the Greeks as Euclid’s
Elements.

Closer consideration of the constructions with which euclidean
geometry operates reveals that they are as inaccessible to the
imagination and to experience as Cantor’s aggregates.! The
illustrations taken from experience, which are given in text-
books, whether of straight lines, planes, or points differ funda-
mentally from what is actually meant by these terms. Their
only value is that they create the illusion that they explain
something. As a result every student is convinced that he
knows what a point, straight line, or plane is. He speaks of
them with great freedom just as he speaks of grains of sand,
the rays of the sun, or the surface of a calm lake. He does not
realize that the common properties of both these types of
objects are few in comparison with their differences. Once

1 Cf. 6.5.

217
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this is taken into account it will be difficult not to admit that
in the last resort we have no idea what the constructions of
the geometry of Euclid are. It must therefore be concluded
that the latter operates with fictional objects and consequently
largely with words which have no meaning.

The idealistic belief of the Greeks in the existence of points,
straight lines, and planes led them to create a science which
later became one of the most powerful arguments in the
struggle with the problem of reality and which quite
unexpectedly permitted the extension of the bounds of
experience. This science was the first example of a well-
worked-out conceptual apparatus. These facts have been
powerful arguments for the metaphysical character of the
foundations of science.

Unquestionably it was on the basis of this conviction that
Spinoza attempted to construct the foundations of metaphysics
by employing the methods of geometry. The failure of this
attempt became an incentive for intensive researches on the
essence of geometry. Although the analogy between Greek
geometry and metaphysics is very striking, what is of
importance here is the criteria by means of which they are
to be distinguished. The former is characterized by its universal
possibilities of development, the unshaken certainty of its
arguments, and its great number of applications. In meta-
physics, on the other hand, no progress can be made; the
disquieting consciousness of its arbitrariness develops and
its atmosphere of stagnation and lifelessness is obvious.

The English empiricists, Berkeley and later Hume, held
that the idealism of Greek geometry is evident and geometrical
constructions are therefore terms without definite meanings.
Actually they are nothing but concrete geometrical figures.
This view is undoubtedly correct, but it was established in
a faulty manner. Concrete geometrical figures are rough and
inaccurate, but Greek geometry was based upon the idea of
perfection and accuracy. To the present day the adherents
of all empirical conceptions of geometry are faced by this
difficulty. Kant attacked the problem from a different point
of view. His solution was one of genius when the limitations
of the science of his day are considered. According to Kant
the creative power of Greek geometry lies in the fact that it
depends upon pure imtuition, the peculiar capacity of the
mind which permits the relations between geometrical con-
structions to be perceived independently of experience. He
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regarded the axioms of geometry as verbal formulations of
clear observations which obtrude upon man with inexorable
force.

They are called synthetic apriori judgments.

Kant’s enduring achievement was his discovery that the
reasonings employed in Greek geometry are only apparently
precise. Every high school student has had ample opportunity
to become convinced of this fact. I myself feel that no discipline
is more confusing than high school geometry. It is a strange
conglomeration of fragmentary reasonings, experience, and
conventions accepted without criticism. Its cardinal defects
are that it is possible to become thoroughly imbued with it
and that in spite of all its defects it functions perfectly. It is
clear that it gives strong support to all established prejudices
and skilfully concealed paralogisms.

High school geometry requires the acceptance of Euclid’s
famous postulate :

Through a point outside a line one and only one parallel to
this line can be drawn.

High school students have no concept of parallel lines.
Parallel lines might be like the lines in a notebook or railroad
tracks or perhaps like two infinitely extended perpendiculars.
But infinitely extended perpendiculars intersect at the centre
of the earth. How then do we know that the lines in a note-
book or railroad tracks never meet ?

But the high school student does not think very long about
this matter but soon passes to the proof of the theorem, if
two parallels are cut by a transversal the corresponding angles
are equal. If two parallel lines and the perpendiculars to them
are drawn it can be seen immediately that the corresponding
angles are equal because they are right angles. But this
intuition soon proves to be fallacious. The teacher says that
merely because the angle at the top is a right angle, it does not
follow that the angle at the bottom is also a right angle.
This is an unpleasant situation. If such an elementary intuition
is fallacious, everything might be fallacious.

Finally an appeal is made to Euclid’s postulate. This time
the postulate will be considered further. The point involved
is, that through a point outside a line two parallels cannot be
drawn to this line ; but actually this has never been questioned.

It never enters our minds that by means of these clear
reasonings we are actually settling the problem of the behaviour
of straight lines at infinity, even though we have no idea what
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this infinity is. But it is the concept of infinity which is at
issue, because if the lines met at the centre of a polar star, or

10
if their distance from the point of intersection were 100
light years, they still would not be parallel. Corresponding
angles which can be measured were long thought to be equal.
However, even if it were impossible to show the slightest
difference between them, such lines still would not be parallel.
Lines can only be parallel if they never meet. A consideration
of these facts is frightening. It is therefore curious that it has
never occurred to anyone to frighten the public by pointing
them out. Copernicus, Lobaczewski, Lamarck, and later
Darwin, were frightened by them, as were Einstein and the
proponents of wave mechanics. Nevertheless the geometry
of the ancient Greeks is still regarded as the epitome of harmony,
serenity of spirit, and what is even worse, of finitism.

The difficulties which arise in connection with corresponding
angles are soon forgotten. Triangles and polygons are then
considered and congruent and similar figures are discussed.
But this material is as easy to understand as a primer and
does not disturb our serenity. It is not pleasant to think that
the difficulties involved in the discussion of parallel lines are
of fundamental importance here or that these new results
depend upon the concept of infinity.

But it is worth considering that to provide the rural geometer
with the constructions required to divide land an adequate
concept of infinity is necessary. Everything achieved by the
astronomers seems in comparison a trifle and without
significance.

In high school the study of the foundations of geometry
reduces to the acceptance of Euclid’s postulate and the other
axioms as obvious truisms. If this view of geometry is main-
tained, it is impossible to remove metaphysical fear, i.e. the
fear of the mystery of existence which was mentioned by
Witkiewicz * in his remarkable literary works.

It makes no difference whether the thing in itself, or the
Kantian pure observation of the forms of phenomena, is
employed. All this goes far beyond the bounds of sound
reason. Consequently one should not rely upon oneself, but
entrust one’s fate to a higher power and submit to authority.
Another course is open only to stubborn, headstrong maniacs

1 Stanistaw Ignat Witkiewicz: Nienasyceme. Powiesé, Warszawa, 1930,
tom I, p. 78.
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like Mikolai Lobaczewski or the Hungarian noblemen, the
Bolyais, father and son, who succeeded in destroying the
authority of Euclid’s postulate. They opened up entirely
new perspectives in the study of the foundations of geometry.

2. The fundamental concepts of geometry developed in
another very important direction as a result of the work of
Poncelet and Brianchon ! in projective geometry. Projective
geometry is concerned only with the mutual position of points,
lines and planes. Their metric properties are disregarded.

In 1826 Gergonne ? formulated the famous principle of
duality. In conformity with this principle in projective
geometry to every theorem there corresponds a certain new
theorem, which is obtained from the given theorem by inter-
changing the role of points and straight lines. In the projective
geometry of solids there is a similar correspondence between
points and planes.

For example, the theorem: fwo straight lines intersect at a
point corresponds to the theorem: fwo points determine a
straight line. (The conventional construction : point at infinity,
is added in order to avoid special cases and it is said that
parallel lines intersect at this point.)

This principle was of great methodological significance.
It showed that such fundamentally different constructions as
straight lines and points, or planes and points have varying
roles in geometry. It is therefore clear that the particular
properties of these constructions are not of primary concern,
but rather the fact that they are merely the auxiliary means
used in setting up certain relations which are independent
of them.

In 1830 J. Pliicker formulated a principle of infinitely
possible interpretations of abstract geometry.®

He pointed out that either a point in space, a straight line,
or a circle in a plane may be characterized by the three numbers
%, ¥, 2).

( For t)axample (—1,3,2) characterizes either the point in
space with the co-ordinates — 1, 3, 2, or the straight line :
—x+3y+2=0
in the plane, or the circle :
(x+1)2—(x —3)2=4

1 Cf. Federigo Enniques The Historic Development of Logic, translated by

Jerome Rosenthal, New York, 1929, p 121.

3 Cf. Enniques: lc¢, p. 113.
3 Cf. Enriques: l.c, p. 123.
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Pliicker dealt a mortal blow to geometrical idealism. How-
ever, it was not fully appreciated until much later.

In the second half of the nineteenth century Hotiiel * proposed
a formalistic conception of geometry. He regarded geometrical
concepts as devoid of intuitive content and viewed points,
lines, and planes simply as objects which satisfy axioms, and
about which nothing further can be said. He could develop
such a view only because he had mathematical formulae at his
disposal. Without such formulae no progress could be made,
since, as has been seen, the system of geometry at that time
was an imperfect apparatus with which it was impossible to
work without supplementing it by intuition.

Hilbert took up and solved problems which depend upon a
perfectly worked out system of euclidean geometry, but he
also showed that strictly speaking all this work was superfluous.?

Like Hotiel Hilbert regarded points, lines, and planes as
certain undefined objects, of which it is known only that they
satisfy certain explicitly stated axioms.

However, Hilbert realized that such definitions are not in
themselves sufficient, because the axioms might be con-
tradictory. In that case it would be impossible to speak
meaningfully of objects which satisfy these axioms. A proof
of the consistency of the axioms must be given if this difficulty
is to be eliminated. Hilbert’s proof consisted simply in inter-
preting them algebraically. If points are interpreted as three
real numbers, planes as linear equations in three unknowns,
and straight lines as pairs of such equations, these construc-
tions satisfy the axioms. If the axioms should lead to con-
tradiction there would also be a contradiction in algebra. If
the latter possibility is regarded as precluded, there will be
no contradiction in geometry.

The work of Hilbert seemed to indicate the triumph of
idealism. At first sight it might be thought that this work
proved the existence of ideal objects : points, lines, and planes,
that the defects of geometry had been removed and that
geometry had become a perfect system. It seemed as if idealism
were passing through a period of regeneration.

Exactly the reverse took place; Hilbert’s method was not
adequate to deal with all contemporary geometry. The
perfection of his system proved to be illusory when with the

1 Cf Enriques . lc.,}?p. 145-6.
* D. Hilbert *  The Foundations of Geometry, English translation by E. J.
Townsend, 2nd ed., Chicago, 1921, * Conclusion,’”’ pp. 126-132.
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development of logic the criteria of scientific accuracy were
made more precise. In consequence geometry was transformed
into the system of rational metamathematics.

The details of this development will be considered later.

3. From the point of view of methodology non-euclidean
geometry was the most important discovery in the history of
the exact sciences.

The question to be decided is whether in theory it is possible
to construct a square. Squares which are a
constructed in experience are only approx- g6°  go°
imately accurate. How do we know that in
a square in which three of the angles are a’
right angles, the fourth angle may not be
less than a right angle? go° go°

This question is usually decided on the z

basis of Euclid's postulate which affirms Fic. 7
that in a plane through a point outside )
a line, only one line parallel to this line can be drawn. But this
postulate was seriously questioned even at the time of the
Greeks. In 100 B.c. Posidonius ! had tried to reduce it to the
supposition, that in a plane the locus of points, equidistant
from a given straight line is a straight line, but it is clear that
this supposition is entirely arbitrary.

In the thirteenth century, Nasir-Eddin * maintained that
Euclid’s postulate was evident and he derived it from the
premise that the sum of the angles of a triangle is equal to
two right angles. The long series of attempts to reduce the
contradictory of Euclid’s postulate to absurdity began during
the seventeenth century. Gerolamo Saccheri,® a Jesuit, made
such great advances that unintentionally he derived a series
of fundamental theorems of non-euclidean geometry.

In the course of the eighteenth century the problems con-
nected with the foundations of geometry became very disturb-
ing and irritating.

D’Alembert regarded the definitions of straight and parallel
lines as both dangerous and scandalous. Lagrange interrupted
his lecture to the Academy of Sciences on these questions
because he noticed that he had made a mistake in his deductions.
Legendre, Carnot, Laplace, Fourrier, Monge, and Gauss did

1 Roberto Bonola: Non-Euclidean Geometry, translated by H. S. Carslaw,
2nd ed., Chicago, 1938, p. 3.

2 Bonola: [l.c., p. 10.

3 Bomola: Ic., p. 22—44.
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a great deal of work on this subject but did not obtain successful
results.t

German scholars would like to attribute the discovery of
non-euclidean geometry to Gauss. They cite his spoken
utterances and his letters to Farkas Bolyai, the father of Jdnos,
one of the creators of this geometry.?

These tendencies were motivated by two factors, patriotism,
which is easily understandable, and the prejudice that the
greatest discoveries are generally made by acknowledged
authorities. The following fact disproves such a hypothesis.
Farkas Bolyai devoted his whole life to the problem of parallels
and as he himself wrote to Gauss he wasted his life. His
sufferings and misery were without limit and would arouse
the pity of the most unfeeling and ruthless tyrant.? Gauss
did not discover even a part of the secret he allegedly possessed.
Yet when Farkas’ son Jdnos discovered non-euclidean
geometry, Gauss did not hesitate to assert that he had been
occupied with these matters for thirty-five years. This fact
is explicable only in the light of Gauss’ retiring nature where
intellectual discoveries were concerned, which made him
discount the value of his views on this subject, and by his
lack of the assurance which is necessary in a great discoverer.
Jénos Bolyai de Bolya, a young Austrian officer, and Mikolai
Lobaczewski, a young professor of the university in distant
Kasan, had the requisite assurance.

Janos Bolyai obtained from his father the idea that the
parallel postulate cannot be reduced to absurdity. On the
work of his father he wrote as follows :

“ His proof . . . is that everything which contradicts the eleventh
axiom can be concealed in infinity. .. .”"4

This proof, although unsatisfactory, was very suggestive.
Jénos Bolyai rightly and profoundly appreciated the fruitful
influence of his father. With justifiable severity, he condemned
Gauss’ claim to priority in the following words :

“In my opinion and, I am convinced, in the opinion of all
unprejudiced men, the reasons adduced by Gauss, as to why he

! Cf. Ferdinand Gonseth: Les Fondements des Mathématiques, Paris,
1926, p 78

* Cf. Ernst Mach : Evkenntnis und Irvtum, 5th Aufl, Leipaig, 1926, p 409.

3 Cf. Der Briefwechsel zunschen C F. Gauss und W. Bolyai, herausgegeben
durch F. Schmudt und P. Stackel, Leipzig, 1899

¢ Wolfgang und Johann Bolya1 Geometrische Uniersuchungen, herausgege-
ben von P. Stackel, I Teil, Leipzig u Berln, 1913, p. 60.
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did not wish to publish any of his work on this subject during
his lifetime are weak and vain, because in science as in actual
life, one’s concern should always be to clarify those things which
are necessary and generally useful, although not yet clear, and
to awaken, strengthen, and expedite the as yet non-existent or
rather slumbering sense of truth and right. . .

“And the fact that unfortunately among mathematicians
and even among famous mathematicians there are many superficial
people, cannot be regarded as a reason why any rational being
should produce superficial and mediocre work, and to leave
science in a state of inherited lethargy.” 1

Jénos Bolyai was born in 1802. He obtained the foundations
of non-euclidean geometry before 1825, and published them
ten years later in the supplement to the work of his father
which was entitled Tentamen. . . .

A few years earlier, Mikolai Lobaczewski published his work
and thus robbed Jadnos Bolyai of the right to priority.

Even before Lobaczewski, Taurinus had published a work
entitled Geometriae prima elementa, which, while it contained
the bases of non-euclidean trigonometry still did not solve the
problem definitively. Lobaczewski and Jdnos Bolyai were
the real discoverers of the new geometry. Their achievement
can be compared only with that of Copernicus. Their greatness
lay not only in the acuteness of their reasoning and their
power of imagination, traits not peculiar to them, but in their
sincerity of purpose and their mastery of their fear of this
great new truth.

In 1844 J4nos Bolyai learned of Lobaczewski's work from
his father. At first he did not want to believe that the ideas
of Lobaczewski could be so similar to his own and he utterly
denied this possibility. But the discovery that Gauss was
enthusiastic over Lobaczewski’s work was the final blow in
the tragedy of the Bolyais.

Lobaczewski probably never knew of the work of the
Bolyais.

Lobaczewski was born in 1795 in the province of Nizhny-
Novogorod. He was the son of Ivan Maximowicz Lobaczewski,
a provincial geometer, who had come there from Poland.
Some of Lobaczewski’s family still lives in Poland.

In contrast to the Bolyais, Lobaczewski was a strong well-
balanced man, who was capable of superhuman work. From

1 W. und J. Bolyai: lLc., p. 96.
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1816 on he was a professor at the University of Kasan, to
which in various capacities he devoted his entire life.

In 1826 he presented his system of non-euclidean geometry
to the Physical-Mathematical Section of the University of
Kasan. In 1829 he published the first part of his work
O nachalakh geometrii * in the Gonets Kazansk:.2 Thus in the
words of Engel 3 was settled a dispute which had lasted two
thousand years.

Lobaczewski’s work was done independently, since he was
cut off from all which had been said on this subject outside
of Kasan. It is true that Bartels, his teacher and predecessor
in the chair of mathematics at the University of Kasan,
corresponded with Gauss, but he was not concerned with the
problems centering about Euclid’s postulate. He regarded
Lobaczewski’s ideas as mental exercises and not as scientific
achievements. It is well to consider for a moment the effect
of the master’s opinion upon his pupil.

If the history of science were examined in greater detail, it
would be seen that a great number of fruitful ideas have come
to naught because the authorities have taken such an attitude.
The line of thought taken by ambitious workers, who are
eager to work on significant problems and do not wish to
waste time on fruitless investigations, has been and still is
regarded as useless and wasteful. Such students are encouraged
not to work on disquieting problems which stimulate intensive
thinking, but to remain in the sterile domain of human thought
in which mediocre work flourishes. I know scientists who,
on the grounds of fair play, quite consciously reject all attempts
to solve old problems with the help of a new apparatus of
concepts. They prefer that science should stand still and make
no progress rather than that a pattern other than the one to
which they are accustomed should be employed.

For thinkers of this type the geometry of Lobaczewski
and Bolyai has always been and even to-day is unpleasant
and unwelcome.

I will not consider here the arguments which have been
directed against non-euclidean geometry. They merely show
a superficial knowledge of the subject. I only wish to mention
the fact that Meinong, the Austrian philosopher whose views
were fashionable in Poland before the war of 1914, was firmly

1 Principles of Geometry. Cf. Nikolaj Iwanowitsch Lobatschefskij : Zwei
geometrische Abhandlungen, Leipzig, 1899, pp. 1-66, translated by F. Engel.

3 Kasan Messenger, cited as Kasan Bulletin in Bonola ; lc., p. 85.

8 Cf. Lobatschefskij : lc., p. 381.
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convinced that non-euclidean geometry deals with intersecting
parallels and in all seriousness attacked this absurdity.!

* The hidden motive for the fact that a euclidean system always
required an assumption which was obviously logically incomplete
lay in the aversion to speaking of undetermined peripheral
distances—an aversion which corresponded to the historical
and cultural approach of mankind toward the physically-measured
and limited earthly life. Actually all physico-spatial measure-
ments are given from an ethereal distance—from an ‘infinite
distance ’. The moment one ventures into this anew the system
becomes lucid and clear.” 2

I think that sooner or later reasoning of this type will
involve mankind in hopeless obscurity.

The foundations of non-euclidean geometry will now be
developed, because in the light of the means at our disposal
such a procedure will not be difficult and it will indeed be
worth while, since it will aid our efforts to combat the ever-
increasing prejudices of our day.

4. Beltrami,® the Italian mathematician, showed that there
exists a certain surface—a pseudosphere—upon which the
shortest distance between two points behaves like the straight
line of Lobaczewski and Bolyai. However, this surface does
not give a model of their entire plane.

A model of this plane which is simple and easy to grasp
intuitively was given by the late Felix Klein,* who was for
many years a professor at the University of Géttingen.

If it be imagined that two dimen-
sional beings live within the circle K B
of radius 1, and if further it be -4
supposed that they contract as they
approach the circumference of the
circle, which, however, they never F
reach, from their point of view the A
points of the circumference of this
circle are at infinity. To them a
chord of the circle K will be a
straight line. Two chords which Fic. 8.
intersect on its circumference will be

1 Cf. A. Meinong : Uber die Stellung der Gegenstandtheorie im System der
Wissenschaften, Leipzig, 1907, p. 80.

3 G. A. Kaufmann: Stmhlemde Weligestaltung, Dornach, Schweiz, 1934, p. 32.

3 Cf, Hermann Weyl: Space-Time-Matter, translated by Henry L. Brose,
London, 1922, p. 93.

+ Weyl: lc p 80.



228 THE LIMITS OF SCIENCE

parallel lines. The pencil of lines which pass through the point M
determined by the lines 4 4’ and B B’ will have no points
in common with the line 4 B’. Under these conditions it
may be supposed that beings who live in the circle K define
the lines 4 4’ and B B’ as lines parallel to the line 4 B'.
It is clear that the other lines of the pencil would be of such
a character that as these beings move along them in the
same direction, their distance from the line 4 B increases
without limit.

If now rectangular Cartesian co-ordinates are accepted, and
the centre of the model is placed at the origin of these
co-ordinates, the radius of the circle-model will be regarded
as the unit of distance. Then the equation :

%2 4yt =1
will be the equation of this circle-model.
It is clear that the numbers ¥ and y, where
|#| <land |y | <1,
determine the position of the points within the model.
Now let two beings be imagined at the points designated
on the model by the number-p#irs (x, ¥,) and (x;%,) and let

the distance 4 between the points of the model be determined
by the well-known formula :

A= /(x — %) + (y1 —¥5)°

This distance is not in itself of any great interest. It is a
distance designated by us, of which these fictional beings
can have no conception. It is, however, of interest to give
a formula which would permit us to predict the distance which
these fictional beings specify as the distance between the
points designated by the number pairs (%, y,) and (%, ¥,).

Let the expressions 1 — %, x, — ¥, ¥, be denoted by the
expression £ (x,y, %,y,) and the expression

QX1 %299)% — 2 (#1Y1%191) - 2 (%252 %3 V)

by 4 (%, 51 %, ).

If 8§ is the distance sought we will have

8 =3 log Q@Y1 %92 + vV 4 (%191 %2 V)"
R x1y1%2Y0) — v 4 (%,51%353)

The method by which this formula was derived will not be
given here. It may be thought that it was divined. What is

* Cf. Weyl: Lc., p. 82.
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of importance here is that it gives us the solution of the
problem.

Its worse defect is that it seems rather mysterious because
it is very long and because it contains a logarithm, which is
not the common logarithm with the base 10, for which tables
have been drawn up for school use, but the so-called natural
logarithm having a certain transcendental number e as its
base. However, it will be seen that this is a minor matter.
This formula, such as it is, permits us to adjust ourselves to
the situation without knowing the number ¢ and without
working with logarithm tables.

First the distance of the point (%, ¥,) in the plane (L) from
the origin of the co-ordinate system will be computed. In
this case x, = vy, = 0. If the distance sought is denoted by §,,

2 2
5, = } log L VE T 07
1 — V%2 + 3,°

If therefore on the model we draw a circle with radius
/%2 + y,2, it will be represented in the plane (L) by the
circle with radius 8,.

If the radius 4/%,% + ¥, approaches 1, §, decreases without
limit. The logarithmic number increases without limit, because
its numerator approaches 2 and its denominator approaches 0.
But if the logarithmic number increases without limit, both
the logarithm and one-half of the logarithm also increases
without limit.

Thus that which seems to us to be a circle with radius 1
appears to these fictional beings to be an infinite plane.

By a simple calculation it can be ascertained that the formula
satisfies the following conditions :

I. AA=0

2. AB+BC=4C
when on the straight line 4 C the point B lies between the
points 4 and C.

33 AB+BC ) AC
when the point B is not contained in the line 4 C.

The geometrical locus of points whose distance from the
x-axis is equal to the given number & in the plane (L) will
now be determined. If it is supposed that the point A(0, y,)
satisfies the desired condition,

8=%Iog-“—‘—ii}§:: )
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If now an arbitrary point C(x, 0) on the x-axis is considered
and if the perpendicular to the x-axis at this point is drawn,
and on it a point B(x, ) fixed in such
a way that in the plane (L) the

distance B C is equal to 8, the chord
4 R perpendicular to the x-axis at the
point C denoted on the model is the
5 T straight line B C which is desired,

because since the x-axis is also the
axis of symmetry of the model, the
angle B C0 measured in the plane (L)
must equal the angle B’ C 0.

Fic. 9. If now the formula for distance is
applied, the condition :

5 ylog ot Y IVI=Z )
I—w— |y VI

is obtained. When this equation is combined with equation (1),
the result is:

Yo=__|¥]
V1 — %2
and therefore
2 y )2 1
2+ (5) =

Clearly the geometrical locus which is desired appears on
the model as an ellipse, whose axes are the co-ordinate axes,
where the first semi-axis is equal to 1 and the second to y,.

This result is of great importance because it removes a
fundamental question which presents itself at the very outset.
It is seen that if the fictional beings drive telegraph poles, of
equal length, along a path represented by the x-axis, in a
direction perpendicular to this axis, the tops of these poles
will not be on a straight line as in euclidean geometry, but on
a curve which is called an equidistant curve.

What would happen if they wish to drive telegraph poles
into the x-axis in such a way that their ends would lie on the
straight line denoted by the equation :

y=y
will now be considered. °
The length of the pole driven in at the point C(x, 0) would



PROBLEMS OF THE EXACT SCIENCES 231

be equal to the distance between this point and the point
B(x,y,). If the length of the pole is denoted by
8=%10g '\/1 — %+ IyOI
V1= — |y
If x approaches x,, where
%o® + Yot =1,

8 is seen to increase without limit. An apparently paradoxical
situation results. It seems that as the

fictional beings move along the x-axis,
the telegraph poles become longer and / -\
longer. Near the point (x,, 0) the poles A4 B

would be so long that one would not { }»ya c
be able to speak about their reality. S
At the point %, the problem loses its *5

meaning because the poles would have
to be infinite in length. Beyond this
point the problem is meaningless for
the same reason, i.e. because no per- Fic. 10.
pendicular to the x-axis ever intersects

the straight line y = y,. It will now be shown that the sum
of the angles in a triangle is less than 180°.

Because the x-axis is the axis of symmetry of the circle on
the model, a line parallel to the y axis forms a right angle
with the x axis in the plane (L). It is therefore easy to under-
stand that in the plane (L) there cannot exist triangles without
at least two acute angles. Consequently every triangle can

be obtained by compounding two

right-angled triangles. It is therefore

a; ’\ sufficient to ascertain that in a right
B

i

triangle the sum of two acute angles
is less than a go°. With this in mind

Flo 1 the triangle O B C is constructed in
/ such a way that the side B C is per-

pendicular to the x-axis and the
J vertex O is at the origin of the co-
ordinate system. If this triangle is

Fic. 11. rigidly transformed in such a way

that the point B becomes the origin

of the co-ordinate system and point C lies on the y-axis
the vertices of this new triangle will be called 0’, B’, and C’
respectively. It should be noted that when B’ C" = B C, the
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point C’ must lie above point B or these points could not
lie on the equidistant curve. For the same reason point O’
must lie to the left of the line B C. It therefore follows that
the line O O’ lies between the line O B and the y-axis and that
the sum of the angles B’ and O is less than go°. Because angle
B’ equdls angle B it is seen that the sum of angles B and O
must be less than go°.

The difference between the number 180° and the number
measuring the sum of the angles of a triangle in degrees is
called the deficiency of the triangle. It can be shown that the
areas of two triangles are proportional to their deficiencies.?
I shall observe only that a triangle which is composed of two
equal _triangles has an area and a deficiency twice as large as
the area and deficiency of its component triangles. If the
area approaches 0 the sum of the angles of the triangle
approaches 180°. This is consistent with the fact that when
small areas are involved, the Lobaczewski-Bolyai geometry
differs imperceptibly from euclidean geometry.

5. The discovery of non-euclidean geometry was a mortal
blow to Kantian idealism. It was proved that there are no

such objects as straight lines,

S either beyond or about us.

A "4 At best straight lines are
certain undefined constructions,
which at one time can be
regarded as straight lines, at

’

c ¢ another time as curves. Further
\r@&// investigations by Riemann 2
B D A4 showed that even straight

FiG. 12. lines can be regarded as closed
curves.

If two dimensional beings living on the surface of a sphere
are imagined, it can be said that they are the beings seen in
glass garden spheres.®* It should be added that these beings
can move over but a small sector of the surface of the sphere.
If it is supposed that they measure the distances in accordance
with the principles of euclidean geometry, it seems to them
that the shortest distance between two points is the arc of a
great circle on the sphere. Consequently for them this arc is

12 é:f. e.g. Henry P. Manning: Non-Euchdean Geometry, Boston, 1901,
Pl Weyl: Lc., p. 84 f.

3 Cf. Henri Pomncaré: Foundations of Science, translated by George B.
Halsted, New York, 1929, p. 57.
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a segment of a straight line and at the same time its length is
the length of the segment.

It is clear that an entire great circle on the sphere cannot
be regarded by these beings as a straight line since it would
then be possible to pass an infinite number of straight lines
through two points. These beings will therefore become
convinced that the entire plane reduces to a hemisphere and
that the points which lie on the same diameter at the base of
this hemisphere must be regarded as one point. Consequently
in Fig. 12 point A is identical with point A4, point B with
point B’, point C with point C’, and point D with point D’.
It can be seen that the straight lines have a finite length and
are closed. They therefore represent the greatest of all possible
circles. If from point C C’ circles with ever-increasing radii,
e.g. the circle A A’ N BB’ M are drawn, when the radius
increases to one-fourth of the circumference of a great circle
on the sphere, the circle becomes the straight line SD D’.
It is clear that there can be no parallel lines here and that
two straight lines always intersect at some point.

At first sight this may seem like the delirium which
accompanies a fever. If, however, we observe that these
alarming contingencies can be actualized only at great distances,
which these beings cannot possibly reach, these conclusions
are much less disturbing. Moreover if the area occupied by
these beings were sufficiently small the above constructions
would be identical with those of euclidean geometry and this
conception might never occur to them. The realization of this
fact makes the entire matter clear. The decision of matters
which are not confined to the bounds of experience and which
one could learn to decide with the help of the conceptual
apparatus of Euclid is what is involved. That which was
mysterious in Greek geometry has become familiar ; the more
successful this adaptation, the more difficult it is to become
reconciled to the fact that it might be completely otherwise.
In any case it makes no difference which conceptual apparatus
we employ provided that it contains no internal contradiction
and is compatible with experience. In this way we approach
an idealistic position of a peculiar kind, called conventionalism.

The theory of John Stuart Mill ! who regarded points, lines,
and planes as hypothetical constructions, chosen in such a
way that it is possible to orientate oneself easily in experience.

1 Cf. Jobn Stuart Mill: 4 System of Logic, London, 1911, Bk. II, ch. 5,
p. 147 ff.
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Ernst Mach was its actual creator. For Mach?! science is a
conventional apparatus constructed in accordance with the
principle of ecomomy of thought, ie. so that it is possible to
orientate oneself in experience in the simplest possible way.
Just as Kant’s theory was the best way to deal with the crisis
in the old metaphysics, so was this theory of Mach the most
ingenious way out of the new difficulties. It found an ardent
propagator in Poincaré,? who emphasized the conventional
character of geometry with unusual force.

It should be observed that idealism clothed in the feathers
of conventionalism became a very dangerous instrument in
the hands of those who were reacting against the old dogmatic
idealism.

Idealism required a faith which not everyone can produce
at will. The doctrine of convenience permits this faith and it
was therefore very suitable for the adherents of this doctrine.
A large number of them soon appeared. Some began to proclaim
pragmatism, others humanism, others universalism, panidealism,
and similar doctrines. They desired to construct a picture of
the world which would satisfy definite conditions, e.g. such
that certain classes which are recognized to be higher would
rule the others on the basis of the authority of the exact
sciences and maintain their authority at the expense of these
other classes. This state of affairs was intolerable. A protest
was immediately made against these doctrines. A criticism
of their foundations had to be undertaken but required the
prior overthrow of scientific conventionalism, whatever the cost.

Riemann took the first decisive step in this direction. He
generalized the concept of space and replaced it by the concept
of a certain class of points. He thus obtained various three-
dimensional spaces corresponding to the two-dimensional
spaces which have been known for a long time and which
can be regarded as surfaces. This conception led Riemann
to overthrow the view that the straight line has an exceptional
status. Instead of the straight line he proposed the shortest
distance between two points or the so-called geodetic line.

That geodetic lines actually yield the same results as straight
lines is easy to understand on the basis of the following example.
Weyl writes :

‘“ If on the other hand we draw figures on a sheet of paper and
then roll it up, we shall find the same values for measurements

1 Cf. Mach: l¢, p. 176. ¢ Cf. Poincaré: lc., p. 65.
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of these figures in their new condition as before, provided no
distortion has occurred through rolling up the paper. The same
geometry will hold on it now as on the plane. It is impossible
for me to ascertain that it is curved by carrying out geodetic
measurements.””

If, for example, analogous measurements are made on the
surface of a sphere, obviously another geometry will be
obtained. It is clear that there are as many metric geometries
as there are kinds of surfaces obtained by ordinary bending.
Within a sufficiently limited area these geometries differ so
little that they are all compatible with experience.

Analogous reasoning can be applied to three-dimensional
spaces. However, it is necessary to employ formuli because
pure intuition is deceptive here. I regard this factor as decisive.
It seems that it is impossible to attain a general concept of
geometry without using formuli. It is therefore clear that the
conception of geometry as the science of ideal spatial con-
structions must be nullified.

The preponderance of formuli appears to be even greater, if,
following Einstein, it is desired to develop a general conception
of space-time. It is easy to understand what two-dimensional
space-time is. It is sufficient to look at the chart of a recording
barometer. Three-dimensional space-time can be explained
with the help of a spatial model, but a four-dimensional space-
time without formuli would be a confused fantasmagoria. To
speak of different four-dimensional space-times it is necessary
to employ five-dimensional space-time. It is clear that all this
has only as much meaning as do mathematical formul.

Even though it might be desired to construct an axiomatiza-
tion of such space-times this would be possible only with the
help of an analysis of the formuli previously obtained.

6. At the basis of the problem of time lies the longing for
immortality and the fear of death. In general these matters
are too close for us to be able to confine ourselves to employing
the criteria of sound reason when dealing with them. This
element was very strong in the course of the history of human
culture and is strong even up to the present day. To the
primitive instinct time seems to be an independent state which
is like a flowing stream. From most ancient times the tendency
to believe that this stream can return to its source hasmanifested
itself. The desire to surmount death is evident in this tendency.
On the other hand the conception of an immutable, immovable

1 Weyl: lc., p. 89.
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eternity in which it would be desirable to locate our soul

appears. The positivistically inclined philosopher, Reichenbach,
writes :

“ The experience of time seems to be closely connected with

the experience of the ego; ‘I am’ always means ‘I am now ’;

but I am in an ‘eternal now ’ means that I experience myself
as remaining the same in the flowing stream of time.” !

This is indeed a pious wish or perhaps rather the privilege
of individuals who can easily disregard the discordant changes
in what they call their ¢go. It may be supposed that this
satisfaction with but little—with regard to observation of
facts—together with excessive pretensions to eternal bliss,
led to the mythological phantasies of Parmenides, Plato, and
St. Augustine. They oppose the notion of the stream of time
and seem to find an element independent of time in the fact
that they can speak about time. They do not observe that
the process of speaking must occur in a time which while it
may be a time of higher order, never can be regarded as
anything fundamentally different from time.

Parmenides conceived existence as a motionless sphere.
The Pythagoreans supposed that this sphere was surrounded
by eternity from which the ether is derive® Time formed
the boundary line between the finite world and eternity.

Plato and Aristotle made time a property of things. Pawlicki
writes :

“ Both agreed that time is inherent in things and above all
in their motion and changes, but Plato lays greater stress on
motion, Anstotle on its measure, and he regards time as ‘ the
number of motion in respect of before and after ' 2

The attempt to surmount time is evident here. This
endeavour reaches its peak in St. Augustine, whose struggle
with the problem of time soars to pathetic heights of great
drama.

In answering the question: what did God do before the
creation of the world? St. Augustine remarked that this
question is meaningless because it is impossible to speak about
actions if there is no time.?

! Hans Reichenbach. Philosophie dey Raum-Zeit-Lehre, Berlin, 1928, p. 131,

¢ X. Stefan Pawlicki : Historja filozofjs greckiey (The Hustory of Greek Philo-
sophy), Krakéw, 1890, p. 216. Cf. Anstotle: Physica, translated by R. P.
Hardie and R. K. Gaye, Oxford, 1930, Bk. IV, ch. 11, 219b, hne 1.

3 St. Augustine: Confessions, translated by E. B. Pusey, Book XI, ch.
(xi, xu) 13, 14, pp. 260-1.
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From the point of view of methodology this answer is a
great step forward because it is the first critique of the problem
in the name of the concept of meaning, which did not involve
complete scepticism. Yet the answer of St. Augustine is
unsatisfactory because, in order to create time, another time
in which the act of creation is performed is necessary.
St. Augustine maintained that only present time exists.
There is no past or future time. If the present time were to
persist it would be eternity. But because it passes away it
tends not to be. It is not possible to say that past or future
time is long or short, but only that it was or will be long or
short.

“ And yet, Lord, we perceive intervals of times, and compare
them, and say, some are shorter, and others longer. We measure
also how much longer or shorter this time is than that; and
we answer, ‘ This is double, or treble ; and that, but once, or
only just so much as that.” But we measure times as they are
passing, by perceiving them ; but past, which now are not, or
the future, which are not yet, who can measure ? unless a man
shall presume to say, that can be measured, which is not.” ?

The idea of eternal recurrence was the second device employed
in surmounting time. The Pythagoreans suggested this idea
in connection with what they called the starred year.?

This idea is found in a very interesting form in the works
of Origen, who combined it with that of a sequence. Origen
sought to reconcile the contradiction between the doctrines
of the eternal damnation and the highest divine mercy. He
sought to remove this contradiction with the help of the
conception of successive quasi-recurrences of worlds which
in a following world makes possible the redemption of those
doomed to eternal damnation in a preceding world. If
damnation were eternal it would be possible to suppose that
particular worlds last infinitely long ; but it is doubtful whether
Origen conceived the matter precisely this way. However, it is
certain that Origen conceived subsequent worlds as more
perfect than preceding onés, for he explicitly wrote :

“We think, indeed, that the goodness of God, through his
Christ, may recall all His creatures to one end, even His enemies
being conquered and subdued.” 3

1 St, Augustine : l.c., Ch. (XVI) 21, p. 264.

2 Cf. Zygmunt Zawirski : Wieczne powroty Swiatéw (The Elernal Recurrence
of Worlds), Krakéw, 1927.

3 Qrigen: De Principiis, translated by Rev, Frederick Crombie, Book I,
ch. 6, PP. 1, p. 54. Anti-Nicene Christian Library, vol. 10, Edinburgh, 1869.
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He later showed that in this case subjugation can mean
only the relationship to God of the Apostles, the Saints, and
all those who have followed the path indicated by Christ.
It therefore follows that in the course of subsequent times
everyone, not excluding devils, will in turn be redeemed.

I think that this conception is no more naive than the futile
efforts expended on this theme in modern times. In fact it is
much more profound and consistent than they are

If we examine the history of time more closely and compare
it with the history of the concept of space, a marked difference
may be noted between them. In the latter use was made of
the ideal perfect construction of Euclid, while in the former
non-euclidean constructions were employed from the very
beginning. In the history of geometry, centuries passed before
Lobaczewski made his great contributions; in the history of
time centuries passed before the attempt was made to include
time in the euclidean framework.

It is clear that when this was done, time like space became
something absolute. Mechanics, like geometry, soon became
an apriori science. Henceforth time shared the fate of space.
The concept of time like that of space was influenced by the
Kantian conception of the apriori form of pure observation.
To-day finally time is analysed into separate temporal
experiences in addition to which there is only the mathematical
apparatus which serves to order them.

Experience teaches us that certain events are earlier and
others later, just as there are events which are nearer and
those which are farther. Experience enables us to assign
certain numbers to temporal events. This, as is known, is
done with the help of a clock. Events are not something
limited and independent. They are artificially abstracted
from the totality of experience, which itself cannot be grasped.?

We can call this process formalization. We assign to an
event included in a pattern a certain class of numbers, which
is called its spatial representation and a particular number
which is called its temporal point.

Obviously it is impossible here to speak of cataloguing events
and providing them with labels. Only the construction of an
apparatus which, like a counting machine, enables us to
predict the results of experience is desired. Just as the fishnet
differs from the fish it catches, and the ship from the quay

1 Cf. A. N. Whtehead : An Enquiry Concerning the Principles of Natural
Knowledge, Cambridge, 1925, PP. 16. ’



PROBLEMS OF THE EXACT SCIENCES 239

to which it is fastened, this apparatus differs from the events
which it predicts. But just as the net can evoke the image of
a fish and the ship the image of a quay, our system evokes
certain images of reality. However, it must be kept in mind
that these images cannot be grasped and are confused. While
they can be employed as auxiliary devices they are not to be
trusted absolutely. All confusion concerning the concepts
of the physicists results from the fact that these images are
taken seriously. Eddington distinguishes the physical from
the mathematical concept of a vector. He points out that in
mathematics the number triad (X, Y, Z) which characterizes
a vector in some co-ordinate system, differs from the number
triad (X’, Y’, Z’) which is obtained by a change of co-ordinates.
Eddington writes :

“ So far as the mathematical notion of the vector is concerned,
the quantities (X, Y, Z) and (X’, Y’, Z’) are not to be regarded
as in any way identical ; but in physics we conceive that both
quantities express some kind of condition or relation of the world,
and this condition is the same whether expressed by (X, ¥, Z)
or by (X’, Y’, Z’). The physical vector is this vaguely conceived
entity, which is independent of the co-ordinate-system, and is
at the back of our measurements of force.” 1

If we permit such a confused representation which includes
something besides the results of experiences, obviously we
become involved in very dangerous metaphysics. The
illusion that metaphysics is a sad necessity to which we must
submit, is concerned here. This illusion results from a gross
misunderstanding.  Physicists do not seem to know that
mathematics has long since ceased to be the science of numbers
and that the construction of expressions which characterize
what is common to all number triads that can be obtained
from each other by a transformation of the co-ordinate system,
is child’s-play for mathematicians. = Mathematics supplies
us with concrete objects which make all metaphysical repre-
sentations superfluous.

The following example shows that the concept of physical
quantity leads to such misunderstandings. Schrédinger regards

Xg — X%

the velocity as a physical quantity, but the derivative

1 A, S. Eddington : The Mathematical Theory of Relativity, 2nd ed., Cam-
bridge, 1924, p. 47.
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% as a mathematical fiction invented by Newton,! because

he thinks that in physics nothing corresponds to the process
of “making ”’ the moments {, and #, coincide in the limit.
Professor Schrddinger does not seem to know that in general
it is impossible to make two different moments coincide by
successive transition. To do so would require an infinitely
long time. The assigning of limits is a certain mathematical
operation, as unlike physical processes as is division. The

physical quantity 6% is unquestionably a fiction since it does

not occur in any physical process. However, the quotient

Xa — Xy

is also a fiction because just as nature does not perform

ty — 4
the operations of the differential calculus it does not perform
arithmetical operations. The velocity 9;2 = 9;1 is an expression
2 T
dx

equally as good or bad as the expression What is important

at’
is to know how to use both of these expressions. If it is supposed
that physical phenomena and time are both discontinuous,
the derivatives would still remain meaningful.

The idea that the time of experience is discontinuous is
very old. It is encountered as early as the Alexandrian mystic
Jamblichus.2 Ernst Mach wrote :

““That time and space represent only an apparent continuum
and in all probability are composed of discontinuous but not
sharply distinguishable elements.” 3

Mach uttered this idea with great timidity undoubtedly because
he constantly had in mind the Kantian conception of the
apriori form of pure observation.

If it is considered that to-day we are provided with an
apparent temporal continuity of events by the movies, it is
easy to understand that the conception of Mach may appear
entirely natural. In any case it is impossible to take sensual
continuity seriously especially because the meaning of this

1 Cf. Erwin Schrodinger: ‘‘Indeterminism in Physics,” translated by
w. I(;IZ éTolmston, Science and the Human Temperament, New York, 1935,
PP. —~3J,

3 Cf. Pawlicki: Lc., p. 215.
8 E. Mach: lLc, pp. 447-8.
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concept is not known. It has been seen that mathematical
continuity has nothing in common with sensual continuity
and, as Bergson remarked a long time ago, in a certain sense
is its negation. But it must be kept in mind that considerations
of this kind are typical in the domain of metaphysics. The
concept of real time and real space is but one description
more among the many confused descriptions of reality.
Actually there are only spatial events which are verified sooner
or later. This is all that may be said.

Physicists cannot get accustomed to this state of affairs.
It is indeed difficult to understand that physicists who can
use mathematical formuli only in very limited domains wish
to regard them as objective laws of nature. As a result they
would like for this reason to eliminate from these formuli
everything which seems to them to be ballast, because there
is nothing in experience which corresponds to it. However,
they forget that they have derived their criteria of necessity
and ballast from these very formuli and that they have done
soin a very superficial manner. For example, the representatives
of quantum physics would like to introduce the quantum of
distance /, and the quantum of time #, in such a way that

i—°= ¢ where ¢ denotes the velocity of light.! They forget
0
that such quanta would be new myths because they would
be neither determinate numbers nor mathematical expressions,
nor could they be observed in experience.

-Science must take into account two fundamental postulates :

Whatever the cost obscure representations should not be
taken seriously and the experimental data of the present day
should not be regarded as complete.

It should be recognized that physical representations are of
value only in so far as they conceptually abbreviate
mathematical formuli. The experimental data thus far acquired
is of value only in so far as it can be supplemented in the
future.

Not until physicists are willing to take these postulates
into account will they extricate themselves from metaphysical
chaos.

The recently published paper of Born and Infeld % is an

1 Cf, Léon Schames: * Atomistische Auffassung von Raum und Zeit,”’
Zeitschrift fir Physik, Bd. 81, 1933, p. 271,

2 M. Born and L. Infeld: “ Foundations of the New Field Theory,” Pro-
ceedings of the Royal Society of London, vol. 144, 1934, pp. 425-451.

U
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important advance in the direction of a precise formalization
of physics.

7. For purposes of orientation the foundations of the so-
called special theory of Einstein will be considered as an example
upon which the construction of mathematical representations
of reality depends. The authority of this theory is now
established and its consequences have deeply penetrated the
foundations of contemporary physics. This theory resulted
from the overcoming of the prejudice concerning the immovable
ether, inherited from classical optics.

It is a fact that in the equations of physics the spatial
co-ordinate x and the temporal co-ordinate #—I am confining
myself to one-dimensional space—are equally and entirely
legitimate. If it should be desired to pass from one temporal-
spatial co-ordinate system (x, f) to another (x’, #) in such
a way that the equation of a light wave should not be changed
the following transformations must be employed :

x =——1(x—-vt)

Vol

t =:/:1_—5_;<t—-§éx)
1 ——
02

where ¢ denotes the velocity of light and v the velocity with
which the x’-axis moves with respect to the x-axis. The entire
difficulty depends upon the fact that the new time # depends
not only on the time £, but also upon the spatial co-ordinate x.
Consequently it has nothing in common with traditional time.
It was necessary to possess the intuition of a genius and
intellectual courage not possessed by the average scholar,
and sometimes not even by the greatest thinkers, to maintain
that the function # is the temporal co-ordinate in the new
co-ordinate system.

Hadamard, the famous French mathematician, {freely
confessed that he did not have the courage to eliminate the
exceptional role of the order of absolute time. He writes :

“ What do you expect ? Like all my colleagues, I admired the
work of the physicists which each day is becoming more extensive,
and with this admiration was mingled the respect imposed by
the consciousness of my incompetency. I did not sufficiently
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understand that physics is the domain of those who, on occasion,
dare to criticize the work of their predecessors.” !

These words of another prominent mathematician are the
best measure of the greatness of Einstein’s achievement.

Nevertheless Einstein’s conception is not free from certain
idealistic solecisms, which must be removed. In Einstein’s
theory the old objective space is abandoned because it depends
upon the observer. If two observers are imagined to be at
a certain distance from each other, which in the course of
time does not change, there exists a spatial co-ordinate system
common to both observers. We can perceive no event at a
point of space specified in this way at the moment it occurs,
with the exception of the event at the point at which we are
located. We do not perceive an event at a distance x until

¢
the time _ has elapsed. Consequently if events are very remote

we would not perceive them for centuries. But at no moment
would we perceive even the slightest event which occurs at
a given moment in the set of points of this space. Yet this
space is related to us in some special way because it is related
to our co-ordinate system. If we begin to move, for a motion-
less observer this space together with our velocity changes.
Two observers at the same point at a given moment /ave
different co-ordinate systems simply because Einstein’s
transformation demands this.

While two events occurring at places far removed from
each other can be simultaneous from the point of view of one
observer, from the point of view of a second observer one
event may follow the other a century later. This is very
strange. Ultimately it is possible to become accustomed to
this, especially because nothing which collides with ordinary
experience is involved here, but the invisible space, which
changes with the velocity of the observer, is a kind of legend.
There is no way out of this difficulty.

Minkowski, the Gottingen mathematician, attempted to
eliminate this difficulty by introducing the concept of a spatio-
temporal world.? For Minkowski the world is the class of world-
points to each of which different observers assign a certain

1 I;acques Hadamard : “ Comment je n’ai pas trouvé la relativité,” A
del V Comgresso Internazonale di filosofia, Napoli, 1924, 5-9 Maggio, published
1925, p. 452. .

2 Hermann Minkowski: Raum wund Zeit, Leipzig, 1909, reprinted in
Gesammelte Abhandlungen, Bd. 2, Leipzig und Berlin, 1911, pp. 431-444.



244 THE LIMITS OF SCIENCE

four numbers, called spatio-temporal co-ordinates. It is
clear that a very extreme idealism is involved here. Even if
the fictional character of space-time is overlooked it is still
necessary to take into consideration an infinite number of
observers, without whom it would be impossible to orientate
oneself in this space-time. It must also be supposed that
observers in relation to each other while at rest have
synchronized clocks. But if it is taken into consideration
that among other things the problems of astronomy, interstellar
distances, and periods of many light years are involved here,
it is difficult not to affirm that these observers who are absolutely
necessary in the construction of spatio-temporal co-ordinate
systems are indeed like the deus ex machina of the old theatre.
I think that if in physics the observer is discussed, it is possible
to have in mind only oneself or one’s colleagues. If infinitely
many observers scattered throughout space-time are discussed
the boundaries of physics have been crossed and entry made
into the confused fields of metaphysical phantasy.

I am trying here to present a certain interpretation of the
conception of Einstein, which, while it may lead to far-reaching
formal changes in the construction of the system of theoretical
physics, is unusually clear and is free from all idealism.

In order to obtain a theory which involves no hypothesis
concerning the propagation of light, the following differential
equations must be considered :

dys*=d,; x® +d,y* 4 d, 2
d,s"*=d,x"* 4+ d, y'? 4 d, 2"

These equations will be denoted by S and S’ respectively
and will be called euclidean systems of three-dimensional
co-ordinates. They will be employed as models of space.

A correlation between the points of S and the points of S’
will now be defined which corresponds to the primitive idea
of uniform motion.

The following symbols of the system S will now be introduced.
The corresponding symbols of S” may be obtained by replacing
any letter E by the letter E' in a given symbol, and vice versa.

(I) Points and Axes
(@) A, is a fixed point of S.
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(6) 4 is an axis having A4, as origin and intersecting the
path of 4, in at least two points.

(¢) 4 and A, are any points on the path of 4,'.

(@) P and P, are any points of S.

(¢) @ is any point on the plane = of symmetry of 4.

(IT) Distances and Pyojections

(@) 7,7, 7,9, and ¢ are the distances 4, P, 4, P,, PP,,
A P, and 4 Q.

(b) %, %4, @, and 4, are the projections on 4 of the vectors

Ay P, A P, Ay A, and A, A,.

(ITI) Signals and Time-observables

Any expression 1 (E' E) is a luminous signal emitted from
the point E’ at the moment of its meeting with E. The
moments of arrival of a signal at 4,, determined on a chrono-
meter placed at A,, are time-observables of A,. We assume
the following correlation between signals and variable time-
observables of 4,.

Signal l Time-observable of 4,

(Ao"Ao) Too
(A d,) 7o
1(4ey4) Ta
¥ (P P) T
Py Py 1
No. Name Abbrevia- | Expression
tion
IV | Ewmnstein’s Time t r - %
¥,
ty n—-2
a
to To
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No. Name Abbrevia- | Expression
tion
V | Bridgman’s Velocity |4 ta_'
0
V1 | Einstein’s Velocity v ti
A
2
VII | Fatzgerald’s Coefficients | B ‘/1 + :T
1
B vi_?®
C’
s b s B—1
VIII | Galileo's Time T t — 7
B—-1
T, b — 7
T, t) — B ; 1 a
IX | Minkowski’'s Invariant | I(EFG) | (E— F)*—G?

POSTULATES

For any fixed points 4, and A4, for any axis 4, and for
any number V other than 0, we have :

DISCUSSION

The expression V¥ is the velocity which can be determined
by a traveller with the help of his clock and the milestones
which he passes on his path. It is independent of any theory
of the propagation of light. I found this velocity mentioned
in Professor Bridgman’s book.! This velocity can receive any

‘9 é:f. Percy W Bridgman : The Logic of Modern Physics, New York, 1927,
p. 98.
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value. Thus the legend according to which there is no velocity
greater than that of light is disproved.

The velocity ¢ seems to be the upper limit of the apparent
velocities used to describe motions observed at a distance.

DEDUCTION OF LORENTZ’ TRANSFORMATION
If 4, and A, are substituted for P, and P,' in (4)

p T ®)
c? c?
is obtained.
If A and A4, are substituted for Pand P'in  (5)
2 6
tolz J— t_42 —_— % ( )
is derived.
The analogous formula of S” is :
’2
£2 = 14" ——%. (6')
From (6) and (6")
tA = B to’ (7)
and
ta' = B' &, (7)

are obtained by using (V), (VI), (I), (IT), and (2).
If these formulae are applied to (VI) and (VII)

14
v = B B=2B )
and -
v = “B—,, B =B (8 )
is obtained.
If now 4, and A are substituted for P,’ and P, in (4),
and (5) and (6) are employed, by an elementary calculation
72— 2 — g2
2t't0' = 217t4 +-———c—2————
and
a.x
c2

Pty =1tt4 —

are obtained.
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Then by using (7) and (V)

’ V
! =Bt —¥ 9)
is obtained.
For S’
? g7 V' ? r
t=Bt — = x 9

Using (9) and (5)

7/2 =02(Bt _— Yix)z +72 — 22

¢
is derived

Then :

Y2=(Bx —Vi)?4rt—x? (10)
For §’

= (Bx —V'2 72 —x2 (10)
If in (10) A’ and 4, are substituted for P’ and P

a'2 =V? toz
is obtained.

Then by (V) and (3)
V=-V (11)
B = B
v = —v.

Adding (10) and (10’) member by member, by using (VIII)
B+Lh)x —V: T (12)

B-l)¥—-Ve¢ T
is derived.
The following equations are the result 'of the elimination
of t and ¢ from (9) and (9') by means of (VIII):
, B-—1 B+1
and

B +1 B -1

T + % =BT 4 % %’

These equations imply :
=T (13)
Equations (12) and (13) imply :
B+L)x+Ve=B+1)x—Vt.
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Then by eliminating ¢ and ¢ from this equation with the

help of (VIII),
¥ =x—-VT (14)
is obtained.

This is Galileo’s transformation.

Using (VIII) and (8) in (14) and (8) in (9) the Lorentz’
transformation

¥ =B(x—vi (15)
and
, v
= B i — 0—2 x
is derived.

It should be observed that %' is independent of the way in
which 4’ was fixed. Then 4’ must be the path of 4,. Inthe
same way it may be proved that 4 is the path of 4,". Since
the point 4, is fixed arbitrarily, it is clear that the path of any
point P must be a straight line.

From (10) and (15) it follows that

' — g2 =2 — g2,

It is clear, then, that on the path of P’
7* — x? = constant.

Therefore the path of P’ is a line parallel to 4. It is also
clear that 4’ slides along 4.
If P is any point on the path of P,’, by (14)

x_xl
T_Tl

Now x — x, is independent of the way in which 4, is fixed.
Consequently 7" — T, is independent of the way in which 4,
is fixed. It is therefore clear that V is the Bridgman velocity
of any point P.

=V

THE TRANSFORMATION OF TIME-OBSERVABLES

In order to be able to interpret (14) or (15) a theory of the
propagation of light must be assumed. In order to obtain
a transformation which would be a simple description of the
facts let ¢ and #' be eliminated from (15) by means of (IV).
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If the following abbreviations are accepted :

Abbreviation | Expression
B, B 4 cK
B, g_Y
c
Vi V. B,
V, V . B,

we have the following transformation :

¥ =Byx— V,7)

T = Ba7T

T =By(r—2%
[

¥ =By (x—V,7)

#50 %20+ =B,(r—2%
c

<0} + =B~

A REMARK CONCERNING THE LAWS OF THE
PROPAGATION OF LIGHT

On the basis of transformation (14) it is possible to assume
that T is the time-observable which corresponds to the meeting
of P’ with P, taken in P or in P’. In conformity with the
postulates of Professor Zaremba,! the common-sense idea of
time and classical mechanics can be preserved. Relativity
mechanics now appears to be just as much a theory of apparent
hyper-space as Maxwell’s theory of moving electro-magnetical
fields. On the other hand the ideas of quantum theory seem
to concern real events.

It will now be assumed that the velocity of light has nothing
to do with the concept of a thing travelling,? but is the number

1 Cf. S. Zarerhba: ‘* La théorie de la relativité et I’experiencd,” Atty del

5° Congresso Internazionale di Filozofia, Napoli, 1925, pp. 541-4.
* Cf, Bridgman : lLc, pp. 101, 152, 157, 164.
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which characterizes the path of a luminous source and its
position with respect to the observer. It should be noted that
these complications have nothing to do with a theory of hyper-
space ; they concern only the properties of luminous matter.
If it could be proved that our theory is consistent with facts,
it would be possible to eliminate idealistic metaphysics from
the theory of light. At any rate there is no serious reason for
neglecting this possibility.

The following law will be assumed :

If it is supposed that a luminous source is placed at 4,
and the observer is placed at P, the distance of any plane
from P which intersects the path of 4," and which is perpendi-
cular to it is not less than the distance from P to =.

Suppose now a signal is emitted from 4, at the moment T,.

It is possible to replace this signal with an apparent signal,
emitted from 4 ' at the moment ¢, and which has the velocity c.
Then

P =
T — 4 -
NOWby(VHI)
T—T,4=T—t,4+-}8,,ga
2
where 8"=B+1

The velocity T——Ii—f of the real signal will be denoted by cy.
— 44

We get

c
Cy =

1418, 7

L IES

The abbreviation

Vq=V

R

will be assumed.

It will be supposed that the observer is located on the
plane =.

If Vo <0, Vgis the velocity of the source 4 ' when approach-
ing the observer Q.

If Vo >0, Vg is the velocity of the source 4, when going
away from the observer Q.
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The corresponding value of ¢y is
¢
1+1%8,. ZQ

If I:—is a small number, this value is almost the arithmetical

average of ¢ and ¢ — V.t

If P is placed in such a way that a plane through P which
is perpendicular to 4, does not meet the path of 4, (finite
motion), the velocity ¢ is the limit of ¢y as P increases
indefinitely where 4 remains unchanged.

8. The most interesting application of semantical logic to
mathematical physics is Herzberg’s construction of the notion
of a sequence of von Mises. The following elementary example
will be discussed. K is a sequence of zeros or units which
satisfies the following postulates. The ratio of the number
of zeros or units to the number of all the members of a given
segment of the sequence will be called the frequency. It will
be supposed that the limit of the frequencies of zeros or of
units exists and is the same for all the sequences contained
in K.

It is clear that the sequence K could be interpreted as a set
of heads and tails which is as long as we please. R. von Mises
showed that his sequence can be employed as the fundamental
idea of the calculus of probability. In this manner the
antinomies of the ancient theories and the idealistic hypotheses
of actual science are avoided.? Nevertheless in connection
with the conception of von Mises certain serious difficulties
may be raised. As a matter of fact the sequence of zeros or
the sequence of units of a sequence K always has the frequency 1.
Consequently it is impossible to speak about a common limit
of frequencies of the zeros or the units of all the sequences
contained in K.

Herzberg has observed that this dlfﬁculty dlsappears at
once if a logic based upon the idea of the pure theory of types
is assumed.? The idea of all sequences contained in K is
meaningless and it is possible to speak only about 4!l sequences
of a given type.

1 Cf. PP.RS

3 Cf. R. von Mises: Wahrschewnlichkeit, Statistik und Wahvheit, I1 Aufl.,
‘Wien, 1936

s Ct. J. Herzberg: ‘“ Sur la notion de collectif,” Annales de la Société
Polonaise de Mathématique, tom xvii, 1938, pp. 231-244.
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The semantical logic will be assumed and the class of all
classes S of type N + 1 of finite sequences of zeros and units
will be constructed. These finite sequences will be called
intervals.

It is seen that any class S can be used as a selection rule.

If any sequence C of zeros and units is given any class S
determines a sequence contained in C whick is the sequence
of members of C which immediately follow those segments
of C which are elements of S.

For example, the class of all intervals whose ends are zeros
determines the sequence of members of C which immediately
follow the members of C which are equal to zero.

In semantical logic a sequence of type N of all classes S
of type N + 1 is constructed. Now Wald has constructed the
sequence of von Mises for any sequence of classes S.* With
the help of this construction Herzberg obtzins sequences of
von Mises which involve no difficulties.

It should be noted that the simple application of a hypothesis
which states that the class of classes S is denumerable is not
consistent with classical logic. As a matter of fact the class
of all selection rules can never be a denumerable class, uniess
the idea of classes constructible in a given system is empioyed.
Moreover since our class of classes S is any denumerable
class of S, the fundamental operations 2 of the calculus of
probability can never be applied to a corresponding sequence
of von Mises outside of the set of selection rules.

Wald’s construction enables us to have decidable sequences
of von Mises.?8 However, the sequences of von Mises which
occur in practice seem to be undecidable.# Thus a profound
relation between events which never can be foreseen and
undecidable propositions has been established. The theory of
Herzberg enables him to assume the following definition of
accidental events which is completely different from the
irrationalistic conceptions of accident. Herzberg states that
accidental events are governed by physical laws whose con-
sequences are undecidable. It should be noted that there is no
serious reason to assume that they are undetermined. Thus

1A, Wald: ‘ Die Widerspruchsfretheit der Xollektivsbegriffes der
Wahrschemlichkeitsrechnung,” Ergebniss eines mathematischern Kolloguium
8, Wien, 1937, pp. 38-72.

3 Cf. R. von Mises: Wahrscheinlichheitsyechnung, Statistik wund Wahrheu,
Leipzig und Wien, 1931, PP 3, ‘* Die Grundoperationen,” p 73 f.

3 Cf. Wald; lc,p.491.

4 Cf. Herzberg: l.c., p. 243 f.
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all modern arguments which seem to overthrow the doctrine
of determinism appear to be illusory.

To obtain an example of events which are fully determined
yet cannot be predicted, it suffices to consider the algebraic
expression of Fermat :

Pn +gn = yn,

This expression can be employed as a pattern of experiments.
If arbitrary integers are substituted for p, g, 7, and # it can
be seen whether or not they satisfy this equation. As no
demonstration of Fermat’s theorem has ever been given, it is
impossible to predict the result of such an experiment for an
infinity of cases. However, there can be no doubt that this
result is fully determined.

The traditional conception of determinism as a doctrine
concerning the predictability of events does not give the
essence of the matter. It may be impossible to know what
the result of an action will be, but it is possible to know
definitely that the result is completely determined.

It should be observed that no general definition of deferminism
can be given, unless metaphysical hypotheses are accepted.
But this does not really matter. A general definition of a
concept is unnecessary if there are concrete examples which
explain it. Since there are examples of determined events,
it may be expected that other events are also determined,
although a determining law is not given. In other words the
concept of determinism is simply regarded as a primitive idea,
like the concept of truth or the concept of implication.

9. Classical physics was based upon an idealistic conception
of reality. For Descartes reality was the world with which
Greek geometry dealt. He was of the opinion that reality is
known through innate ideas. Locke regarded the laws of
nature as generalizations made from experience. Kant returned
to apriorism but conceived reality as the world of phenomena
and not as a thing in itself. These views do not differ funda-
mentally. In all of them reality was regarded as something
perfect, something determined by exact and immutable law.
This conception of reality greatly influenced physicists and
was maintained by them until recently. In physics textbooks
and in the texts of applied mathematics it was accepted as
certain that a real segment has an exactly determined length x
which can be measured with the help of a number of approxima-
tions. The measured distances x,, x,, . . . were opposed to the
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real distance x and the error of measurement was defined
as the number

x —x, wheret =1,2,...

On this view the calculus of probability refers to an ideal
reality. It is to be contrasted with probability which refers
to experimental data. The applications of this calculus to
physics were based upon the above suppositions. Classical
physics was deferministic. Determinism obviously was based
upon an appeal to an ideal reality. The reality accessible to
experience was determined only approximately but it was
supposed that as experimental means develop, it will be
possible systematically to make these approximations more
accurate.

Indeterminism, the doctrine according to which systematic
increase in the precision of approximations is impossible,’ is
the direct opposite of determinism. Both doctrines were
based upon a metaphysical view of reality and consequently
were equally inconsistent with sound reason. From the point
of view of a science based upon sound reason, the problem of
determinism and indeterminism must be formulated in an
entirely different manner. It must be considered in the light
of the following three problems: (4) the problem of meaning,
(b) the problem of prediction, (¢) the problem of formalization.

These,_problems will now be considered.

(e) THE PROBLEM OF MEANING

If it is desired to remain within the limits of sound reason,
the confused idealistic doctrines cannot be supported. As
Hume and Mach pointed out, it must be said that the ideal
length of a segment does not exist. Consequently it is meaning-
less to discuss it. It is possible to speak only of the numbers
which are obtained by measurement. But measurement is
a crudely defined activity. From the point of view of measure-
ment slight differences as to results are disregarded, just as
from the point of view of semantics the differences between
various copies of the letter « are disregarded. But the formaliza-
tion of certain images is involved in the former case. There
are no two identical images. Identity is the product of criteria
which operate automatically. It is therefore clear that measure-
ment gives no basis for the establishment of a one to one
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correspondence between the results of measurement and a
real number. It is possible to speak only of a one-many
correspondence between them. In other words many real
numbers correspond to one measurement and the class of real
numbers is not precisely determined. The only way to make
this statement more precise is to fix the limits between which
the number obtained by measurement can vary, i.e. to designate
two numbers, between which the number obtained by measure-
ment may be found.

If it is supposed that # and b are such numbers, the physical
law of measurement can be represented by the double
inequality :

a <x <b,

where x is a variable representing any number which can
be obtained by measurement.

It is clear that this law of measurement permits the prediction
of the results of measurement as accurately as the theorems
of arithmetic permit the prediction of the results of the opera-
tions involved in calculation.

This means that the inequality will always be satisfied by
a number obtained by measurement. Approximations and
probability are not mentioned here because there is nothing
to be approximated to and there is no thing to which the
results would stand in the relation of probability. The state-
ment that the results of measurements must satisfy this
double inequality is the only truth.

If this state of affairs is fully understood it will be possible
to eliminate completely the indeterministic ideas of con-
temporary physics.

It may be seen that for contemporary physicists the concept
of indeterminism is only a way to describe the fact that the old
conception of determinism has no meaning which is compatible
with sound reason. But from this fact it by no means follows
that a determinism which involves no idealistic suppositions
would be impossible in physics.

The following theoretical result which was obtained by
Professor Heisenberg greatly impressed the physicists. The
difference between the limits within which the result of the
measurement of the position of an electron can vary will be
denoted by 4x. The difference between the limits within
which the result of the measurement of the momentum of an
electron can vary, ie. the velocity multiplied by the mass,
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will be denoted by 4 p. By certain theoretical considerations,
Heisenberg showed that

dx-4p>h,
where % is a constant number, i.e. Planck’s constant.l
Szczeniowski and Ziemecki explain this result in the following
words :

“Let us suppose that a certain measurement permitted us to
determine the momentum of an electron precisely. To complete
the data required by classical mechanics, we must still measure the
position of the electron. We see that the measurement of the
position gives us, although with a certain degree of indeter-
minacy, the position of the electron. But it thereby partially
nullifies our previous knowledge concerning the momentum of
the electron because of the variation of value which is both
unavoidable and indeterminate.” 2

Later it is learned that it would be necessary, for example,
to let the electron pass through a narrow slit in order to
designate the position of an electron. But in passing through
the slit the path of the electron can change direction within
certain limits; consequently its momentum becomes
indeterminate within certain limits.

Heisenberg’s theory is of interest because he fixed certain
limits of accuracy for measurements, which cannot be trans-
gressed and because, contrary to the views held up to that time,
he discovered a relation between the measurement of position
and the measurement of momentum. But it does not follow
that his theory yielded something essentially new from the
point of view of the problem of determinism. Once it has been
confirmed that the concept of ideal length is meaningless and
that experience furnishes not determinate numbers but classes
of numbers which lie between certain limits, such concepts as
determinism and indeterminism must be adapted to this state
of affairs. If constructions based upon idealistic physics are
employed, there is obviously some basis for speaking about
indeterminism since it will be believed that there exist some
ideal position and some ideal momentum of the electron which
will never be known. But the point is that this view is erroneous.
Indeterminism would then mean that there is a certain
arbitrariness in the parade of phenomena. Professor Schrédinger
who compares electrons with human individuals and on the

1 Cf. Szczeniowski i Ziemecki. Promieniowanie i Malerja (Radiation and

Matter), Warszawa, 1932, p. 157.
% Szczemowski i Ziemecki: l.c., p. 162,
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basis of an indeterministic doctrine tries to secure “ the least
possible interference in the private affairs of the individual *’?
seems to conceive indeterminism in this way. It is worth
adding that this argument is double-edged since it can also
be maintained that we proceed more circumspectly at the
very times when the laws which govern the life of the individual
are taken into consideration. If it were believed that there
are no such laws, we might be tempted to create them because
of our personal desires.

But if it is affirmed that independent of ourselves we have
no concepts of momentum and position, scientific meaning
must be denied to the question : what are the real momentum
and position of an electron? Consequently it is not possible
to talk significantly about the free movement of an electron,
where this motion cannot be known.

The situation here is similar to that which arises in con-
nection with matters of daily life. 'We have no precisely
determined concept of homesty. Our adjustment in experience
may be better or worse in accordance with the way in which
this concept is defined. If it is desired that a strict definition
of honesty be advanced, hardly anyone will be honest and
this conception will be useless. The situation which arises here
is just like that which results from the over-extensive desire
to make precise the position of an electron. The domain of
the concept honesty must then be fixed in such a way that
a sufficiently large group of people will be included under it.
Similarly in physics a concept of position must be accepted
which is broad enough to determine the concept of momentum
within sufficiently narrow limits. But just as in the first case,
it cannot be said that our abandonment of a strict view does
not permit us to show who is #7uly honest, in the second case
we cannot lament that we do not know the frue position and
momentum of an electron, simply because these concepts are
meaningless.

We can only affirm that events can be predicted within the
limits suggested by our apparatus of concepts. The desire
to predict events which are not within these limits is meta-
physical and utterly inconsistent with sound reason.

Professor Heisenberg pointed out that what is involved here
is an alteration of the conditions of experience which is provoked

1 Cf. Erwin Schrédinger : “ Physical Science and the Temper of the Age,”
translated by Dr. James Murphy, Science and the Human Temperament,
New York, 1935, p. 132.
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by the intervention of the observer.! This observation is
correct, but may easily lead to just such misunderstandings
as arise in connection with the argument for the impossibility
of introspection. It is said that introspection is impossible
because the course of phenomena changes. Actually
introspection enables us to know those phenomena which are
accessible to introspection. Phenomena which are not accessible
to introspection are simply myths which are a result of the
theory of the unity of consciousness. Similarly, beyond the
limits fixed by Heisenberg, the momentum and position of an
electron are also myths; consequently they cannot be said
to be unknowable. The concept of unknowability is closely
connected with the supposition of the existence of things
which cannot possibly be experienced. If this supposition is
not accepted the concept of unknowability must be abandoned.

If it were held that some day it may be possible to go beyond
the limits set by Heisenberg, a new conception of momentum
and position would then be obtained, but at the same time
we would have laws determining the results of the measure-
ments in question. Consequently in no case is there any basis
for speaking about indeterminism.

() THE PROBLEM OF PREDICTION

Outside the domain of obscure formulations where the issue
between indeterminism and determinism reduces to the problem
of reality, there are concrete problems which put the whole
matter in a very different light. The argument of Pascual
Jordan 2 should be considered.

Jordan shows that a polarized ray allowed to pass through
a Nicol prism, whose plane of polarization forms the angle ¢
with the plane of polarization of the prism, only partially
passes through this prism. A fraction cos? ¢ of the intensity
of light passes through the prism, the fraction sin? ¢ is reflected.

If a single light quantum is considered it is not possible to
predict whether it passes through the prism or whether it will
be reflected. It is clear that, no matter what a light quantum
may be, a concrete experience is necessary to determine how
it will behave., The result of future experience is simply
unknown. Theory gives the probability cos? ¢ that the quantum

1 Cf. Szczeniowski and Ziemecki: l.c., p. 160. L
3 Cf. Pascual Jordan: ‘‘ Quantenphysikalische Bemerkungen zur Biologie
und Psychologie,”’ Erkenninis, Bd. 4, 1934, p. 222,
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will pass through the prism and the probability sin? ¢ that it
will not.

Jordan asserts that there is no way out of this difficulty
because infinitely many properties of photons with respect
to an infinite number of angles ¢ would be required. This is
a misunderstanding. This phenomenon is typical in con-
temporary physics. On the one hand there is discontinuity
and extreme finitism, on the other slavish dependence upon
mathematical idealism. But the probabilities cos? ¢ and sin? ¢
have no absolute meaning, and below certain limits lose all
experimental meaning. Furthermore it is not possible to
count 10t° possible positions of the Nicol prism.

Obviously this remark does not explain the phenomenon
and does not pretend to do so; it merely serves to wamn
against the over-simplification of problems. Investigations
of this type are still at an initial stage and it is neither necessary
to answer all questions, nor can it be pretended that they
have been answered.

I think that it must be explicitly pointed out at once that
the fact that it is impossible to predict definite phenomena,
does not prove that these phenomena are not determined.

In a paper read at the Congress of German Mathematicians
at Konigsberg, Professor Heisenberg formulated the doctrine
of prediction as follows :

‘ If the present state of an isolated system is known in all 1ts
determining constituents, it is possible to calculate the future
state of the system therefrom.” 1

Heisenberg rejects this formulation because he feels that
knowledge of all the determining constituents is impossible.
But as has been seen the system of rational metamathematics
permits all the construction rules for the theorems of arithmetic
to be known and thus places all the determining constituents
at our disposal. In spite of this fact it is impossible, as has
been seen, to predict all possible results which can be obtained
by the application of our rules. Yet the system of meta-
mathematics must be regarded as the model of a determined
system. Consequently it must be concluded that prediction is
not a decisive element here. Rather it is this fact of the
existence of a precise system which is crucial.

This example seems particularly convincing to me because

! Werner Heisenberg : ** Kausalgesetz und Quantenmechanik,” Erkenntnis,
Bd. 2, 1931, p. 174.
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it would obviously be absurd to speak about the indeterminism
of addition and multiplication. But it is not difficult to give
examples, derived from the natural sciences, which clearly
show that it is often impossible to dream of predicting events
even though not for a moment is there any doubt that they
are determined. The creator of quantum theory, Professor
Planck, cites meteorological phenomena to illustrate this point.t
In this connection I offer the example of a piece of paper
floating in the breeze.

{¢) THE PROBLEM OF FORMALIZATION

The whole problem, I am convinced, reduces to the question
how far reality can be formalized. It is certain that the
formalization of reality will never be completed.

If it were supposed, as was done by Meyerson,? that there
is a certain completed reality with which we become acquainted
gradually it would have to be agreed that our formalization
is at base some irrational remainder or rather a residue or
odds and ends. It would have nothing in common with the
thing for us ® about which Engels wrote, and could not influence
our life. But this remainder or residue is a typical idealistic
fiction and cannot be reconciled with the criteria of sound
reason. However, it must be kept in mind that in speaking
about reality we have in mind not some ideal object but the
patterns which must be employed in dealing with a given case.
The problem of determinism and indeterminism can have
a meaning which involves no metaphysical solecisms only if
these concepts are connected with the concept of formalizing
reality. The fact that these patterns never form a completed
class causes a lack of belief in the possibility of further
formalization and the belief in such a possibility will always
be widespread. There is no theoretical argument which can
convince an opponent of the unlimited possibilities of develop-
ment of human thought ; consequently it cannot be proved
that determinism is a true doctrine. However, it is possible

1 Max Planck: ‘ Pojecie przyczyny w fizyce,” Zagadnienia wspdlczesnej
nauks (*‘ The Concept of Cause in Physics,” Problems of Contemporary Science),
translated by Edward Poznanski, Warszawa, 1933, p. 30. -

¢ Cf. Emile Meyerson . Identitdt und Wirklhichkeit, deutsch von K. Grelling,
Leipzig, 1930, p. 310.

2 Quoted by V. I. Lenin: Materialism and Empirio-criticism, translated
by David Kvitko, New York, 1927 ; Collected Works of V. I. Lenin, vol. 13,
pp 75-77.
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to combat indeterministic irrationalism successfully. Con-
temporary physicists, whose formalizations of reality have
been carried unusually far, wage just such a struggle. From
our point of view contemporary physics is deterministic
par excellence. If physicists proclaim indeterminism, they do
so only because they have in mind not the traditional con-
ception of indeterminism but the struggle with the naive
determinism of classical physics. They do not realize that in
this way they are giving a weapon to irrational reaction and
indirectly are helping to strengthen the prevailing chaos.

10. I was involved in the following situation: A puplil,
whom I asked to illustrate incomplete induction, unhesitatingly
replied that Argentine, Brazil, Uruguay are republics and
therefore every country in South America is a republic. I was
astounded by this completely erroneous answer and asked
where the candidate had obtained this example. I learnt
that he had taken it from Professor Kotarbinski’s Elements.
Interested by his reply I thoroughly examined the Elements
and discovered the source of his misunderstanding. In this
book the following passage may be found :

“ And here is an example of incomplete induction : Argentine
is a republic, Brazil is a republic, Uraguay is a republic ; therefore
every independent South American country is a republic.” 1

It seems that Kotarbifiski does not infer from separate
examples, but deduces the conclusion from a general premise.
But this procedure has nothing in common with induction.
If a general law is known it is obvious that it can be applied
to particular cases, but the question at issue is what must
be done if such a law is not known. Obviously it must be
constructed in some way. If, however, it were constructed
in the way advised by Kotarbinski, a methodological error
would be committed. If, for example, such reasoning had been
carried through during the reign of Don Pedro, the emperor
of Brazil, a false view of the matter would have been obtained,
which could not be avoided by Kotarbinski’s purely formal
subterfuge.

Aristotle thought that it follows from the fact that man is
long-lived and a horse is long-lived and a mule is long-lived
that all bileless creatures are long-lived. This view worried

! Cf. Tadeusz Kotarbifiski - Elementy teonii pozmama, logiki formalnej 1

metodologn nauk (Elements of the theory of knowledge, formal logic, and methodo-
logy of the sciences), Lwéw, 1929, p. 278.
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Kotarbinski ! somewhat, as is shown by the fact that after
the word bileless he placed an exclamation point in parenthesis.
But his anxiety was not so great that it suggested to him the
conclusion that the whole doctrine is a common misunderstand-
ing. Actually this method is in general erroneous. In the
Old Testament, for example, it led to the false conclusion that
hares are cud-chewing animals. It also involved the scientists
of the Middle Ages in an unparalleled confusion of concepts.
It is difficult to discover why in the twentieth century youths
at the Polish universities must struggle over problems which
were obsolete even at the time of Galileo and Newton.

Dr. Metallman praised Kotarbinski’s stand. He explicitly
writes :

“The thesis that explanation and the inductive method in
general depend upon inferring from the particular to the general,
is not on the whole correct.”” 2

But in another place Dr. Metallman formulates the principle
of induction as follows :

“in nature there are no unique things.” 2

and then supplements this statement by the principle of partial
identity, in accordance with which

‘“if a certain element of nature is repeated still another element
is always repeated.” 2

The reader is really in difficulty, because it is difficult to
discover what the purpose of these principles could possibly
be if not to pass from the particular to the general.

I think that Dr. Metallman’s formulations correspond to
actual tendencies of thought about nature, but they are of
little value because the concepts unique thing and repetition
of the elements in nature are so vague.

Consider the following examples :

If a botanist who is studying the flora of a given region
meets an example of a certain species for a second time, this
fact will have no significance for him. If, however, he is
preparing statistics concerning the plants of this region, this

1 Cf, Kotarbifiski: lLc., p. 278.

Aristotle : Analytica Priova, translated by A. J. Jenkinson, Oxford, 1928,
Bk. II, 23, 68b. .

3 Cf, J. Metallman : Determinizm nauk przyrodniczych (Determinism in the
Natural Sciences), Krakéw, 1934, p. 332.

8 Metallman : lc., p. 393.
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fact will be very important to him. This illustration is based
upon the argument advanced by Nicod in his polemic with
Keynes.t

It should be added here that the investigator in question
must be careful not to observe the same example twice. This
would not be the case if experimental investigation concerning
the psychology of observations of nature were being undertaken.
Then each observation must be regarded as an individual fact.

Earlier philosophers of nature were of the opinion that
individual facts should not be considered in the study of
nature. Poincaré 2 wrote that the landing of John Lackland
at a given place is not a fact of nature, because this fact will
never be repeated. But neither will the diremption of the
earth from the sun ever be repeated, nor will Orkisz’ comet
ever reappear. It is indeed possible to hold a different opinion
on the basis of the belief in the recurrence of worlds which
has previously been mentioned, but then the second landing
of John Lackland at a given place should also be taken into
account.

These considerations lead to the conclusion that no general
formula can describe the inductive method. In some cases it
is correct to derive the general conclusion from one occurrence.
If, for example, an individual has constructed a radio to-day,
then it can be inferred that he can build a radio, and that
he knows that if he desires he can construct one to-morrow.
Similarly if an unexpected effect were obtained in a physics
laboratory, it would be expected that it could be repeated in
some other laboratory so that local conditions which are
difficult to observe, or possible auto-suggestion on the part
of the discoverer, might be eliminated. If this effect is obtained
in the other laboratory, the matter is definitively settled and
no one would doubt that it is possible to obtain the given
effect whenever it is desired.

In other cases the individual cannot be so sure that he can
derive a general conclusion from one occurrence. If he has
in mind a particular experiment which he is about to perform,
its success can only be probable because unforeseen obstacles
which would thwart his plans might occur.

However, there are cases when even a great number of facts,
even all the facts known from the beginning of time, not only
do not give an individual the right to infer with certainty or

1 Jean Nicod : Le probléme logique de I'induction, Paris, 1924, p. 76
2 Poincaré. lc., p. 128,
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even with the slightest probability that something will be so.
John Stuart Mill? pointed out that it could not be inferred
that there are no black swans from the fact that all known
swans were white.

The history of any discovery illustrates this point. Before
the construction of the first aeroplane when all attempts
to fly from Daedalus and Icarus down to Leonardo da Vinci
had ended in disaster there was no reason to suppose that men
would ever fly, even though students of the Scriptures
pointed out that the prophet Daniel had explicitly predicted
that men would fly. Nevertheless if on the basis of the state
of affairs at that time someone had inferred inductively that
men would never fly, he would have committed a gross
methodological error.

It can be seen that the problem of induction is very difficult
and involves in some way the meaning of the concepts con-
cerned, knowledge of the facts and of changes in the relations
between them.

The elements of guessing and of making extrapolations which
are dictated by emotion cannot be eliminated from inductive
reasoning.

Ernst Mach wrote 2 :

“ If our interest in a new fact is aroused by its direct or indirect
biological importance and by its agreement or disagreement
with other facts, by means of the psychical mechanism of associa-
tion we concentrate our attention upon two or more related
elementsin the facts. Abstraction, the failure to observe apparently
unimportant elements, with the result that the individual case
takes on the character of the general case which represents many
similar cases, involuntarily occurs. Although the occurrence
of this psychological situation is naturally favoured by the
accumulation of several similar facts, it can be brought about
by vital interest in one such fact.”

The simplest automatically operating process of formalizing
reality is involved here, i.e. the very process which in semantics
results in the identification of two different copies of the
letter a.

It is clear that the whole matter reduces to the direct
operation of the criteria of sound reason. These criteria cannot
be formulated in a pattern and the exact bounds of their
operation cannot be fixed. On the one hand habit and routine,

1 Mill: lc., Bk 3, Ch. 3, PP. 2, p. 204. 3 Mach: lLc., p. 315,
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on the other hand the construction of more and more perfect
apparatus of observation, such as the magnifying glass, the
microscope, the telescope, the spectroscope, the Rontgen ray,
and so forth, function here. It is known that by means of such
apparati what was formerly undetermined and explained by
confused phantasies has become entirely clear and even trivial.
It is sufficient to consider the history of medicine and the role
of the microscope and Rontgen rays in its development.
It should also be kept in mind that beside extending the
formalization of reality, new apparatus also makes possible
the extension of the domain of experiences which have already
been formulated in terms of a pattern. Without new apparatus
this extension would not be successful, simply because it
would never occur to anyone to perform experiments which
on the basis of concepts prevailing at the time would have
to be acknowledged as pointless. I have in mind here the
discovery of the isotopes of lead. In Szczeniowski and Ziemecki’s
excellent book, the following passage may be found :

“ On learning of the amazing results of Aston, it is hard to rid
oneself of a certain scepticism and disbelief. At any rate the
method of canal raysisindirect. ~We might want to have isotopic
variations in weighable quantities; we might want to be able
to discover differences in atomic weights by ordinary chemical
methods, and to convince ourselves by means of a picnometer
that the densities of the various varieties of elements differ.
This has indeed proved to be possible. Striking results have been
obtained in the case of lead. It has been confirmed that in different
parts of the terrestrial globe, there are ores which contain two
varieties of lead with atomic weights which differ by almost
one per cent. Second year chemistry students could discover this
difference, which is comparatively great.” 1

If we read the history of any invention, even if very com-
plicated apparatus is employed, we become convinced that
the whole matter is simple and can be precisely formulated.
In the last analysis every apparatus is something like the
system of rational metamathematics. But if we desire to
formulate the concepts of the apparatus in a pattern we are
faced by an impossible task. All attempts to achieve such a
formalization have proved to be fruitless from the time of
their discoverer, Francis Bacon, up to the present day. It is
the history of inventions alone which is instructive. The

1 Szczeniowski { Ziemecka : [c., p. 26.
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systematic classification of inventions might prove to be of
some advantage for further investigations. But what is common
to all apparatus is a definite operation. What is really important
are the individual characteristics of different types of apparatus.
The situation is like that in psychology, except that there
is a much greater variety of types in the world of apparatus.

The problem of induction becomes much more complicated
if we go beyond cases of a general character and seek to create
a series of individual cases. Then the phenomenon, which
appears in complete induction, is concerned. Complete induction
is required in the natural sciences if, for example, it is desired
that the ancestry of a given living individual be traced.

I have mentioned that if the principle is accepted that the
mother of a person is a person, it must be concluded that a
certain woman (Eve) had no mother, or that mankind has
lasted forever. This is a valid argument which depends upon
complete induction. While the role of complete induction is
negative here, it is, as is seen, very far-reaching. The pattern
of complete induction, the ancestral relation, which can be
applied to nature, was created by Whitehead and Russell.

In making positive applications of complete induction in
the natural sciences difficulties are encountered, because in
general the transition from any one case to the following one
cannot be confirmed with complete accuracy. It is here that
the calculus of probability must be employed in the natural
sciences. Only at this stage do the natural sciences lack complete
certainty and approximation must be employed. It is obvious
that here human and not divine certainty is meant. I know
that it is not absolutely certain that stomes will fall upon
the earth to-morrow, and that they will not change into
Raphaelean angels. I know this, but I have explicitly stipulated
that I do not intend to take this type of certainty into account.

The law of gravitation and the fact that the letter a does
not change into the letter & are equally certain. Without
constant letters there would be no mathematics, and so in
general there would be nothing certain. That which is as
certain as the fact that letters differ, cannot be regarded as
probable ; this postulate cannot be questioned. Only if it is
kept in mind can the confusion of concepts in connection with
the foundations of the calculus of probability and statistical
methods of investigation be avoided.



CHAPTER X
THE PROBLEM OF REALITY

1. The creation of a precise language for philosophy, using
the language of the exact sciences as its model, is a problem
which has troubled logicians since most ancient times.
Undoubtedly Aristotle’s syllogistic logic, Raymond Lull’s
Ars magna, the characteristica generalis of Leibniz and Spinoza’s
Ethica more geometrico demonstrata were all attempts to solve
this problem. Needless to say these attempts all proved
illusory although their authors attributed very great significance
to them. How much Leibniz expected of his discovery the
following passages give evidence :

“ During my eighteenth year, while writing the little book
De arte combinatoria, published two years later, I hit upon a
certain line of thought, the wonderful secret of true analysis,
whose result is language or rational characteristic. I believe that
no one else has perceived this, for anyone who had done so
would have put all else aside and pursued it since nothing greater
can be achieved by any man.”?

“ This is the principal aim of that great science which I have
been accustomed to call characteristic, of which what we call
Algebra or Analysisis only a very small branch. It is characteristic
which gives the words to languages, the letters to words, the
figures to arithmetic, the notes to music. . . . Finally it is
characteristic which permits us to reason with but little effort
by substituting symbols for things in order not to hamper
thought.” 2

It is known to-day that the suggestion of Leibniz is only of
historic interest. The system of rational metamathematics
permits the construction of symbolic representatives of the
objects of experience. These symbolic representatives are of
the type treated in theoretical physics. This is indeed natural,
for the very objects upon which the system depends, namely
letters, are just such symbolic objects. However, it should
not be forgotten that a whole class of the properties of letters
are neglected. In particular there is no way of distinguishing

1 G. W. Letbmiz  ‘‘ Letter to Tschirnhaus,” 1879, Briefwechsel von G. W,
Leibniz mat mathematikern, ed by C. J Gerhardt, Bd. 1, 1899, pp. 405-6.

2 G. W. Leibniz : De la méthode de lunwersalité, Cf Opuscules et fragments
wnédits de Leibmiz, ed. by Lows Couturat, Pans, 1903, pp. 98-9.
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separate copies of a letter. Clearly then it cannot be expected
that rational metamathematics will prove fertile where such
objects of experience but not their patterns are concerned.
Where investigation of individual objects is begun, where
a particular copy of the letter a, a particular automobile, a
particular human organism, a particular society is concerned,
the system of metamathematics automatically fails to work.
However, there is by no means any foundation for a conclusion
such as that of Meyerson that reality is irrational and that it
can be rationalized only in part.! There is no reason to think
that reality is irrational. Rather it is simply to be confirmed
that reality is never given as something completed and that
only the patterns of reality are treated. For every pattern
there is a correspondent. The farther the process of formaliza-
tion is carried on, the more complicated will the system be,
but it can always be applied to new patterns. The important
point is that this process will never be terminated.

So long as the formalization is relatively easy, as is the
case in physics, the system of rational metamathematics remains
useful in a positive sense, i.e. in it correspondents of the
patterns of reality will be sought.

Beginning with a certain stage the entire mystery of life
and its apparent irrationalism depends upon the fact that
the process of formalizing reality becomes exceedingly difficult
and the formalization cannot be achieved by simple application
of the method of induction. It is conclusively known, for
example, that the patterns of reality employed in law are
crude and inept as was shown by Petrazycki.?

Because of such limitations intrinsic to the process of
formalizing reality, attempts to comstruct legal systems,
known as codes, must be regarded as misdirected. All which
is done along these lines must be acknowledged as a sad
necessity. The distinctive task of law is the discussion of such
conceptual patterns as crime, property, responsibility, etc.

It is known that discussion of these patterns leads to vehement
disputes and involves harmful tendencies and stubborn
prejudices. Obviously such discussions are completely
independent of the problem of truth and falsity. They are
connected only with the problem of the meaning of concepts.

1 Emile Meyerson : Identitit und Wirkhchkeit, deutsch von K, Grelling,
Leipzig, 1930, p. 426.

2 Cf. L, Petrazycki: Wsigp do nauki prawa i moralnoéci, Thum. Landego,

(Introduction fo the Science of aw and Moralty, translated by Lande), Warszawa,
1930, p. 21 £.
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In other words they involve the question whether the form-
alization of reality achieved by means of a given concept is
adequate.

If, for example, a peasant has been put in chains because
he has removed a piece of oak from the woods, and maintains
that the oak belongs to no one since God planted it, the
resolution of his claim depends upon the decision whether
reality should be formalized by means of one or another
concept of property, i.e. upon the solution of the problem of
formalizing reality in this case. Naive application of the
principle of contradiction is not sufficient in this situation.
It cannot be said that the piece of oak either belongs to the
landowner or does not belong to him. It is the property of
the landowner in the eyes of the landowner ; it is not the
property of the landowner in the eyes of the peasant. To
say, as dialectic requires, that it is and it is not, is to say too
little, as has been observed. Such a statement would only
confirm that the concept of property is not applicable in this
situation. . Moreover in such a statement the unquestionable
fact would be ignored that two different concepts are employed,
ie. the term is being used in two fundamentally different
senses.

If it is recognized that using the same term in different
meanings, ie. operating with different patterns of reality,
is unavoidable, the problem becomes very complicated because
there are no criteria sufficient to decide which meaning should
be used at a given moment. If one individual should decide
in favour of one convention, another individual could propose
the acceptance of a different convention. At this point the
borders of the exact sciences are crossed and the domain
of individual decisions begins. However, it by no means
follows that at this point complete freedom of choice reigns.
On the contrary it is precisely here that very strong inner
compulsions are encountered in the face of which the individual
is distraught. The problem of metascience is the analysis
and classification of these compulsions.

The method of metascience eliminates once and for all
the oppositions between subjectivity and objectivity. What
is called the subject in science becomes objectified when meta-
science is applied, i.e. the subject is taken to be as much an
object of experience as any other object. The living subject
appears only at the actual moment of writing these words.
However, it is not possible to speak meaningfully of this
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subject because it is possible to talk significantly only of
objects. Already the philosophers of India knew that silence
alone is possible concerning a living subject. Metascience
provides a technique for introducing the same kind of
distinction, by introducing the metascientific theory of types,
which is similar to the metamathematical theory of types.

If anyone speaks about his own thoughts, in other words if
he occupies himself with some one system of science, he is
engaged in a science of higher type. The fact that he is engaged
in this science cannot be investigated in a science of lower
type. Thus each system of science necessarily has a problem
delimited by the type of the formalization which is given.

For example, if it is asked whether the criteria of reality
which have been set up are concerned with such facts as that
these very criteria have been set up, the answer is in the
negative. For handling such a problem a formalization of
higher type is required and the criteria for this second formaliza-
tion must be so constructed that they automatically are of a
higher type.

It may be remarked that by means of this theory all the
paradoxes and false proofs of metaphysics old and new (in
particular Nelson’s critique of epistemology) ! are automatically
eliminated.

2. It is evident that the effort required to construct the
formalization appropriate for the system of metascience is
great. Obviously the accurate, formalizations which have
been worked out for the subject matter of mathematics may
not be completely accepted because of practical difficulties.
It cannot be maintained that practising mathematicians
actually carry through their reasonings in accordance with
these formalizations. In the earlier chapters of this book,
semantical abbreviations were introduced, which were followed
by abbreviations of reasoning. Finally, on the basis of the
conviction that reasonings can be carried through with complete
accuracy in a given case, intuitive reasonings were employed.
If a completed system of expressions is at hand, such a pro-
cedure is permissible without fear of subsequent obscurity.
Once a properly worked out scientific system is in existence,
intuitive operation with such a system is permissible. It may
then be said not that within the given system certain reasonings
can be conducted, but that certain problems can be formulated

i Cf. W.R., pp. 38-9,
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within the framework of that accurate system. If standards
of excellence are supplied it may be claimed that the character
of accurate systems are known. A certain amount of license
may even be permitted and a system not so perfect as that of
rational metamathetics, but satisfying the main requirements
demanded by the perfect model may be discussed. In this
way it is possible to regain the freedom at first excessively
restricted by an extremist mania for precision. It is openly
admitted that pedantry is not desired. The intent is only to
avoid mistaking the approximate for the precise. On the
other hand it is not worth while to take pains with precise
proofs where fundamentally only confusion reigns. The task
of rebuilding the foundations of science from the very bottom
and of establishing a standard of precise formulation has
been undertaken to deal with such situations. Once this
standard of precision and the gaps through which idealistic
illusions enter thought are known, it is possible to proceed
more freely, just as the factory worker or railroad employee
becomes less and less troubled by pedantic regimentation as
he becomes more familiar with the routine of his work. It
must be taken into account that such situations arise under
present conditions of life, where actual living is swifter than
thought. Thought is slow and inept and it lumbers along
after life with the greatest difficulty.

Consequently any serious attempt to formalize even a
partial system of reality is aimless. The constructive attempt
of Professor Carnap ! would be nothing more than a scholastic
plaything, were it not for its polemic significance derived
from its defence of the sensationalistic concept of reality.
I think that this endeavour has been carried too far. It cannot
be taken as definitive, since it depends upon the obsolete,
simple theory of types and must be supplemented by a large
number of familiar enunciations, borrowed from the -store-
house of an old philosophic dictionary.

A system which itself requires to be explained is but a
fragment. It cannot be the basis of a complete system of
reality but only an auxiliary device. This is the only possible
status of such a system.

In a recent article Carnap 2 tried to establish his position
by means of the following argument of Wittgenstein,

1 Cf. Rudolf Carnap: Der logische Aufbaw der Welt, Berlin, 1928.

? Cf. Rudolf Carmap: ‘‘On the Character of Philosophic Problems,”
Phalosophy of Science, vol. i, 1934, pp. 7-8.



THE PROBLEM OF REALITY 273

Wittgenstein ! permits the use of propositions given in every-
day language although he recognized that they have no clear
meaning. Their only purpose is to facilitate the understanding
of the propositions of the system of natural science. Under-
standing can be facilitated by means which are not understood.
When the end is attained, the means can then be disregarded.

This conception is very ingenious and is based upon observa-
tions worth considering. The explanation given by a swimming
teacher may not be entirely clear, but once anyone has learned
to swim, he will not worry about the fact that the language
used to obtain this result was not very accurate.

However, it must be kept in mind that this analogy would
be correct only if it were actually possible to construct a
closed system of metascience. But since this is impossible,
as has been seen, the unformalized aids to understanding give
the impression that they are important while the completely
formalized systems seem trivial and of secondary importance.
Hence everyday language must ultimately be employed : the
formalized systems serve only as a means for controlling the
caprices of this language and the illusions flowing from it.

I must confess that systems of symbolic logic, worked out
with extreme accuracy but based upon idealistic presupposi-
tions, are much less clear to me than are trivial descriptions
in which everyday language is employed. It must be kept
in mind that the endeavour to attain precision is a two-edged
weapon. It may deprive the individual of his power to react
automatically which is associated with everyday language
and does not always replace it by an intelligible equivalent.

I think that the following quotation from Professor Dupréel
is decisive here:

“ The formuli of the scholar are meaningful and of interest
only in so far as they are related to certain ordinary and earlier
representations for which they may be substituted in conformity
with certain conventions,” 2

3. The elimination of the subject leads to materialism.
However, it must be kept in mind that the concept materialism
is but crudely defined. The term itself can have many meanings.

* Cf. Ludwig-Wittgenstein: Tractatus Logico-Philosophicus, London,

1922, p. 189, p. 77.
2 Eugéne Dupréel : Trauté de morale, Travaux de la Faculté de philosophie
et des lettres de I'Université de Bruxelles, t. IV, Bruxelles, 1932, p. 689 n.

Y
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What is relevant here is that the thing designated as an object
of experience or matter is not itself apprehended. Only patterns
which impose themselves on an individual are treated. These
patterns may differ fundamentally. Things and their properties,
the properties of an unapprehended material process, the
so-called sensory elements ? or finally the intuitively represented
elements or ¢mages are such patterns.?

At a given moment each of these may seem to be the only
true reality although at a subsequent moment it may be
regarded as an inept fiction and be replaced by something
else. The common sense notion of some #rue reality given
immediately to the mind in various ways, mentioned by
Bergson,® must lead to an idealistic fiction and the irrationalism
connected with it. The difficulties which he points out ¢
concerning this view cannot be avoided because this frue
reality is itself only one of the possible realities. At some
moment it disappears and is replaced by something which
previously was regarded as but one aspect of it.

There is thus no basis for speaking about one #rue reality
as a totality of determined objects. It must be insisted that
there are many concepts of reality. At different times different
concepts must be employed to describe the immediate
experience had when it is declared that something is real.
I once called such an experience mefaphysical ® because I wished
to point out that they lead to metaphysical illusion. From
the metascientific point of view they are objective because
they are independent of and accessible to all people who wish
to consider these matters sufficiently carefully. But at the
same time these experiences contain subjective elements.
They seem absolutely true even when it is known that after
a certain length of time they can be replaced by other
experiences.

Consequently the criteria of reality play a secondary role
in comparison with the criteria of sound reason. If the former
are taken as the basis for constructing a world view, con-
tradictions inevitably arise. But if the criteria of sound
reason are employed and if in addition use is made of the

1 Ci. Ernst Mach - The Analysis of Sensations, translated by C. M Williams,
Chicago, 1914, pp. 2-6.

2 Cf Henn Bergson: An Infroduction to Metaphysics, authorized transla-
tion by T. E. Hulme, New York, 1912,

® Bergson: lc., p 65.

4 Bergson: lc, p. 67.

5 Cf.Z K.D. P, p. 97,
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metascience based upon them, serious difficulties can be
overcome. In this latter case it is no longer necessary to
dismiss what is regarded as an inner compulsion, and all
efforts may then be devoted to clarifying the confusions to
which allusions have been made.

Clearly even the most extreme individualism may be useful,
provided that it is consciously employed and that objectivity
is not at this time either naively or cynically claimed.

4. The strength of the concept of natural reality lies in the
fact that the criteria of sound reason, which are employed,
have developed simultaneously with the criteria of this reality.

It is not possible to avoid entirely a natural view of the
world. Its effect is so strong that no one can escape a more
or less conscious return to it at certain periods of his life.
Even if one is convinced that natural reality is but a certain
kind of myth inherited from uncritical periods of past centuries
frequently it is not possible to avoid the conviction that every-
thing else is an artificially produced theory. It is also felt
that reality is one and is precisely such that the persons and
things which constitute it have properties of colour, sound,
taste, etc., independent of the individual percipient and that
these properties are intrinsically pleasant or unpleasant, good
or bad, beautiful or ugly.!

The theory of light waves, the physical analysis of the play
of colours and forms in the world about the individual are of
no aid in avoiding a natural view of the world. An individual
knows that this dress is blue, that this table is rectangular,
and all changes which appear at the moment of observation
are held to be of secondary importance. It is of no avail to
recall that the continued use of this approach subjects the
individual to all those prejudices of the popular view of the
world which arouse disdain and contempt. The procedures
relevant to the concept of natural reality overcome all obstacles ;
they generate in the individual an inner need to identify the
criteria of natural reality with those of sound reason.

The weak point of the concept of natural reality concerns
the way in which visual images are treated. These images,
as is known, can be very clear, with the result Ehat they do not
differ intrinsically from things and persons. .[Jncritical accep-
tance of this situation leads to dangerous caisequences.

The. confusions which rise from uncont} flled visions of

1 Cf. W. Heinnich : Teorje i wymih: badan V&asycholog
and Results of Psychological Investigations), Warszawa

znych (The Theories
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natural reality, such as are involved in all mythology, have
proved very dangerous.
Consider the following example :

In Constantinople a certain man and his son were condemned
to death because a bishop had a revelation that this man
had thwarted the performance of a miracle by magic practices.

St. Thomas Aquinas writes :

‘ Therefore it must be admitted that all the transformations
of corporeal things which can be produced by certain natural
powers, to which we must assign the seeds above mentioned,
can alike be produced by the operations of the demons, by the
employment of those seeds; such as the transformation of
certain things into serpents or frogs, which can be produced by
putrefaction.” 2

The eminent Sprenger, the author of Malleus Maleficarum,
believed that the devil can change a woman into a cat at any
time.?

The famous work of Brother Ubaldo Stoiber, entitled
Armamentarium Ecclesiasticum, was published in Augsburg
in 1726. In this work the author gave precise indications how
to distinguish the devil from an angel, from a soul in purgatory,
and from a magic phenomenon. Among other things he
seriously considered whether a soul in purgatory can assume
the form of an animal and concluded that this possibility is
not precluded, since a certain Franciscan monk saw a naked
woman in the company of two wolves. The woman turned
out to be the soul of a certain libertine and the wolves the souls
of two priests who had been her confessors.*

To-day all this nonsense is known to have been caused by
superficial observation of such phenomena as sense-illusions.
More precisely the reality of images which was substituted for
natural reality was interpreted by means of the criteria of
the latter.

1 Cf. Charles Louis Montesquieu: The Spirit of Laws, translated by
Thomas Nugent, Cincinnati, 1873, Bk XII, ch. 5, p. 216.

¢ St. Thomas Aquinas : Summa Theologica, part i, translated by the Fathers
of the English Dominican Province, New York, Cincinnaty, Chicago, 1912,
Part I, Third Number, vol ui, p. 503

3 Cf. Jules Michelet : La sorciére, Paris, 1862, pp. 182, 198.

4 Cf. Brother Ubaldo Stoiber . Armamentarium Ecclesiasticum, Augsburg,
1726, Parxs I1, p. 196. Professor Podlacha observed 1n conversation with me
that this entire vision was obtained from the old Christian iconography.
gg;)r)nas Garter: The wmost vwtuous and godly Susanna, 1578, London,
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The use of the patterns of natural reality tend to support
reaction because they have been sanctioned by tradition,
crystallized in everyday language, and because that which is
familiar differs from that which is a recent innovation. For
the latter is never perfectly clear and is always uncertain,

There is no basis for the assertion that it is possible to avoid
the return to the concept of natural reality at certain times,
particularly when life has become very pleasant or very
difficult. However, it is sufficient merely to be aware of this
possibility in order to prevent the occurrence of its pernicious
consequences, The attempt to eliminate completely the
concept of natural reality, leads to the contraction of the
extent and bounds of experience ; while on the other hand
reinstitution of this concept may even prove useful if accom-
panied by a sufficiently critical spirit. The only point that
must be born in mind is that this concepi of reality is of higher
type and becomes dominant despite the knowledge that other
concepts of reality may impose themselves as exclusively valid.

5. Profound researches in the natural sciences, increasing
familiarity with the telescopic and microscopic worlds, together
with the endeavour to discover the relations and laws governing
these worlds can lead an individual to a completely different
concept of reality. It is of secondary importance that the
concept of matter undergoes continual evolution and has not
received a definition which is precise and consistent with
experience. What matter is and what forces act upon it make
no difference. Whatever matter may be it is impossible to
evade the feeling of absolute certainty that matter is the only
true reality, that mental life merely indicates neural processes,
and that in general psychic states are secondary phenomena,
without influence upon the history of the universe. The
reality dealt with in this case I call physical reality. As in
the case of natural reality, for some people it is the only reality
and no one can be sure that at a given moment it does not
obtrude upon him as the exclusively valid concept of reality.
Once again the knowledge that at other moments of his life
other concepts of reality impose themselves upon him with
equal force is of no avail. The power of suggestion is too
great. He has but a pitying smile for other inner compulsions
since he takes it for granted that they lead to illusion.

Eddington offers an interesting description of the vacillation
between the concepts of natural and physical reality. He
speaks of two tables, the usual table and the scientific table,
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i.e. a certain complex of atoms.! This account indicates that
the theory of the plurality of realities, which fifteen years ago
professional philosophers regarded as absurd, has begun to
pervade the minds of scholars.

Physical reality originated in the sixteenth century with
the development of mathematics, the natural sciences and
the theory of perspective (Leonardo da Vinci). It formed the
basis for the great philosophical systems of the seventeenth
century. Hobbes and Locke as well as Descartes, Spinoza,
and Leibniz based their views upon this conception of reality,
although they conceived its relation to an abstract conception
of God and the soul in different ways. Some of these writers
have been classified as materialists, others as spiritualists,
but such a classification is of purely theoretical significance ;
for what is relevant is not the criteria of reality but their
interpretation.

At all events it must be taken as well established, in so far
as anything can be well established in such matters, that
these thinkers confine themselves to employing concepts of
reality associated with the material processes and the laws
governing them.

This tendency appears most strongly in the system of
Spinoza. His geometrical proofs are paralogisms, but his
direct intuition of the independent existence of a Nature-God
imposes itself with ineluctable force.

The absolute determinism of Nature and the very petty
role of man in the universe has the character of an absolute
truth concerning which all polemic is futile,

‘“ A thing which is determined for the performing of anything
was so determined necessarily by God and a thing which is not
determined by God cannot determine of itself to do anything.

“ A thing which is determined by God for the performing of
anything cannot render itself undetermined.?

*To act from reason is nothing else than to do those things
which follow from the necessity of our nature considered in itself.”” 3

In time these thoughts came to be regarded as elementary
truths which were substituted for the popular view of the world.
They are influential to this very day.

1 Sir Arthur Eddington : The Nature of the Physical World, Cambridge,
1929, pp. xi-xiv

* Baruch Spinoza: Ethics, Everyman edition, New York, 1910, Part I,
Props XXVI and XXVII, pp. 21-2.

® Spinoza. l.c., Part IV, Prop LIX, Proof, p. 181.
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Spinoza became the father of contemporary materialism,
whose essential difference from Spinozism lies in the fact that
in it the concept of God is replaced by the concept of Nature.

La Mettrie took an important step forward in the con-
struction of the concept of physical reality.! He was a physician.
Self-observation, while in a feverish condition, led him to the
conclusion that psychic processes can be explained by appealing
to physiological ones. This was a fruitful idea and determined
the further development of the study of man.

The materialistic conceptions of the eighteenth century were
wrecked upon the concept of the subject, which could not be
successfully handled with the meagre logical apparatus of
that time. Consequently the concept of physical reality was
submerged for a long time on the confusions of Hegelian
irrationalism.

The chief influence of the conception of Hegel has been to
support the view that because physical reality continually
changes, it cannot be accurately described by means of concepts.
This idea has been accepted by Marx, Engels, Lenin, and their
successors. It has been confirmed by the results of physical
experiments. Everything seems to indicate that the concepts
with which physics operates are only very primitive formaliza-
tions of reality. However, it by no means follows that the
dialectical method gives knowledge which is any more accurate.
Nevertheless it should be emphasized that physicists are
invariably carried away by the naive hope that they have
already discovered the essence of matter and when this hope
proves deceptive, in their despair they betake themselves to
another concept of reality. But it is obvious that merely
because a certain description of matter has proved to be
inaccurate it cannot be concluded that there is no matter.

The concept of physical reality arises from criticism of
the concept of natural reality. It is therefore a concept of
reality of higher type. Neglect of this phenomenon leads to
serious misunderstandings. For example, some philosophers
forget that because in physical reality events ar; determined
by material processes, it by no means follows jthat there is
no free will in the ordinary sense. The fact ig/that human
beings have intuitive criteria which serve distinguish
voluntary and compulsory activities and whichf,
to adjust themselves in a rough way in their [jveryday life.

1 Cf Uberweg-Heinze : Grundriss der Geschichte dey Phy
Berlin, 1901, Bd. 3, p. 244.
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These criteria fail in more complicated cases and over-
estimation of their value is an obvious error. Nevertheless
it would be wrong not to take account of them. Such an
error led to the confusion of concepts which has resulted in
the complete denial of the possibility of ethics.! Thus the
problems of ethics are independent of the problems raised in
connection with the material processes which determine the
lives of men ; they have nothing in common with the so-called
problems of respomsibility. It may be agreed that men’s
actions are dictated by their basest instincts, and it can even
be conceded to Professor Freud that a mother’s love for her
son is nothing but a form of sexual egoism.? But none the less
mothers who show concern for their children will have to be
distinguished from those who do not; the former will be
called good, the latter bad. To abandon this classification
would only fruitlessly impoverish life. It must, however, be
kept in mind that uncritical use of this classification may lead
to injustice.

6. The foundations of the concept of the reality of sensations
or of sensory elements were erected by David Hume.® Ernst
Mach later gave a clearer formulation of this position. Avenarius
should also be mentioned in connection with Mach. Avenarius *
created the conception of pure experience, i.e. experience from
which all conjecture, habit, and convention have been
eliminated. He called his doctrine empirio-criticism.

The concept of pure experience is not sufficiently clear.
Mach’s formulation was much more lucid. He wrote as
follows :

“ Colors, sounds, temperature, pressures, spaces, times and
so forth are connected with one another in manifold ways ;
and with them are associated dispositions of mind, feelings, and
volitions. Out of this fabric, that which is relatively more fixed
and permanent stands prominently forth, engraves itself on the
memory and expresses itself in language. Relatively greater
permanency is- exhibited first by certain complexes of sounds,
colors, pressures, and so forth, functionally connected in time

1 Cf. Otto Neurath : ‘‘ Soziologie im Physikalismus,” Erkenntnis, Bd 2,
1931, p. 418.

* Cf.Sigmund Freud: Civilization and its Discontents, authorized translation
by Joan Riviere, New York, 1930, p. 89.

¢ David Hume: An Inquiry concerning Human Understandimg, Chicago,
1930, esp. Sectioms II and ITI.
B c; lzhcilg,&c)l Avenarius : Kritik der veinen Erfakrung, Leipzig, Bd. I, 1888,
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and space which therefore receive special names and are called
bodies. . . .

“Further that complex of memories, moods, and feelings,
joined to a particular body (the human body) which is called
the ‘I’ or ‘ Ego’, manifests itself as relatively permanent.!

“ The visible, the audible, the tangible are separated from
bodies. . . . The complexes are disintegrated into elements,
that is to say, into their ultimate constituents, which hitherto
we have been unable to subdivide any further.” 2

It should be noted that this characteristic view of Mach
has nothing in common with classical idealism. Sensations
are indeed elements of reality, but they are held to be indepen-
dent of the problems raised in connection with the conception
of the external world and the so-called “Ego”. On this
view both the external world and the so-called “ Ego™ are
simply complexes of sensations. Instead of talking about
sensations it is permissible to speak of sensory elements. The
independence of this concept of reality from the subject is
thus forcibly emphasized.

Persons and things have a place in the concept of the reality
of sensory elements but they are conceived differently than
in the concept of natural reality. The sun is a luminous disk.
The moon is an object which changes its shape weekly. Some-
times it is round, other times it has the shape of a sickie. The
concepts of the sun and the moon conceived as ellipsoidal
material masses are but artifacts created by the individual
for the purpose of adjustment in the concept of the reality of
sensations. Similar remarks may be made with regard to the
concept of the human organism and of the physiological
processes occurring in it.

The problem of science is to discover constant relations
between those artifacts.

The phenomenon of the duplication of a lead pencil, when
observed closely, can confirm the obtrusion of the concept of
the reality of sensations. Both pencils appear equally real.
The thing cannot be duplicated. Therefore no thing presents
itself in accordance with the concept of natural reality. What
is called a thing is an artifact. The perceived pencil is merely
an image.

Obviously this experience can be disregarded and attributed

1 Ernst Mach : The Analysis of Sensations, translated by C. M. Williams,

Chicago, 1914, pp. 2-3.
3 Ernst Mach : l.c., pp. 5-6.
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to anormal conditions of observation, but with equal right the
conception of normal conditions of observation might be
regarded as a very confused artifact and it would not be
regarded as the basic criterion of reality.

Bertrand Russell explains the emergence of the concept
of the reality of sensations in connection with an analysis of
a table analogous to Eddington’s discussion of the table. In
the language of Eddington, it would be table number three.
This table does not have the characteristic shapes or colours
of a table, but is simply a complex of sensations which varies
with the point of observation, the conditions of illumination,
or the position of the sense organs.!

The identification of various complexes of sensations as one
table involves a certain convention. A similar convention is
also involved in the concept of physical reality. In each case
the impermanence of material complexes must be taken into
account.

The concept of the reality of sensations has had great
influence upon the development of contemporary physics.
It has heightened criticism considerably and overcome idealistic
illusions. Nevertheless a great danger is involved in this
concept because of the tendency not to take into account the
possibility of fundamental alterations in the extent and bounds
of experience. It is worth noting that such tendencies appear
at the very moment when man has gone much further beyond
the bounds of experience of tradition than the most daring
visionaries of the past could have hoped to go. It is true that
the extension of the bounds of experience can never be achieved
by means of existing patterns; consequently this possibility
could be termed a fiction. But such a fiction is not synonymous
with nonsense as the adherents of the concept of the reality
of sensations would have us believe. The concept of the
reality of sensations when combined with rejection of fictions
dooms us to move in a closed circle of experimental data and
inevitably leads to unusual restriction of man’s creative
possibilities.

The concept of the reality of sensations assumes such a form
in a recent pronouncement of Professor Heisenberg, who has
already been mentioned. Heisenberg believes 2 that the hope

! Bertrand Russell . The Problems of Philosophy, New York, Chs. 1 and 2,
Pp 42-3, 734,

? Cf. W. Heisenberg * ** Wandlungen der Grundlagen der exakten Natur-
;flsg,;:;lschaft in jungster Zeit,”” Die Naturwissenschaften, Bd. 22, 1934, Heft 40,
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of enlarging the extent and bounds of experience without
limit is as vain as the dreams of former investigators concerning
the discovery of the ends of the earth. I do not think this
simile is a happy one. It would be more appropriate to say
that belief in fixed limits to experience is similar to the old
belief in the fixed limits of the earth.

In social affairs the concept of the reality of sensations leads
only too often to cymical egoism of the type exemplified in
Aristippus ! and even to calculated ruthlessness. It is seldom
accompanied by the social instinct and the inclination to
devotion. Lenin emphasized these dangers with unprecedented
acuteness.?

Lenin was able to refute Mach, Avenarius, and the related
immanent philosophers, but he was not able to overcome in his
own person the reality of sensory elements and neither could
Emile Meyerson 3 nor his intellectual successor Dr. Metallman. 4

The concept of the reality of sensory elements cannot be
refuted and some day perhaps philosophers will become
reconciled to this fact.

A particularly vicious example of a one-sided concept of
the reality of sensations is behaviourism, the doctrine in which
the psychic states of others are rejected as intrinsically unknow-
able, But one’s own past and future psychic states are equally
inaccessible to direct experience, as Professor Lapszin rightly
remarked.®

If an individual takes his past and future sufferings into
account he has no right to reject the sufferings of others.

In order to characterize the behaviouristic doctrine whose
growth I regard as one of the most serious dangers threatening
us at present, I cite the following paragraph ¢ :

“ In this case the inquisitors having seen the obstinacy of the
accused order that he be subjected to torture. . ..

1 Cf, eg., Uberweg-Heinze: /¢, Bd. 1, p 145.

3 Cf. Nikolax Lenin. Matenalism and Empwio-criticism, translated by
David Kvitko, New York, 1927, vol. 13 of Collected Works of V. I Lenin.

3 Cf. Emule Meyerson . Identity and Reality, authorized translation by
Kate Loewenberg, New York, 1930, pp. 293, 298.

¢ Cf. J. Metallman . Determinizm nauk przyrodniczych (The Deleyminism
of the Natural Sciences), Krakow, 1934.

5 Cf I. I Lapszin  Oprowerzene sohpsizma, Uczemia zapiskr (Scorn of
Solipsism, Lecture Notes), Praga, 1924, p. 18.

6 Cf, Eduard Quunet: L’Ulframontamsme ou l'église vomaine et la sociéié
moderne, Oeuvres Complétes, Paris, 1844, 3rd ed., vol. 2, pp. 196-7, n. 1.

Quunet quotes here from Arsenal sacvé ou Pratigue de I'office de la sainte
inquisition imprimé & Rome 1730 et dedré au glovieux inquisiteur Saint Pierre,

p. 263
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* And they order that the accused be led to the place of torture,
that he be bound and fastened to a rope.

““ Led in this way, while being undressed, bound, fastened to
the rope he is graciously induced, paternally admonished—
benigne monitus, paterne exhortatus—by the inquisitors to speak
the truth and not to wait until he is lifted by the rope as he will
be if he persists.

* Then the inquisitors, seated and seeing that the accused,
who has been undressed, bound and fastened to the rope, refuses
to speak the truth order that he be hung.

““ The prisoner being lifted, begins to shriek, saying: Alas!
Oh, Saint Mary, etc. . . .” or else he remains silent.”

This description is in many respects like the medical reports
of experiments performed on charity patients, the poor, defence-
less people. Reports of vivisections and of psychological
experiments performed on animals are of the same character.

The abominable sterilization law, obligatory in Germany,
belongs to the same category.

7. The concept of the reality of intuitively represented
elements appears in its pristine form among children and
primitive peoples because they confuse the criteria of the
dream and waking life. This concept of reality appears more
immediate than the concept of natural reality. The concept
of natural reality is arrived at in the course of the struggle
which has lasted many centuries between the criteria of sound
reason and the criteria of intuitively represented reality.

An analysis of experience based upon sound reason leads
the individual to divide the objects surrounding him into two
fundamentally different categories. The first contains people
and things, and events which occur in the world of people and
things.

Failure to acknowledge these obvious facts is the outcome
of confusing the criteria of reality with the criteria of utility.
Thus St. Augustine maintained that food seen in a dream is
less real than the food of the waking life because the former
is not nutritious, while the latter is.! However, he overlooked
the fact that poison swallowed during waking life would, on
this criteria, be even less real, because it not only fails to
prolong life but actually shortens it. Neglect of the role of
images is motivated by the fact that only by disregarding

1 Cf. Confessions of St. Augustine, translated by Dr. E. B. Pusey, London,
1907, Bk. 3 (vi) 10, p. 38.
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their appeal can their dangerous growth be avoided. The
Witches Sabbath was at first considered a diversion, unseemly
but amusing and cheap. Persecution made it a forbidden
delight and much to be desired.? The disappearance of the
Witches Sabbath is to be attributed to changed conditions of
daily life on the one hand, and the increase of tolerance on
the other. The condemnation of free love was effected even
more easily, although the condemnation of amours with the
devil required effort. Journeys on broomsticks have gone out
of fashion.?

The struggle with naive forms of the concept of the reality
of images is no less a social necessity than is the struggle
with all manifestations of exaggerated individuality. However,
the situation is different the moment a concept of the reality
of intuitively represented elements of higher types is concerned,
i.e. the concept of reality obtained by profound researches on
the problem of reality. I have in mind an experience of the
type about which Descartes wrote in the first of his Meditations.?
Descartes was concerned with the view that there is no clear
cut method for distinguishing the waking from the sleeping
state. But he was appalled by what at first sight seemed the
alleged necessity of this conclusion and felt this to be an
unendurable situation. He saw in God the only possible way
of escape and sought shelter in Him as does a frightened child
in the bosom of its mother. It seems to me, however, that if
the waking state could not be clearly distinguished from sleep,
we would not be entitled to trust our reason and would be
doomed to eternal ignorance.

Descartes forgot that the waking state can be differentiated
from sleep only because of the greater degree of coherence
of the former. This argument is due to d’Alembert.* If Kant’s
philosophy is examined from this point of view it can be
regarded as formulating the system of laws of the reality of
images. Such an interpretation of Kant’s philosophy obviously
eliminates the thing in ifself. But the Kantian concept of
the thing in itself has from the beginning been permeated by

1 Cf. Michelet: l.c, p. 142.

t Cf. Dr. Erazm Majewsk: - O wpdywie nauk prayrodmczych 1 lekarskich na
pokanie prresqddw cremnoty 1 zmknigcre choréb umystowych, zwanych demonic-
zem. (Concermmg the influence of the Natural Sciences and Physicians on the
Quercoming of Ignovant Preyudices and the Disappearance of Mental Diseases
Called Demoniac), Krakéw, 1882, p 40

3 Cf. Renée Descartes : Selections, edited by Ralph M. Eaton, New York,

1927, pp. 90-5.
4 Cf. Lapszin: lLec., p. 22.
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ambiguity.! It has been as contradictory a term as Polisk
Emperor, for if something affects an individual in a specific
way so that his behaviour can be predicted in advance, it
cannot be asserted that that thing is unknowable. (Argument
of Plekhanov.) 2

If the thing in itself is rejected, then the image is the only
reality. Persons then are simply images. Similarly the sensa-
tions of anindividual are images. As Bergson 2 rightly remarked,
man has no pure sensations. The view introduced by Hume 4
that images are weak reflections of sensory elements cannot
be maintained. On the contrary sensations depend primarily
upon images and a sensation can be regarded as a particular
kind of image. To become convinced of this, it is sufficient
to note the increase in one’s power of observation under the
stimulus of hints and reminders supplied by others. It suffices
to point out that in observing something new under unfamiliar
circumstances, e.g. by means of a microscope, what is to be
done is not known until it is known what to look for.®

The concept of the reality of intuitively represented elements
of higher type plays an important role in creative activity.
Consequently the common opinion that it is difficult to draw
a sharp line of demarcation between the genius and the insane
person is sound. Sound reason is decisive here. In so far as
it is observed that the criteria of reality lose their significance
when they are in opposition with sound reason, the reality
of images, to use the expression of Engels,® is a thing for us.
But whenever images are emancipated from the criteria of
sound reason, disintegration and chaos set in. The institution
of sound reason and much philosophic culture was needed in
order to prevent the undesirable dominance of the concept
of the reality of images. To be able to appraise the concept
of the reality of images the claim which the concepts of the
reality of sensations and of physical elements can make upon
one must have been experienced and it must have been fully
realized that there is no such thing as a fr#e conception of

1 Cf. Casswwer: Kants Leben und Lehre, Berlin, 1921, p. 231.

2 Cf A. Deborin: Wuedenie w filosofiv dialekticzeskogo materiahzma
(Inll’rioduclwn to the Philosophy of Dralectical Materialism), Moskwa, 1931,
P 7.

3 Hennn Bergson Matter and Memory, authorized translation by
Nancy M. Paul and W. Scott Palmer, London, 1911, p. 24.

4 David Hume /c., pp. 14-15.

5 Cf, the nteresting article of Dr. Fleck : ‘* Zur Krise der * Wirklichkeit ’,”
Die Naturunssenschaften, Bd. 17, 1929, Heft 23, p 425.

¢ Cf. Lenm: Lc., pp. 75-7.
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reality. Unless this realization is attained the concept of
the reality of images is an idealistic fiction which sooner or
later will collide with sound reason.

Idealism is a false appraisal of the concept of the reality of
images. It springs from neglect of the fact that within this
framework of reality, truth, and falsity cannot be differentiated.
Thoroughly false as well as true assertions may always fascinate
an individual and may seem to him an inexorable necessity.
As long as it is not observed that the criteria of truth and
falsity are independent of the concept of reality which is
dominant in experience, the individual will be submerged in
idealistic error. But to reach this conclusion greater familiarity
with the concept of the reality of images is necessary because
it provides material on the basis of which comparisons might
be made. The struggle with idealism conducted in the name
of the concept of the reality of images is the sequel of the
struggle against Pharisees. In other words it is like a life full
of vitality contrasted to a life empty of vital interest.

8. The theory of plural realities is a relativistic doctrine.
However, it has nothing in common with conventionalism.
Because of the confusion of these two concepts relativitism
is held to be socially dangerous. Absolute obligation, absolute
good, and absolutely inelastic police orders are regarded as the
basis of a wise social organization.

The conventionalistic position will now be examined.

The history of the customs of all times and countries shows
that the individual seldom applies absolute criteria to himself
and applies them to other people. It seems to me, however,
that the very people who apply these criteria most consistently
to themselves are the most dangerous socially because they
believe that being without sin, they have the right to cast
stones at others.

The interpretation of relativism as an opportunistic doctrine
according to which that which is of greatest advantage at
the given moment is pursued depends on confusing strong
belief with a verbal formulation.

Because alternative possibilities are recognized it does not
follow that it is necessary for the individual to swerve from
his chosen path. If one regards his way as the only possible
way, he risks danger of error because some deviation is an
inevitable necessity.

The criteria of sound reason must be employed to unmask
invalid arguments arising from a desire for absolute truth.
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It should be added that this desire frequently springs from
the inadequacy of the little knowledge the individual does have.
In brief he knows nothing, since it is impossible to know
absolute truth and it is not worth while to know relative truths.
The system of metascience is necessary to strengthen sound
reason precisely at those points where its criteria cease to
operate directly. Sound reason is not sufficiently courageous
and does not differ from common sense sufficiently to pursue
its own course against authority, idealistic logic, and public
opinion. In this struggle sound reason requires the aid of an
external logical apparatus which although it is its own product,
functions independently of its whims. At moments of fatigue
faith in the criteria of sound reason may be lost. At that
time, however, a system of metascience which functions
automatically continues to operate. This obviously does not
settle the matter definitively since it is also possible to lose
faith in this system. However, if it must be decided whether
a machine-gun or one’s fists should be employed, it is obviously
preferable to defend oneself with the gun or at least to have
the gun in reserve.

The distinction between the events of ordinary life on the
one hand and unusual experiences and mysterious events on
the other cannot be drawn precisely. There is no province
of daily life into which some bewildering perplexity or reckless
frenzy may not steal. Even the simple problem of a book-
keeper adding columns of figures may involve what seems
like a diabolical caprice which is completely at variance with
law. That certainly is his reaction when the answer does
not come out right and he has been unable to make the
calculations agree. The question could therefore be raised
whether the calculations could ever be made to agree or
whether some occult power thwarts his designs. If an
affirmative answer is given to the second alternative he will
be transported into a naive reality dominated by personal
experience, images, and visions which lead him far beyond
daily life. .

In general, however, he will not succumb to these unusual
personal experiences. Acquaintances are appealed to who
usually can lead him out of such situations. If they fail they
regard him as insane and put him in a sanatorium. In such
an event he obviously will not believe that he has been justly
treated. On the contrary, he will be convinced that the concept
of reality they employ in putting him out of the way is not
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worthy of serious consideration. To the argument that it is
not possible to remain alive for long if daily life is disregarded,
he could simply retort : Why should one remain alive? It is
far better really to have enjoyed one brief glimpse of true
reality than to have lived in unenlightened error for a long
time.

Although there is no way of convincing the overtired book-
keeper that the multiplication table is correct, there are no
good reasons to question it.

This situation is disturbing only if the criteria of sound
reason are regarded as the source of absolute truth. But if
sound reason is taken to be only an island of safety, a refuge
from an arbitrarily created fiction which claims to be the
truth (the making of truth) ! it is possible to console oneself
with the thought that a night full of mystery, error, and fright
will be succeeded by daylight bringing with it the return of
sound reason. Should the night never pass and if all mankind
were to be in the same plight, all the present efforts would
be wasted. But the same consequence would follow, if for
example some great cosmic catastrophe would occur. To
hinder the return of sound reason by holding on to the belief
in the existence of ideas and absolute truth is like singing
lullabies or telling a bad child fairy tales.

It may be objected that perhaps the singing of such lullabies
and the telling of fairy tales provide the only remedy for the
situation since according to the theories of James 2 and Schiller
that turns out to be the case.

Some have protested loudly against the tedium and
intolerable constraint of the criteria of sound reason. In
contrasting Aristotle with Plato, Rudolf Eucken wrote :

“With this disappearance of religion falls away the sincerity
of spirit and the universal greatness of thought of Plato. Life
receives narrower bounds and its emotional tone becomes more
sober.” 3

On the other hand Aristotle himself may be regarded as
supplying a sort of narcotic in contrast to the fruits yielded
by sound reason and the logic based upon it.

A comparison of the simple and at times naive truths of

1 Cf, F. C. S. Schiller : Studies in Humanism, London, 1907, pp. 179-203.

3 Cf. William James: Pragmatism, New York, 1907. L.

3 Rudolf Eucken : Die Lebenanschauungen grossen der Denker, 2 Aufl,, Leipzig,
1897, p. 61.
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Hume or Mach with the flights of phantasy of Plato, Plotinus,
Origen, Spinoza, Hegel, Schelling, Schopenhauer, Nietzsche,
or Lev Shestov leaves the impression that instead of the hurdy-
gurdy the silver horns of the archangels are playing and leads
one to laugh at the unequal competition.

It might, however, be asked whether the tunes of the hurdy-
gurdy are not better than the false pathos of operatic mutes
disguised as archangels. What guarantee is there that the
flights of phantasy of geniuses are not similar to the per-
formances of the Ring of the Nibellungen in which second-rate
actors with shrieking voices appear instead of real herpes and
in which paper maché trees squint ironically at the puffing
director of the orchestra. In spite of all the display, Wagnerian
music is an unintelligible noise to the public and its power
is already spent and is in part banal for those few who under-
stand it. I borrowed this illustration from ILeo Tolstoi;
but I must confess that to understand it I required great
effort because its suggestion of lofty pathos reacted upon me
with great force. Works of art determine the atmosphere of
intellectual society. They have many other functions for
they make life interesting and alluring. However, they
frequently lead to grievous excesses and when their immediate
appeal ceases distaste and aversion will remain.

This state of affairs is a relic from more primitive days,
when moral and artistic criteria were mingled with the criteria
of truth, thus producing the confused mixture of convictions
which is called common sense.

To this it may be objected that it is better to succumb
to sublime illusions even if bitter disappointments may be
the consequence, than to be satisfied from the very outset
with prosaic essentials and so to condemn life to a closed circle
of simple and banal thoughts. After what has been said
previously it is easy to deal with this objection.

The concept of reality which dominates an individual’s
life is not to be judged primarily in terms of the question of
truth. The wealth of the inner life of an individual does not
prevent the application of the criteria of reasoning. For
although the construction of the foundations of science does
not rely upon the intervention of God, it does not follow that
the yearning for a higher being who understands man com-
pletely must be abandoned. However, it must be noted that
no consequences can be derived from the fact that this yearning
is motivated by the hope for immortality, To restrict oneself
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to the criteria of sound reason is by no means synonymous
with giving up vision and fancy. It is possible to enter into
a world of very dangerous fancies without fear of inner con-
fusion precisely because one has clear criteria of analysis.
The derivation of social consequences from these fancies and
visions will not be sought simply because such criteria are
recognized.

Such hypotheses as infinitesimals, the ether, or the actual
infinite of Cantor had their source in phantasy unregulated
by the principles of sound reason ; their creative role depended
upon the fact that what was really of value in them could be
absorbed in a system of science based upon sound reason.

No one would seriously propose a mechanization of life
and science in such a way that creative imagination and
fantastic and ominous thoughts would be completely
eliminated ; the forebodings of some philosophers are indeed
pitiable. But even more ludicrous is the fear that prejudices
will disappear so that life will lack colour and be converted
into a sheer vegetable existence. Prejudices are never lacking,
for from the ashes of old prejudices arise in our times much
more menacing and at the same time amazingly fantastic ones.
Likewise there need be no fear that the mechanization of life
at any time will advance too far. The alleged mechanization
of life in our times is a typical illusion of perspective. I am
convinced that a postal clerk in a small provincial town to-day
has a much more varied life than the nobility of former times,
who spent their days as uninterestingly as the stones in their
castles. Even more noteworthy is the fact that they have
greater exuberance of temperament and sometimes equally
savage passions. It is most amusing that the most ardent
defenders of individualism are people of whom it can be
predicted in advance what they will be doing in the course
of any day during the next few months. Many such examples
could be given. I will only add that in the same category
should be included the fear that foods will completely disappear
when they are being destroyed in bulk, and that the great
majority of people will suffer from hunger.

This misunderstanding arises because thorough criticism
based upon sound reason is lacking and is dictated by that
malicious force slumbering within the human organism which
Nietzsche called the ““ spirit of gravity ”.1

1 Friedrich Nietzsche: Thus Spake Zarathustra, translated by Thomas
Common, Modern Library Edition, New York, Third Part, Ch. LV, pp. 198-202.
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It is certain, for example, that if all mankind were castrated,
as the eugenics societies seem to wish, very disturbing changes
would occur. But it must be explicitly noted that all such
thoughts are the product of irrational metaphysics and lack
of criticism. To save mankind from such extravagances of
over-refined intellectualism a defence of sound reason and the
logic based upon it is necessary. For this reason a merciless
criticism of prejudices, conducted consistently and stubbornly
and using all the means at our disposal, is necessary. I think
that the worthiness of this aim will repay the trouble taken
a hundredfold.

I cannot hide that the labour involved is very great and
its possible results may be very small. But such is the fate
always of every great human endeavour. Woe be to him who
does not wish to reconcile himself to this great law of life.



APPENDIX
THE FUNDAMENTAL SYSTEM OF SEMANTICS?

The general account of Chwistek’s system presented in the
Introduction does not explain the elaborate technique which
he has introduced for the reduction of mathematics to
semantics. This technique is not only very difficult but is
relatively unfamiliar even to readers well-versed in recent
logical literature. For this reason it seems worth while to
present a critical account of Chwistek’s system,? in order to
forestall some of the difficulties the reader is likely to
encounter in reading the technical portions of The Lumits
of Science. The attempt will be made to offer an explanation
of Chwistek’s views, which is consistent with his own intent
and at the same time takes into consideration some of the
interpretations made by other writers.

Chwistek’s entire construction depends upon the acceptance
of what he calls ““ intuitive ** logic (165), to which the rules
of semantics are themselves subject. His use of the adjective
“intuitive ”’ seems to have nothing in common with any
of the usual interpretations of this word.* ‘What he has in
mind is a set of three simple forms for the rules of semantics 4
which contain a minimum of everyday language, and two
simple rules of reasoning  to be applied to sentences obtained
from these forms. Such a logic is “ intuitive ” in the sense
that it is never subjected to further analysis but is accepted
uncritically and without question as conforming to our
usual habits of thought.

1 Familiarity with Section II of the Introduction, which presents a
general picture of Chwistek’s aims and methods 1n constructing his system of
semantics, will provide the reader with the background necessary for under-
standing what follows.

* ‘While in the main this account is developed in such a way as to parallel
Chwistek’s own account, it must be regarded as a supplement to and not
a substitute for Chwistek’s presentation of his views.

8 For example Chwistek rejects the dependemce of mathematics upon
“ intuition ’ in the Kantian and constructivist sense of the term (1.e. sensuous
intuition of space or time).

tie. “Eisan expression ”, “ Eis a theorem ”, and “ If X, then ¥ ",

5 i.e. a rule of substitution for the variables E, X and ¥ on whose applica-
tion the enumerated forms would become sentences in everyday language,
and a principle of modus ponens or detachment (a rule to the effect that if
two sentences of the form “ If X, then ¥ * and ““ X are true, then a sentence
of the form Y ” is true).
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Some logicians seem to have confused the rules of Chwistek’s
formal system with those of his “ intuitive *’ logic.? They
maintain that Chwistek’s failure to distinguish between an
object language and its syntax language leads him to confuse
the concepts of these two languages. However, a careful
examination of Chwistek’s system reveals that while Chwistek
includes an object language and its syntax language within
the language of semantics, the concepts of these two sub-
languages of semantics are by no means used interchangeably.

Nevertheless it seems that Chwistek gains no real advantage
by relying upon this ““ intuitive " logic. His reason for pro-
posing that such a logic be made the basis of all further
study is two-fold. In the first place it is the simplest possible
““logic ”” with which he is familiar.2 Secondly it is a device
which serves to eliminate the need for an infinite hierarchy
of languages required when a distinction is drawn between
a language and its “‘metalanguage ”.?> However, it would
seem that the relatively simple form of “ intuitive” logic
complicates the structure of the language of semantics,
Chwistek’s main concern. On the other hand, with the help
of the distinction between a language and its “ meta-
language ”’, it is certainly possible to obtain precision, to
eliminate in actual practice all reliance upon the infinite
hierarchy of languages to which Chwistek objects, and to
obtain relatively simpler systems than Chwistek’s system
of semantics. = Moreover in a certain sense Chwistek’s
“ intuitive *’ logic functions as a ““ metalanguage .

Chwistek calls his formal system, which is governed not
only by the rules of “ intuitive >’ logic but by the principles
of sound reason, the ‘fundamental system of semantics >.
This system contains three systems, which are specified by
laying down appropriate rules for constructing expressions
and for deriving theorems. The set of rules (rules for

1 Cf. Professor W. V. Quine’s review of N.F.F.M.in The Journal of Symbolic
Logic, vol. 3, 1938, pp. 120-1. Dr. Quine fails to note that Chwistek offers
two distinct rules of substitution, one rule, which is part of his formal system,
which governs the substitution of constant expressions for constant expressions
in constant expressions, and a second and more familiar rule formulated in
his ““ intwitive ” logic, concerning the substitution of constants for variables
1 functions.

3 “It” ['intuitive’ logic] “is really the poorest logic I know,” says
Chwistek in a letter dated 20th July, 1939.

8 ie. the distinction between a language and its ‘‘ metalanguage ” requires
a similar distinction between the ‘“metalanguage’ and its ‘° meta-meta-
language ”’, etc.
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expressions), denoted by (R E), is sufficient to construct
all the expressions with which semantics deals. The set of
rules (rules for the auxiliary system), denoted by (R 4),
is used in deriving the theorems of the calculus of propositions.
The set of rules (rules for proper systems), denoted by (R P),
is utilized in deriving theorems of the utmost importance in
the calculus of classes and in certain portions of mathematics.

THE SYSTEM OF EXPRESSIONS (E)

The system of expressions (E) is obtained by applying the
rules for expressions (R E) and the rules of * intuitive >
logic. When this system is regarded merely as a set of
theorems obtained by applying these rules, Chwistek’s
construction presents no real difficulties. The rules for
expressions (R E) consist of two rules which permit the
construction of an unlimited number of expressions, and are
formulated as follows :

“ ¢ 1s an expression,”’

“If B and F are expressions, « BF is an expression.”
The following expressions are typical of those which can be
derived by the application of these rules: “¢,”” “sxeec,”
“wxcexce”’ “wcwce” “wsxccc.” While these rules
govern the formation of all expressions, they do #of con-
stitute a general definition of expressions since the first rule
is itself a statement of semantics.?

Obviously but four signs are involved in the rules (R E),
% “¢,” “E” and “F”. Thesign “ ¢ ”” must be a constant
expression, for if on the basis of the first rule a sign such as
“§” were substituted for “¢”’, an expression would not
be obtained. On the other hand the letters “E”’ and “F”
must be regarded as variables.? Otherwise the second rule

I3

! In this commection it is somewhat difficult to accept Chwistek’s con-
ventional decision to imterpret signs as expressions (85), for although “¢”’
1s an expression, ‘& ” by itself 1s not an expression although 1t 1s a sign.
Chwistek uses the term ‘‘segment” to demote amny series of consecutive
signs which are constituents of an expression. The fact that a segment of
an expression is not necessarily an expression, but may contain any number
of signs (88), makes it impossible to prove a number of familiar syntactical
theorems concerning the expressions of the fundamental system of semantics.

2 It is curious that in his fundamental system of semantics, Chwistek
insists that variables which denote starred expressions are to be printed in
the same kind of type as are the constant expressions themselves In his
earlier chapters Chwistek imposes no such restriction The consequence of
this procedure is that the distinction between a variable and a constant
expression is not immediately obvious.
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in combination with the first would not permit the con-
struction of an unlimited number of expressions. However,
the domain of substitution of these variables is restricted to
expressions and the variables themselves do not appear in
the theorems of semantics. The elimination of these variables
is possible (166) only by the use of verbal definitions. How-
ever, these definitions also contain some signs and their
use would involve a series of detailed descriptions.! Thus it
may be concluded that the second rule supplies the pattern 2
“«EF”3 of all expressions with the exception of the
expression ‘¢ ”’.

In general the theorems of the system of semantics can
easily be derived by the application of carefully specified rules.
Nevertheless considerable diversity of opinion arises in
connection with the proper interpretation of these theorems.
Differences of opinion can be found even at this early stage *
in connection with the interpretation of the two-place star
operator. Chwistek himself offers two distinct interpretations
of this sign. In one context he maintains that it is used as
a parenthesis,® i.e. as a punctuation mark. On this interpreta-
tion semantics might well be regarded as an object language
constructed by the iteration of a single sign “¢”. It could
not, however, contain any syntactical theorems. In another
context Chwistek interprets the star operator as the sign of
juxtaposition of expressions (84). From this point of view
semantics could be interpreted as a syntax language based
on two primitives, “« ” and “e¢”. Unfortunately for this
interpretation some of the theorems actually derived by

1 Cf. K.P.Z., pp. 292-3.

3 In algebra it is customary to represent the gemeral form of a limear
equation as follows: Ax 4+ By 4+ C = 0. Theletters“4 ", B”,and“ C”
denote any constants, the letters “x > and ‘“y *’ any variables, ** 4 ” and
“ = ” are mathematical operators, and “ 0’ denotes the number 0. From
this general form or patlern it is possible to derive any number of linear
equations by assigning values to the letters “d4”, “B” and “C".
Analogously a 1Pattem is a device used in semantics to indicate the form of
expressions. The pattern “«EF ”, for example, is used to indicate the
form of all the expressions of semantics. The sign “ « " is a semantical
operator, the letters “E’ and “F " are variables, for which it is possible
to substitute any expression. From this pattern it is possible to obtain an
unlimited number of expressions.

3 Although there is considerable diversity of opinion comcerning the
interpretation of * &, it 1s possible to comstrue this sign as an operator.
It should be observed that Chwistek places all operators before rather than
between the expressions which they govern. This is done in order to avoid
the use of such punctuation marks as brackets and parentheses.

4 je. in the system of expressions (E).
8 Cf. NNF.F.M., p. 2.
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Chwistek turn out to be theorems of an object language.
It would therefore seem that semantics is an object language
based upon two primitives, “ « > and “ ¢”’. Unfortunately,
however, some of the theorems of semantics are syntactical
theorems. Although the possibility that semantics is a new
device which states the syntax of a language within that
language still remains to be eliminated (297-8, 310), it should
be said that semantics must be interpreted as a language
based upon two primitives, ‘ « ” and ‘“ ¢ ”’, which consists
of syntactical statements and statements in its object
language. On this interpretation the star operator would
be used as the sign of juxtaposition in the syntactical state-
ments and either as an operator ! or as a punctuation mark
in the theorems of the object language.

THE AUXILIARY SYSTEM (4)

It has been pointed out that it is possible to construct an
unlimited number of expressions by the application of the
rules for expressions (R E). However, while “¢” is the
fundamental element of all expressions, “ ¢ itself has no
meaning.? Similarly expressions which are combinations of
the signs “ ¢” and “ « ”’ have no meaning. However, when
Chwistek develops the auxiliary system (4), i.e. the system
obtained by applying the rules for the auxiliary system
(R A) and the rules of *“ intuitive ”’ logic, he assigns meaning
to certain expressions of the latter kind in order to develop
the elementary logical calculi.?

The actual formulation of the rules for the auxiliary
system (A4) is given in terms of familiar ¢ syntactical, logical
and mathematical concepts, which are correlated with
certain of the expressions of the system of expressions (E).
This correlation is presented in a table of abbreviations
(166-7). Abbreviations function in Chwistek’s system as
nominal definitions and consequently can in theory be
eliminated. Since, however, only expressions which have
abbreviations are regarded as meaningful, the interpretation
of semantics as a device which states the syntax of a language

1 This operator has never been interpreted.

2 C{. NNF.F.M.,, p. 2.

3 The set of rules (R A4) is also sufficient to develop what Chwistek calls
the elementary semantical calculus.

¢ An occasional new concept is introduced, e.g. the concept of substitution

(300).
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within that language must be rejected. It should also be
pointed out in connection with the table of abbreviations,
that reference to a specific system is always implied although
not specifically stated.! For example, “ .0 L ” is an abbrevia-
tion of “ « LL ”’ only in the auxiliary system (4). Moreover
since the rules for the auxiliary system govern only those
concepts of the system of expressions (E) which are con-
sidered in the table of abbreviations, the auxiliary system (4)
deals with a sub-class of the expressions of the system of
expressions (E).

It is in connection with the auxiliary system (4) that
Chwistek first introduces the theory of types into the system
of semantics. It should be recalled that two distinct theories
of types, the simple and the branched theory, were proposed
for the elimination of the paradoxes of the theory of classes
(xxxiv-xxxv). Chwistek himself at different times advocated
each of these theories (xxxv-xxxviii). Nevertheless his aware-
ness of the difficultiesinvolved in both these theories led him to
seek a new theory which would eliminate all the paradoxes
and yet avoid these difficulties.? The concepts involved in
this new theory, which may be called the semantical theory
of types, will now be explained.

A type is ascribed to every expression of the auxiliary
system.? Types are indicated by the expression ‘¢’ and
the natural numbers. The general rules for determining the
type of an expression are the following: Any expression
containing a star and two expressions of type K is an
expression of type K. For example, “ « ¢ ¢ ™ is an expression
of type ¢. Any expression .0 K is an expression of type K.
Consequently the expression “««ce¢#¢c” is an expression
of type 0, since 0 is defined as « ¢ ¢. Any expression of type K,
which is not an expression of type .0 K, is an original expression
of type K.# This does not mean that an original expression
of type K cannot also be an expression of type K. Thus

1 Cf. K.P.Z., p. 295.

2 For example, the assumption of the existence of individuals and of an
infimite number thereof (152-5), which characterizes the attempt to eliminate
the paradoxes by means of Russell’s simple theory of types, is unnecessary
in view of the fact that semantics deals solely with constructible expressions.
The system of semantics contamns no ‘‘ ideal ” objects On the other hand
it is possible to formulate the axiom of reducibility of the branched theory
of types (156) in modified form (189-190) in consequence of the particular
concept of type which Chwistek utilizes (170).

3 However, in Chwistek’s elementary comsiderations reference to type 18
implicit. The only expressions considered are of type c.

4 “ Orniginal expression *' 15 a technical term defined as indicated.
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0 ” is both an expression of type ¢ and an original expression
of type e. Itis an expression of type ¢ because it is composed
of a star and two expressions of type ¢. But it is also an
original expression of type ¢ since it is not an expression of
type 0. The type of an expression is fixed in a given context,
although from the pattern of an expression, all of whose
constituents are variables, it is possible to derive further
patterns, each of which has a different type. The type of
a pattern then is independent of the type of the variables
contained therein. The most interesting feature of Chwistek’s
theory of types is the fact that an expression of type .0 K
is simultaneously an expression of type K. For example,
the expression “17”, iie. “sxcewcec’’, is an expression
of type 0 and an expression of type ¢.? It should be noted
in this connection that just as the theory presented is
a theory of semantical types, the paradoxes in question
become semantical paradoxes. The rules of this theory
of types are not, however, contained among the rules for
the auxiliary system (R 4) (168).

The following comments upon some of the important
concepts of the auxiliary system (d4), introduced in the
table of abbreviations (166-7), is designed to be of aid 1n
understanding the development of the fundamental system
of semantics. Each of these concepts is introduced as a
pattern for expressions of the auxiliary system (4). These
patterns contain the variables: E, F, ... which, although
they themselves do not belong to the system of semantics,
denote constants of this system. The patterns considered
are of two types: L and e. However, the patterns of type L
are not constituents of the rules for the auxiliary system
(R 4). Their only function is to permit the derivation of
patterns of type e. The actual expressions of the auxiliary
system (4) are all of the latter type.

The fundamental concept of the auxiliary system (4) is
the concept of integers.? Integers are denoted by the patterns :

¥

1 It 1s this characteristic which permuts the formulation of the axiom of
reducibility.

3 It is this fact that suggests the possibility that the technique of semantics
has some analogies to the process of arithmetizing a language. Just as it is
possible to arithmetize geometry by introducing numencal co-ordinates in
such a way that every geometrical configuration can be replaced by relations
between numbers, it is possible to correlate with every expression of a language
anumber 1n such a way that every statement of the language can be replaced
by an arithmetical relation. The first extemsive use of the process of
arithmetizing a language was made by G&del.
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OL, 1L, ..., where “L” denotes the type of the integer.
It develops that any integer of type L is not only reducible
in practice to an integer of type ¢, which Chwistek calls a
fundamental integer, but frequently must be so reduced if
any sense is to be assigned to certain of Chwistek’s procedures.
Yet in Chwistek’s system the latter concept is defined in
terms of the former. This is indeed a curious state of affairs.
Chwistek introduces certain auxiliary expressions which he
calls asymmetrical expressions. These expressions are denoted
by the patterns: JILand JIL.? With their help he is able
to reduce the calculus of propositions to the system of
semantics. This procedure stands in marked contrast to
Chwistek’s elementary considerations where the semantical
and logical expressions are sharply distinguished.

Chwisték now defines the fundamental concepts of the
propositional and semantical calculi, the pattern of the
stroke operator and the pattern of substitution. It should
be noted that neither of these concepts are primitive concepts
in Chwistek’s system. The stroke operator, originally
introduced by Sheffer, is represented by the pattern: /EF,
which is read ““ Not both E and F*'. With the aid of this
pattern the entire calculus of propositions can be developed.
It should be noted that Chwistek permits the substitution
of semantical as well as logical expressions for the variables
of this pattern. He also introduces a new pattern which he
calls the pattern of substitution. It is denoted by the symbol :
(EFGH), which is read

“H is the result of the substitution of G for F in E *’.
This pattern, which concerns the substitution of constant
expressions for constant expressions in constant expressions,
is the basic concept of the semantical calculus and is defined
solely in terms of semantical concepts.

Chwistek’s introduction of the pattern of semantical
identity: =EF, which is to be interpreted as
“E is identical with F”, is of special interest because this
concept has an important function in the development of
arithmetic. The fundamental role of integers in the system
of semantics has already been noted. One consequence of
this fact is that Chwistek does not need to draw a distinction
between the identity of integers and semantical identity.

Chwistek also makes use of the concept of inclusion.

1 Reference must be made to the table of abbreviations (166~7) for exact
definitions of the various concepts under discussion.
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This concept is demoted by the pattern “{EF }” and
may be read “F is contained in E”. For example,
“ ¢ is contained in « ¢ ¢ *’ is denoted by the symbol : { v ccc }
or the symbol : { 0 ¢ }. Itisobviousthat ““ « ¢ ¢ ” is contained
in “«cc¢”. However, since Chwistek defines the concept
of inclusion in terms of the pattern of substitution, and the
patterns of logical negation and logical alternation, it is
not a purely semantical concept. Some logicians, among
them Chwistek’s pupil Hetper, maintain that the goal of
semantics is the derivation of all possible theorems from the
concept of inclusion and the concepts of the logical calculus
by the application of the rules for the auxiliary system (R 4).2
On this interpretation inclusion is a purely semantical
operation. However, this interpretation makes Chwistek’s
reduction of logical concepts to semantical ones pointless,
since there can be but one purely semantical concept. More-
over no use could be made of such other semantical expressions
as the auxiliary asymmetrical expressions. Furthermore
Chwistek’s reduction of logical concepts to semantical ones
is not made merely for the sake of elegance. It has a definite
positive function which is exemplified in the elimination of
the ambiguities involved in the concept ‘‘ proposition .

It is of some interest to observe that the word “ expression ™
never occurs either in the auxiliary system (4) or in the
proper systems (P), which are derived by applying the rules
for proper systems (R P) and the rules of ““ intuitive " logic.
It can therefore be inferred that the rules for expressions
(R E) are used primarily as a means of identifying expressions.
The concept : Expr E of the auxiliary system (4), which is
defined by the pattern “ = EE ” and which may loosely be
rendered as ““ E is an expression ”’, is introduced for a different
purpose. It is used in the derivation of theorems of the
auxiliary system (4), e.g. in the derivation of the * axioms ”’
of semantical identity. Similarly “ Prop E *’, which is defined
by the pattern: ) EE, and which may be read

“E is a proposition ”’,
is used in the derivation of the * axioms *’ of logical identity.

1 Although the concept of inclusion is not a purely semantical concept
in the system presented in the text, this fact is unimportant because Hetper
has shown that the pattern of substitution can be derived from that of inclusion
and these same logical concepts. Cf. W. Hetper : ‘‘ Podstawy semantyki *’
(“ Foundations of Semantics ”), Wiadomosci matematycany, t. xlili, 1938,
pp. 82-6.
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As has already been pointed out, the rules for the auxiliary
system (4) are sufficient for the development of the elementary
calculus of propositions. While in the main Chwistek wishes
to retain the usual results of this calculus, in his construction
of the auxiliary system (4), the concept “ function” dis-
appears, not because there is no essential difference between
the operations performed on functions and those performed
on propositions, but because the auxiliary system (4) is
constructed in such a way that only expressions of type ¢
appear. Variables are found in the rules of procedure (R 4),
ie. in the patterns involved therein, but never in the pro-
positions derived by the application of these rules. Con-
sequently in the auxiliary system (4), such a fundamental
principle as the axiom of logical identity takes the form of
a series of theorems in which all the constituent expressions
are of type ¢ and in which the desired property is attributed
to certain of the constituent expressions. Thus it can be
shown that: :

)00 is a theorem,
Y11 is a theovem,
) 22 is a theorem,
>(0000)(0000) is a theorem, etc.,

To demonstrate theorems of this kind Chwistek finds it
necessary to introduce the new concept of substitution,
represented by the pattern (EF G H) (300). This kind of
substitution does not replace the substitution of constants
for variables (89-90, 167) but is a supplementary device.
However, in the auxiliary system (4) Chwistek finds it
impossible to prove that:

) DD s a theorem.

Chwistek develops the calculus of propositions with the
help of the more basic science, semantics, because of the
disagreement prevailing among philosophers and logicians
concerning the nature of propositions (110-1). He wishes to
retain the defining characteristics proposed by Aristotle for
propositions, i.e. the possession of one of the properties,
truth or falsity,? but finds this possible only if propositions
have completely and precisely determined meanings. Since
he maintains that it is possible to obtain such propositions
only if they are defined in terms of constructible expressions,

! Chwistek takes this position in view of hus insistence upon the principle
of contradiction as one of the basic principles of sound reason.
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Chwistek suggests that it is necessary to develop the theory
of propositions in terms of the concepts of semantics.

In a letter dated May 28, 1939, Chwistek writes as follows
concerning the interpretation of propositions (169): ‘ Such
symbols as (0000) have no individual meaning. They
are not names at all. To have significant propositions we
must assume that (0000 ) is true ” [or false] ** or that it is
a theorem ”’. Since, however, the concepts ‘ truth” and
“falsity *’ are absent in the final interpretation of a pro-
position, they are auxiliary ideas employed only in the
actual process of interpreting a proposition. It is therefore
clear that Chwistek supplements the language of semantics,
by a special language, which he calls the ‘language of
interpretation ”’. Similar remarks are, of course, relevant
to all the patterns and expressions of the auxiliary system (4).

In the “ language of interpretation ” the concepts ‘‘ true
symbolic proposition ”’ and ‘‘false symbolic proposition ”
are regarded as primitive.! The application of the rules of
this language to the auxiliary system (4) seems to take place
in two steps. The first step involves the interpretation of

“Prop (0000)is atheorem™ as “(0000) is a true
symbolic proposition ™.

The second step is the interpretation of the latter result as
0 is the result of the substitution of 0 for 0 in 0 .

It should be noted, however, that the proposition
“Prop (0000) ¢s a theorem ™’

must be distinguished from the proposition
“(0000) is a theorem ™

even though both these propositions have the same interpreta-
tion.? Similar complications arise in connection with the
interpretation of ‘ Expr 0 is a theorem .

In spite of this difficulty Chwistek uses the rules of the
‘““language of interpretation’ to support his contention
that it is unnecessary to distinguish an object language and
its syntax language by means of a specially introduced
symbolism. His position is developed with the help of an
illustration borrowed from everyday language, which employs

1 Cf. letter of August 25, 1939.
2 Cf, N.F.F.M., p. 5. Changes in type have been made in conformity with
the typographical rules indicated in the preface.
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both French and English.? The reader is asked to consider
the proposition :

“Socrate est un homme” est une proposition vraie, puisque
Socrate est un homme.

If this proposition is translated into English it becomes :

“Socrate est un homme” is a true proposition because
Socrates is a man.

Chwistek points out that in the translated proposition
the sentence ‘‘ Socrate est un homme ~’ appears only once
although in the original proposition it appears twice. He
suggests that analogously when

“/((0000)000)(0000) ¢s a theorem”

is properly interpreted,? the expression “(0000) " like-
wise appears only once. He maintains that since no confusion
is possible under these circumstances, there is no need to use
quotation marks to make the meaning of this proposition
clear. However, even if it is granted that no confusion is
possible concerning the interpretation of the proposition
under consideration, another proposition can easily be
constructed, the meaning of which is not immediately obvious
without the help of a distinction between a language and its
“metalanguage . For it is impossible to give an adequate
interpretation of the proposition :

“/Prop (0000) (0000) s atheorem”

on the basis of the rules presented by Chwistek. Even a
cursory glance at this proposition reveals that its two con-
stituents have the same interpretation. Thus Chwistek’s
claim that no confusion can possibly arise in connection with
the interpretation of the propositions of semantics is
invalid.

With the help of the apparatus already set up Chwistek
is in a position to define the rational numbers and to construct
the patterns for operations upon both integers and rational
numbers (94-9). But he is not able to prove the theorems

1 Cf. F.S.E., pp. 90-1.

? “It is not the case that 0 is the result of substituting 0 for 0 in (0000 ) and
that 0 is the result of substituting 0 for 0 in 0 ” is the interpretation of
“J((0000)000) (0000 )is atheorem .
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he discusses in this connection, because the rules for the
auxiliary system (R 4) include no rule of (semantical)
induction.? Moreover since Chwistek’s definition of classes
depends upon the use of quantifiers, he cannot as yet construct
patterns for real numbers. However, there seems to be no
good reason why quantifiers, propositions containing
quantifiers and classes could not be discussed at this stage.
Of course the discussions of these subjects which could be
conducted at this time would not be the most general ones
possible, since only specific constant expressions could be
considered. For example, while Chwistek could derive the
theorem: = 4112, he could not derive the theorem :
= + aa2a, where “ 2’ denotes any integer.2

THE PROPER SYSTEMS (P)

With the introduction of the proper systems (P),% Chwistek
passes to more interesting and original lines of thought.
These proper systems are developed in such a way that while
their expressions belong both to the system of expressions (E)
and to the auxiliary system (4), a distinctive symbolism is
employed which indicates that in this context they are to
be regarded as expressions of the proper systems (P). The
abbreviations and rules are formulated in terms of the real
variables“ M 7, “ N ”, .. ., which denote expressions, although
the proper systems themselves do not contain these variables.
It is impossible to give a complete analysis of proper systems
within the limits of this appendix. The few hints given
concerning their interpretation and content are designed
merely to aid the reader in understanding this difficult
portion of the text. The discussion will be conducted in
terms of elementary systems, which are sub-systems of
proper systems. An explanation will be given only of patierns
of proper systems, although illustrative material will be
drawn from specific proper systems.

Where “M’’ and “N* are integers, and “L " is either

1 j.e. Chwistek cannot show that if any number has a given property, its
successor also has this property.

2 In ordinary mathematical notation, these theorems would be written :
1+ 1= 2and a + a = 2 a respectively.

3 The proper systems (P) are systems obtained with the help of the rules
for proper systems (R P) and the rules of ‘* intuitive  logic.
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»

the expression “ ¢’ or an integer, if N 4 1 is contained in
M and if the integer of the form: «LL is contained in N,
then “E[MN]L” is an elementary system.! Con-
sequently it is possible to construct elementary systems
whenever M >N+ 1, and N> «LL  For example,
“EEL[10]¢” is an elementary system since 1 =0 + 1,
and 0 = « ¢ ¢. It is obvious that a proper system: [MN]
contains all elementary systems which have the same values
for the variables “M "’ and “ N ”. Thus the proper system :
[21] contains the elementary systems: [=[21]e¢ and
EL[21]0.

Variables are now introduced into the system of semantics
(171).2 These variables are of two kinds, semantical
and logical. On the basis of the table of abbreviations the
distinction between them is obvious, although in practice
it is not clear (111-12). Every semantical and logical
variable is either a real variable or an apparent variable.
The symbols or patterns: ogy, Prr, ... and agyp, ey, - - -
which are abbreviations of the patterns “ « « JX1g IL ”,
“ex JK2¢ IL”,...and “#« JIK1gIL"”,  #« JIK2¢ IL",...
are said to denote variables of the system: pE[MN]L
provided that +« LL <N+ 1 <K <M? “K?” is said to
indicate the type of the variable. But these variables are
also original expressions of type L (175). Thus “x;.”
is a variable of the system : [10],sincexc¢c<04+1=1=1.
The type of this variable is 1.4 On the other hand this variable
is also an original expression of type e.

On the subject of variables Chwistek comments as follows :
“ The use of expressions as variables is connected with types.
For example, %, , is a variable in the symbolic proposition
= X; X% o [ 0], but it is a constant expression in the symbolic
proposition = x; X, , [¢] ” * because it cannot be discussed

1 The purpose of this account is to enable the reader to understand
Chwistek’s general intent with respect to proper systems. It is not a rigorous
account, but rather an interpretation or translation of Chwistek’s views.
Consequently free use is made of familiar terminology, especially of arithmetical
notions. Such notions are readily identifiable since ordinary mathematical
conventions concerning the type and order of symbols are followed.

2 These variables must not, of course, be confused with the variables
“M”, “N~”, ... which are not variables of the proper systems (P) itself,
although they are found in the rules governing these systems, and in the
patterns of the variables now under consideration.

# Symbols which satisfy this condition are called ** real variables *’, provided
they do not also satisfy the condition indicated below (308).

¢ Obviously then the expressions of the proper systems (P) need not be
of type ¢ as was the case in the auxiliary system (4).
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by means of axioms of type 0 .2 In other words the symbol
“%; . is not consistently used to denote a semantical
variable. Whether it is a variable or constant seems to
depend upon whether ¢ is less than or equal to the type of
the expression of which it is a constituent. To decide whether
this symbol represents a variable or a constant expression,
it is therefore necessary to examine the context in which it
occurs. If it is not a variable but a constant, the peculiar
function of this original expression of type ¢ is not obvious.
If it is a variable it must also be regarded as an expression
of type ¢. In other words the same symbol is used to represent
an expression and what is denoted by that expression.
Furthermore the sense in which the component of a variable,
e.g. “JL"” or “ JJIL"”, cannot be an expression of a proper
system (176) is not clear. For even when such a symbol as
‘“a; . 1s interpreted as a variable, it is an abbreviation of
an expression containing the expressions “.JI1” and
“Je” as constituents.?

It is now possible to enumerate the patterns of expressions
of elementary systems. If “E [MN]L " is an elementary
system, “ 1N is a pattern of expressions of this system.
If “E ” is a logical or semantical real variable of this system,
it is a pattern of expressions of this system. Finally if “E ”
and “F” are patterns of expressions of this system, so is
“«EF”. The theorems of the elementary system :
EE LMN]L and therefore of the proper system: [MN]
are represented by the pattern “jJ= [MN]E ”, where
‘E” stands for any of the various patterns which have
been considered. Consequently “.107”, “a;,”, “op,”,
“w#.Jd0a;,” and “«.10.10” are all expressions of the
system “j [10]c¢”’,and “fk=[10] .10 ¢s a theorem ” is
a theorem of this system. It is apparently possible to
substitute for the variables any integer, any constant
expression denoted by “agy”’, “bgg ... 0r “agr”, “Brr”, ..
or any combination of these constants which contains the
star operator, e.g. any integers greater than “.1N”.3

1 These passages are taken from Chwistek’s letter of May 28, 1939, and
from a letter undated, but written some time between March 4 and
March 28, 1939.

3 In Chwistek’s earlier writings the symbols: ,IL and .JIL do not occur.
The symbols: I (L )and IT (L) are used in their place. Similarly .0 (L) ”
is used instead of “.0L . No distinction is drawn between .0 L and 0y,
Thus a change not only with regard to typography but with regard to

symbolism 1s 1ntroduced in the present work.
3 Cf. F.P.G.T., p. 68.
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Presumably these expressions would be the values of the
variables, since theorems containing the symbol: a,, are
interpreted as theorems concerning the values of a variable
(175-6) in certain cases. In such cases the following condition
is imposed : the type of this symbol must be the same as
the type of the entire expression or proposition of which it
is a constituent. The word “ presumably " is used advisedly
since Chwistek has never specifically defined the concept :
value of a variable.

In Chwistek’s elementary considerations, barred symbols
denote apparent variables. They are distinguished from
the real variables by the imposition of the further condition
that ““ . QL " replaces “X . ConsequentlyL+1=N + 1=K,
ie.L =N =K — 1.1 For example, the system: 2 [20] ¢
contains the propositions with the apparent semantical
variables: &, bo, ..., 1.€. 83 9, D1 ¢, ... a5 constituents. It
is clear that in semantics the same symbol does not function
both as a real variable and as an apparent variable.2 For
example, in the system : [10], the real variables are denoted
by the symbols: a;4 bie -+ %o Prg ... while the
apparent variables are denoted by the symbols: a; ¢, by o, - .
%o Bros- - ?

According to Chwistek while “II [21] a5, @y, ” is not
an expression of the system: [21], it is an expression
of the system: [20]. Consequently although “ it cannot
be discussed in [21], it can be the object of meta-
mathematical research in [20]” (177). However, the
expression : «,; is an apparent variable of both “ [20] "
and “[21]”. The expression “IMI[21] ay, a5, can
therefore be reduced to a combination of the patterns of
expressions of either system. The situation is different in
the case of the proposition :

J[10]o o A(=3:3,,[2]a;,.01c,)[1]x,"

! The apparent variables: agp, bgr ... Oxw Bgy ... of the system:
[ M N ] therefore satisfy the following two conditions :
(1) s LL<N4+ 1<K<M
2)L=N=K-1

.

2 In a single system

3 This notation should be contrasted with that of other logicians who
employ the same symbol to denote both real and apparent variables. The
latter usage of a variable 15 distinguished by the presence of a quantifier.
For example in the function f(#), “#” 1s a real vanable, while in the
function: XIxf(x), where “ X x " 1s the universal quantifier “ for all x,”
%' is an apparent variable. In Chwistek’s system the symbol denoting a
real variable differs from the symbol denoting an apparent variable. Further-
more, each proper system makes use of certain variables and no others.

¢ N.F.F.M., p. 13.
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of system “[207] 7, for this system does not contain the
real variable: ay,. Consequently this proposition cannot
be reduced to any of the patterns of expressions of this
system. Thus on the basis of the second illustration it does
seem possible to avoid paradoxes, although if the expression :
ag,; were employed as an apparent variable, the resultant
proposition could be reduced to the patterns of expressions
of system: [20]. It therefore follows that Chwistek’s
contention : “ an infinite sequence of systems of meta-
mathematics * can . . . be constructed such that each
subsequent system can be investigated in the preceding
system ”’ (164), is irrelevant. Metamathematical research
(in any sense whatsoever) is not involved here, because it
would be impossible to apply the rule of systems [rule 3.4]
(174), since there is no proper system: [2¢].

The notion of a propositional function differs somewhat
from the usual meaning of this term. From a propositional
function it is possible to derive by substitution either another
propositional function or a proposition. On the other hand
no expression containing the symbol: .IL is a proposition
of the system: [ [MNJ]L. Moreover on the basis of the
restrictions Chwistek imposes wupon variables, many
expressions which at first sight appear to be propositions
actually are not.2 It would also seem that ‘‘ semantical ”
as well as logical propositions are possible.?

Chwistek has now introduced the apparatus necessary for
the development of the calculus of propositions and the
calculus of quantifiers in the proper systems (P). It is hardly
necessary to mention that each proper system has its
own set of calculi. As a matter of fact each proper system

1 The meaning of this concept will be considered below (315 ).
* For example “ = [10]II[1¢]ai.a1. " is not a proposition, because
“a3,” is not an apparent variable of the system: [1 0]
“PI20JIE[10]8 o=8;of1e[0]"
is not a proposmon, because “ &1 o’ 1s not a vanable but a constant and
consequently ‘“‘=={; pl19[0]” 1s not a propositional function On the
other hand the quantified propositional function :

= [20]TI[10]Go=@10d10[1].
is a proposition.

3 It is possible to substitute for the real variables of the system: [10]
any integer greater than 2, or any expression of the form ‘“«EF ", where
“E’” and “F” are 1ntegers greater than 2. Consequently in

“E=[10]1a;,1s atheorem >
it would be possible to substitute for ““a;,’’ an expression of the form:
*»++*+x Jc.0E.0F.0@.0H, where “E”, ”F" “@”, “H” are integers.
In that case one would obtain a semantical proposition of the form :
E[10]1(EFGH) [c]is atheorem.
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contains two distinct calculi of propositions. The first
of these calculi is worked out for the particular constant
expressions of the system. It is possible, for example, to
derive: 2 [10]) 8 8 s a theorem. There is no theorem of
this kind in the ordinary calculus of propositions, although
Chwistek develops analogous theorems in the auxiliary
system (4). The second calculus of propositions is more
in conformity with what is usually meant by this term,
since it contains variables as well as constants. For example,
it is possible to derive: EL[10])a .81, %S a theorem,
a theorem which is analogous to the theorem: )  of the
usual calculus of propositions. In this calculus if “a,,”
and “b,,” are constituents of the same expression, they
are two distinct variables. This fact is.indicated in the
table of abbreviations (171) by the correlation of a
definite expression with each variable. Unfortunately, how-
ever, this correlation is entirely arbitrary, since in practice
the expression for which a variable is an abbreviation is
never substituted for that variable. Actually only “ values ”
of a variable are substituted for that variable. Nevertheless
an expression containing these variables cannot be interpreted
both as a logical theorem and as an arithmetical theorem.
In the first place variables are not integers, and although
they involve the auxiliary asymmetrical expressions they
are not rational numbers. In the second place logical operators
are neither eliminated from the system of semantics nor used
autonymously within that system.! Finally semantical
expressions are mere configurations of signs having no
meaning in themselves. Meaning is assigned to them only
with the help of tables of abbreviations. Consequently in
the system of semantics no attempt is made to state the
syntax of a language within that language.

Such is the technical apparatus of semantics.2 Chwistek’s
motivation in developing this elaborate and somewhat
artificial construction can perhaps best be understood in
terms of its applications to various portions of mathematics.
The following table, which summarizes the results of the
above discussion by applying them .to specific systems, is

1 If the same symbol is used both as a symbol of the object language and
as the name or description of the symbol of the object language in the syntax
language, that symbol is said to be used ““ autonymously *’.

¢ It seems superfluous to comment upon the rules for proper systems
(R P), since reference has been made to most of them either implicitly or
explicitly.
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designed to aid the reader in understanding these applica-
tions and the illustrative material supplied by Chwistek
in the text.

3II

Proper | Elementary Real Apparent Constant ]%OI;IS?? of
System System Variables Variables | Expressions | % t1o:11 u-
[10] (= [10]¢ [a10 D16 --.| 810 Dy« | Any expres- [.10
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SESON U Ba1Bas - | Gom ot oLl
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ﬂz@,Bso,-.. *.11.11
*33082 0
[30] [=[30]¢ ala’gla" . 310,210:“- -130 2
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a,,,bs,,... a21»b21:~~' Ans}zoixf(;lées ........
Qo Bao- |G Bop--. type 1
a3y D3o oo [ B39 D3a ..
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[31] '=[31]° a!erbSa:"' A1
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o Bo -y gy | Any s
———————————————— “baa ... ion o ——————
E=E[3110 [ a0 byo, ... [ 382 type 2 11
. Gsonbso,... Uz Bsgr - - * 829820
8o V20 - - | freereeann
dso: Bso - - -
[82] (= [32]c¢ | ascs D50 - - 12
a’a:Bﬁar"~ * 83,83,
E[3230 as0.bso | g Any expres- | .12
, ,...| 382 03 - sion of *8g 08z
%o Bso 39 Bsa - type 8 |.eeienrn °.
E=103211 ) azy ban, .- 12
Q1. B * 331331




312 APPENDIX
Proper | Elementary Real Apparent Constant Eog;é? of
System | System Variables Variables | Expressions utiorlx u-
[40] '= [40]0 a0 b1e--- 810, P10 - - - 10
Qo Bre- - ﬂlo»g;on- * 83,88
89 02 ¢s as 1 1o REEEREEEREE
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ARITHMETIC

Chwistek applies the results of his investigations first to
the arithmetic of integers and of rational numbers. He
severely criticizes those who maintain that the natural
numbers have an independent subsistential existence, on
the grounds that such a conception of the natural numbers
is not only metaphysical, but entails the view that fractions
and negative numbers are fictional (xxiv, n. 1) objects. Chwistek
wishes to introduce numbers in such a way that the integers
have no exceptional status. He believes that he can achieve
this end only if he regards numbers as signs, and arithmetic
as an investigation of the different ways of combining these
signs. While four alternative definitions of fractions may
be given, based upon the concepts: segment, class relation,
expression (56) respectively, Chwistek chooses to define
numbers in terms of the latter concept, since a segment is
a fictional concept (64) and since it is possible to define
classes and relations in terms of expressions.

Chwistek includes an introductory account of the arithmetic
of positive integers and of fractions in his elementary con-
siderations (94-100). His definition of the integers is based
upon the pattern of substitution. This definition and his
definition of the operations which can be performed upon
integers can both be reformulated within the framework of
the auxiliary system (4). This introductory account conforms
to our usual conception of arithmetic, except in so far as it
is impossible to give a proof of the general theorems concerning
the comparison of numbers by the application of induction
(304-5).

However, Chwistek sees no reason why arithmetic should
treat only the fundamental integers.? He therefore proposes
a more general conception of the subject.? It suffices to
remark that in this arithmetic the concept of substitution
is still the basic concept. Although such an arithmetic is
not worked out in the text, Chwistek together with Hetper
has elsewhere presented an outline of it.3 As a matter of
fact he gives two different definitions of integers and

1 je. the famuliar integers 0, 1, ... which are defined as .0¢, .1¢, . and
are therefore all of type c.

3 In other words he proposes to develop arithmetics for integers of various
types, e.g. an arithmetic for the integers .00, .10, . .. and another arithmetic
for the integers .01, .11,... etc.

8 N.F.F.M., pp. 28-31.
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considers the relation between them. First he proposes that
‘“Integer [MN]E "~ be regarded as the abbreviation of:
OLMN]zyxYun) { E«Xux¥ux } [.ON] =2uxyux [.ON].2
“8,° 4, 5,” ..., for example, are integers of the system :
[10], because they are of the form “ « FF”, where “F "
is any integer > 2. Thus integers are defined in terms of
inclusion, semantical identity and implication. Obviously
such an arithmetic can be developed for each proper system.
It is possible, for example, to develop the properties of all
integers > .10 in the systems: [10] and [20] Al
integers > .1 1 can be treated in the system: [21]. How-
ever,since there are no proper systems of the form “ [Me] " 2
it would seem that it is impossible to develop any arithmetic
involving “.0¢” and “.1¢ .2

Chwistek and Hetper develop the arithmetic of the system :
k= [10], which contains at least as many integers as any
other proper system. The comparison of integers is defined
in terms of inclusion and no distinction is drawn between
the equality of integers and semantical identity. Chwistek’s
assertion that there is no need for logical variables in this
construction is invalid even if the concept of inclusion is
regarded as a pure semantical concept, because on his
interpretation of semantics, ‘‘ semantical identity ” is not
a purely semantical concept. On the other hand if substitu-
tion is regarded as a semantical concept, logical variables
are clearly necessary, since inclusion is defined in terms of
logical concepts.

Chwistek’s second definition of integers is based upon the
concept of substitution. *“ Integ E "’ is defined as the abbrevia-
tion of “(«EE.11.01E)”. Thus “83"”, “4”, “5"7,...
are integers because they are of the form “ « FF ', where
“F” is any integer >4. On either of Chwistek’s definitions
of integers it is possible to obtain two distinct sets of theorems.
One set deals with particular numbers, e.g.

! Typographical changes have been made to conform to the present text.
In addition the abbreviation “ Integ ’’ used in N.F.F.M. has been replaced
by “ Integer *’. This has been done in order that there may be no confusion
between this concept and ““ Integ ”’ of the text, which corresponds to “ infeg *
of N.F.F.M.

3 A system of the form : [Mc] L, obviously cannot satisfy the con-
ditton: N >« LL, for even if L = ¢, ¢ £ 0. Consequently there can be no
proper system of the form: [Mec¢]. It mght be added here that the tables
which have been given for proper and elementary systems include all possible
proper a‘r‘x% ilemi:inta.xiy systems for values of “M " up to M = 4.

ie. and “17”,



APPENDIX 315

EL[10].01 is a theorem ;

the other with variables, e.g.

k= [1 0]=Integer«x;,¥1.A =X;,¥;, [1]Integerx, ,isatheorem.
Chwistek’s definitions of the fundamental operations on
integers and of rationals are too complicated to discuss at
any length at this time. It is sufficient to note that the
rationals are defined as pairs of integers. However, an intuitive
conception of Chwistek’s general method can be obtained
from his elementary considerations.

META-SYSTEMS

In addition to the fundamental semantical concepts
already considered, Chwistek introduces still another import-
ant concept, the concept of a meta-system. Unfortunately,
however, certain difficulties arise in connection with the
interpretation of this term. A rough idea of what is involved
can be obtained by recalling that Chwistek asserts that all
propositions in a system of the form: [M.ONJ] can be
discussed in systems of the form: [MNJ] (308-309). On
this view a hierarchy of systems can be obtained for eack M
which is > 2. - One difficulty involved in this view has already
been pointed out. An examination of the tables for the
proper systems (P) (311-312) reveals that the variables of
one hierarchy of proper systems are not identical with those
of another such hierarchy. The hierarchy of systems of the
form: [3N], for example, does not contain the variables :
a3 ... found in some of the propositions in the system :
[4N], which cannot be discussed in the systems: [3N].
Chwistek seems to be aware of this fact, and the concept
of the meta-system is the device which he introduces to
eliminate this state of affairs.

The concept: meta-system was defined formally in an
earlier paper.! The Limits of Science contains only a summary
of this technical definition (178). The symbol : -, (M.1L)F
is an abbreviation of the proposition

“F is a theovem of the meta-system (M.1L) ",
where “L” indicates the type of the meta-system. This
proposition can be constructed either in the system: [.OLL]
or in the meta-system: (.OLL). “F’” is such a theorem
when “L” is an integer and when “(NO.OLM)”,
“(EO0OLF)”, and “"EE[NO]JE " are theorems. If it

1 N.F.F.M., p. 35.
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is a true proposition, “ F” is a proposition obtained by the
application of the rules for the proper systems (R P), where
suitable substitutions and modifications are made.! For
example, in rule 2.4 (173) the type “L” of “E”, “F”,
and of “ « EF” must be explicitly indicated. The type of
such concepts as ‘“ Expr’, “ Prop ", etc., becomes “ 1L ",
For example,

“EL[10] o (32)Fisatheorem”
means that “ F " is a theorem of the meta-system: (32
of type 0, since “0” is an integer and “(2013) ",
“(EO01F)” and “"E[20]E " are theorems. However

“EL[21]F:1(10) -, (382) Fisatheorem”,
is meaningless, since “ [00] " is not a proper system and
consequently “f[00]JE” is not a theorem. Thus
Chwistek’s assertion that “if p [MN] L is an elementary
system, b=, (M N ) L is a meta-system of type L’ does not
seem to hold when “N” is “ 0. On the other hand, the
assertion : |- (MN) F can be constructed in the proper
system: [WOLLJ] or in the meta-system: (.OLL),
provided that “ L’ is an integer.

It is possible to obtain some very curious results by applying
Chwistek’s definition of a meta-system, which point to
certain incompletions in his definition. It is possible, for
example, to derive the following theorems :

EL[10],(32) Fisatheorem,
E [10]]—-0(423Fisatheorem,
EL10],(52) Fisatheorem,

It is also possible to obtain :

EL10]F,(32) 1, (54)Fisatheorem,
= [107 k0 (32) s (64)Fisatheorem,
EL10]1F,(32) 2 (74)Fisatheorem,

1 In stating this condition in the text, Chwistek has had recourse to the
symbolism of N.F.F.M. (cf. pp. 16-21). Two important changes in symbolism.
should be noted. The variables. axy, ... 8xy -. are defined as
“O@O0KEKL” .. ,“QO0KEKL"”, ... where “OEKL" is an abbrevia-
tion of “xx JEOE.IL” and “QEEKL"” of “x+« JIEKE.OEJIL”. The
definition of these variables which is given in the text is more direct. In the
axioms, the type of the expressions under consideration has been specifically
indicated. The symbols :

AxEF(M.1LL)Z and DEFGHJE(M.1LL)XYZ
refer to the rules for proper systems (R P).
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It is impossible, however, to derive the following :

EL10]F,(42) 3 (54)F isatheorem,
EL[10] |-o(42§|—2(64gFisatheorem,
EL10]F0(42) 2 (74)Fisatheorem,

................................

It is obvious that there can be no meta-system :

1 (00) L.* Furthermore, given “L ", the preceding proper
system or meta-system is determined. Consequently the
last three ‘‘ theorems” must be excluded. On the other
hand “ L is always an integer, “ (NO.OL M) ” is always
a theorem, and if “ E " is properly chosen “ (EQ.OLF)”
and “EE [NO]JE " are always theorems. Thus the three
conditions for a meta-system are satisfied, although
“Fo(42)0” is not a meta-system since it is not of the
form: (.OLL). Yetin a previous illustration (316) there
is no reason why “|,(482)0"” cannot be regarded as
a meta-system. This is indeed an odd state of affairs, although
it results from the fact that the sequence of meta-systems
used in formulating a theorem of the system : [10] varies
in length. A definition of a theorem of the system: [PQJ]
should be given such that :
EL[PQIlq (.0.1Q.1Q) }-.,q (.0.1.1Q.1.1Q).1Q.. . is a theorem.
In other words, further conditions must be imposed upon the
variables “M”’, “N ", and “L” in Chwistek’s definition,
if this difficulty is to be avoided. Asa matter of fact Chwistek
is concerned only with theorems of the kind suggested.
Nevertheless it remains impossible to set up a table analogous
to that constructed in the case of the proper systems (P)
so long as this ambiguity remains. Chwistek himself has
never laid down the construction rules for the expressions
of meta-systems. While they might be mferred by analogy
from the table he has drawn up for the meta-systems:
Fo(32)0 and |-, (54) 2, the results obtained could not
be confirmed. If the construction rules for the expressions
of proper systems had been derived from an enumeration
of the expressions of the system: [10], a very incomplete
table would have resulted. As a matter of fact Chwistek’s
enumeration of the expressions of various meta-systems is
even more incomplete. Consequently this method of
constructing a table for meta-systems would be utterly
useless.

1 Cf p. 316.
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When Chwistek introduces the concept of a meta-system

explicitly, he insists that the proposition

“F is a theorem of the meta-sysiem (M. 1L) "

must be constructed edther in the proper system: [OLL]
or in another meta-system: (.0LL). Yet he also asserts
that ““ to any theorem of |z [32] ¢ corresponds a theorem
of =¢ (82) 0" * having the same meaning. Evidently then
these two languages do not have entirely different subject-
matters, although even in the case of an arithmetized syntax
alternative interpretations are proposed. In any case it is
rather curious that any system other than a proper system
should be based upon the rules for proper systems (R P)
and that some of the expressions of a meta-system should
also be expressions of the proper system in which it is
formulated, as in the first illustration. Thus Chwistek seems
to have drawn no clear distinction between proper systems
and meta-systems.

But however this may be, Chwistek’s intent in introducing
the concept: meta-system is not clear. He asserts that
certain propositions, which cannot be discussed in the system :
[21], can be the object of ‘“ meta-mathematical >’ research
inthe system: [203] (177). While he suggests the possibility
of hierarchies of proper systems in which each system is
discussed in the system immediately below it, he does not
specify whether meta-systems are necessary in such dis-
cussions. In any case it is by no means clear whether the
meta-systems themselves form a hierarchy. Even if they do
it would be impossible to proceed from one such system to
that immediately above it in the hierarchy. Obviously then
Chwistek’s conception of a meta-system does not conform
to what is usually understood by the term.

However, the following facts suggest a possible interpreta-
tion of the concept : meta-system Although a pr0p051t10n
whose only real variables are “az;",.. ‘ag, . is
a proposition of the proper system: [4 2] it is "also a
proposition of the meta-system: |-o(32)0.2 Moreover
although a proposition of the proper system : [42] cannot
be a proposition of the proper system: [10], a proposition
of the meta-system: |-, (832)0 can be formulated in the
proper system: [103] . Thus the concept of a meta-system
may be regarded as a device which bridges the gap between
various proper systems.

1 N.F.F.M., p. 35. 3 FPG.T.,p 68.
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CHWISTEK’S THEORY OF CLASSES

The theory of classes presented in the text is the result of
Chwistek’s study over a period of years of the difficulties
involved in previous theories. Cantor’s theory of classes,
for example, is not adequate since, despite adherence to his
stipulations, it is still possible to formulate paradoxes.

Chwistek’s own position with respect to the paradoxes is
not clearly defined. He has always attempted to eliminate
them by the application of a single method. This is not to
say that at different times he did not suggest different devices
for this purpose. As a matter of fact his vacillation back
and forth between the simple and branched theory of types
was caused in part by the realization that one or another
of the paradoxes could not be removed by the use of the
particular method already advocated as sufficient for this
purpose. .

Chwistek has also realized that the possibility of con-
structing the Epimenides paradox?! (41) hinges upon the
ambiguity of the word ‘‘ true ”’,2 and that the concept of
““being a name " requires further analysis.? Nevertheless
he never recognized that the concept ‘‘ definability ” which
is involved in both the Nelson-Grelling paradox (41-2)
and the Richard paradox (77-8) are concepts of the same
kind, all of which are to-day called ““ semantical "’ (xxxvi, n. 1)
concepts. However, until his recent revision of the text of
The Limits of Science, Chwistek never acknowledged the
distinction, first pointed out by Ramsey, between epistemolo-
gical (e.g. semantical) and logical paradoxes (xxxv, n. 1).
He now asserts that ‘“ Logical paradoxes must be dis-
tinguished from semantical paradoxes ”’ (40).4

For this reason it is curious that Chwistek also maintains
that “ the traditional Epimenides antinomy . . . is . . . neither
a logical nor a semantical antinomy . . . it should be called
a dialectical antinomy. It should be noted that it is not a
formal antinomy although it involves the vicious circle
fallacy ” (40-1). It is even more curious that Chwistek feels
that the Nelson-Grelling paradox does ‘‘not depend on

1 Cf. also xxxii—xxxili.

2 Cf. Z.S., p.318.

2 Cf TV.M., pp. 54-5. . .

4 The meaning of the word  semantical ” in this context is not specified
although the addition of this sentence followed my calling Chwistek’s attention
to Ramsey’s distinction.
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facts but is purely formal in character "’ (41). Yet he goes
on to assert that both paradoxes ““ occur only in everyday
language ”* (41).

Thus Chwistek’s present analysis of the paradoxes seems
to be inadequate. For he has not recognized the essential
characteristic of the epistemological paradoxes, their
dependence upon non-logical concepts; and on the other
hand he regards as most important certain accidental
features of the paradoxes, such as their occurrence in every-
day language. Moreover he attributes conflicting properties
to paradoxes of the same kind. Furthermore he tends to
confuse the usage of the adjective *‘ semantical ”’ in current
logical discussion with his own peculiar usage of this
term.

In any case Chwistek seeks to avoid the complete abandon-
ment of the classical theory of classes, which is implied by
the failure to eliminate the paradoxes.! He attributes the
paradoxes to the fact that the objects to be discussed are
not specified (139). This insistence upon the necessity of
dealing only with constructible objects entails the wview
that an adequate theory of classes can deal only with
denumerable classes. He therefore defines classes in terms
of expressions. More precisely propositions beginning with
the general quantifier are regarded as classes. On this view
other important concepts of the theory of classes can be
defined, Huntington’s postulates can be proved and theorems
analogous to those of classical Mengenlehre can be derived
without fear of encountering any of the paradoxes (182-3).

It would be impossible even if it were advisable to analyse
in any detail Chwistek’s theory at this time. The apparatus
which he utilizes in its development has already been con-

1 Chwistek has considered various ways of removing these paradoxes. He
rejects the simple theory of types, for while this theory is sufficient to remove
the paradoxes, the development of an adequate theory of classes in conformity
with its rules requires the acceptance of ‘“1idealistic ”’ existence axioms
(xxxv1, 152-5, 159-61). Russell’s branched theory of types, supplemented by the
Axiom of Reducibility is rejected on sunilar grounds This axiom not only
assumes the existence of predicative classes but the possibility of constructing
for every class a predicative class equivalent to it (156). Moreover 1t follows
from Russell’s premises that all equivalent matrices are i1dentical (c¢f. T.C.T.,
pp. 14-15). Chwistek rejected this theory in favour of a branched theory of
types without the axiom in question. Consequently the classical theory of
classes had to be radically modified. In particular equal classes of different
types were introduced (183-5) It is therefore possible for Chwistek to
speak of a class whose sub-classes are of different types (cf. Z.S., p. 321).
It is obvious that on such a view Cantor’s theory cannot be retaied m 1is
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sidered.? Use of the tables enumerating the expressions of
various proper systems will enable the reader to derive the
theorems of the c¢alculus of classes. It should also be noted
that Chwistek is able to construct the calculus of relations
with the help of this apparatus, since instead of talking
about relations it is possible to talk about the classes of
pairs of elements between which these relations hold (142).

THE FUNDAMENTAL CONCEPTS OF MATHEMATICAL
ANALYSIS

Chwistek has not yet incorporated mathematical analysis
into the system of semantics, although his hope of achieving
this end undoubtedly influenced the form of this system.
‘While he has defined the integers, rationals and real numbers
(and certain operations upon them) with the help of semantical
concepts,? he has never considered either imaginary or hyper-
complex numbers. He has confined his efforts mainly to a
critical analysis of some of the concepts which must be
utilized in formulating the theory of functions of a real
variable.® Their adequacy for the theory of functions of
a complex variable has not been considered. His chief results
in this field may be summarized as follows:

Mathematical functions are not themselves numbers, but
become numbers when numerical values are substituted
for their variables. They are what some logicians call number-
forming functors, i.e. functions which designate or describe
numbers. These functors must not be confused with their
values. An adequate definition of mathematical functions
original form. Cantor spoke freely of the class of all real numbers, in spite
of the fact that, according to Chwistek, this class is an *‘ idealistic *’ fiction.
Chwistek proposes that this concept be replaced by the concept of the class
of real numbers of different types, and thus ‘‘ obtams the nominalistic equiva-
lent of the classical theory of classes . (T.L., p. 125.) On Chwistek’s present
view either the simple or the branched theory can be used to eliminate the
paradoxes, since the need for existence axioms is eliminated by the fact that
only constructible objects are considered. On either theory 1t is necessary

to retain the modifications i1n the theory of classes which Chwistek originally
introduced in connection with the pure theory.

1 1t should, however, be observed that the variables : &y, ...are apparent
vanables of the form: axy, ... where “ K 1s replaced by “ .1 L. For
example, the system : [10] contams the additional apparent variables :
aggs o v o

3 je. 1n terms of his theory of classes.
$ In this context a real variable is one whose values are real numbers.
A complex variable 1s one whose values are imaginary numbers. Functions
of such vanables are not logical, i.e. propositional or semantical, functions,
but mathematical functions.
Bb
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must be given in terms of a new kind of variable, the numerical
variable. Since they are functors they must also be dis-
tinguished from mathematical equations, which are pro-
positional functions stating a relation between two
mathematical functions. A sequence is a relation between
the values of a mathematical function which has integral
variables, although the law governing its formation is stated
as a mathematical equation. On the other hand a series is
a number, determined with the help of a law which is stated
as a functor containing both apparent and real variables.

The following examples will make these distinctions clear :
“sin %’ is a mathematical function of the variable ‘““ x ",
ie. a number-forming functor containing this variable.
“x — 17 is a mathematical function of the variable “ x ,
i.e. a number-forming functor containing this wvariable.
“y =% — 1" is a mathematical equation or a propositional
function, stating a relation between two mathematical
functions. “y " is a function of the variable “y ”’, “x — 1"
a function of the variable “ #”’. The equation is a relation
between two unknowns. Where 2, =#, “a,” and “u”
are mathematical functions whose relation determines the

7
members of the sequence 1, 2, 3, . . . “ =" %" isa functor
k=1
which determines the series :
1+24+34+4+...4un.

Chwistek regards the concept of a limit of a sequence as
the basic concept of the differential calculus. With its help
he proposes to define all other concepts of the calculus.
Actually he has never given a precise definition of this
concept. However, he seems to accept the familiar definition :

eI NOAn)>nN <|L —x,] e

In other words, L is the limit of the sequence : %, %,, . . ., %, if
for every number ¢, there exists a number N such that for
all values of the numerical variable #, if # is greater than N,
the absolute value of L — %, is less than & It can easily
be shown, for example, that 0 is the limit of the sequence :
L1 (1) . The determination of the limit of a sequence
s 3

obviously does not require that any ratio be allowed to become
Infinite, or that any variable be allowed to approach O.
On this analysis, the definition of a limit does not depend
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upon the concept of a differential. This is not to say that
Chwistek has not elsewhere given an analysis of the differential
and sought to develop the calculus on the basis of this
concept (209-216).

Chwistek suggests that mathematical functions be regarded
as expressions. While he has not yet worked out a definition
of a mathematical function in terms of the concepts of
semantics, it is clear that such a definition must satisfy
certain requirements. It must be formulated in terms
of the concepts of proper systems, since all mathematical
functions contain variables. It must make use of a new
kind of variable, the numerical variable. Furthermore a
distinction must be drawn between integral variables and
other numerical variables, in order to give a satisfactory

k2l (14

definition of such concepts as ““ sequence ’, “ series ”’, etc.

This brief survey of Chwistek’s views on logical theory
indicates that except for matters of detail he has fulfilled
his self-appointed task of constructing a formal system in
terms of which it is possible to develop various portions of
logic and mathematics. He has approached this problem
in the spirit of Whitehead and Russell. He has not made
any use of the fundamental distinction between ‘‘ meta-
linguistic ”’ theorems on the one hand and mathematical
and logical theorems on the other. Nevertheless he has
tried to guard his reconstruction of logic and mathematics
against criticisms such as Hilbert, Poincaré, and the
Intuitionists have directed against the logistic approach.



INDEX OF NAMES

Numbers refer to pages. A number followed by n. refers to a footnote on the
page indicated by the number. A number followed by -n. refers both to the
page mdicated by the number and a footnote on that page.

A

Abel, N. H, 62

Ackermann, W., 84, 110-n, 118 n.

Ajdukiewicz, K., 37 n.

Albert the Great, 101, 102

Alcum, 55

D’Alembert, J., 62, 202, 223, 285

Aquinas, Th., 276-n

Archimedes, 197

Aristippus, 44, 283

Aristotle, 8-9, 9 n., 29-32, 29 n.,
30 n., 32 n., 33, 35-n., 36, 51, 57-n.,
58, 60 n., 101, 103, 105, 109, 124-n.,
125, 130, 236-n., 262, 263 n., 268,
289, 302

Aston, F. W., 266

St. Augustine, 236-7, 236 n., 237 n.,
284-n,

Avenarius, R., 280-n., 283

B

Bacon, F, 266

Banach, S., 215-n.

Barrow, I., 198, 199, 200

Bartels, J. M. C., 226

Al Battani, 60

Beltrami, E., 227

Beman, W, W,, 64 n., 143 n.

Bentley, A F., xiii, 37 n, 165

Bergson, H.,, 6, 7, 14-15, 14 n,, 151,
30, 48-n., 108, 192, 193 n, 194,
241, 274-n., 286-n.

Berkeley, G., 47, 218

Bernays, P., 84, 85-n., 122-n., 162-n,,
165

Bhaskara, 57

Al Biruni, 60

Black, M., xxx n., 64, 65 n., 80 n.,
81 n., 165

Boethius, 61

Bolk, L., 5

Bolland, G. J. P. J., 13 n.

Bolyai, F. (W.), 221, 224-n., 225 n,

Bolyai, J, 221, 224-5, 224 n., 225 n.,
226, 227, 232

Bolzano, B., 145

Bonola, R., 223 n, 226, n.

Boole, G, 104, 109, 136-n., 137

Borgh, P., 61

Born, M., 241-n.

324

Brianchon, C. J, 221

Bridgman, P., 246-n, 249, 250 n.
Brodie, H, xi

Brose, H L, 3 n., 227 n.
Brouwer, L. E J, 21, 80-1, 80 n

130-n., 165
Biihler, K., 40-n.
Bukharin, N, 9-n, 47 n., 48-n.,

49-n, 50-1, 50 n., 51 n.
Burali-Forti, C., xxxin, 151-n,
Bussey, G. C, 47 n.

C

Cajori, F., 61 n., 62 n.

Calkins, M. W., 47 n.

Cantor, G., xxx, xxxui, xxxvi, 20,
22, 46, 78, 80, 81, 139-n., 145-150,
145 n., 146 n, 147 n., 150 n., 151,

155, 156, 157, 160, 183, 187-8,
192, 217, 291, 319, 320 n.
Cantor, M., 199-200, 199 n.
Carmichael, R. D., 31-n.
Carnap, R., xiii, 37 n., 133 n,

153-n, 154 n., 272-n.
Carnot, L. N. M., 223
Carslaw, H. S., 223 n.
Cassirer, E., 286 n.

Cauchy, A. L., 62, 202, 209

Cavaleri, B., 198

Chrysippus, 131

Church, A, xiii, 152 n., 191-n.

Clavius, 103

Clough, A. H., 10 n.

Collins, J, 199

Common, Th., 291 n.

Comte, A, 11, 44-5, 46

Conderc, P., 4 n.

Condillac, E., 47

Copernicus, 15-16, 220, 225

Couturat, L., 65, 106, 107, 108, 109,
268 n.

Crombie, Fr., 237 n.

Curry, H. B., xiii

D
Dalagranus, 104
Daniel, 265
Le Dantec, F. A, 20
Darwin, C., 7, 40, 220



INDEX OF NAMES

Deborin, A., 49 n., 286 n.

Dedekind, R., xxx, 64 n., 74-5,
74 n., 143-n.

Delacroix, H., 33-n, 34-n.

Dendy, H., 105 =n.,, 165 n.
Descartes, R., 47-n., 254, 278,
285-n.

Dickson, L. E., 54 n., 55-n.
Diderot, D., 47-n.

Dirac, P. A. M, 215
Drewnowski, F., 86 n.

Driesch, H., xxi1 n., 5-n.

Dryden, J., 10 n.

Diihring, E., 200-n.

Duns Scotus, J., 102

Dupréel, E., 6 n., 273-n.

Durand, Wm. de St. Pourgain, 43

E

Eaton, R. M., 285 n.

Eddington, Sir A, 4-n., 239-n., 277,
278 n., 282

Einstein, A., 3, 7, 11, 16, 60, 220,
235, 242-6

Eleatics, 192

Engel, F., 226-n.

Engels, F., 49, 261, 279, 286

Enriques, F., 104 n., 105 n, 106 n,
145 n., 221 n., 222 n.

Epicureans, 131

Eubulides, 35, 41

Euclid, 103, 160, 217, 218, 219, 220,
221, 223, 226, 233, 238

Eucken, R., 289-n.

Eudoxus, 57

Euler, L, 134-5

F

Fathers of the English Dominican
Province, 276 n. .

Fermat, P. de, liv, 198, 254

Feys, R., 107-n.

Fibonacci, L., 61

Fitzgerald, G., 246

Fleck, L., 286 n.
Fourier, J., 223
Fraenkel, A., xxxv1 n., 147 n,

148-n., 154, 159 n., 161-n.

Frege, G., xxxii, 63-n, 106, 136-n.,
151-n., 206 n.

Freud, S., 6-n., 280-n.

Friess, H. L., xiv

G
Galen, 107
Galileo, G., 246, 249, 263
Garter, Th., 276 n.
Gauss, K. F., 223, 224-n., 225, 226

325

Gaye, R. K., 236 n.
Gergonne, J. D., 221
Gerhardt, C. J., 133 n., 268 n.
ben Gerson, Levi, 61
Goblot, E., 108-n.
Godel, K, xwvi, 179-180,
191-n., 299 n.
Gonseth, F., xvii, 224 n.
Goursat, E, 203-n.
Greenwood, Th., xvui
Grelling, K., 41, 261 n., 269 n., 319
Gutkowski, T., 206 n.

179 n.,

H

Hadamard, J., 242, 243 n.

Halsted, G. B, 41 n., 65 n, 106 n.,
232 n.

Hardie, R. P., 236 n.

Hausdorfi, F., 154

Heath, A. E., 24 n.

Hedrick, E. R., 203 n.

Hegel, G. W. F., xxii, xxiv, 1, 6, 7,
8, 9, 10, 11, 12-14, 13 n., 30, 44,
48-51, 109, 279, 290

Heidegger, M., 37

Heme, E., 63

Heinrich, W., 275 n.

Heinze, M., 45 n., 279 n, 283 n.

Heisenberg, W., 256-9, 260-n., 282-n

Helmholtz, H. von, 62-3, 63 n.

Heraclitus, 8, 43, 51

Hérigone, P., 61

Herzberg, J., xi, xiil, xvii, xix, 79,
158, 182 n., 210, 252-3, 252 n.,
253 n.

Hetper, W., xi, xvn, xvui, xix, 79,
84-n., 94-n., 98-n., 158, 164, 168-9,
168 n., 170-n., 178-n., 179-n., 182,
188-n., 190, 208-n., 301-n., 313,
314

Hilbert, D., xiii, xxx, xxxiii, xxxv1 n.,
xli-x1ii, xli =n., xhi-n., 22, 63,
69-70, 69n, 71, 79, 83-5, 83 n.,
110-n., 118-n., 122-3, 162-3, 162 n.,
165, 222-n., 323

Hobbes, Th., 278

Heolder, O., 62-n, 103 n., 109-110,
109 n., 110 n.

L’Hépital, G. F. A., 61

Hoiiel, J., 222

Hulme, T. E., 274 n.

Hume, D., 10, 18, 43—4, 44 n., 218,
255, 280-n., 286-n., 290

Huntmgton, E. V., xxix n., 138-n,,
181, 320

Husser], E., xxii, xxv, 1, 5, 14, 17-19,
18 n., 19 n., 36-8, 37 n., 38 n.,
40, 149



326

Tamblichus, 240

Infeld, L, 241-n

Ingarden, R., xvii, xlm n, 38-9,
39 n, 150

Irzykowsky, K., xlim n.

J

James, W, 15, 17, 289-n.

Janiszewsky, Z , 154

Jenkinson, A. J., 32 n., 124 n., 263 n.

Jevons, W. S., 105, 106, 109, 137

Jobnston, W. H., 2n, 13 n, 193 n,,
240 n.

Jordan, P., 259-260, 259 n.

Jourdain, P. E. B,, 139 n.

Jowett, B, 28 n., 30 n.

Junguus, J., 103

K

Kant, I., xxix, 12, 44, 105,
218-19, 234, 254, 285, 286 n.

Karpinsks, L. C., 55 n., 56-n, 58 n.

Kaufmann, G. A., 227 n.

Kepler, J, 197-8

Keynes, J. M., 264

Klem, F., 227

Kotarbrniski, T., xlii1 n., 34-n, 125-6,
126 n., 262-3, 262 n, 263 n.

Krasnodebski, A., 103

Kronecker, L., xxx-n., 65, 148

Kuratowski, C., 142-n., 154

Kvitko, D., 261 n., 283 n.

108,

L

Lagrange, J. L., 223

Lamarck, J B. de, 220

Lambert, J. H., 104, 134

La Mettrie, J. O. de, 47-n, 279

Lande, L., 269 n.

Laplace, P. S., 223

Tapszin, I 1, 283-n, 285 n.

Lebesgue, H., xviii, 188

Legendre, A. M., 223

Leibmz, G. W., 61-2, 61 n., 104,
133-4, 133 n, 137, 198-200, 202,
268-n, 278

Lenn, V. I, 261 n., 279, 283-n.,
286 n.

Leémiewski, S., 125-6, 125 n., 136-7,
136 n, 140 n.

Lewis, C. 1., 130-n.

Lipps, T., 58

Lobaczewski, I., 225

Lobaczewski, M., 80, 220, 221, 224,
225-6, 226 n., 227, 232, 238

Locke, J, 47, 254, 278

INDEX OF NAMES

Loewenberg, K, 283 n.

Lorentz, H. A., xlvi1 n., 247-9

Loria, G., 61 n.

Lowenheim, L., 191-n.

Lukasiewicz, J., 95-n., 101-n., 103-n.,
110-n., 122-n., 130-2, 130 =n.,
131 n., 133-n.

Lull, R., 102-3, 268

M

Macalister, J , xiv

MacColl, H., 105, 137, 138

Mach, E., 5-n, 11-n,, 15-n, 20, 45-6,
46-n., 224 n, 234-n., 240-n., 255,
265-n., 274 n., 280-1, 281 n, 283,
290

Maier, J., xiv

Majewsks, E., 285 n.

Mannmg, H. P., 232 n.

Marx, K., 11, 45, 47-9, 279

Maxwell, J. C, 250

Mazur, S, 215-n.

Mazurkiewicz, S, 154

McCormack, Th. J., 11 n.

Meiong, A, 226, 227 n.

Metallman, J., xl n., 263-n., 283-n

Meyerson, E , 261-n., 269-n., 283-n.

Michelet, J., 276 n., 285 n.

Michelson, A. A, 7

Mil, J. St., 20, 105, 233-n, 265-n.

Minkowski, H., 243-n., 246

von Mises, R, 252-3, 252 n, 253 n.

Monge, G., 223

Montesquieu, C. L., 10, 276 n.

Moody, E., x1v

De Morgan, A, 104, 109, 135, 137

Miller, A, 85-n.

Muiller, T, 61

Musphy, J, 2 n, 60 n, 258 n.

N

Nagel, E., xiv, xv

Nasir-Eddin, 60, 223

Natanson, W, 1, 2 n., 5, 22, 44-n.

Nelson, L., xxv-xxvi, xxv1 n., 271,
319

Neugebauer, O., 56 n.

von Neumann, J, 84, 163-n.

Neurath, O., 280 n.

Newton, I., xxiv n., 11, 16, 137, 198~
200, 202, 240, 263

Nichomachus, 54-5, 54 n., 58

Nicod, J., 110-n., 118-19, 118 n.,
172, 174, 189, 264-n.

Nicol, P., 259-260

Nietzsche, F., 7, 14, 290, 291-n.

Nikodym, O., 72-n.

Nugent, Th., 276 n.



INDEX OF NAMES

o]

Occam, Wm. of, xxui, x1, 43
Oldenburg, C., 199

D’Ooge, M. L., 54 n.

Origen, 237-n., 290

Orkisz, H , 264

Oughtred, W., 61

P

Padoa, A., 105 n., 134 n., 135 n,
136 n., 138 n.

Palmer, W. S., 14 n., 48 n., 286 n.

Parmenides, 236

Pascal, B., 198

Pasch, M., xxx

Paul, N. M., 14 n., 48 n., 286 n.

Paulus, Aemilius, 9

Pawhcki, X. S.,, 35 n, 44 n., 53,
54 n., 236-n., 240 n.

Peano, G., xxxi—xxxi, xxx1 =n.,
xxxii n., 20, 71, 106-7, 106 n.,
133-n., 136

Peirce, C. S, 105, 109, 137, 138

Pepis, J, 178

Petrus Aureoli, 43

Petrazycki, L., 269-n

Pieri, M., xxx

Planck, M., 257, 261-n.

Plato, xxii, xxv, 7, 8, 18, 26-8,
28 n., 29, 56, 57, 58, 76, 157, 178,
236, 289, 290

Plekhanov, G., 29 n., 49 n., 286 .

Plotinus, 8, 290

Pliicker, J., xxix n, 221-2

Plutarch, 10-n.

Podlacha, 276 n

Pogson, F. L., 193 n.

Pomcaré, H, xiii, xxxvn n, xxxix—
xli, xxxix n., x1 n., xhi1 n., li n.,
Li n., 11, 19, 20, 21-n., 22, 41-n.,
65-n., 69-n., 70-n., 78-80, 78 n.,
106-8, 106 n., 107-n., 108 n., 146,
157-n., 158, 232 n., 234-n., 264-n.,
323

Poncelet, J. V., 221

Posidonius, 223

Post, E. L., 130-n.

Poznatiski, E., 261 n.

Prantl, C., 101-n., 102 n.

Protagoras, 8, 16, 106

Pusey, E. B, 236 n, 284 n.

Pythagoras, 53, 58, 59

Pythagoreans, 53, 58-9, 64,
236, 237

149,

Q
Quine, W. V., 294 n.
Quinet, E., 283 n.

327

R

Ramsey, F. P., xxxv n, xxxvi n.,
152, 319-n.

Regiomontanus, see Miller, J.

Reichenbach, H., 236-n.

Reinach, A., 19-n.

Richard, J, 77-8, 77 n,
79 n., 144, 146, 153,
182, 194-n., 319

Riemann, B., 232, 234

Reviere, J, 6 n, 280 n.

Robbms, F. E., 55 n., 56 n, 58 n.

Rdntgen, W., 45, 266

Roscellmus, 35, 43

Rosenthal, J, 104 n, 145 n., 221 n.

Ross, W. D., 9 n,, 29 n, 35 n., 57 n.

Rosser, B., 191 n.

Rousseau, J. J., 10

Rozwadowsks, J., 33-n.

Russell, B., =xii, xix, xxxi =n,
XXX-XXXV, Xxxii n., xxxii n.,
XXXV B, XXXVi~XXXVI, XXXV1 1.,
xxxvil, xlin n., xlvu n., 18, 20~1,
22, 41-n, 71, 76, 79, 106-n., 108,
109, 110, 124-5, 124 n., 138 n.,
147 n., 148 n, 150-3, 153 n,
155-8, 162, 164, 183, 188, 192-n.,
193 n., 200-n, 209, 267, 282-n.
298 n, 320 n., 323

Ryazanov, D., 29 n.

78 n.,
156, 158,

S

Saccheri, G, 223

Saint Simon, C. H. de, 11

de Saussure, F, 40

Schames, L, 241 n.

Scheler, M., 5-n.

Schellmg, ¥. W. J., 290

Schuller, F. C. S., 15, 16-17, 16 n.,
109-n., 289-n.

Schlick, M., 46-7, 47 n.

Schloezer, B de, 8 n., 27 n.

Schmudt, F, 224 n.

Schneider, H. W., xm
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Simon, J., 47 n.
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Sleszytiski, J., 32 n., 57 n., 59-n.,
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Taurinus, F. A., 225
Thalheimer, A., 51, 109
Thomae, J., 63
Tolstoi, L., 290
Townsend, E. J., 222 n,
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Terms 1n parenthesis indicate cross references to other terms of the mdex.

The

following abbreviations are employed :

(4) — Auxihary system,

(P) — Proper systems, (E) — System of Expressions, (R4)-— Rules for the
auxiliary system, (RP) — Rules for proper systems, (RE) — Rules for the

system of expressions.

A

Abbreviations, 297-8 ; — (4), 166~7,
297-8 ; — of elementary theory of
classes and relations (P), 180, 181,
182; — in fundamental system,
165-6; — of mtegers (P), 314 ;
— of mathematical formuli, con-
ceptual, 241 ; — in metasystems,
179; — (P}, 171-2, 305

Absolutes, xxii

Abstraction, xxv, xlix, liii, 3, 40, 238,
265

Acceleration, 201

Addition 1n algebra, 77 ; — of natural
numbers, 71-2; —, principle of,
121; of real numbers, 144
— of segments, 71-2 ; — of whole
numbers, 97, 99

Aggregates (Cantor’s, classes), xxxm
n., 149-§

Alephs, 148

Algebra, 61, 76-7 ; — of logic, 105

Algebraic interpretations, 222

Analogy, xlix, 2

Analysis, xxwviii, 26 ; —, contextual,
xxv, xxxii, xhii-xliv, 6 ; —, exact,

23 ; —, mathematical, xxxi, xxxn,
192-216, 321-3; —, —, conmtra-
dictions of, 12

Analytic method, 40 f.

Angles, corresponding, 220 ; —, right,
219; — of tnangle, 231-2

Anthropomorphism, xlix, 4-5

Antinomies (contradictioms, para-
doxes), xxv n, xxxvi n., 183; —,
dialectical, 40-2; —, formal, 41,
319; —, logical, 40; —, seman-
tical, 40-1

 Anti-rational,” xxiv n. ; — systems
of logic, xxviii

Anti-rationalism (Irrationalism), xxi,
xx1v, xxviny, 1, 7, 12-9, 22, 26, 30,
36, 44, 108-9

Apparatus, 266-7; —, conceptual,
xlviii, 25, 33, 238, 258 ; —, mathe-
matical, 1iii, 20 ; — of observation,
265-~7
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Approximation, 254-5, 276

Arabs, 60-1

Area, xxxi; — of triangle, 232

Arithmetic, xxx, xlix-1i, 20 ; — (4),
300, 313-n. ; —, axiomatic develop-
mentof, 71 ; —, axiomatization of,
xxxi-n.; — containing O and 1,
314 ; — 1n elementary semantics,

94-100, 313 ; —, formal concept of,

634 ; —, intuitive, 100; — of
natural numbers, 53, 56,64 ; — (P),
310, 313-15; —, rational, 178;
— of rationals, 98-100, 313;
— — (4), 304 ; — of real numbers,
64, 143-5; —, segment, theory of,
70-5; —, thieorems of, 1; — of

whole numbers, 94-8, 100
Arithmetization of language, 299 n. ;
— of mathematics, xxx-xxxi
Artistic concept of reality, 14
Assertions, true and false, 287
Astronomy, 4
Assertion, xxxiin.
Associative properties
136
Associativity, principle of, 121-2
Assumptions in formal logic, meta-
physical, xxvui, 17 ; — — mathe-
matics, metaphysical, 1, 25; — of
philosophy, xxhi-n ; — under
postulational methods, xxx
Asyrgmetncal expressions (4), 167,
30

of classes,

Atomism, 43

Atoms, hu, 85

Autonymous use of symbols, 310-n.

Auxiliary asymmetrical expressions
(4), (expressions); —system, 1.e. (4)
164, 166-170, 297-305, 306 n.,
313-n; — —, rules of, i.e. (R4), 165,
168, 295, 299, 297-n,, 301, 302

Axioms, xxxi, xxxii n. ; —, existence-,
xxxvi-xxxvii, xxxvii n., xliii .,
320 n.; — of geometry, xxx-n.,
219, 222; —, mathematical, 83;
~— of metamathematics, 162—-3

Axes(x), 245
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B
Babylonians, 56
Barbara, 129
Behaviourism, 5, 283
Being, pure, xxil
Biology.
Bound 196 200, 202
Bridgman's velocity, 246, 249
British empiricists, xxv
Brouwer’s concept of real numbers,
80-1
Bukharin school, 9
Burah-Forti contradiction, xxxii, 151

C

¢, xxxix-n., 166, 297

¢ (veloc1ty) 242

Calculus (see by name, e.g. proposi-
tions, also infinitesimal, integral)

Cantor’s theory of aggregates (aggre-
gates, classes), 7, 20-1, 187, 188

Causes, xhx

Certainty, xxvii, xliv, 47, 218, 264-5,
267

Change, 192-3; —, constant, 279
Changing object, 29-30; — reality,
279

Characteristic, general, 62, 268; —,
rational, 268

Choice (freedom), axiom of, 159-61

Church’s theorem, 191-n.

Circle, 221; —, great, 232-3;
— -model of plane, 227-32

Class, 56, 64; — of classes, 186;
— -concept of fraction, 56 ;
— real numbers, 64 ; —, universal,
136-7

Classes (4), 305; — in branched
theory of types, xxxvii-n. ; —, cal-
culus of, 133-42; —, complement

of, 133; —, complementary, 133,
138, 181 denumerable, 145,
146, 159—60, 253, 320; —, deter-
mined, 78 ; —, elementary theory
of (P), 180-3, 320; —, equality of,
133, 185; — of expressions, first-
order, 191 ; —, extensional, 133;
—, finite, xxxi1i ; —, general theory
of, 185-8; — in Herzberg’s logic,
253; —, 1dentity of, in construct-

ive theory of types, xxxvi1 n.;
— of individuals, etc, 152, 155,
160 ; —, infinite, xxxiii, 145 ; —,
metamathematical theory of, 159—

60, 180-8, 320-1; —, mno-class
theory of, xxxii n., 155; —, non-
constructive, 156-7; —, nom-
inalistic theory of, 321 n.; —, null,

xxxiiin., 135, 136-7, 139, 143, 159 ;

331

— of numbers and 1mequations, 1v,
238; —, ordma.lly similar, 147
J— pred.lcatlve, 155-6, 320 n. ; —

(P), 180; —in pure and 51mphﬁed
theories of types (P), 189-90 ; — of
segments, 144; —, similar, 145;
—, simple, 186; —, subclasses of,
133; —, theory of, xxxiii~xxxV11,
xxxiii n., xxxvi n., xxxvii n,
xxxix n,, xhi n., 77-8, 133-61, 177~
8, 182, 298-9, 309, 319-21, 320 n.,
321n; — ——,of Ca.ntor, 80, 145
-9, 319, 320 n-321 n.; -
class1cal x1, 320-n., 321 n.
(P), 177, 189; —, — —, Huntmg—
ton’s postula'oes for, 138, 181, 320 ;
—, transfinite, xxxiii ; it, i
general theory of classes, 186 ; —
well-ordered, 1467

Classification, xlviii, 3

Class-inclusion, 133—4, 138;
membership, 189 ; —-parameters
in gemeral theory of classes, 186 ;
— -value of fundamental mva.nant
of expressions in general theory of
classes, ib.

Coefficients of Fitzgerald, 246

Collection (classes), xxxu n.; —,
material, 1367

Common sense, 24-6, 29, 30

Comparison of domains of concepts,
133-5 ; — — natural numbers, 71;
— —numbers (4), 313; — —real
numbers, 144 ; — — relative seg-
ments, 71-2 ; — — whole numbers,
95-7

Complement of a class, 133

Compulsions, inner, 270, 275

Concepts, xx1v, xxv, lv-n, lvi, 18-9,

43,265,269 ; — (4),299 ; —, con-
fused, 8 ; —, connotation of, 135 ;
—, denotation of, 134 ; —, domains
of, 133-5; —, eternal, 33; —,
fictional, xx1v n., xlix, I n., 4, 56 ;
—, general, xxv, xxvii; —, ideal,
xlix, 3940 ; —, idealistic, xxivn.,

—, immutability of, 9-10; —,

legal, 269-70 ; —, logical, xxxii-n ,
xlv, 297, 301-n., 314 ; —, mathe-
matical, xxxi, 297 ; —, metrical,
xx1x ; —, non-logical, xxxv m.,
xlv, 320; —, null, 32; —, philo-
sophical, xtvi-n,, xlvii ; —, popular,
57; —, pr1m1t1ve xxviii, xxix n ,

XXX ., XxXi, Xxxix, xlv-n 300,

303; —, semantical (A ), 3800,
301-n, —, — (P), 314 ; %
tactical, 297 ; — of system [M

(P), 171-2 ; —, undefined, xxx n.
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—, universal, 8, 27-8; —, vague,
8, 13-5; —, variable, 14-5

Co;clusions, 262 ; —, general, 263,

64

Congruence, lii n., 234-5

Conjecture, 280

Connotation, 135

Consequences, undecidable, 253

Consequentra mirabilis, 103

Consistency, xxxn ; — of arithmetic,
xxx ; — (4), 169; — of geometry,
xxx, 222 ; — of mathemat1cs, 22;
— of « metamathematics,” 70
162-3; — of metasystems, 180;

— postulate of, 9; — of Principra

Mathematica, xxxii-xxxiii; —,
principle of, 1 9-11, 23 ; — of pure
theory of types (P) 190 — of
simplified theory of types (P) 191

Constants (expression), XXX n.;
— (4), 299, 302; — in funda-
mental system, 295 n.

Constructlon, xxiv, 26 — rules,

xxviii, xxix n., xxxix, 74 75, 77-8,
81, 85-87, 111 f., 115, 126-7, 138,
165, 166, 168, 172—4 189—90 294-6,
301; — of symbohc representa-
tives of objects of experience, 268
Constructions, auxiliary, 272-3 ;

euclidean, 238; —, ﬁctiona.l, 58;
—, geometrical, 218; , ideal
spatial, 235, 238; — based on

logical symbolism, “xliii n., 80;
non-euclidean, 238

Continuity, 74—-5 ; —, mathematical,
241; —, sensual, lii, 240-1; —,
temporal, 240

Continuum, 183 ;
148, 161 ; — of real 1-order num-
bers, elementary, 214 ;
— — fulfilled hnear, 214

Contradiction, 12, 130 ; —, principle
of, xxiii n., xxiv, 9, 29-30, 42, 109,
130, 270, 302 n.

Contradictions (see by name, eg.,
Burali-Forti, also paradoxes, anti-
nomies), 9, 274

Convention, li-Hi, li n.-lii n., 33, 69,
76, 86, 234, 270, 280, 282

Conventionalism, 233—4, 287

Conversion, principle of, 102, 120;
— of universal categorical proposi-
tions, principle of, 32

Coordinate systems, liii ;
poral-spatial, 242, 244

Coordinates of Minkowski, spatio-
temporal, 2434 ; —, spatal, liii;
—, temporal, liii; —, Euclidean
systems of 3-dimensional, 244

— —, tem-~
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Copernican theory, 15-6

Correlates, intentional, 38-9

Correspondence, li, 204 ; —, I-many,
256; —, 1-1, 1, 145, 147, 255-6 ;
—in pm]ectwe geometry, 221

Cosmology, xliv

Criticism (empirio-), xxiv, 3, 26-7,
29; —, rational, 7, 10, 17

Critique of pure reason, 7

Curve, equidistant, 230, 232

D
Data, experimental, 241, 255; —,
sense, 37, 43
Death, 235-6
Decidability (4), 169
Decision problem, 178-80;
dividual, 270
Dedekind’s axiom of continuity, 74-5
Deduction, 262 ; —, axiom of, 128 ;
—, principle of 128; —, ———,in
pure theory of types (P) 189 ;
rule of (P), 174
Deficiency of a triangle, 232
Definability, 21—-2, 77-8
Definition, xxx1i n., xliv, 27, 35 ;
implicit, xxxi, —, nominal, 297—8
per genus et speczﬁcam dszerentzam
of Aristotle, 35-6, 87 — of
propositions, traditlona.l, 110-1;
—, recursive, 86-7 ; —, verbal, 36
De Morgan’s theorems, 135-6
Demonstration, xxx; —, rules of,
69; — — — (P), 174
Denotation, 28, 34-5, 134
Derivative, 1, 202—3 214 240
Description, xlviii
— (E), 296

—, in-

Descriptions, 166 ;
Detachment (modus ponens)
Determinism, liv-lv, 253-62; —,

classical, liv; — of classical
physics, 255, 262 ; — of contem-
porary physics, 262; —, meta-

physical basis of, 255; — of
nature, 278; —, non-idealistic,
254, 256
Diagonal method of Cantor, 78
Dialectic, Hegelian, 1, 11, 22, 48-51 ;
—, irrational, 45 ; —, Marxian, 11,
30, 48 ; —, Platonic, 8, 26, 29
Differences of natural numbers, 72
Differentials, 62; —, n-order, 212
16
Dirac’s function, 215-16
Discontinuity, 260; — of physical
phenomena and of time of ex-
penence, 240
Disjunction, xxxii n.;
of, 128

—, principle
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Distance, xxix n., 200-1, 241 ; —in
Klein’s model of plane, 228-30;

—, real, 255; — in Riemannian
geometry, 232-3
Distances, measured, 253; — in

special theory, 245

Distributive properties of classes, 134,
138

Diversity, semantical axiom of (P),
172

Division, 240 ; — of rationals, 99

Double negation, principles of, 119

Dreams, xliv n,, xlvii

Duality, principle of, xxix, 221

E

Economy (thought), xlvin, 16

Ego, 236, 281

Einsteinian principle of relativity, 16

Einstein’s time, 245 ; — velocity, 246

Eleatics, 236

Electrodynamic phenomena, xxii

Electromagnetic fields, 250

Electron, 2, 2569

Elementary logical calculus, 168, 297 ;
— semantical calculus, 168, 297 n. ;
—systems (P), 305-12, 305 n.~
310 n.

Ellipse, 229-30

Emotions, 1vi, 10, 265

Empiricists (British), 21-2

Empirio-criticism, 280-1

Epimenides paradox, xxxiii-xxxiv,
40-1, 319

Epistemological paradox of Nelson,

xxv-xxvi, 271; — paradoxes,
319-20

Epsilon axiom, 162-3

Equality of classes, 133; — of

integers (P), 314 ; —, intertypical,
in general theory of classes, 183-5 ;
— of rationals, 99 ; — of real num-
bers, 143; — in theory of differ-
entials, 211

Equations, 206 ; —, algebraic, 91 ;
-—, equivalent semantical, 115 ; —,
semantical, 114-16

Equilibrium, 48

Equivalence pattern, 114

Eternity, immovable,
235-6

Ethics, 280

Eubulides paradox, 35, 41

Events, xlix, 1, 1ii, liv-lv, 238, 239,
253—4, 258 ; -—, accidental, 253 ;
—, determined, 261 ; —, particular,
liv, 260 ; —, real, 250 ; —, spatial,
241; -, spatial representation of,
xlix, 238 ; —, temporal, 238; —,

immutable,
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temporal point of, 238, —, unpre-
dictable, 253, 261

Evolution, 45

Excluded middle, principle of, 130-1

Existence, 28, 42, 217-18, 236; —,
independent, 534, 56-7, 65, 313;
—, substantial, 39—40

Existences, ideal, 85, —, mysterious,

Experience, xxii, xxiv n., xliv—xlw,
xlvin~l, lia, 1v, Ivy, 3, 6, 8, 11, 64,
65, 217-18, 236, 238, 240-1, 254-5,
258, 268-9, 274, 282 ; —, concrete,

259; —, future, 259-60; —,
human, 15; —, pure, 280; —,
true, 14

Experiment, 254

Explanation, xlviii

Expression-concept of fraction, 56,
313

Expressions, xxxix n., xl-n., xlii, 1, 43,
69-70, 72, 83-94, 107, 139, 144,
155, 310, 320; — in arithmetic,
In ; —, auxiliary asymmetrical (4),

167, 300; —, — —, of elementary
systems (P), 310; — (4), 298-9,
306 n ; — (4), patterns for, 299 ;

—, axiom of comstant (P), 173;
—, class of, 185 ; —, constant (con-
stants), 86-7, 89-90, 91, 95, 115,
116; —, — (4), 300; —, —(E),
166, 295-n. ; —, —, of elementary
systems (P), 306-7; —, —
ticular (P), 310; —, —, of type
K (P), 176 ; —, — (P), 173, 176,
306-7, 310, 311-12 ; —, construc-
tible, xl-n., xlii, 1 n., 85-6, 298 n. ;
—, — (4), 302; — of decimal
system of natural numbers, 71 ;
— (E), pattern for, 296-n.; — of
elementary semantics, 87; — of
elementary system (P), 306-7;
— — — — — patterns for,
307; —, first-order classes of,
191; —, fundamental auxiliary
asymmetrical (4), 167; —, fun-
damental invariant of, in gemeral
theory of classes (sub-in-vari-
ant), 185; — 1n fundamental
system, 164-6, 295 n. ; —, identit

of, 84-5; —, logical, 111-12, 118,
127 ; —, — (4), 300; —, mathe-
matical, 83, 241; -— in mathe-
matical analysis, 204-6, 208-9,
323 ; —, meaningful, 297, 310;
-, meaningless, 76, 211 ; —, non-
constructive, 85-6; —, original
(4), 298-9, 298 n. ; —, —, of type
¢(P), 175,176,306 ; —, —, of type
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K(4),170, —, — ——L (P), 306 ;
—, proper, 86-7, 111 ; — (P), 173,
174-6, 177, 209, 305-7, 306 n., 308,
310 ; ~—, rules for, i.e. (RE), 165-6,
294-6, 301 ; —, science of (seman-
tics), xhi, 22 ; ~—, segment of, 88,
295 n.; -—, semantical, 310; —,
— (4), 300 ; — of semantics, 294,
297, 310 ; —, sign of juxtaposition
of, 296 ; —, system of, i.e. (E), 166,
295-7, 295 n., 296 n., 297 n, 298,
301; — of type ¢, patterns for (4),

299 ; — of type L, patterns for (4),
167, 299; —, types of (4), 170,
298-9 ; —, — —, in general theory
of classes, 185; —, variable (var-
iables), 86-7 ; —, —, of type K (P),
176

expr . [M] X, in general theory of
classes, 185

Expr [L] E (4), 167; — E (4),
167-8, 301; — [L]. in general
theory of classes, 185-6

Extensionality, axiom of, 133

Extrapolation, Ivi, 265

F

Facts, 1vi, 2645 ; —, individual, 264

Falsity, 30, 37, 269-70, 287, 303

Fiction, 1 n.,, 60, 240, 274 ; —, ideal-
istic, 261, 274, 287, 321 n.; —,
logical, xxxiii n.; —, mathe-
matical, 1, 240

“ fictional,” xxiv n., xlix

Field, linear, 214

Fields, moving electromagnetic, 250

Finitism, 59-60, 220, 260

Fitzgerald’s coefficients, 246

Form, normal, 118, 1224

Formalists, xli-xlii, xliii, 634, 222

Formahzation, 238, 255, 261-7, 271-3

Formulas, mathematical, 66-7, 235,
241

Fractions, 56-7, 70-3, 313

Freedom of choice, 270

Free will, xx1v n., liv, 279-80

Frequency, 252

Functions, xxxiv-n., xlvii n. ; — of
complex variable, 321 ; —, first-
order, xxxv, xlvii n.; —, elemen-
tary, xxxv-n.; —, in elementary
theory of classes, theory of (P),
182; —, logical, 112 ; — in logical
calculus (4), 302; —, ———, pat-
tern of (4), 167,302 ; —, mathema-
tical, 203-7, 321-3 ; — of natural
variable, 207-9; —, n-order, 213 ;
—, normal ome-order, 215; -—,
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one-order, 215; -—, order of, in
branched theory of types, xxxv,
xlviin. ; —, predicative, xxxv ; —,
propositional, xxx n., xxXV-B.,
xxxvii, xlv, 90—4, 126, 206, 308 n. ;
—, —, calculus of, 125, 142; —,

]

—, ——.in elementary systems (P),
309-10; —, —, of integers (1P),
171; —, —, in logical calculus,
179 ; —, —, pattern of, 126-7 ; —,
—, of theory of plural reality,
primitive, xlv-n, ; — of real vari-

ables in mathematical analysis,

203-7, 209, 321-3; — — ————— s

patterns for, 207-9 ; —, semantical,

112, 127-8 ; —, semantico-logical,

112; —, type of, in branched

theory of types, xxxv, xlvii n.
Functors, 321-2

G
Galilean transformation, xlviii n., 249

Galileo’s time, 246
Generalization, 254 ; — in calculus
of propositions, rule of, 127; —,
pattern of (P), 172 ; —, pnnciple
of, in pure theory of types (P), 189 ;
—, —, — simplified theory of
types (P), 190 ; —, rule of (P), 174
Generalized systems of Hetper, 188

Geodesic, 234-5

Geometry, xxix-xxx, xxx n, li, 20,
217-35; —, elliptic, 227-32; —,
euclidean, li-lii, lin., 59-60, 217-18,
232 ; —, empirical, 20, 218, 2334 ;
, Greek, 217-20, 233, 254; —,
hyperbolic, 232-5 ; —, Kantian con-
ception of, xxix, 218-19; —, line-,

Xx1x 1. ; —, Lobatschewski-Bolyai,
224-32 ; —, metric, 235 ; —, non-
euclidean, xxix, li-la, i n., 7, 223-
35; —, point-, xxix n.; —,
projective, xxix, 221-2; —, Rie-
manman, 232-5; —, sphere-
xxix n.

God, 278

Gddel’s theorems, 179-80, 191

Good, xxv, 27 ; —, perfect, xxii, 26-7

Grammar, 36 ; —, aprion, 37-8 ; —,
pure, 18

Gravitation, theory of, 7

Gravity, spirit of, 291

Greater than (relation)

Greater than or equal to (relation)

Greeks, 7-8, 43, 53-60, 192-8, 217-20,
254

Grelling’s paradox (Nelson), 41-2

Guessing, Ivi, 196, 265
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H

Habit, xxii, xxviii, 24-5, 35, 265-6,
280

He1senberg s inequality, 257

Hetper’s generahzed system, 188;
— intervals, 178, 185, 208, 253;
— theory of mutua.lly mdependent
patterns, 170 n.; — — — simple
meta-systems, 178—80
simple systems, 178

Honesty, 258

Humanism, 15, 16~7, 234

Huntington’s postulates, 138, 181, 320

Hyperspace, apparent, 250

Hypotheses, 42-3 ; —, metaphysical,
254

I

Idealism (pan-), xliv, 43, 156, 158,
2334, 2434, 255, 282, 287 ; — of
Cantor, 149, 321 n.; —, classical,
281; —, geometncal 222; —,
Greek, 218,238 ; —, Kantmn 232
—_ mathematica.l 260

‘* idealistic,” xxiv n., xhx

Idealists, 21-2, 43, 149

Ideas, xxv, xxxvii n., 44, 84-5, 255 ;
-, abstract, xxvi-xxvi1; —, -
nate, 254 ; —, Platonic, xxii, 21 ;
—, primitive, v, 254

Identity, fundamental laws of (P),
178 ; — of integers (4), 300 ;
loglca.l axioms of (4), 301 ;
principle of, 102, 118; —, pa.rtla.l,
principle of, 263 5 — principle of,
51 ; —, semantical, 88, 94, 99, 113,

- ]

133 ; —, —, pattern of (A), 167,
300; —, — (P), 314; —,
axioms of (4), 301; —, —, — —,
(P), 174-5

Images (reality), xxv, liii, 255, 274,
286 ; —, wvisual, 275

Immortality, 28, 235-6

Implication, formal, 102-3; —,
material, xxxiin., 101-3, 116-17,

254, 314 ; —, — (4), 167, 301-2

Impressions, sense, 44

Inclusion (class-) of whole numbers,
95-7; — of relations, 143 ;—,se-
mantical, 84, 92-3, 95-7, 113-14 ;
—, —, pattern of (A), 167, 300-1 ;
— — (P), 314

Incommensurable segments, 7, 58-9

Increments, infinitely small, 12, 199,
201-3

Indeterminism, lv, 255, 256-9; —,
classical, v, 262 ; —, contempora.ry
lv, 262 ; — of Heisenberg, 256-7 ;
— of Schrbdmger 257-8
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Individuals, xxiv-n, 71, 152, 155;
—, human, 257-8

Induction, lvi-lvii, 262-7, 269; —,

complete, 1vii, 267 —, ~—, pnn-

01 le of, 1vi, 66~70, 87—8 '93, 96, 97,
, 264 ; —, incomplete, lv1, 263;
—, Tule of (P), 174,178 ;
semantical, 305
Inequality of Heisenberg, 257; —,
intertypical, in general theory of
classes, 183-5
Inequations, algebraic, 91
Inference, inductive, lvi, 264-5
Infinite, actual, 145
Infinitely many possible interpreta-
tions of abstract geometry, principle
of, 221
Infinitesimal analysis, 196; —— cal-
culus, I-n., 44, 61-2, 75, 197-203
Infinitesimals, xxii, 12, 62, 192
Infinity, 75, 196-8, 219-20; —,
axiom of, xxxvii, 21, 153, 157,
160-1, 298 n ; — — — in con-
structive theory of types, 71, 81-2;
—1m Klein’s model of plane, 227
integ, 314 n.
Integ, 314 n.
Integ E, 95-7
Integ E, 314-n. ; — — (P), 171
Integer [M N ] E, 314-n.
Integ L in metasystems, 178
Integ[L] E (P), 171
Integers (numbers)
Integral calculus, 198-9 ;
214; —, mu1t1p1e 214
Interpretatmn, language of (4), 169~
70, 3034 ; —, — — (P), 177
Intervals of Hetper, 208; ———in
general theory of classes, 185; ——
— in metasystems, 178 ;
in pure theory of types, 253
Introspection, 259
Intmition, xxviii, xxxu, 20, 21-2, 80;

—, definite,

— of Bergson, 14-15; —, mathe-
matical, xliii n, 80; -—, non-
empirical, xxix; —, non-logical,

ib. ; —, pure, 218-19 ; —, sensuous,

xxix, xxx, 293 n.; —, spatial,
xxix-xxxi, 293 n.; —, temporal,
xxxi, 293 n.

Intuitionism, neo-, 80-2

Intuitionists, xliii, 323

Invariants of expressions and simple
classes, fundamental, in general
theory of classes (similar), 185-7

Involution, 208

Irrationalism (anti-rationalism), §,
26—7, 269, 174 ; —, indeterministic,

62
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Judgments, synthgtic apriori, 69, 80,
178,219

Juxtaposition, 83, 296-7; —, or-
dered, 84

Kantian apnori form of pure observa-
tion, 235 240 ; — pure observation
of forms of phenomena, 220

Kinetic theory, liii

Klein’s model of plane, 227-32

Knowledge, xxu-—xxm, XX V-XXVi,
xxvi n., xxvii-n., xhv, xlix, 6-7;

J— absolute, xxii, 28-9; -, com-
plete, xxvii, xlix, 42; — of daily
life, xxvii, 46-7 ; — of facts and

their relahons, lv1 265 ; —-, human,
xxvii n., 52; —, perfect, 28-9;
—, scientific, xlix, 46-7

L
Language (meta-), xxi, xlii, 268,
299 n.; —, everyday, xxv-xxvii,

xlii n., xhvn 25, 27-8, 3142, 43,
67-8, 110-1, 126, 164, 268, 272—3,
320; —, object, xxxvin., 294, 296-7,
303—4 ; —, semantical, xlii; —,
‘“ semantical,” xxxvi n. ; —, sym-
bolic, 103, 107 ; —, syntax, xxxvi
n., 294, 296, 3034, 310

Languages, infinite hierarchy of, 294

Law, exact, immutable, 254; —,
general, 262

Laws of nature, 241, 245; —, phys-
sical, with undecidable conse-

quences, 253; — of science,
xlviii, 25

Lebesgue measure, 188

Length, I-i, lvan.; —, ideal, 257;

— of segments, real and measured,
liv-lv, 254-5

Less than (relation)

Letters, identaty of copies of, 84, 255
265; —,logical, 111,117,118 ;
sema.nt1ca.l 87, 90, 91, 127

Liar, paradox of, xxxv n., 40-1

Life, 45, 291: —, dally, xxvil, 27
46-7, 57; —, everyday 279 ;
mtellectual 49 ; —, social, 45

Light, theory of, 249—52; — -wave,
equation of, 242

Limit, xxxi, 197, 200, 202, 240 ; —,
common, of points of segments, 74 ;
—, lower of sequences of numbers
75 196 ; —, —, of sequence of
patural numbers, 196; — of
sequence, 322 ; —, upper, of class
of real numbers 144-5; —, —, of

numbers satisfying a given con-

dition, 75 ; —, —, of sequence of
numbers, 75 195-6; -—, —, of
series, 196~7 ; — -value of sequen-

tial number in theory of differen-
tials, 212-3

Lim.tts, liv-1lv, 196, 240, 256-8 ; —
theory of differentials, 212-14

Line, geodetic, 2345

Lines, finite straight, 60 ; -, infinite
straight, 1b. ; —, parallel, 60, 219~
20, 223, 227-8, 233 ; —, straight,

217-18, 221, 244-5; —, —, at
infinity, 219-20; —, —, in Klein’s
model of plane, 227 —, ~—, ~—Tela-
tivity theory, 249 ; —, —, — Rie-

mannian geometry, 232-3°

Logic (meta-), xxi1, xxvi, Xxxvii-xxix,
xxxil-p., Xxxiii, xxxvui-xxxix, xdii,
20, 24—5 33, 36, 37, 83, 111, 252;
— algebra of, 105 ; —of Aristotle,
9, 124-6; -, classical, 253; —,
formal, xxviii-n., 20, 31, 126 ; —, in-
tuitive, 126, 165, 293—4, 293 n.,
294 n., 297, 305 n.; —, many-
valued, 129-32; —, new, 20-2;
—, nominalistic, 158 ; —, schol-
astic, 101-3, 105 ; —, semantical,
252-3 ; —, symbolic, 103-10, 126 ;

—, three-valued, 130-2 ; —, tradi-
tional, 107-9; — of universal
propositions, 126; —, system of,

20, 103, 109

Logico-semantical axiom (P), 173,
177-8

Logrstlc, 107-9; — thesis, xxxii,
xxxviii

Lorentz’ transformation, xlwii n.,
247-9

Lukasiewicz, symbolic notation of,
95, 110, 133

M

Man, 278 ; — as machine, 47

Marxism, 49-50

Material, existential, lii, Ivii; —
masses, 281

Materialism, xliv, 19, 43, 273—4, 279 ;
—, dialectical, 42, 47-52 ; —, his-
torical, 45

Materialists, 10, 278-9

Mathematics, xxix—xliii, 1, 10, 16-17,
19-20, 22, 25, 37 n., 44, 46, 54, 63,
76, 83—4, 106, 108, 126, 146, 162-3,
179, 239, 271, 293-n.; —, arith-
metization of, xxxX-xxxi; —,
axiomatization of, xxxi; —, clas-
sical, 188 ; —, intuitionist concept
of, 78-82 ; —-, philosophy of, xxvi,
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xxix, XXxV-xxxvii; —, unification
of, xxxi—xxxi1, xxxviii

Matrices, xxxv-n., 111

Matrices in mathematics, 182

Matrix method, 91-4, 111-18

Matter, 274, 277 ; , properties of
luminous, 251

Maxwell’s theory of moving electro-
magnetic fields, 250

Meaning, xxv-xxvi, xxv n, xxvi n.,
xxvin, xx1x n., xliv n., 4, 6, 34-5,
37-n., 255-9, 270; — absolute,
xxv, Iv n., 260 ; —, apriori laws of,

xxv, 37; — of concepts, xxv, lv,
18-19, 269—70 _ — - real
xxv, 18-9

“ meaningless,” xx1v n.

Meamngs, hierarchy of, xxvin

Measure (Lebesgue)

Measurement, xlix-li, liv-lv, 46-7,
255-6; —, geometrical, 64 ; — of
momentum and position of elec-
tron, 256-7; — of segments, 64,
70, 254-5

Mechanics, classical, 250 ;
220 ; —, relatinnty, 250

Meta.language, xxxvl n., 294-n., 304

Metalogic of Hilbert, 110

Metalogical pattern, 128

‘‘ Metamathematics,”” xli-xlii, xhi n.;
—, intuitive, 70, 162—-3

Metamathematlcs, xxix n., 81, 163—4
177-8; —, formal, xxix n.; —,
infinite sequence of systems of 164
309 ; —, rational, xxviu n., xxix n.,
140, 155, 159-61, 162-91, 260, 269 ;
—, —, system of, 82, 158, 183, 217,
223, 260, 268, 269, 272

Metaphysics, xxii n., xxiv n., xlij,
xlix, 1vii, 6, 12, 17, 20-~1, 23, 24-6,
43, 45-6, 53-61, 64-5, 70-1, 85, 126,
149, 157-8, 162-3, 218, 239, 241,

—, wave,

271, 292, 313; —, ideahstic, 48,
251-2 ; —, rational, 42 ; —, verbal,
31, 33

Metascience, 270-3, 275

Metasystems or meta-systems, 178~
80, 182, 183, 185, 315-18; — of
Hetper, theory of simple, 178-80

Metatime, lii1, 236

Method, analytic, 26, 40 ff. ; —, con-
structive, 11, 26, 48; —, critical,
20 ; —, dialectic, 48-51, 279; —
inductive, lvi, 264; —, rational-
istic, 17, 20 ; —, reflective (sound
reason), xxin; —, symbolic, 107

Methodology, xxvii

Michelson’s experiment, 7

Microscope, liai-liv, 286

337

Minkowski’s spatio~temporal co-ordi~
nates, 243-4 ; — mmvarniant, 246

von Mises sequences, 252-3

Modus ponens, intuitive rule of, in
fundamental system, 165, 293 n.;
— —, rule of, 119, 120; — —, —

—(P), 174; — —, — — in pure

theory of types (P),189; — —, — —
insimphfied theory of types (P), 190

Moments of time, 193—4, 240

Momentum of electron, 256-7, 258,
259 ;- — of Letbmz, 199

Motion, lii, 48, 192-5; —, acceler-
ated, 200 ff.; —, uniform, 244

Movement of electron, free, 258

Multiplication in a.lgebra, 77; — of
rationals, 99 ; — of fractlons, 73:;
— ofnatural numbers, 71-2; —of

segments, 71-2; — of whole
numbers, 97-8, 99
Mutability, 49-50
N
Names, 86, 166; —, calculus of,
125-6

Nature, 48, 241, 254, 263—4, 278, 279

Negation, xxxi1n., 165; — of logical
expression, 112

Nelson-Grelhng paradox, 319

Nelson’s epistemological paradox,
Xxv-xxvi, xxvi n,, 271
Nicod’ssyllogism, 118 ; — — (P), 172;

— — 1n pure theory of types (P),
189; — — in simphfied theory of
types(P), 190; — —, rule of (P), 174

Nikodym’s theory of fundamental
operations, 72

Nomuinalism, 18, 21, 43 ; — of Chwis-
tek, xxi, xxvi-xxvii, xxvily, xliv-n.

Non-denumerability of continuum,
183 ; — — real numbers, 146, 156-7

Nonsense, 37

nth member of sequence in theory of
differentials, 21(}

Number, concept of, xxxii-n., 53-82 ;
— between limits, 256-7; —,
class-concept of, 56, 64, 313, —,
expression-concept of, 56, 313 ; —
formalist concept of, 62—4; —, 1n-
twitionist concept of, 64-6; —,
realistic concept of, 53-60, 62, 64--5,
313; —, relation-concept of, 56 ;
—, segment-concept of, 56, 64,
70-5, 313 ; —, semantical concept
of, 70, 313, —, sign-concept of,
614, 74-5, 313

Numbers, xxxii-xxxv, xlix, 205, 239,
300 n., 313; —, abundant, 54-5,



338

61 ; —, amicable, 55, 61 ; —, car-
dinal, 148 ; —, —, in general theory
of classes, 187-8 ; —, complex, 58 ;
—, deficient, 54-5, 61 ; —, deter-
minate, 241, 257; —, even, 145; —,
finite ordinal, 47; —, integral or
integers (natura.l numbers, whole
numbers), xxxi-n., 81, 313 ;

(4), 299-300, 304 ; —, ———(P), 171,
310, 313-15; —, —, fundamental
(A), 167, 170 300 313n.; D —
positive, 313 ; —, —, propos1t1ona.l
functions of (P), ; — — of
type ¢ (4) (fundamenta.l) ;—
of type L (4), 166 ; —, —, of type
L P, 171; —, 1rrat10na.l 56-7,
73-5:; — 1n measurement, I-li,

255-7 ; —, multiple-sequential, in
theory of differentials, 214; —,
natural, xxx, 53-58, 60, 61-2, 645,
71-2, 74, 159, 196, 313; —, nega-
tive, 57-8 ; —, —, 1n algebra, 76-7 ;
—, —, in theory of differentials,
212; —, n-order, in theory of
differentials, 210, 212; —, null,
in theory of differentials, 210 ; —
1-order in theory of differentials,

210, 214; —, ordinal, 147 ; —,
particular, Iv; —, —, (P) 314 ; —,
perfect, 54-5, 61 ; —, positive, in

algebra, 76 ; —, positive, in theory
of differentials, 212 ; —, rational,
56, 72-5, 98-100, 143, 145, 147,
153, 159, 205, 313 ; —, — (4), 304 ;
~—, — (P), 310, 315; —, real, 62,
64, 77-82, 143-6, 153, 156-7, 159,
205, 255-6; —, —, 1n elementary
theory of classes (P), 182-3; —,

—, 1n general theory of classes, 183—
7 ; — —, 1n theory of d1ﬁerent13.ls,
210 —, — l-order, in theory of
d1ﬁerenﬁals, 214; —, sequential,
in theory of differentials, 210,
212-18, 214; —, superabundant,
54-5 ; —, transcendental, 75, 144 ;
-~ -triads, 238-9; —, whole, 69-70,
94-8, 99, 100, 139, 143, 145; —,
g-%rder, in theory of differentials,

1

(o}

Object, 1deal, 261 ; — in phase, 30

Objectivity, 270, 274

Objects, concrete, xxv, xxvii; —,
constructible, 163, 320, 321 n. ; —,
determined, 274 ; — of experience,
xlvi, 268-9, 274 ; —, fictional, 64,
218, 313; —, ﬁxed 29-30; —,
heteronomxcal 39; —, 1dea.1 144
298 n.; —, indiwdual 269; —,
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macroscopic, lii n.; —, non-con-
structive, 21, 78-9, 157 ; —, non-
experiential, 42; —, symbolic,
268 ; —, undeﬁned 222
Observatlon, 220, 238 240, 264-6
Observer in specia.l theory, 243
Observer’s alteration of conditions of
experience, 258-9
Occam’s razor, xxiii, x1, 43
1, 314-n.
Ontological pattern, 124-6
Operations (Nikodym) in algebra, 77 ;
—, fundamental, in theory of dif-
ferentials, 212 ; — on classes, 133,
134, 136, 138 ; — — integers (4),
304 ; — -— irrationals, 74 ; —,
mathematical, 1, 240 ; — on natural
numbers, 56, 71-2 ; — — rationals,
56, 72-3, 99; — ~—— real numbers,
144 ; — — symbols, mechanical,
xxvii; — — whole numbers, 97-8
Operator, uninterpreted, 296 n., 297-n.
Operators, existential, xxxv n.; —,
logical (P), 310; —, universal,
XXXV D.
Ordering of temporal events, 238
Orders of classes, 155; — — — in
elementary theory of classes (P),

182 ; — — propositional functions,
xxxv, xlvii n. ; — — propositions,
ib.

P

Pan-idealism, 234

Parabola, area of segments of, 197-8

Paradox of Achilles and the tortoise,
194-5

Paradoxes (see by name, e.g. Zeno,
antinomies), xlu n., 6-7, 31, 271,
309, 320 ; — of everyday language,
34-5, 40-2, —, formal, 41; —,
logical, 40, 319; —, non-logical,
XXXV n., Xxxvi n.; —, ‘‘ seman-
tical,”” xxxv n., xxxvin., 319; —,
semantical, 40, 156,299, 319 ; — of
theory of classes, xxxiii-xxxv,
xxXXvI-n., xxxix n., 77-8, 139, 144-5,
150-2, 156, 182, 298-9, 319-20,
320 n. ; — ——— aggregates, 20-1

Parallel (lines) postulate, 219-20,
223-5

Parallels, problem of, 224-6

Parameters (class-, type-)

Particular cases, 262

Pattern (metalogical, ontological),
xlvii n., 217, 266, 296 n.

Patterns, functional, 128 ; —, funda-
mental (4), 167, 169-70, 303—4 ; —
of Hetper, mutually independent
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170 n.; — (P), 171-2, 177,
305-8; —, propositional, of Aris-
totle, 124-5; — of e ¢, serman-
tical (4), 167, 299 ; —, type of (4),
299; —, — —variables i (4), 299

Permutatmn, principle of, 119

Persons, 281

Phenomena, xlix, 3, 11, 259; —,
everyday, 27; Kanﬁan, 220
254; —, physma.l "240

Phenomenolog-y, 1, 17-9, 3640

Philosophy, xxii1 n, xxiv, xxv n.,
xxvi-xxvil, xliv, 2 3, 268 —_
contemporary, 13—9; —, Kantm.n,
285-6; —, Russian, 9; —, scien-
tific, 14-8; —, verbal, 18, 31-3

Physics, xhx-lv, 1 n-li n., 23942 ;
—, classical, liv, lv, 254-5, 262 ;
—, contemporary, lv, 242-52, 256~
61, 262, 2823 ; —, 1dealistic, 257 ;

—, quantum, 241 -, theoretical, 4

Planck’s constant, 257

Plane, 217-18, 221—2 —, infinite,
229 ; —, Klein's model of, 227-32 ;
— of symmetry, 245

Platonists, 236-7

Plucker's principle of infinitely many
possible interpretations of abstract
geometry, 221

Poincare’s postulates,
xxxix—-xl1, xxxix n.

xxxvili n.,

Point, freely falling, 201; — of an
event, temporal, 238

Points (world), fixed, 244-50 ; — on
straight line, 245, 249 ; — of space,

192-3, 200-2, 217-18, 221, 228-31 ;
— at infinity, 221, 227 ; — in Rie-
manman geometry, 232—4

Polygons, 220

Position, Iv-n., Iviin. ;
256-9

Positivism, xxiv n., 6, 11-12, 15-17,
19, 42-7

Postulates (see by name, e.g. Zar-
emba) of special theory, 246

Postulational methods, xxx

Praclarum theovema of Leibniz, 134

Pragmatism, 1, 14, 15, 16-17, 234

Precision, 255-6

Predictability, liv-lv, 254, 258

Prediction, xlix, 1, liv, 45, 239, 256,
259-81

Premise, general, 262

Principia Mathematica, xxxii-xxxid,
xxxvil, xxxviii, xlvii n., 106 n., 109
124 n., 131 n., 153 n.

Principle (see by name, e.g. permuta-
tion)

Probability, 46-7, 255, 256, 259-60 ;

— of electron,
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—, calculus of, Ivu, 134,
2524, 255, 267

Probab1ht1es experimental and ab-
solute mea.ning of, 260

Procedure, scientific, xxii, 1

Processes, eternal immutable, 40 :

—, matenal, 274, 278, 279; 3

physical, 240 — physlologlca.l 49,
279; —, psychlc, 279

Product of classes, 133, 134, 136, 138,

182,

140 ; — ——in elementary theory
of classes (P), 181; —, logical, 102,
114 ; — of natural numbers, 72

Progressions, serial, xxxi

Projections, 245

Proofs, xx1x, xxxi1 n., 67-8

Propagation of light, 24952

Prop E (4), 167, 301

Proper systems, i.e. (P), 171-8, 181,
188-91, 305-12, 305 n-310 n.,
313-15,314 n., 316, 318 ; — —, hier-
archies of, 315-18; ——, rules of,i.e
(RP), 165, 172—4, 295, 301, 305 n.,
316-n., 318; — wvalue of type-
parameters 1n general theory of
classes, 186

Prgpé)rtlonahty of areas of triangle,

3
Proportions, theory of geometric, 57
Propositional (functions) calculus (4),
0; — components of symbolic

propositions (4), 169-70

Propositions, xxx n, xxxv-n., xl n.,
xlviin , 32, 39-40, 43,47,77-8, 110
11, 129-30, 304, 320 ; — (4), 167,
169-70, 301, 303, 304 ; —, analytic,

xxxi; —, calculus of, 101-26, 139,
302-3; —, — — (d), 300; —,~——
(P}, 309-10; —, — —, for particular

constant expressions (P), 310; —
— —, pure, 117-18 ; — contamning
classes and qua.ntlﬁers (4),305;—,
oontra.dlctory, in metasystems, 184
—, decidable, in metasystems, 180,

184 ;o —, discutable, in meta-
systems, 184-5; —, elementary,
xxxii n., 112, 116, 117 ; —, — true,

116; —in elementary systems (P),
309-n ;  —, equiponderant, in
metasystems, 184 ; —, false, 914,
110-1; —, genera.l in metasystems
185; —, indiscutable, in meta-
systems, 184-5; —, logical (P),

309 ; —, negative, 165 ;
tern of 124 ; A
predlcatwe 78 —,
(P) 177 ;
173—4 176—7 181, 189—91
pure theory of types (P), 189 7 —

cc*
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quantified (P), 177; — in sum-
plified theory of types (P), 189-90 ;
—, saentlﬁc, Xxxvil, —, Seman-
tical, 309-n.; —, s1mple ambigu-
ous, rule of (P) 173 ; —, singular,
xlvii n.; —, symbohc, of meta-
systems, 178; —, —, false (4),
303; —, —, true (d4), 169-70,
303; —, —, true (P), 177; —,
true, 47, 91-4 110-1, 116; — —,
of metasystems, 183; —, — (P)
183; —, undec1dable, 253; —,
universal, 126, 165; —, ~— cate-
gorical, 32 ; —, values of (P), 177

Pseudosphere, 227
Psychology, xxxii
Punctuation, 38, 296
Pythagorean theorem, 58-9
Pythagoreans, 534, 58-9, 237

Quantification, xxxv-n

Quantifiers, xxxv n., 124; — (4),
305; —, calculus of, 126~9 —_—
(P),309;, —(P),177; —, genera.l
(P), 171, 176~7 -, —, rule of (P),
174 ; —, partxcula.r (P), 172

Qua.ntlty, XX1X, XXX ; —, physical,
23940

Quantum of distance, 241 ; — theory,
250, 256-9; — of tlme, 241 ; —
properties of radiation, 7

Quotient, mathematical, 1, 240 ;
natural numbers, 72

R
Radiation, 7
Radium, 7
Rationalism, 1, 10; —, critical, 22

““real,” xliui-xlvii, xliv n., xlv n.,
x1vii n,

Reahsm (1dealism), xxi, xxvm, 21-2,
3 —, platomic, =xxxiii; —,

primitive, 4
Reality, xldi, xlvi, 4, 6, 218, 254, 259,
269, 274 ; —, concept of, it n.,

xhv xlix n., lv n., 85, 286—7 290 ;

-—, concept of natura.l, xliv, xlv n.,
xIvi n., xlvii, liii, 275-7, 279, 281,
284 ; —, — — physical, xhv, xlvn.,
xlvin., xlvii, Liii, 277-80, 282, 286;
-—,—— sensational, 286 ; —, concepts
of, xliv—xlvi, xlv n —x1vi n., xlvii, ],
274 ; —, critenia of, xliv, 274-5,
284-5; — of experience, 255 ; —,
formalizations of, xlv—xlvii, xlv n.—
xlvin,, xlix-n., Iv, 1vi, 261-2, 265-6,
269-72; —, ideal, liv, 255; —,
idealistic conception of, 254; —,

images of, 1, 3, 239 ; — of images,
concept of, xliv, xlvn , 276, 284-7;
—, mathematical representation of,
xlix-n., 242, —, Nietzsche’s artistic
concept of, 14; —, patterns of,
xliv n., xlvii n., 261, 269-70, 274 ;
—, partial system of, 272; —,
sensational, 281 ; — of sensations,
concept of, xliv, xlvi n, liv, 2804,
286 ; —, sensationalistic concept
of, of Carnap, 272 ; —, theory of
plural, xxi, xlni-xlvii, xlv n., xlvi
n., xlvi, hii-liv, 278, 287

Reason (sound), pure, 7

Reasoning, criteria of, 290 ; —, exact,
3, 6, 8-9, 23 ; —, finitistic, 70; —,
inductive, lvi, 265 ; —, intwitive,
165, 271, 293-n.; —, mathematical,
108

Recurrence, eternal, 237-8

Recursion, semantical axiom of, (P),
172

Recursive rule of real variables (P),
173

Reducibility, xhi; —, axiom of,
xXXVi~-xXxXvi, xxxwvii n., 156-7,
298n.,299n, 320 n.; —, principle
of general, 1n simphfied theory of
types (P), 190-1; —, — —limited,
in pure theory of types (P), 190

Reduction, xxxii-n., xxxviii, 20, 43,
64, 71-2, 124-5, 139, 142, 259
261-~2, 293, 300

Referents of signs in formal logic,
xxviii

Regress, 1nfinite, 59, 184

Relation, ancestral, 267 ; —, ante-
cedent of, 143; — of being arith-
metically equal to in arithmetic
of real numbers, 143; — — — —
greater than in arithmetic of real
numbers, ib. ; — — — —less than
in arithmetic of real numbers, ib. ;
- — — greater than, 66; — —
~— — — in arithmetic of whole
numbers, 9§; — — — — — —
theory of differentials, 211; — —
— — —or equal to 1n anthmetic of
whole numbers, 95; — — — — —
~— — — — general theory of
classes, 187 ; — — — less than in
theory of differentials, 211; — —
class of classes, fundamental, in
general theory of classes, 186 ; —
— — — — of classes, fundamental,
in general theory of classes, ib. ; —
~concept of f{fractions, 56; —,
converse, 142; —, consequent of,
143 ; —, field of, 143
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Relations, calculus of, 142-3; —,
elementary theory of (P), 177-8,
180-3, 205, 321 ; —, quantitative
and non-qua.nt1tat1ve, XXiX

Relativism, 287

Relativity, Einsteinian principle of,
16 ; — of principles of theoretical
sciences, 11 ; -, special theory of,
xlviii n., 242-52

Religion, 28

Repetition in nature, 2634

Representations, physical, 241

Responsibility, 280

Revolution, 45

Richard’s paradox, 77-8, 144, 153,
156, 182, 319

Romanticists, 13—4

Roots of elementary propositions,
116, — — propositional functions,
91-4 ; — — propositions, 91;
semantical equations, 115

Rules (construction, transformatmn)
logical, 69 ; —, selection, 253

Russell’s pa.radox, xxxii-xxxiv, 150~
1,183

S

Scepticism, Greek, 7-8

Science, xx11-n, xxiv, xxv n, xxvi-
xxvii, 1-8, 11-13, 15-16, 22-3, 25—
6, 45-7, 218, 271, 273, 281; —,
expenmenta.l 217; —, ob]ectlve
8; —, p]:ulosophy of, xxviil,
xlviii-lvii; —, rationalistic, 6-7

Sciences, apriori, 20 ; —, deductive,
xxiv; —, exact, xxi, 3, 6, 10, 30,
32, 52, 268 ; —, —, boundaries of,
19-20, 268, 270 ; —, —, methodo-
logy of, xxi, 217267 ; —, mathe-

matical, 126 ; —, natural, lvi-lvii,
42-3, 267 ; —, theoretical, 11
Segment, liv, Iv; — theory of frac-
tions, 56, 70-3 ; — — —1rrationals,
73—4 ; — — — real numbers, 64
Segments, 56, 64, 144; —, geo-
metrical, 57; —, incommensur-
able, 58 ; —, pseudo-concrete, 144 ;

—, real, 254-5; —, relative, 71-5;
—, temporal, 193—4

Selection, axiom of (choice); —,
rules, 253

Semantical calculus, 70 ; — — (4),
300 ; — —, elementary, 168, 297 ;
— axiom (P), 172, 173 ; ~= compo-
nents of symbolic proposltlons A4),
169-70

** Semantics ”’ (synta.x) xxxvi n.,
xxxviii n., 162- —, 1ntu1t1ve
83-5
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Semantics, xxi, xxviii-n., xxix, xxxvi
n., xxvir-xlii, xxxvmn 1v1, 22-3,
75 154, 162-3, 179, 208 293-n.,
294 208 n., 300 — element
xxxix, xlii, 83—100 111, 126, 164
179, 296—7 —_ fundamental
system of, hv. 164-6, 293-318 ; —,
general, xlvii n.; —, intuitive,
164; —, language of, 303; —,
rational, xxix n , xlvu n.

Sensations (reality), 281, 286

Sense (meaning), 37

Sensory elements 274, 286

Sequences, 93—4, 1951., 207, 322 ; —
of von Mises, 252—3; — of in-
tegers, infinite, 81 ; — of natural
numbers, 196; —, ordered, 147,
— of real numbers in theory of
(i‘liﬁerentia.ls, 210 ; —, well-ordered,

7

Series, 207-8, 213, 322; —, geo-
metric, 196, 197; —, harmonic,
196; —, multiple, 1n theory of
differentials, 214 ; —, “ p,” 196

Signal, luminous, 245

Signs, xxviii, xli, xlvi, 61-4, 74-5,
83-6, 295 n , 296, 313 ; —, system

of numerical, 61-2

Similar invariants and sub-invariants
in general theory of classes, 186-7

Simple ambiguous propositions, rule
of (P), 173

Slavery, 9-10

Socialism, 11

Solids, 221

Sophists, 8, 26-7, 31, 43

Soul, xxiv n., 10, 28, 47, 236

Sound reason, xxii-xxvii, xxiv n.,
xhy, xlvili, xlix, 6, 8, 24-52, 78, 85,
220, 255, 258; —, criteria of,
xxni-xxiv, 25, 27, 29~30, 45, 47,
68, 265-6, 274-5, 284-9, 302 n.

Sounds, 43 ; —, mea.mng%ess 35

Space (geome h xxix,
1iii, 192-3, ;1'2}’1 234-5, 238, 244
—, real, 241

Space—t1me, 1uni, 235, 242-52

Special theory (relativity)

Specific difference, 35-6, 87

Sphere in Riemanmian geometry,
232-3

Spiritualists, 278

Star operator, xxxx, xlii, 86-7, 166,
295-7, 296 n, 297 n.; —, rule of
(P), 173

Start, semantical axiom of (P), 172

Statements, meaningless, xXxxiv; —
in object language, 297; — of
semantics, syntactical, 297
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Stroke, 111, 117; — (P), 177; —,
fundamental pattem of (4), 167,
170, 300 ; — operator, rule of (P),
174

Subclasses, 133, 298

Sub-invanant of fundamental n-
variants of expressions in general
theory of classes, 186-7

Subject, 274-5, 279, 281

Subjectivism, 8

Subjectivity, 270

Substances, real, 53, 58

Substantiality of the soul, 10, 47

Substitution, 834, 89-94; — of
constant expresslons for ‘constant
expressions in constant expressions,
89-90,294n ;| ————— ——
———(4),167,170, 300, 302; ———
constants for va.nables, 302: —,
dead, 91, 113; —, intuitive rule
of, 165, 293 n.; — for letters in
calculus of propositions, 119 ; — of
logical and semantical expressions
in stroke pattern (4), 300; — of
numbers for variables in mathema-
tical functions, 205 ; —, pattern of,
fundamental (4), 167, 169-70,
313; —, — —(P), 177, 318, 314 ;
— rule of pattern of (P) 173 ;
type of pattern of (4), 170; — for
real variables (E), 166, 296 ;

— — (P), 311-12; —, specm.l (P)
172; —, umqueness of, 89-90;
— of values of varables for
variables 1n calculus of propositions

(P), 310

Subtraction in algebra, 77; — of
rationals, 99; — of natural num-
bers, 72

Sum (addition) of angles of triangle,
231-2 ; — of classes, 133, 134, 136,

138 ; — — —in elementary theory
of classes (P), 181; —, logical,
112-13

Summation, principle of, 120-1

Syllogism, Aristotle’s theory of, 31-3,
125; — of Nicod, 118; — — —
(P), 172; — — — in pure and
simplified theories of types (P),
189; —, principle of, 102, 120;
—, ‘rule of, 120; —, — — (P),
174

Symbolism, logical, xli1 n., 80

Symbols, xxvii, 107, 310 n.; —,
meaningless, 76

Syntax, xhi-xIn, 310

Synthesis, xxiv, 26

System (see by name, e.g. auxiliary),
decimal, 61; —, determmed liv-

lv, 260 ; —, fundamental, 165-6,
293-312 —[MN](P), 1712
Systems (meta:) [20], [21] (P).

174~7 ; —, deductive, xxxi, xlv,
xlvin.; —, formalized, 273 ; — of
Hetper, simple, 178 ; —, rule of
(P), 174 ; —, formal, xxvi—xxviii,

xxviii n., xxix-n., xxxu n., xxxvin.,
xxxix, xlii, 33, 294-n., 323

T

Table method, 914, 111-18

Tautology, principle of, 119

Tensors, 182

Theorems, arithmetical (P), 310 ,—
of DeMorgan, 135-6; — —element-
ary systems (P), 307; —, exist-
ence-, XxXx1X n.; —, geometrical,
xxx ; — involving infinite regress,
59; —, logical (P), 310, —,
mathematical, xlii, 20, 54; — in
reduction, xxxii n. ; —, syntactical,
xlii, 297; — of system [MN].
pattern of (P), 172

Theories, physical, 3-4; —, philo-
sophical, xxii, xlvin., 1,; —,
scientific, 3

Thing in 1tself, 285-6; — for us,
261, 286; — travelling, 246, 250-1;

—, unique, 263

Things, xxxiii n., 85, 236, 281

Thought, hab1tual xxviii ; —, laws of,
xxui, 108 ; —, principle of economy
of, 11, 15-16, 46, 234; —, exact,

7, 8, 105; —, —, principles

of, 9; —, rational, 9

Time (space), 80, 192-5, 200-3, 235—
41; —, absolute, liii ; —, common
sense idea of, 250 ; —, coincidence
of moments of, 240; —, con-
tinuous, li1ii; — of Einstein, 245 ;
— of experience, 240-1; —,
future, 237 ; — of Galileo, 246 ; — -
observables of fixed points, 245,
24950 ; —, orders of, 236; —,
past, 237; — in physics, hii; —,
present, 237 ; —, real, lii1, 241 ; —
sensibly continuous, hii

Transcendence, principle of, 160

Transformation of Lorentz, xlvuin,
247-9; — of Ga.llleo, xlviiin.,
249 ; —, principle of, in pure and
s1mphﬁed theories of types (P),
190; — rules (demonstration},
xxxix, 139—40, 142, 190

Transitivity, 66, 88, 93, 96

Triangle, 231-2

Trigonometry, 61; —, non-euchd-
ean, 225
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Triples, amicable, 55

Truth, 15, 18, 25, 37, 254, 269-70,
287-9, 303 ; —, absolute, xxii, 8,
287-9 ; —, formal, 37 , —, mathe-
matical, 19

Type, xxxv, xlvii n., 170, 307-8, 315 ;
— ¢ (4),170,299; — — (P), 175,
176; — K (4), 170, 2909 ; — —
(P) 176 — L (4), 166, 167, 170,

— — (P), 171, 306 —_ -

pa.ra,meters in genera.l theory of
classes, 186; —, semantical (4),
298-9

Types, 80, 170, 180-1, 185, 277, 279,

285-6, 298, 308; —, branched
theory of, xxxv, xxxvil, xlviin.,
155, 298-n., 320 n.-321n.; — of

classesin pure theory of types, 155 ;
— — — in elementary theory of
classes (P), 181-2; -— of expres-
sions 1n general theory of classes,
185; —, logical, xxxivn., xxxv,
155, 158 ; —, metascientific theory
of, xlvi-xlvii, xlviin., 271; —,
pure theory of, xxxviin, 22, 155,
157, 182, 209, 252-3, 321 n.; —
— — — (P), 188, 189-90; —,
ramified theory of, xxxvi; ~—
semantical theory of, 158, 207
_ — — A) 170 298-9,; —
‘“ semantical *’ theory of, xxxvin.,
-, s1mple syntactical theory of,
xxxvin.,; —, s1mp1e theory of,
XXXIV-XXXV, xxxvm, 152, 298-n.,
320 n—321 n.; —, simplified theory

of, 1524, 160 -~ — — (P),
188, 190-1; —, theory of, xxvi,
xxvii n., xXxXV1 n., xl-xli, liii n.,
xlvi, Dhii, 20-1; —, — — (P)
209; —, theory of constructive,
xxxvii-n, 81-2; —, — — for
everyday language xxvi-n.; — 1n

theory of relations (P), 180-1;
variable, 209
Typography of text, xv-xvi

U

Undecidable consequences of physical
laws, 253

Universalism, 1, 234

Universals, xxvi

Universe, 278 ; — of discourse, 139,
152

Unknowability, 259

Utility, 16 ff., 2845

v
Value (class-, proper)
Variables, xxx n., xlvii n., 87 ;

apparent, xxxn; —, —, in ele-
mentary systems (P), 306 308-n.,
311-12 ; —, — logical, in element-
ary systems (P), 306;, -— —

propositional (P), 171- —_ —

semantical, 127, —, — — (P),
171; —, — —, 1n elementa.ry
systems (P) 306, 308-n.; — in
anthmetic (P), 314, 315; — of

calculus of propositions (P), 310;
— 1 elementary systems (P),
306-8, 306 n,,308n.; —— ——,
patterns for (P), 306; — of
geometry, xxx n.; —, integral,
208, 322-3; —, K-type (P), 175 ;
—, logical, in elementary systems

(P), 306, 314; —, natural, 207;
—, numerical, 322-3; — in pat-
terns (4), 299, 300 ; — (P), 175-6,
306~-8, 306 n.; —, propositional,
axiom of (P), 173 ; —, — (P), 171,
178; —, — K-type (P), 175-7:
—, ~_real (P), 175 176, — ——,
rule of (P), 173; —, real, xxx n.,

—, —, 1In elementa.ry systems
(P) 306-n 308-n, 311-12; —, —,
_—— domaln of subst1tut10n of
(P), 311~-12 ; —, —, 1n fundamental
system, 166 —, —, in mathema-
tical functlons 182 203-9, 210,
322; — — (P), 171, 173 175 176,
305, 306-n 308-n., 311- .
recursive rule of (P) 173 — in
(RA), 299, 300, 302 ; (RE) 166,
295-6, 295 n.; — — —, domain of
substitution of 166, 296 — in
(RP), 171, 175-6, 305, 306n —
sema.ntma.l in elementary systems
(P), 306~7 ; —, semantical K-tYPe
(P), 175 ; —, —real (P), 175 ;
— —, axiom of (P), 173; —, ——,
rule of (P), 178; —, — (P) 171
Vectors, 77, 239; — in algebra, 76-7
Velocity, 1I-n, 200-3, 239—40; — of
axes, relative, 242 ; — of Bridg-
man, 246, 249 ; — of Einstein, 246 ;
— of light (¢), 241 242,247, 250-2 ;
— of luminous source, 251 —of
thing travelling, 246

Verbalism, 18, 31-2

Vicious cu-cle fa.llacy, 41,78

Vision, xxii

Visions, 85, 291

w
Weyl's concept of real numbers, 81
Words, finite number of (definability),
78-9
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World, xxvii; —, finite, 60, 236; —
-points, 193, 243-4; —, real,
xxxil ; —, spatio-temporal, 243—4;
— -view, xxii, 2, 6, 11, 17, 21, 109,
145, 274-5

Worlds, all possible, xxxiii; —, re-
currence of, 237

X
#x-axis, 229-30

SUBJECT INDEX

o, 147, 155-6

Zaremba’s postulates, 250

Zeno’s antinomies or paradoxes,
xxii-n., 7, 192-5, — paradox of
the rustle, 35

Zermelo’s axiom, 159-61

0, 86, 8990, — (4), 167; — (P),
314-n.

0,76, 143

01n theory of differentials (null), 210
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This index lists the most important symbols of semantics and physics
used 1n the text. Terms in parenthesis indicate references to the complete

Subject Index.

Elementary Semantics
( E F G H) (Substitution), 84
{ EF } (Inclusion), 84
0 (Integers), 86
w E F (Star), 86
“, v, w. (Semantical letters), 87
V (True), 91
A (False), 91
== E F (Equality), 94
Integ E (Whole number), 95
1, 2, . . . (Integers), 95
» E F (Comparison), 95
= E F G (Addition), 97
¥ E F G (Multiplication), 97
W, 97-8

Lo, 98

, ... (Rationals), 99

[N

2

| -

EFG, = EFG, X EFG,
R R
+ E F G (Rationals), 99

w4~

E F (Equalty), 99

wil ¥

Calculus of Proposstsons
| E F (Stroke), 111
b q st .- . (Logical letters), 111
~ E (Negation), 112
V E F (Sum), 113
A E F (Product), 114
= EF (Equivalence), 114
) E F (Implication), 116
Z ¥ & - - - (Semantical letters,
Apparent variables), 127

Theory of Classes and Relations
€ J F (Class-membership), 139
II I F (General quantifier), 139
w= A (Complement), 140
N A B (Product), 140
W A4 B (Sum), 140
= 4 B (Equality), 140
cl
( 4 B (Sub-class), 140
V (Universal class), 140
A (Null class), 140
rel (Relation), 142
Nz0y{ %7 } (Relation), 142
nz0y{yz % (Converse relation),
142
. == A4 (Negation), 143
. £ 4 B (Product), 143
.\ 4 B (Sum), 143
l‘?elA B (Equality), 143
. ( 4 B (Inclusion), 143

v
Rel (Universal), 143

ARel (Null), 143

rel R (XY) (Antecedent,
quent), 143

w, w - 1 (Ordinal), 147

No N1 - - . (Cardinal), 148

Conse-

Foundations of Metamathematics
(R E) (Rules for Expressions), 166
¢, 166
+ EF (Star), 166

345
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OL, 1L, .2L, ... (Integers of type
L), 166

JL, IL (Auxiliary asymmetrical
expressions), 167

(EFGH) [ L] (Substitution), 167

| E F (Stroke), 167

~ F (Negation), 167

) E F (Imphcation), 167

V E F (Sum), 167

A E F (Product), 167

= E F (Equivalence), 167

= E F [L ] (Identity), 167

{EF }[L] (Inclusion), 167

Prop E (Propositions), 167

Expr [L 1E (Expression of type L)
167

0,1,2 ... (Fundamental integers),
167

I, II (Fundamental auxiliary asym-
metrical expressions), 167

(EF G H) (Substitution), 167

= E F (Identity), 167

{ EF } (Inclusion), 167

Expr E (Expression), 167

(R A) (Rules for auxiliary system),
168

Type K (Type), 170

0g, 15, . . . (Integers of type L), 171

Integ [ L ] E (Propositional functions
of integers), 171

Integ E (Propositional functions of
integers), 171

« B

KL KL

variables), 171

(Propositional

é
L (Propositional variables), 171,

é
L
Qgy Py - (Semantical variables),
171
8y, (Semantical variables), 171
&y, (Semantical variables), 171

, - . . (Propositional variables), 171

INDEX OF SYMBOLS

II[MN]XE (General quantifiers),
171

II[ M N ] XY E(General quantifiers)
171

FI[MN]XE
fiers), 172

S[MN]XYE (Particular quanti-
fiers), 172

AxlogEFGH (Nicod’s syllogism)
172

Ax sem EFGHJIEKI[L ] (The
semantical axiom), 172

[E [ME]1E (Theorems of system
[MN]) 172

((EFGH)) [L](Thespecial sub-
stitution), 172

((EFGH)) (The
stitution), 172

gen[KL]; (EJY)FG (Generahza-

(Particular quanti-

special sub-

tion), 172

gen [EL](EJ)FG (Generahiza-
tion), 172

(R P) (Rules for proper systems)
173

O ¢ PBre - - - Bro Pgo - - (E-type

vanables), 175

b~ (M.1L)F (Symbolc proposi-
tion), 178

(M.1L) (Metasystem), 178

Gy, (E) (Godel), 179

G(z) (Godel), 179

Subst [ML]JEFGXH, 180

Class [ML ]F, 180

€e[ML]XF (Membership), 180

Relat [NML ] E (Relation), 180

rel [NML]JE(XY) (Antecedent
Consequent), 180

we [ML]E (Complement), 181

A [ML]EF (Product), 181

WV [I[ML]EF (Sum), 181

C(z) (Type, order, class), 182

(L), (Rational metamathematics),
183
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l—nE (Rational metamathematics,
metasystem), 183

= (GH)EF[K]
equality), 183

R(y) (Intertypical equality), 183

expry, [ M ] X (Constant expressions),
185

Expr (L) (Fundamental invariant),
185

typ, (M N X)) (Type), 185

Invy U (Invariant), 185

Cl (L) (Invariant), 185

un [ML]E (Unit class), 185

Un (L) (Invariant), 185

Clpy (L) (Class of classes), 186

}= o 2 E (Hetper’s generalizedsystem),
188

Reduct ( ENL) F (Reducibility), 190

(Intertypical

347
Fy 1 (X) (Function), 209

Relativity Theory

A, (Fixed point), 244

4 (Axis), 244
4, 4,, P, Py, Q (Points), 244
7t (Plane of symmetry), 245
x, %y, a, a; (Projections of vectors), 245
7, 71, 7, P, g (Distances), 245

1 (E’ E) (Luminous signal), 245
Tao» T Ta T» T (Time-observables),

245

t, 1, t,, t, (Einstein’s time), 245

V (Bridgman'’s velocity), 246
v (Einstein’s velocity), 246
B, B (Fitzgerald’s Coefficients), 246
T, T,, T, (Gahleo’s time), 246
I(E FG) (Minkowski’s Invariant), 246



