
1

Part 1. Introduction
The SuperCollider Language and System

SuperCollider is a powerful and flexible programming language for sound and image

synthesis and processing. It was developed by James McCartney of Austin, Texas, and

is the result of more than five years of development, including the Pyrite and Synth-o-

matic systems from which SuperCollider is derived. The somewhat odd name of the

language is derived from its creator’s obsession with the superconducting supercollider

project that was planned to be undertaken in his home state of Texas, but never funded.

The SuperCollider compiler and run-time system has been implemented on Apple

Macintosh and Be computers (more ports are projected), and can execute quite compli-

cated instruments in real time on “middle-class” Macintoshs (see the notes below on its

performance). This book is a step-by-step tutorial on SuperCollider programming; it is

aimed at musicians who want to use it for musical sound synthesis and processing.

SuperCollider and Music-V-style Languages
SuperCollider (hereafter SC) is a sophisticated

high-level programming language; its syntax and

library functions are derived from the C++ and

Smalltalk languages. Its development environment

includes a program text editor, rapid turn-around compiler, run-time system, and

graphical user interface (GUI) builder. SC instruments can also take their parameter

inputs from real-time MIDI commands and controllers, and can process sound files and

live sound input.

The main differences between SC and “traditional” Music-V-style software sound

synthesis languages such as cmusic or Csound are (1) most SC programs run in real

time and can process live sound and/or MIDI inputs; (2) SC is a comprehensive gen-

eral-purpose programming language with facilities for file input/output (I/O), list pro-

cessing, and object-oriented programming; and (3) SC is an integrated programming

environment including a text editor and GUI builder that allows you to build interac-

tive interfaces for your instruments.

Reading This Book
This book is an introduction to the SC language aimed at readers who have some pro-

gramming background (such as knowing another sound synthesis language or a gen-

eral-purpose language like C or Smalltalk). It is not meant to substitute for the SC

manual, to which I indeed refer the reader in numerous places.

SC

Sound and Music Processing in SuperCollider

2 Stephen Travis Pope

For a tutorial on computer music, readers should consult a general text book such as

Curtis Roads’s comprehensive book The Computer Music Tutorial (Roads 1996) (highly

recommended). For more in-depth programming techniques (in C) and engineering

details, I suggest Elements of Computer Music by F. R. Moore (Moore 1991). If you have

no programming background at all, you should take some time to learn the basics of the

C, Pascal, LISP, or Smalltalk programming languages before proceeding (e.g., Deitel

and Deitel 1992).

The recommended way to use this book is to (1) get access to a computer capable of

running SC (an Apple PowerPC-based Macintosh, third-party Macintosh-compatible

clone, or BeBox), (2) install SC on it (either the free demo version [see Part 8] or the full

[paid-for] installation will work), and (3) read through the book consulting the refer-

ence manual and Computer Music Tutorial where appropriate, and using the on-line

example code.

The documented source code for all examples presented in this book is available by

Internet FTP or WWW access from the CREATE Web site at UCSB; look at the FTP

directory ftp.create.ucsb.edu/pub/SuperCollider. The effectiveness of this book is greatly

enhanced by on-line experimentation with the progressive examples it presents.

This Part introduces the topic and presents a very simple example to give readers the

taste of SC. If you have no background in software sound synthesis, I suggest that you

skip to Part 2. It presents the background of sound synthesis programming languages,

especially the Music V family. Part 3 introduces the syntax of the SC programming lan-

guage and its rich collection of built-in functions. In Part 4, the SC user interface com-

ponents are outlined. I present the basic programming techniques of SC in Part 5.

Following that, a collection of advanced techniques available to SC programmers are

demonstrated in Part 6. The last major topic is algorithmic composition, which is dis-

cussed in Part 7. Part 8 presents some final comments and information on where to get

SC itself and more information about it.

Acknowledgments
My first acknowledgment must go to James McCartney for creating SC in the first

place. It is only because I like using it so much—and also believe that it is an excellent

production, performance, and pedagogical tool—that this book ever came to exist. A

number of people at CREATE have contributed to this effort, but I would especially like

to thank Curtis Roads for his support and input, and the students of Music 209L at

UCSB for their questions. CREATE’s director, JoAnn Kuchera-Morin was also central to

the process because she worked for 12 years to establish an environment that fosters

3

artistic experimentation and production without compromises, and attracted the

researchers and students with whom I feel lucky to work. Lastly, my thanks to the many

SuperCollider users who read and commented on earlier drafts of this book.

Typographical Conventions
In this book, all program code is written in the Helvetica typeface. Jargon terms are

written in italic style. Menu items and keyboard commands are written in bold-face.

A Simple Example
As a quick taste for the impatient, the example below is an annotated SC instrument

that plays a continuous sine wave at 220 Hz. Read the comments in the right column

first (“--” starts a comment that continues up to the end of the line). Because this is a

real-time system, we do not need an envelope or even start/stop times. The instrument

plays as soon as it is compiled and executed within the SC environment.

To run this example, start up SC on your computer and find the example code that

accompanies this book. Open the file “01. Steady Oscillator” in the “Code” folder; you’ll

notice that the text is displayed in SC’s text editor view. To play the instrument, press

the Command-/ key combination); the sound will continue until the program is inter-

rupted (by pressing the Command-. “interrupt” keys). To make it softer, use the Com-

mand-] keys; Command-[makes it louder.

-- A Simple SuperCollider Oscillator “Instrument” Program (This is a 1-line comment.)
--
defaudioout L, R; -- Define audio outputs named L and R.

start { -- The “start” function is called automatically (like
-- “main” in C programs); it usually runs the
-- instrument. In this case, it is the instrument.

var osc, outval; -- Declare variable names (with no type information)
-- for the oscillator object and output sample buffer.

osc = Asinosc(220, 0); -- Create a 220 Hz sine oscillator object.
-- Asinosc()’s arguments are (frequency, phase).
-- The oscillator object is held in the variable “osc.”

-- Now create a continuous loop to play the oscillator.
dspAdd({ -- Start the signal processing loop.

outval = value(osc); -- Get osc’s value (a buffer full of samples).
out(outval, L); -- Send it to the left output.
out(outval, R); -- Send it to the right output.

}); -- End the DSP loop.
} -- That’s it! (End the start function, and the program.)

Code Example 1. An Introductory Example

Sound and Music Processing in SuperCollider

4 Stephen Travis Pope

This simple example already has all the standard elements of SC programs: a header

comment, sound output declarations, and a start function with a unit generator con-

struction message and a DSP loop that evaluates the unit generator.

The details of the SC language syntax and its library functions will be presented in

Part 3, and Part 5 includes a comprehensive set of progressive examples.

SuperCollider Summary
As in most languages of the Music V family, SC has built-in functions for various

kinds of sound sources (oscillators, noise generators, sounds file readers, live inputs,

etc.), time functions (envelopes, controls), sound processors (filters, delay lines, etc.),

and outputs (to write sound samples to the digital-to-analog convertor or to a file).

The two most important differences between SC and the Music V family are that SC

always tries to run in real time, and that it can read live audio input and MIDI data. SC

is also a “real” programming language in that it has more comprehensive data types

(e.g., lists) and built-in functions (e.g., text file-I/O and graphics) than other “sound

compilers.”

The rest of this book is about SC, but first, we will introduce the basic technology of

its predecessors—the Music V family of software sound synthesis (SWSS) program-

ming languages.

SuperCollider Performance
While meaningful benchmarks of software sound synthesis systems are hard to

design (Pope 1993), SC is unique in being strongly oriented toward real-time perfor-

mance, and using quite sophisticated compiler and run-time execution technology. The

user interface gives you constant feedback during performance about how much of the

CPU is being used, so you can always tell if you are close to being “in trouble” in terms

of real-time performance. SC also allows you to compute samples out of real time and

write them to disk for later performance. (It saves the sound files in

SoundDesigner II format.) Thus—as with traditional software

sound synthesis languages—there is no real limit on the complexity

of instruments you can write in SC (if you’re patient enough).

There are several variables that effect run-time performance. The

most obvious of these is the output sample rate you use. The “stan-

dard” rate is 44100 Hz (the CD sampling rate), but values between

11025 and 48000 Hz are meaningful. A lower rate means more com-

putation can be done per sample, but also limits the frequency

response of the output. Like several other sound synthesis lan-

5

guages, SC computes envelopes and other “control” functions at a lower rate than the

sample rate. The “sub-frame” size is 64 by default, meaning that control functions are

updated every 64 samples. This can be set to any size between 4 and 256 (it’s usually a

power of 2); smaller sub-frames cause more computation (and better sound). The third

variable that effects computation speed is the output buffer size (or “frame size”, which

determines how often sample buffers are sent to the Macintosh sound manager. The

default is 4096 samples; large output buffers improve run-time performance, but

impede interactivity in instruments with run-time control inputs.

The machine on which I’ve used SC most heavily is an Apple Macintosh PowerBook

1400cs (with a 183 MHz PPC 603e CPU, 128 kB cache, and 28 MB RAM). On this

machine, the sine instrument given above takes approximately 9% of the CPU

resources, while the FM instrument introduced below (with parameterized envelopes

for the amplitude and modulation index, and a repeating note pattern) takes about 22%.

These performance values are measured with the default settings of 44100 Hz sample

rate, a control buffer (sub-frame) size of 64 samples, and an output buffer (frame) of

4096 samples; these three variables can all be tuned to improve performance. If we

decrease the sample rate to 22050 Hz and increase the sample buffer size to 256 samples,

for example, the FM program uses less than 13% of the CPU on the PowerBook (and

obviously sounds different).

A score that uses four simultaneous voices of the FM instrument takes 95% of the CPU

using the default settings; increasing the output frame size to 16384 samples brings this

down to 89% (because of the decreased sound manager overhead). Changing the sam-

ple rate to 22050 Hz means that it takes 51%, but it goes back up to 89% if you decrease

the sub-frame size (increase the control rate) to 16 samples at the same sample rate. The

table below illustrates the CPU usage for various settings of the three relevant variables

and gives some hints about how to “tune” instruments for best performance.

Sample Sub-Frame Frame % CPU
Rate Size Size Usage

44100 64 4096 95
44100 64 16384 89
44100 256 4096 70
22050 64 4096 51
22050 16 4096 89
22050 512 8192 35

 Table 1: Performance of a four-voice FM instrument

Sound and Music Processing in SuperCollider

6 Stephen Travis Pope

Historical Introduction to Software Sound Synthesis

7

Part 2. Software Sound Synthesis

2.1. Historical Introduction to Software Sound Synthesis1

Computer music as a field has been likened to a building with a sign on it say-
ing “Best Eats in Town.” Many people go into this building expecting to find
an elegant restaurant with a parchment menu, formidable wine list, and pleas-
ant, efficient, even charming service. What they find instead, to their surprise,
is a shiny, enormous, extremely modern kitchen, with abundant supplies of
every kind of foodstuff in voluminous, refrigerated storage. Indeed, the “Best
Eats in Town” are available here, but only to those willing to learn to cook!
(Moore 1983)

There have historically been four distinct classes of electroacoustic music instruments

or systems: the early electronic instruments of the pre-WW II era, the tape-based

musique concrète studios; modular analog synthesizers of (e.g.,) Moog, Buchla, ARP, and

EMS; and software-based sound synthesis (SWSS) systems as described in the land-

mark book The Technology of Computer Music (Mathews 1969), which described his

Music V sound synthesis program developed at Bell Telephone Laboratories. The tech-

nology of Music V-style languages (often referred to as MusicN languages) will be

described below. A major factor in the wide use of Music V during the 1970s was the

fact that it is written almost entirely in FORTRAN (a programming language that ran

on many kinds of computers); its predecessors were generally written in assembly lan-

guage, and were thus not portable among machine architectures.

This technology was widely used during the 1970s in the form of several Music V

descendents that ran on the mainframe computers of the day. The 1980s saw a further

steady increase in the availability of SWSS systems in the form of systems based on DEC

PDP-11 computers using Barry Vercoe’s Music-11, and later DEC VAX-11 machines

running the CARL/cmusic system developed by F. Richard Moore and D. Gareth Loy

at the University of California, San Diego.

More recently, we have seen the rise of the “computer music workstation,” including

diverse configurations based on personal computers and digital signal processing

(DSP) subsystems, and of course, the plethora of less flexible but real-time-capable

MIDI-based computer music systems. Figure 1 below shows a partial genealogy of the

1.This chapter is a revised excerpt from the author’s article “Machine Tongues XV: Three
Packages for Software Sound Synthesis” that appeared in Computer Music Journal 17(2): 23-
54.

Historical Introduction to Software Sound Synthesis Sound and Music Processing in SuperCollider

8 Stephen Travis Pope

MusicN languages and related systems—defined as those based on a software imple-

mentation of the unit generator instrument model and the function/note list score

model. The Computer Music Journal article (Pope 1992) presents an in-depth discussion

of the engineering aspects of computer music workstations using modern technology,

and introduces several of the systems listed in the graph below.

The Early SWSS Literature
The SWSS literature is generally said to have started with the abstract and publication

of the “Acoustical Compiler” article by Max Mathews (1960, 1961) in the Journal of the

Acoustical Society of America and the Bell Laboratories Technical Journal. The field gained

much more visibility with the more widely circulated articles (Mathews 1963)—a pop-

ular and introductory essay—and (Tenney 1963)—a comment on the genesis of the field

from a composer’s point of view. The state of the art at the time of the development of

Music V, in addition to the early experiments undertaken using it, are described in

(Pierce, Mathews, and Risset 1965).

 Figure 1. Timeline of MusicN SWSS Systems

Recent SWSS Packages
There are a number of other MusicN SWSS languages in common use today; the cmu-

sic (Moore 1991), cmix (Lansky 1994), and Music 4C (Beauchamp 1989) languages are

all based on the C language; Barry Vercoe’s Csound (Vercoe 1996) takes assembly lan-

guage as its model. Bill Schottstaedt’s Common Lisp Music, or clm (Schottstaedt 1992),

and this author’s MODE Musical Object Development Environment (Pope 1992) are

Music I-IV
Music V

Music IVB
Music360

Music-11

Csound

cmusic Cmix

PDP-10-class
PDP-11-class

68000 UNIX RISC UNIX

1965 1970 1975 1980 1985 1990

80X86 DOS Windows
Macintosh

R-T DSP/Synth

MODE

System

Platform
Time

Next Music/Sound Kits

Mainframes

Common Lisp Music

Music 4C

SuperCollider

1995

PowerPC Mac

The Technology of Computer Music

9

based on (and written in) LISP and Smalltalk, respectively. All of these provide a high-

level score input language, some graphical tools, and easy-to-use languages for build-

ing extended synthesis functions.

2.2. The Technology of Computer Music
With reference to the design of Music V, Max Mathews wrote:

The two fundamental problems in sound synthesis are (1) the vast amount of
data need to specify a [sound] pressure function—hence the necessity of a very
fast and effective computer program—and (2) the need for a simple, powerful
language in which to describe a complex sequence of sounds. Our solution to
these problems involved three principles: (1) stored functions to speed compu-
tation, (2) unit generator building blocks for sound-synthesizing instruments
to provide great flexibility, and (3) the note concept for describing sound
sequences. [...] [The composer] would like to have a very powerful and flexible
language in which he/she can specify any sequence of sounds. At the same
time, he/she would like a very simple language in which much can be said in
a few words, that is, one in which much sound can be described with little
work. [...] In a given instrument, the composer can connect as many or as few
unit generators together as he/she desires. (Mathews 1969 p. 34-5)

A sound structure is programmed in two parts in MusicN languages—the instrument

definition describes the connections of signal generators and modifiers for the timbres

that are to be used, and the note list is the score, described in terms of parameters sent

to the instruments. The synthesis model is similar to that of an traditional analog syn-

thesizer. One makes a “patch” among modules such as oscillators, amplifiers, mixers,

and control function generators (the so-called unit generators or UGs of SWSS pro-

grams), and then sends trigger and control data to the patch to make sounds.

The parallels between the models of unit generators and the modular analog synthe-

sizers developed in the same years have obvious advantages. They allow many com-

posers to map their prior experience into the new realm (assuming that most composers

coming to computer music have used analog synthesizers, which used to be true), and

to make structured, scalable instrument descriptions. The disadvantage is that many

types of sounds (e.g., those based on complex time-varying filters), are not easily mod-

eled in terms of simple patches of the standard unit generators.

Early SWSS systems were “monolithic” in that they were not accompanied by DSP

programs that could be used independently of the sound compiler. It was assumed that

a composer would express an entire piece as a note list, and that all synthesis and pro-

The Technology of Computer Music Sound and Music Processing in SuperCollider

10 Stephen Travis Pope

cessing would be done within the instruments. Because of limited disk storage, and the

inflexibility of magnetic tape storage, it was often not possible to use recorded sound or

to process synthetic sounds in multiple stages.

 Since the advent of the CARL software system in the early 1980s, though, most SWSS

systems include a MusicN compiler program as well as a suite of “stand-alone” DSP

tools that can read and write recorded or synthetic sound files. This allows the com-

poser to create his/her basic sounds with a SWSS system (such as SC), and then to use

other tools for mixing, reverberation, or post-processing. One can also use several

passes of a sound compiler such as SC for creating, mixing, and processing sounds, with

the intermediate sounds stored on disk. The Macintosh is an excellent platform for this

kind of multi-tool production because of the wide variety of software for sound synthe-

sis and processing. At CREATE, our users integrate SC together with the Deck mixing

program, SoundHack for many kinds of DSP, HyperPrism for interactive control of pro-

cessing, and several other tools.

Instrument Definitions
There are strong parallels between a traditional SWSS orchestra file and a typical pro-

gram’s source code; it includes some header information—such as the sampling rate

and output file format— (like the program’s header and declarations), which is fol-

lowed by one or more instrument definitions (like subroutines in a program). The score

file or note list initializes certain shared data, e.g., function wave tables, and then con-

tains a list of note commands that activate the orchestra’s instruments at stated times

with given parameters (like a batch data processing input file). The result of executing

a SWSS program—running the sound compiler with the source and data files—is a

(possibly huge) output file of digital sampled sound, which can be listened to using a

play program to send it to the output digital-to-analog convertors (DACs) of the system

in real time. In SC, this data is played while it is being generated, but you can store it to

a disk file if you wish. An instrument definition is structured like a subroutine, macro,

or procedure definition in any standard programming language (e.g., PASCAL, or C);

there are variable declarations, set-up expressions, and a repeated loop of data manip-

ulation statements that write into one or more output buffers. Examples of this structure

will be presented below.

In the process of realizing compositions, SWSS users sometimes develop very many

instruments. This orchestra may consist of variations of several common models (e.g.,

frequency modulation [FM] or sound-file processing), and instruments may range from

the very general—having many parameters and a wide range of musically-useful appli-

The Technology of Computer Music

11

cations—to the very specific—having few parameters and a more concrete (less custom-

izable and possible more dynamic) musical gesture. Instruments may generate output

based solely on their input parameters (as in traditional oscillator-based instruments),

or they may read real-time control data (e.g., via MIDI), or process pre-existing sound

files (as in filtering or mixing instruments).

A number of graphical representations and visualization tools for instrument defini-

tions have been used for MusicN languages. The most common ones use a flow-chart

or data-flow style diagram to show the signal flow among unit generators where instru-

ments generally “flow down” from input parameters through control signals to audio

signals to the output. Data-flow block diagrams with (generally multi-input single-out-

put) graphical icons representing instrument unit generator modules and connecting

lines or arcs representing parameters or control or signal buffers will be used through-

out the discussion of SWSS instruments below. A single statement (line) in the instru-

ment definition program will often translate into a single block icon whereby the

arguments of the statement determine the connections between the icon’s control and

signal I/O ports.

Oscillator Unit Generators

The most basic unit generators in SWSS systems are stored-function oscillators—sub-

routines that read data values out of a table stored in memory (the envelope function or

wave table), at a rate that is computed using a formula relating the size of the table, the

sampling rate, and the frequency of the desired sound signal or duration of the control

envelope (see [Roads 1996] for details). An oscillator statement generally includes the

command name (OSC, osc, oscil, etc.), the amplitude value (constant or function), the

frequency value (constant, envelope or audio-rate signal), the wave table name or num-

ber, and the output buffer name. The order and format of the parameters differs among

SWSS systems, but the four basic parameters—output, amplitude, frequency, and wave

table—remain the same.

Function Generators

To create function tables for use as envelopes or wave-forms, generator commands fill

data tables with values that depend on their parameters and which routine they use.

There are usually several ways—GEN routines—to describe such vector data in SWSS

languages, such as by interpolation between break-point values (as in sound enve-

lopes), by the summation of related sinusoidal components (as in wave table generation

for additive synthesis), or by reading in external data files with or without some analy-

sis and feature extraction.

The Technology of Computer Music Sound and Music Processing in SuperCollider

12 Stephen Travis Pope

Envelope Unit Generators

SWSS systems have several ways of providing the functionality of envelope generators,

unit generators that produce functions of time that step through a table once per note.

This can be achieved by setting an oscillator’s sample increment to depend on the

inverse of the length of the desired note, rather than the output frequency (i.e., read

through the function table once per note duration). In general, one can define line-seg-

ment, or exponential-segment functions, or use a stored envelope function, and read

through them with control over the speed of the sections, usually used to control the

attack and decay times of envelope functions.

Other Unit Generators

Modern SWSS systems provide many low- and high-level control and audio signal

generator and modifier unit generators. These may include (e.g.,) variable wave form

oscillators, noise and pulse generators, sound file input unit generators, multi-segment

envelope generators, digital filters, digital delay lines, or other musical, or DSP func-

tions. Some manner of output unit generator is also required; this will read one or sev-

eral instrument buffers and write to formatted sound files, or unformatted sample

streams. Some systems add room simulation unit generators allowing the user to

declare a spatial configuration for a room and position sound sources in it.

Score Note Lists
The statements that describe which notes the instruments are to play, how, and when,

are the note list part of the SWSS music description. This score file includes the set-up of

the function tables using GEN statements, the declaration of the input and output sound

files and their formats, and the time-stamped note event data—a list of expressions that

activate the instruments one-by-one at specified times with parameters supplied in the

statement. The note statement used for this consists of its keyword (NOTE, not, instr, etc.),

the start time and duration of the event, the instrument number (or name), and the

parameters of the instrument (e.g., amplitude, frequency, location, timbral properties).

There are generally facilities to use abstract time notations in SWSS scores, with the

score’s tempo defined as a beat-to-second map, and some way of setting and changing

it. Most score languages also allow longer scores to be broken up into sections, each of

which can have a separate clock and tempo. The purpose of sections is that they are

sorted separately, and each start at relative time 0. The sections are computed in

sequence by the program’s scheduler. SWSS languages often also provide powerful

facilities for generating and structuring note list files, and various kinds of short-hand

An Example of Software Sound Generation

13

for making the input and management of (possible very complex) instrument parame-

ter field data for larger musical forms less laborious.

2.3. An Example of Software Sound Generation
This section presents examples of Music V using a simple instrument. We will discuss

the instrument definition format, the score list syntax, and the process of executing the

“compiler” package for such a system.

A simple unit generator and an instrument definition patch are shown in Fig. 2; Fig.

2(a) shows the graphical symbol for an oscillator unit generator with its four relevant

features: amplitude, frequency (or sample increment), wave form (timbre), and output.

Figure 2(b) illustrates the use of this unit generator in an instrument; two oscillators are

connected such that the inputs of the first one (the “envelope generator”) control its

amplitude and its sample increment based on the note’s duration; its output is con-

nected to the amplitude input of a wave table oscillator that has its sample increment

derived from the note’s frequency (the oscillator’s repetition rate). The first oscillator

thus functions as an envelope generator that generates a time-varying control function

for the amplitude envelope of the second oscillator’s notes. The parameters of this

instrument are the pitch, amplitude, and wave form of the output signal oscillator, the

duration of a note, and the amplitude envelope function.

 Figure 2. The Oscillator Unit Generator (a) and a Simple Instrument Patch (b)

In order to use this instrument, one must write a program that defines three compo-

nents: the instrument, the function tables for the two lookup oscillators, and the desired

amplitude

frequency

fcn

out

env

sin

duration = p6

amplitude = p5

frequency = p7

b3

b2

(a) Osc unit generator (b) Oscillator with amplitude control

out

An Example of Software Sound Generation Sound and Music Processing in SuperCollider

14 Stephen Travis Pope

note parameters. There will be two function tables: one holding values for the ampli-

tude envelope (e.g., Fig. 3(a)) that will be read through once per note, and the other

describing the output oscillator’s wave form function (e.g., Fig. 3(b)) to be read through

at a rate that depends on the frequency of the note. The commands that declare and

define function tables may be seen as being part of the instrument or the score, depend-

ing on the nature of the compile-run cycle (see below).

 Figure 3. Function Table Values for an Envelope and a Wave Form Signal

The Music V instrument definition for this example would read as shown in the first

group of statements in Code Example 2. Comments start with the COM statement and

go until the end of the line in Music V. The instrument definition uses the OSC unit gen-

erator for both the envelope function and the wave form oscillator by having them read

different function tables. Note the use of two different buffer numbers for the signal

buffers here; in some SWSS systems, one can reuse the same buffer number in several

places in an instrument, as is possible here because no unit generator depends on both

b1 and b2 for its input. The Music V OUT unit generator writes samples from its input

to its standard output buffer B1, which is written to the output disk.

The specification of unit generator parameters and the translation of note command

parameters varies greatly among SWSS systems. In Music V, for example, one typically

passes amplitude and frequency parameters directly from the score to the unit genera-

tors, and is forced to translate from pitch values to oscillator sample increments and

from loudness values to integer amplitudes in the score.

COM Music V Instrument

COM Note Parameters are:
COM p2=start, p3=instr_num,
COM p4=duration, p5=ampl,
COM p6=dur_incr, p7=freq_incr

Amplitude

time

Value

time

(a) Amplitude envelope function (b) Wave table function

An Example of Software Sound Generation

15

COM Definition for instr. 1
INS 0 1;

COM The first oscillator is the amplitude envelope; the second is the audio signal.
COM AMP FRQ OUT FCN TMP

OSC P5 P6 B3 F1 P20;
OSC B3 P7 B2 F2 P21;

COM Send buffer 2 to the output.
OUT B2 B1;

END;

COM Generate Function Tables

COM Generate function 1 as an envelope with GEN 1
COM Routine 1 takes x/y breakpoints

GEN 0 1 1 0 0 0.99 50 0.8 480 0 511;

COM Generate function 2 as a sine using GEN 2
COM Routine 3 takes partial num. and ampl.

GEN 0 2 2 1 1;

COM Play Two Notes

COM p1 p2 p3 p4 p5 p6 p7
NOT 0 1 2 30000 0.0128 6.70;
NOT 2 1 4 8000 0.0064 8.20;

COM Terminate the score at time 6
TER 6;

Code Example 2. Music V Instrument Definition and Note List

A Music V score file for this example instrument would first define the two function

tables and then play notes on the instrument by providing values for its parameters, as

in the second group of statements in Code Example 2. One declares function tables 1

and 2 using the GEN command and routines 1 (linear interpolation between break

points), and 2 (summation of sines). The parameter data in the note command p-fields

signifies the notes’ parameters—start time, instrument number, duration, amplitude,

envelope duration increment, and oscillator frequency increment. The amplitude is

given in absolute numbers (assumed in the range 0-32767 for this example, implying 16-

bit linear samples). Note the increment parameters; p6 is the envelope increment—

related to the table length, the inverse of the note duration, and the sample rate—p7 is

for the frequency increment—related to the frequency, the table length, and the sample

rate.

SWSS System Issues Sound and Music Processing in SuperCollider

16 Stephen Travis Pope

There may be one, a few, or many notes in the subsequent note list, depending upon

whether the user is testing the instrument’s parameters, developing small musical tex-

tures or gestures, or performing an entire section or composition in the current “pass.”

Notes can overlap, and several notes may be active in the same instrument at the same

time; the system’s scheduler handles multiple instrument activations and output sum-

mation.

To execute a Music V program, the instrument definition (possibly defining many

instruments), is read, and possibly compiled into a compact and efficient internal for-

mat; then the note list is expanded and sorted, possibly applying score language pre-

processors. The actual sample computation task consists of a “scheduler” reading

through the score data in time order, activating instruments as appropriate, and sum-

ming their respective outputs into the output sound file(s). One “plays” the sounds

using a program that sends the sample data (stored on disk or tape) to a DAC in real

time. (In the early days, this was often a different machine from the one that computed

the samples.) The steps of the process are illustrated in Fig. 4.

 Figure 4. Steps of the SWSS “Compilation” Process

The actual interaction with the batch programs also varies widely among SWSS sys-

tems, and shows the generations of user interface technology since the 1960s, progress-

ing from card decks to terminal edit-compile cycles, to window-based incremental

interactive front-ends with graphical description of instrument definitions and score

editing.

2.4. SWSS System Issues
Before the detailed presentation of SC, we will discuss several of the central design

issues in programming languages for DSP and SWSS.

Oscillator Unit Generator Issues
Several types of oscillator s are used in SWSS systems. Interpolating oscillators give

higher fidelity but require more computation (See [Roads 1996]). Other systems allow

edit
orch

edit
score

compile
orch

sort
score

run
orch

store
snd file

play
snd file

R-T DAC
output

SWSS System Issues

17

you to choose the size of the wave table to get higher fidelity. Good SWSS systems pro-

vide both options—interpolating oscillators and variable table length—so that the user

can determine what the most important factors are. This is typical of the “speed vs.

space” trade-offs often found in software engineering.

Audio and Control Rates
To save computation time (often an important issue in SWSS systems), some imple-

mentors use different sampling rates for audio signals and control signals such as enve-

lopes. Unit generators, whether standard oscillators or not, may write their output

values every sample, or they may be told to update less frequently, e.g., every 32 sam-

ples (to save computation). Some SWSS languages (including SC) allow flexible, run-

time specification of control and audio rates and/or control and sample buffer sizes,

though this provides neither a fully type-safe programming environment, nor a flexible

model of multi-rate signal processing, and introduces myriad opportunities for aliasing

problems and artifacts.

SWSS Usage
Among the reasons for the rekindling of interest in SWSS systems in the 1990s is the

increasing computational power of inexpensive computers, which means that the issue

of flexibility outweighs that of non-real-time performance. (In fact, SC can compute

complex instruments in real-time on hardware costing less than US$ 2000.) The flexibil-

ity of SWSS input languages and the continued popularity of the modular synthesizer

model has meant that there is widespread interest in the construction of interfaces to

real-time MIDI/DSP systems using this paradigm. Systems that merge features of

SWSS and real-time performance systems are exemplified by (e.g.,) Accelerando (Lent,

Pinkston, and Silsbee 1989), Kyma (Scaletti 1989), the IRCAM Musical Workstation

(Lindemann et al. 1991), and now SC.

Advanced User Interfaces for SWSS Systems
One of the immediate problems in building sophisticated scores is the complexity of

specification of break-point time envelopes and of wave tables via Fourier overtone

summation. Graphical editors for envelopes and overtone spectra emerged soon after

appropriate graphical displays and input devices were developed, and now come in

many flavors. Most synthesis languages, however, do not include any but the most

rudimentary graphical tools, and the available shareware extensions often leave much

to be desired. SC is an exception in this area as well.

SWSS System Issues Sound and Music Processing in SuperCollider

18 Stephen Travis Pope

SuperCollider Language Syntax

19

Part 3. The SuperCollider Language

3.1. SuperCollider Language Syntax
SuperCollider is a modern object-oriented programming language;

its syntax (how expressions are structured) is a mix of C++ and

Smalltalk. If you know any modern programming language, most of

the elements of SC will be familiar to you. One can program in two

different styles in SC: function-oriented or message-passing; these will

be described below.

In this Part, we will briefly introduce the basic elements of the language, and give

some expression examples. It will certainly help if the reader has some programming

background in another high-level procedural or object-oriented language. The

extended examples in the next Part will use the language elements described here.

Types of Statements
As in most common programming languages, SC programs are made up of a

sequence of statements; these typically correspond to lines of the program. A statement

can be one of several types.

Comments are ignored by the compiler, and allow you to document your programs for

easy reading.

Declarations are your way of introducing a new variable name to the compiler (e.g.,

“I’m going to use the name ‘osc’ to refer to my oscillator.”).

Assignments allow you to give value to a variable (as in “Set x to be 7.”).

Control structures allow you to control the flow of the execution of the program (e.g.,

“If the pitch is a C, then do this, otherwise, do that.”).

There are also many kinds of message-send statements that allow you to create and

manipulate data objects. The following sections describe the various kinds of state-

ments in more detail, and give examples of their usage.

Comments
Comments allow you to put descriptive text in your programs that explain their con-

struction in plain English; single-line comments can be introduced by “--” (two

hyphens, not an em-dash) and continue to the end of the line. Multi-line comments are

enclosed with “(*” and “*)”

Examples
-- This is a 1-line comment.

SuperCollider Language Syntax Sound and Music Processing in SuperCollider

20 Stephen Travis Pope

(* This is a multi-line comment.
. . .

*)

Comments are highly recommended, as they make it much easier to read SC programs

(help avoid write-only code). Comments should describe any program expressions that

are not extremely obvious, and should give the useful ranges for variable values.

Statement Separators
SC expression statements are separated (rather than terminated) by semi-colons (i.e., as

in Pascal rather than C). This means that all statements except the last one in a block are

ended with “;” It is not an error, however, to have extra semi-colons in your programs,

so you can safely end every statement with a semi-colon.

Several statements can be writtein on one line, if they are separeted by semi-colons.

Examples

The following two examples are equivalent:

freq = 440;
duration = 1.0;
amplitude = 1.0;

and,

freq = 440; duration = 1.0; amplitude = 1.0;

Data Scope and Extent
SC provides several kinds of variables that behave differently in terms of their scope

(where is the name defined) and extent (how long does the variable live).

Normal Variables

Normal variables have local scope, i.e., they are only defined within the function in

which they are declared. If they are declared outside of a function, they are defined for

the entire file (this is called global data). Function arguments have the scope of the func-

tion they’re defined in.

Static Variables

There is only 1 copy per program of a variable that is declared as static. This declara-

tion uses the word static in the place of the normal var declaration. (All global variables

within a program are by nature static.)

SuperCollider Language Syntax

21

Constants

A constant is a variable that cannot be changed after its declaration and initial assign-

ment. To create a constant, use the const keyword and provide a value at declaration

time, as in the example,

const fortissimo = 0.95; -- Declare and assign a value to a constant

Arguments

Function arguments are declared after the “{“ that starts the function (see the section

on functions below). Their scope is the function in which they are declared (i.e., they are

not known outside the function in which they are declated).

Block-Format Data
SC data variables can be categorized into 4 groups depending on their temporal

behavior.

Passive Data

Most data in a program is passive; it does not change until you assign a new value to

it by placing its variable name on the left-hand side of an asignment.

Control-Rate Variables

Variables that are to be used as control signals (e.g., envelopes), can be represented as

control-rate objects. The constructor functions for these generally start with “K” as in

the Ktransient control-rate envelope generator. These values change at the control rate

(1/64th of the sample rate by default, though it can be changed).

Audio-Rate Variables

Audio unit generators such as oscillators create audio-rate objects. Sending the value

message to one of these will generally return a sample buffer (an array of 64 samples by

default). Built-in constructor functions that create audio-rate objects generally begin

with “A” as in the Asinosc in our introductory example that created and returned an

audio-rate sine oscillator object. Note that it is the name of the constructor function that

implies that this is an audio-rate variable; the name of the variable in which we hold the

oscillator object is arbitrary (as in osc in the example). This is different from the usage

in FORTRAN-style languages (e.g., Csound), where the variable name implies its type.

Polled Variables

Polled variables change over time, but return a single value whenever they are read.

These can be used, for example, for phrase-level variables that are read once per note

(see the spatial panning example below).

SuperCollider Language Syntax Sound and Music Processing in SuperCollider

22 Stephen Travis Pope

Variable Declarations
As in most programming languages, one can name data items (variables); this follows

the usual steps of declaration (defining what names are to be reserved for variables),

assignment (giving a value to a variable), and reference (accessing the variable’s value for

use in an expression). To declare a name for a normal variable, one uses the var declara-

tion. If you look back at the simple example from the introduction, you’ll see that we

declared the oscillator and output buffer variables with the statement,

var osc, outval; -- Declare 2 variable names (no type information is provided).

We then used these names in assignments and in references in the output expressions.

Variable names in SC are untyped; one can assign different types of data to the same

variable (though it is considered quite questionable style), as in the following example.

var data; -- Declare the name “data”.
data = 4; -- Assign a number to data.

. . .
data = “hello”; -- Assign a string to data.

There are also type-specific declaration expressions for several special types of data;

returning again to the initial example, to declare the names of our sound output buffers,

we used the expression,

defaudioout L, R; -- Define outputs named L and R.

The list below gives the various types of special declarations; each of the data types

mentioned here will be described below.

defaudioout Declare an audio output buffer.
defaudioin Declare an audio input buffer.
deftable Declare a wave table (or sampled envelope).
defenvelope Declare a break-point envelope.
defdelay Declare an audio delay line.
defaudiobuf Declare an audio sample transfer buffer.
defbus Declare a bus for passing sound between instruments.

 Table 2: Special Typed Declarations

SuperCollider Language Syntax

23

Names
User-defined variables and functions can be arbitrarily named, as long as the first

character in the name is a letter. Variables may not have the same names as SCreserved

words or built-in functions.

Examples
aValue, functionName -- Two legal names
2Another, var, Asinosc -- Three Illegal names

Assignment
To provide a value for a variable, use assignment. The variable name is placed on the

left-hand side of a “=” and some expression that returns a value is on the right, as in,

name = expression; -- Assign the value of expression to name.
word = “hello”; -- Assign a string to a variable.
data = data + 1; -- Increment the variable data.

One often pronounces “=” as “gets” so that one would read the last statement above

as “data gets data plus one.”

The left-hand side of an assignment must be a variable name; it cannot be an operation

expression, as in the example,

data + 1 = 7; -- Illegal assignment
functoin(x) = 7; -- Illegal too

Return Value
If you want to return a value from a function, use the caret (^, typed as <SHIFT>-6),

as in the example,

^ expression;

Storage Reclamation and Garbage Collection
Variables that are no longer needed (i.e., for which there are no more references in

running code) are declared as “garbage” and are automatically freed (collected) by an

incremental garbage collection (GC) process. The user interface message view’s header

shows the percentage of time that the system spends going garbage collection.

SuperCollider Data Types Sound and Music Processing in SuperCollider

24 Stephen Travis Pope

3.2. SuperCollider Data Types
SC supports the common data types found in languages of the FORTRAN family (e.g.,

C) (integers, floating-point numbers, characters, strings, etc.) in addition to which it has

several useful extensions taken from advanced languages such as Lisp and Smalltalk

(e.g., lists and closures). These are summarized in the following sections.

Numbers
Number variables can represent integer (whole number) values (e.g., 3) or floating-

point real numbers (e.g., 3.14126), and can be described in several formats (base-10,

hexadecimal, etc.). Special numbers such as π (Pi) and ∞ (infinity) are supported. By

default, all integers are stored as 32-bit values, and all floating-point numbers in 64-bit

“double-precision” format.

Numbers support the expected arithmetic, logarithmic, and trigonometric functions.

There are also functions for manipulating complex numbers, for integer division, and

for range mapping (e.g., soft clipping).

Examples
21, 0.443 -- Integer and floating-point numbers
0xff -- Hexadecimal (base-16) for 255
21 + 4 -- Simple addition
3 / 4 -- Divide 3 by 4
8.rand -- Answer a random integer between 0 and 8

-- (i.e., send the message “rand” to the number 8).
2.5.rand2.post -- Create a random floating-point value in the range +/-2.5

-- with the message rand2 and print it to the message output
-- view with the post message.

In this last example, the “.” character serves two purposes—decimal point and “dot”

for message-passing. Think of rewriting the example rand2(2.0).post (see the discussion

of function calls below). Note also that many messages (like rand) behave differently

when sent to different kinds of objects (this is called polymorphism). The rand functions

answer a number that is of the same type as their receiver); 8.rand answers an integer,

8.0.rand answers a floating-point number.

Strings
As in most other languages, text strings are represented as arrays of characters. In SC,

strings are always written between double-quotes. Strings can be read from and written

to files, as well as queried from the user and written to the message transcript view.

Examples
“This is a string.”

SuperCollider Data Types

25

The maximum length of a string is 255 characters. The language has a wide variety of

string functions such as file I/O (freadline, fwriteline), message view output (post), user

prompting (getStringFromUser), and tokenizing (parse). One can also turn a string into a

list of integers that represent the ASCII characters with the spell message; the list2str

message does the opposite. Any variable can be printed as a string by sending it the

message asString.

Symbols
A Symbol is a string that is unique, i.e., all instances of a symbol that’s spelled the

same are exactly the same object (i.e., identical). Symbol values can be written using sin-

gle quotes, or the symbol can be preceded by a backward slash, as shown in the exam-

ples below. Symbols are typically used for special system constants, e.g., \nil.

Examples
‘Symbol’ -- Single quotes for a symbol.
\Symbol -- Back-slash for a symbol. (Note that no spaces are

allowed with this format.)

Built-in functions allow you to convert between symbols and

lists of integers (list2sym), and between symbols and references

(resolveName).

Lists
SC lists are collections of objects that maintain their order;

they can be used as indexed arrays of 1 or more dimensions,

or as Lisp-style lists or Smalltalk-style collections. One can use

a numerical index to get at a value in a list using the “@” message as in list @ index (not-

ing that list indices are zero-based—the first item in the list has the index 0); “@@” is an

“auto-wrap-around” indexing operator, as illustrated in the examples below.

One can also access lists as C-style linked lists or Smalltalk ordered collections. For

example, you can insert elements in the middle of lists, or add/remove items at either

end of the list. All elements in a list do not have to be of the same type; in fact, one often

mixes numbers, strings, and symbols in lists.

Examples
[1 2 3] -- 1-dimensional list (like an array).
[[1 2][3 4]] -- 2-dimensional list (list of lists).
[1 \hello] -- You can mix types in a list.
[3 4 5] @ 1 -- Answers 4 (!) (the second element).
[3 4 5] @@ 6 -- Answers 3 (wrapping around).

SuperCollider Data Types Sound and Music Processing in SuperCollider

26 Stephen Travis Pope

[1 2 3 4].put(2, 9) -- Put an item in the middle of a list (number 9 at index 2).
-- Answers [1 2 9 4].

[1 2 3 4].insertAt(2, 9) -- Insert an item in the middle of a list; answers [1 2 9 3 4].
[a b] $ [c d] -- Concatenate lists; answers [a b c d].
[6 2 0].max -- Answer the maximum value of a list (6).
[1 2 3].mirror -- Answers [1 2 3 2 1].
[4 2 8].sort -- Answers [2 4 8].
[L R].choose -- Choose an element at random.

There are many more built-in functions and interesting control structures made using

lists, as we will illustrate in the following chapters.

Closures
A closure (or block or continuation) is just like a function, but it has no name; closures

can be stored in named variables, or passed to functions as arguments. Like a function,

a closure can take zero or more arguments, and can be evaluated as many times as you

like (by sending them the message value with or without arguments). In SC, closures are

written between curly braces ({...}).

As an example (manual p. 43), we can construct a numerical counter. The counter is

implemented as a closure that increments (and returns) its value each time you evaluate

it. In the code example below, we create the counter (closure) and hold it in a variable

named counter. Sending the message value to the closure evaluates it, incrementing and

returning the counter’s value.

var current, counter, x; -- Declare names for the counter value and closure.
current = 0; -- Set the starting the counter value.

counter = { -- make a closure (between the curly braces).
current = current + 1; -- First increment the counter’s value.
^current; -- Then answer (return) the number.

}; -- End of the closure.

-- To use this, execute the following.
counter.value.post; -- Evaluate the closure; print 1 to the message view.
x = counter.value; -- Evaluate the closure; x gets 2.

Code Example 3. Example of the Use of Closures

In SC, all top-level functions are named, and all functions defined within another

function are treated as closures (i.e., there are no nested function definitions as in Pas-

cal).

SuperCollider Data Types

27

References
A reference is used to give the name of an item that is not a normal data variable, e.g.,

a function. References are denoted with back-quotes (`fcn_name) and can only be sent

certain messages. One can convert a symbol into a reference using the message resolve-

Name.

Example
`fcn_name -- A reference to a function name.

Special Variables
There are several pre-defined variables in SC; these are given in the following table.

now The current clock value.
sr The sampling rate (default 44100).
frameSize The frame size (default 4096).
subFrameSize The sub-frame size (default 64).
thisFunc A reference to the current function.
this The receiver object (see OOP below).
super The super-class instance (see OOP below).
mouseX, mouseY The x- and y-coordinates of the mouse
\nil The symbol meaning “nothing” or “uninitialized.”
\end The symbol meaning “end of stream.”

 Table 3: Special Variables in SC

Vector Signal Data
There are several types of data arrays that are treated specialy in SC.

Table

Wave table functions are declared using the deftable keyword seen above. Once

defined, these tables can be edited using the SC user interface’s table editors (intro-

duced below). You can, for example, create table data using Fourier summation of sine

waves, frequency modulation (FM), or random-valued noise.

Envelope

Envelopes are generally used for control-rate functions that are described using break

points (corners of the envelope function) between which data is interpolated. They are

declared using defenvelope and can be edited by hand by moving the break points with

the mouse. The editor is introduced in the chapter on the SC user interface.

The Syntax of Function Calls and Messages Sound and Music Processing in SuperCollider

28 Stephen Travis Pope

Signal

A signal or audio buffer is simply a block of samples (AKA subframe buffer). By

default, these are 64 samples in length. (This size can be set using the Set Globals dialog

described below.) Audio buffers can be declared using the defaudioin and defaudioout

expressions. They are read and written using the in and out messages, respectively.

Examples

defaudioin left; -- Declare an audio inout buffer.

in(left).clip.distort -- Read the audio input, then clip and distort it.

Delay Line

A delay line is a sample FIFO (first-in first-out) with variable reading position. These

are declared using the defdelay expression and read using the tap message. When you

declare a delay line, you set its maximum length; you can then read it with one or more

taps, and the taps can move within the delay line’s length.

Bus

Busses can be used to pass signals between instruments, or for multi-stage processing

within an instrument. A bus is declared using the defbus declaration, and read/written

with in and out.

3.3. The Syntax of Function Calls and Messages
Functions in SC can be called using C-style “applicative” syntax (apply a function to

a variable), as in,

x = sin(y) -- Function call; function name comes first followed by the
-- argument names in parentheses.

or using C++-style “dot notation” (send a message to an object), as in,

x = y.sin -- Message-passing; message receiver comes first.

In FORTRAN-style languages (e.g., C), function calls are “stand-alone,” and take

arguments in parentheses after the function name (e.g., sin(y) to take the sine of y). In

pure message-passing languages (e.g., Smalltalk), messages are always sent to some

specific receiver object (e.g., x sin to send the message sin to the object in the variable x).

In Smalltalk, the message and the receiver are separated by white space (as in x sin); in

C++ (and SC), they are linked together with a dot “.” meaning “send” as in x.sin.

The Syntax of Function Calls and Messages

29

In SC, the function-calling and the message-passing forms are equivalent, so that sin(x)

and x.sin have the same effect.

The first argument of a function (in C syntax) can be treated as the message receiver

(in Smalltalk syntax)—e.g.,

f(a, b) = a.f(b).

To send the message value to an oscillator (getting its output value) and then send this

value to the output channels, one could write,

val = value(osc); -- get the value
out(val, L); -- send it to the left channel
out(val, R); -- send it to the right channel

or, more tersely,

value(osc).out(L).out(R);

or,

osc.value.out(L).out(R);

or even,

out(out(value(osc), L), R);

All of these forms of the expression are equivalent.

Function composition (g(f(x)) can then be expressed as cascaded message-sends such as

(x.f.g), which means “send the message f to object x, and send the message g to the result

of that.” In the example we presented above, you could rewrite,

2.5.rand2.post -- Cascaded message-sends (Smalltalk style)

as,

post(rand2(2.5)) -- Composed function calls (C-style)

The “default” message for any object is value, so that one can write x. to mean x.value,

as in,

Control Structures Sound and Music Processing in SuperCollider

30 Stephen Travis Pope

{ (osc. * env.).out(chan) }.dspAdd; -- The same as saying osc.value...

Function Definition
A new function can be defined by giving it a name, an argument list, optional tempo-

rary variables, and the statements that make up its body, as in the following example,

which defines a function that returns the sum of its two numerical arguments.

-- Function that answers the sum of its two arguments
--
summer { -- The name of the function is “summer.”

arg a, b; -- Here are the arguments (declaration required).
var c; -- It has a local variable (declaration optional).

c = a + b; -- Function body, assign the sum of a and b to c.
^c -- There’s a return statement (optional).

} -- End of the function.

Code Example 4. Example of Function Definition

Functions can be called before they are defined (i.e., you can use a function name in

an SC program before you’ve come to that function’s definition).

Function Names
SC functions that generate audio-rate signals have names that start with “A” (e.g.,

Aformanta); the names of those that generate control-rate signals start with “K” (e.g.,

Ktransient). Polled functions start with “P” (e.g., Psinosc). User-defined functions are free

to violate this, however.

3.4. Control Structures
Any programming language must provide the programmer with a means to control

the flow of execution within a program. One might want, for example, to have the tim-

bre change for alternate notes, so one would assign different values to some parameters

depending on the state of a counter. The language expressions that allow one to do this

are called control structures.

Standard C/Pascal Control Structures
Common control structures are branching (“if it’s raining, take an umbrella, otherwise

not.”), looping (“add up the totals for the 12 months of last year.”), and switches or case

statements (“if fish, chardonnay; if beef, cabernet; if pasta, chianti.”). SC includes these

standard control structures, as well as a number of more advanced ones borrowed from

Smalltalk.

Control Structures

31

Program Redirection

The simplest (and most unwise) control structure is the goto statement. One can give

a name to an arbitrary program statement with the label expression, and then jump

there from somewhere else with the goto statement.

label name;
. . .
goto name;

Goto is considered unwise if used too frequently because it tends to make the program

flow difficult to trace.

Branching

Simple branching can be controlled by conditions using the if/then/else/end.if structure.

As an example, if one wanted to have louder notes have a larger modulation index in

an FM instrument, one could use the following expressions.

if (amplitude > 0.75) then
index = index * 1.2;

end.if;

The first expression in this statement is the condition (amplitude > 0.75). It returns a

Boolean value (i.e., true or false). The condition statement does not have to be enclosed

in parehtheses, but I find that it improves program readability. The condition state-

ments can be complex (i.e., if ((x > 0) && (y > 0)) for the case that both x and y are strictly

positive). There can then be as many statements as needed in the then...end group.

The else clause can be used to make a two-way branch structure, as in the following

example that places notes on the left or right channel depending on their pitch.

if (pitch > 48) then
position = -1;

else
position = 1;

end.if;

The else clause can have a condition of its own using the elseif keyword, as in,

if (pitch > 48) then position = -1;
elseif (pitch > 24) then position = 0;
else position = 1;
end.if;

Control Structures Sound and Music Processing in SuperCollider

32 Stephen Travis Pope

Looping

SC has both conditional loops (do this as long as (or until) the condition is true) and

iterative (for) loops. The conditional loops generally involve a test expression (the con-

dition) that answers a Boolean value, and a group of 1 or more expressions.

while (some Boolean expression) do
statements

end.while;

The for loop typically uses a start expression (done once at the start of the loop), a con-

dition (tested as each iteration), and a step expression (executed between iterations), as

in the following example, which will execute the given statements 100 times with the

variable named i (to which we can refer in the statements) taking on successive values

from 0 to 99.

for i = 0; i < 100; i = i + 1; do
statements

end.for

The start expression is executed once at the start of the loop; in the example above, it

sets the loop counter i to zero. the condition compares i with 100, ending the loop when

it reaches that value, and the step expression increments i by one.

Case Statements

One can have a set of options that depend on the state of a variable by using switches

also known as case statements. The case expression can be any atomic value (i.e., a sym-

bol or number). In the example below, we assign a note’s position based on the name of

the instrument that plays it.

switch instrument -- Set the position depending on the instrument.
case ‘fm_instr -- The instrument name is a reference.

position = 1.0; -- Set the position value.
break; -- Exit from the switch if this case is true.

case ‘grain_instr
position = 0.4;
break;

case ‘noise_instr
position = -0.6;
break;

default -- This for all cases that are not handled by the above clauses.
position = 0.0;

end.switch;

Control Structures

33

Smalltalk List Control Structures
Smalltalk and other advanced languages have more powerful and

flexible control structures than those introduced above. Most of these

involve messages sent to lists or closures.

Repetition

The timesRepeat({}) message is sent to a number (probably an integer)

and takes a closure as its argument. It repeats the argument as many

times as the receiver number denotes.

number.timesRepeat ({ some closure to be repeated number times });

Note the syntax of this expression; because the argument of timesRepeat() is a closure,

we write the expression as number.timesRepeat({ statements }); this form (closure-as-

argument) will be used for the list control structures below. In the case of timesRepeat(),

the closure must be one that takes exactly one argument (which will be assigned to the

integers between 0 and number - 1 for the iterations through the loop).

List Iteration

There are a number of control structures that are used as messages sent to a list, and

allow you for example to test the items in a list, to select those items that fulfill a given

condition (expressed in a closure), or to apply a closure to all the items in a list.

The simplest list iterator is forEach(), which applies a given closure (the argument of

the message) to each item in the list to which the forEach() message is sent. The argument

of forEach() is a closure that takes two arguments: the element’s value and the element’s

index. This closure will be called for each item in the receiver list, as in the following

example, which prints the items in the receiver list to the transcript view 1-per-line.

[1 2 3 4 5].forEach({ arg item, index; item.post});-- Prints list to message view
-- 1 item per line.

The collect() message applies its argument (a closure that returns a new item) to all of

the items in the list to which it is sent; it answers a new list of the results of that appli-

cation. For example, to square the items in a numerical list, use the following.

[1 2 3 4 5].collect({ arg item, index; ^item * item});-- Answers [1 4 9 16 25].

The collect() message can also be used to select items from a list that fulfill a given con-

dition. If you return the special symbol \omit from an iteration through the closure, then

Built-in Functions Sound and Music Processing in SuperCollider

34 Stephen Travis Pope

the corresponding element is not added to the result list. For example, to select the ele-

ments from a numerical list that are between 60 and 72 (inclusive), you could use the

following statement.

[58 66 84 73 61 65 80 63].collect(
{ arg item, index;

if ((item >= 60) && (item <= 72)) then
^item

else
^\omit

end.if}) -- Answers [66 61 65 63].

To locate an item in a list that fulfills a condition, use find(); it answers the index of the

first item it finds for which the given closure is true. For example, to find the first even

number in a list, use,

[1 3 5 7 8 9 10].find({ arg item; ^item.even}) -- Answers 4 (index of 8 in the list).

The functions any() and every() test the items in a list using a user-supplied closure and

answer whether the closure is true for any or all, respectively, of the list’s items.

There are many other interesting list control structures; some of them will appear in

the SC program examples that follow.

3.5. Built-in Functions
SC is a relatively full-featured language, there is a comprehensive library of basic

functions (methods) for mathematical operations, list processing, sound synthesis and

DSP, file and screen I/O, and musical tasks. I will outline them below, and demonstrate

them in the examples that follow.

Mathematical and Numerical functions

SC supports basic arithmetic, Boolean logic, bit operations, logarithmic and exponen-

tial functions, trigonometry, rounding and truncation, range mapping, folding, and

wrapping, polynomials, sign, primes, and coercion. In most cases, the “standard” C-

style infix operators are used. The library also includes a wide range of random number

generators, including Gaussian, bilinear, gamma, bilateral exponential, and Poisson

distributions.

+ - * / Basic arithmetic
+! -! *! In-place signal addition, subtraction, and multiplication
% // ** Modulus, integer division, “raise-to-the-power-of”
min: max: Minimum, maximum

Built-in Functions

35

lcm: gcd: Least common multiple, greatest common divisor
abs: neg: sign: Absolute value, negation, sign
rand, rand2 Random number 0-to-x (rand) or -x-to-x (rand2)
coin, expran Coin toss, exponential random distribution

 Table 4: Basic Numerical Methods

Musical Parameters

There are also built-in functions for handling musical pitch and frequency, and

dynamic amplitude or loudness values.

midicps/cpsmidi Convert between MIDI key number and Hz.
octcps/cpsoct Convert oct.pitch (floating-point octaves) to/from Hz.
dbamp/ampdb Convert deciBels to/from 0-1 floating-point amplitudes.

 Table 5: Pitch and Amplitude Conversion Functions

List-Processing

SC borrows Smalltalk’s ordered collection operations for 1- or N-dimensional lists.

Lists can be treated as arrays (indexed by integers), dictionaries (indexed by “objects”),

or sets (not indexable), and they support a rich variety of functions for element testing,

copying, sorting, arithmetic, etc. There are also Smalltalk -style list iteration methods,

such as collect, find, and forEach. Lists can even behave like Smalltalk dictionar-

ies, where items are associated with “keys” (usually symbols) and can be looked up

using their keys. The most common list functions are given in the table below (i is used

for numerical list indices, x for arbitrary values, and func for function closures).

Basic List Access
@ Index into a list (zero-based).
@@ “Wrap-around” indexing (go back to the start after final index).
|@| “Clipped” indexing (repeat the last value).
@|@ “Folded” indexing (read through the list in retrograde after the

end).
size Answer the size of the list.
$ Concatenate two lists.
$! Append one list to another.
choose Get a random value from the list.

Adding and Removing Items
add Add values at the end of list.
addFirst Add value at the start of list.
put(i, x) Put x at the position given by i.
insertAt(i, x) Insert x at index i (shift the rest right).

Built-in Functions Sound and Music Processing in SuperCollider

36 Stephen Travis Pope

first(n) Get the first n values (default n = 1).
last(n) Get the last n values (default n = 1).
take(i) Remove and answer the item at index i.
swap(i, j) Swap the elements at indeces i and j.
reverse Reverse a list in-place.
scramble Randomly re-order the items in a list.
rotate(n) Rotate the list n places.
permute(n) Answer the nth permutation of the list.
stutter(n) Repeat the elements in the list n times.

List Hierarchy Processing
flat Answer a 1-D (i.e., flat) list from a (possibly) multi-D list.
clump(size) Divide the list into sub-lists of size size.
curdle(prob) divide the list into sub-lists with a probability of prob of breaking

between any two elements.
flop Swap rows and columns of a 2-D list.

List Element Testing
indexOf(x) Get the index of item x or answer \nil it it’s missing.
includes(x) Answer whether the list includes the item x.

List Control Structures
any(func) Answer whether the function is true for any items in the list.
collect(func) Answer a list with the result of applying the function to all items.
forEach(func) Apply the function to each item in the list.
find(func) Answer the first item for which the function is true.

List Math
min/max Answer the minimum or maximun values in a list.
integral Answer the sum of the items in a list.
sort Sort a list into numerically ascending order.

Lists and Strings
list2str Take a list of ASCII integers and answer a string.
list2sym Take a list of ASCII integers and answer a symbol.
spell Convert a symbol or string to a list of ASCII integers.

Lists asSets
asSet Remove duplicate items from the list
union(list2) Answer the union of all the elements in two lists.
sect(list2) Answer only the items that are in both lists (the intersection).
removeAll(list2) Remove all the items in list2 from the receiver list.

Built-in Functions

37

List Data Creation
ramp(size, start, step) Create a linear ramp function.
white(size, lo, hi) Create a list with white noise values.
pink(size, lo, hi) Create a list with pink noise (low-pass filtered) values.
brown(size, lo, hi, step) Create a list with a brownian walk.

Example
brown(8 36 72 12).curdle(0.4).stutter(3).scramble.flat;

 Table 6: Common List Functions

Sound Synthesis

There are a wealth of signal sources in the language, including sine, cosine, and wave

table look-up, formant, FM, PM, wave shaping, granular, vector, and band-limited

pulse train oscillators. Various types of noise generators are included, along with sound

file and live audio input functions. The table below gives the most common signal syn-

thesis and control functions. The (AKP) before the function type denotes whether

audio-rate, control-rate or polled versions of them exist. The (i) at the end means that

an interpolating version of the unit generator exists. An (a) means there is a version with

low-frequency amplitude modulation (tremolo).

Generators
(AKP)oscil(ia)(table, frq, phase) Wave table oscillator.
(AKP)sinosc(i)(frq, phase) Sinusoidal oscillator.
(AKP)coscil(i)(table, frq, bFrq) Chorusing oscillator (dual oscillators with

slightly different frequencies leading to beats).
Aposcil(cFrq, mFrq, index) FM oscillator pair.
Avoscili(tableList, frq, index) Multi-table vector oscillator.
Apulse(table, frq, formFrq) Table pulse oscillator with delay.
Aformant(frq, formFrq, bw) Formant oscillator.
Acpgrain(buf, offset, rate, dur, amp, complFunc) Parabolic grain generator.
(AK)noise(frq, amp) Noise generator (comes in many flavors).

Filters (these take a signal input as an argument to the value message in the DSP loop)
Atone(frq) 1-pole low-pass filter.
Alpf(frq) 2-pole low-pass filter.
Arlpf(frq, Q) 2-pole resonant low-pass filter.
Aatone(freq) 1-pole high-pass filter.
Ahpf(freq) 2-pole high-pass filter.
Arhpf(freq, Q) 2-pole resonant high-pass filter.
Abpf(frq, bw) Band-pass filter.
Abrf(frq, bw) Band-reject filter.

Built-in Functions Sound and Music Processing in SuperCollider

38 Stephen Travis Pope

Envelope Generators
(KP)const(value, dur, complFunc) Finite-duration constant value.
(AKP)line(start, stop, dur, complFunc) Line segment generator.
(AKP)xline(start, stop, dur, curve, complFunc) Exponential line segment.
(AKP)transient(table, dur, ampo, bias, complFunc) Table-based envelope.
(AK)bpenv(env, scale, bias, time, complFunc) Break-point envelope.
Atrienv(dur, amp, complFunc) Triangle envelope generator.

 Table 7: Common Signal Synthesis and Control Functions

Signal Processing

In addition to filters, modulators, delay lines, and mixers, SC supports several kinds

of distortion, clipping, windowing, gates, dynamic range processing, and other DSP

operations. There are relatively few audio analysis functions (e.g., pitch detection),

however.

Delay Lines
Adelay(buf, time) Simple delay line.
Aallpassdly(buf, time, decay) All-pass delay line.
Acombdly(buf, time, decay) Comb (feed-back) delay line.
tap(i)(dLine, time) Delay line tap.

I/O
out(buf) Output writer.
in(audioIn) Input reader.
mixout(amp, output) Multiplying output writer.
pan2out(pos, out1, out2) Stereo output panner (pos is +- 1).
Abufrd(buf, offset, rate) Audio buffer reader.
Abufwr(buf, offset) Audio buffer writer.
Arecord(buf, complFunc) Input-to-buffer recorder.

DSP
(AK)gate(in, trigger) Audio gate.
(AK)latch(in, trigger) Sample and hold.
(AK)lag(val, time) Exponential lag function.
xfade(in1, in2, pos) Cross-fade between two inputs (pos is +- 1).
xfadeEnv(in1, in2, pos) Cross-fade between two envelopes (pos is +- 1).

Spectral Processing
shaper(table, index) Wave shaper.
flip Spectral invert (ring mod. by the Nyquist freq.)

Built-in Functions

39

Control
dspAdd(stage) Add a closure to the DSP loop in the given stage.
dspStart(startFunc) Start the DSP engine with the given function).
dspKill(flag) Stop the DSP engine if the flag is true.
dspRemove Remove the current task from the DSP loop.
sr, frameSize, subFrameSize Answer the sample rate, frame size, or sub-

frame size.

 Table 8: Common Signal Processing Functions

I/O

SC allows programs to read data from files or the keyboard, and to write messages to

files or to the GUI’s message view. There are simple functions for getting strings from

the user using pop-up dialog boxes.

fopen(name, rw) Open a file for reading (“r”), writing (“w”), or both
(“rw”); answer a file identifier (a number).

fclose(id) Close the file with the given id.
freadline(id) Read/write a line of text from/to the file id.
fwriteline(id) Answer a string.
freadlist(id) Read/write a list from/to the file id.
fwritelist(id) Answer a list.
parse(str) Break a string into a list of tokens based on white space.

 Table 9: File I/O Functions

GUI Interaction

The most commonly used functions for interacting with SC GUI items are listed in the

table below.

getItemValue(i) Get the value of the GUI item i.
getItemValue2(i) Get the secondary value of a range slider.
getItemString(i) Get the string value of the GUI item i.
getItemList(i) Get the list box list of the GUI item i.
setItemValue(i, x) Set the value of GUI item i to x.
setItemValue2(i, x) Set the secondary value of GUI item i to x.
setItemString(i, x) Set the string value of GUI item i to x.
getStringFromUser(default, prompt) Prompt and answer a string from the user.
mouseButton Answer whether the mouse button is down.
mouseX/Y Answer the x or y coordinate of the mouse.
addMenuCommand(item, func) Add an entry to the user menu with name item

calling function func.

 Table 10: GUI I/O Functions

Built-in Functions Sound and Music Processing in SuperCollider

40 Stephen Travis Pope

Musical Magnitudes: Pitch and Frequency, Loudness and Amplitude

There are models of pitch in Hz, MIDI key numbers, and decimal octaves and func-

tions for translating between them. Amplitude can be represented as decibels, or abso-

lute values. Metronomes are provided for describing beat-oriented tempo curves.

MIDI I/O and Conversion

MIDI input can be treated as control-only, or as event triggers. the functions listed in

the table below can be used in instruments to poll MIDI controler values. Special voicer

objects exist to map MIDI note-on commands to instrument invocations.

ctrlin(num, chan) Answer the value (0 - 127) of MIDI controller num on
channel chan.

bendin(chan) Answer the MIDI pitch bend value (-8192 - 8191) on channel chan.
touchin(chan) Answer the value (0 - 127) of the MIDI aftertouch on channel

chan.

 Table 11: MIDI Continuous Control Polling Messages

Additional versions of these calls exist that can map the MIDI control value ranges to

arbitrary floating-point numerical ranges.

Miscellaneous Functions

There are a number of useful functions that do fit neatly into the above categories.

They are listed below for our reference.

type Answer a symbol denoting the type of a variable.
isNumber Answer whether an item is a number.
isAtom Answer whether an item is atomic (i.e., not a list).
isNumeric Answer whether a list contains only numbers.
isAtom Answer whether a list contains only numbers and symbols (i.e.,

no sub-lists).
asString Answer a string that represents the variable.
copy Answer a copy of a variable.
post Print a number, list, or string to the message view.
dump(depth) Print any object to the message view to the given depth of its

structure (i.e., descend depth levels in the structure).
resolveName Get a reference from a symbol (i.e., find the function named x).
value(args) Evaluate a function with optional arguments.

 Table 12: Useful Miscellaneous Functions

Other Language Features

41

3.6. Other Language Features
SC has a number of language elements that, while sometimes convenient, are also

dangerous, and tend to lead to a rather unreadable or difficult-to-debug programming

style (“write-only programming”). I will outline these below, and generally discourage

their use by novices (especially in light of the lack of a debugger in the SC environment).

Multiple Assignment
One can assign a list to several variables in one statement using the “#” before the

assignment, as in the following example.

a b c = [1, 2, 3]; (i.e., a = 1; b = 2; c = 3)

The number of variables to the left of the “=” must be the same as the number of ele-

ments in the list.

Ellipsis Assignment
A refinement of multiple assignment uses the ellipsis (...) before the last variable name

on the left of the “=”. (This is like Prolog’s head|tail assignments.)

a b ... c = [1, 2, 3, 4, 5]; (a = 1; b = 2, c = [345])

Implicit Declarations
As mentioned above (and already discouraged), variables can be used (assigned into)

without being declared.

c = a + b; (c not declared previously)

Optional Commas
Commas can be used to separate function arguments, variable declarations, or list

items. There are a few cases where they’re required, but they can generally be left out.

[1 2 3 4] == [1, 2, 3, 4]

Variable Numbers of Arguments
All functions may be called with fewer or more arguments than they expect. Default

values can be given in the argument declaration (arg a = 1;), otherwise, \nil is the

assumed argument. Extra arguments are ignored (see the next example).

Other Language Features Sound and Music Processing in SuperCollider

42 Stephen Travis Pope

Functions with No Arguments
These need no parentheses, for example,

-- Define a function that returns the sum of its two arguments
-- (but provides default values should the arguments be missing).

sum_function { arg a = 1, b = 2; ^a+b }

-- Examples of calling sum_function with and without arguments

z = sum_function(8, 2); -- z gets 10.
z = sum_function(4); -- z gets 6 (use the default for the second argument).
z = sum_function; -- z gets 3 (use the defaults for both arguments).

Defaulted Arguments
Using “\” as an argument means to skip it and use the default or previous value, e.g.,

-- Create a formant oscillator. Aformanta takes arguments
-- (frequency, formant frequency, bandwidth, amplitude).
-- (Amplitude is left out at creation time.)

cosc = Aformanta(fn, 500.0.expran, 9.0.rand * 22);

-- Create an envelope function with function table 3
env = Ktransient(tbl3, 2.0, 0.1, 0, `dspRemove);

-- Add the formant oscillator to the DSP loop with the envelope
-- as its amplitude (leave the first 3 arguments unchanged).
-- (The arguments of the value() message are the same as the
-- constructor message Aformanta().)

{ cosc.value(\, \, \, env.value).out(output) }.dspAdd;

The DSP Cycle
SuperCollider has different control and audio rates. One differentiates between the

sample rate and the control rate. Unfortunately, the manual uses the term sub-frame rate

to mean the control rate. (The term frame rate is used to refer to the output sample buffer

size.) The control rate (actually, the control buffer size) can be set using the Set Globals

item under the Synth menu; the default is 64 samples per control frame.

There are four stages to the DSP engine, and one can have data passed between instru-

ments by placing them in different stages. For example, sound-generating instruments

might be placed in stage 0 and the reverberator instrument in stage 3. (I’ll give examples

of this below.)

The Parts of a SuperCollider Program

43

To control the signal processing, a user program explicitly adds and removes func-

tions from the DSP queue of a specific stage using the dspAdd and dspRemove calls.

3.7. The Parts of a SuperCollider Program
There are several parts to a typical SC program:

Header—title comment, date, version, copyright, ...

Declarations—declare output buffers, sound files, function tables, etc. (required)

Init Function—run at compile-time, if present (optional)

Start function—called at run-time if present; runs the instruments (normally

present, though optional)

Instrument functions—can be called from the start function

We will illustrate the use of each of these in the examples in the following sections.

3.8. Unit Generators as Objects
SuperCollider unit generators are classical objects (see the chapter on

object-oriented programming in Part 6 if you’re impatient) in that they have

constructor methods and an evaluation method. As in C++, the class name of

the unit generator is its constructor; value() is the default evaluation message, and gen-

erally (though not always) takes the same arguments as the constructor. The construc-

tor is generally called once per note, and the evaluator is put in the DSP loop for

continuous evaluation at run time, as in the following example (taken from the example

instrument presented in the introduction).

var osc; -- Declare a variable name for the oscillator.

osc = Asinosc(220, 0); -- Unit generator constructor method -- name = UG type.
-- “Asinosc” arguments are (frequency, phase)
-- Create “osc” as an object (once per note).

{ -- In the DSP loop (a closure evaluated once per control
-- period), get osc object’s value (a sample buffer), and send
-- it to the two outputs in succession.

osc.value.out(L).out(R);
}.dspAdd; -- Add the above closure to the DSP engine’s queue.

Code Example 5. Unit Generator Construction and Use of the value Message

To connect a control function (rather than a constant) to a unit generator, do so with

an argument to the value() message, as in an instrument that uses frequency modulation

with an envelope for the modulation index. Because the index is controlled at control

SuperCollider Style Sound and Music Processing in SuperCollider

44 Stephen Travis Pope

rate, we do not set it in the oscillator’s constructor, but rather “plug it in” inside the DSP

loop, as shown in the following example.

-- Create an FM Oscillator. The constructor’s arguments are
-- (carrier_freq, mod_freq, mod_index).

osc = Aposcil(freq, freq*ratio, 0); -- (Ths modulation index is 0 for now.)

-- Create an amplitude envelope.
a_env = Ktransient(env1, 1, 0.8, 0, `dspRemove);

-- Create the modulation index envelope.
i_env = Ktransient(env2, 1, 1, 0, `dspRemove);

-- DSP loop (closure).
-- This call tovalue() leaves the first 2 arguments alone but
-- plugs in the mod_index as the third argument.

{ (osc.value(\, \, i_env.value) *! a_env.value).out(L).out(R) }.dspAdd;

Code Example 6. Connecting Unit Generators inside the DSP Loop

3.9. SuperCollider Style
There are several elements to coding style: naming conventions, code documentation,

program indentation are perhaps the most important.

Variable and Function Naming
If you want other people to be able to read your programs (or to be able to reverse

engineer them yourself six month hence), it is important to use variable and function

names that will help the reader understand your intention. The natural trade-off here is

between terseness (the famous C variable i) and verbosity (my most famous Smalltalk

class name NoviceNavigatorSwissArmyKnifeController). Function names should gener-

ally give a hint as to what the function does, or what it answers.

In Smalltalk, we recommend that important variable names tell the reader both the

role and the type of the variable; for example, a geometric point that’s used as the

extend of a rectangle might be called extentPoint. A buffer used for sound output might

be named outputBuffer.

There are two styles for naming variables in SC: C++ style and Smalltalk style. In C++,

programmers often use embedded underscore “_” to separate the components of a

complex variable or function name (e.g., output_buffer or read_score); in Smalltalk, we

use embedded upper-case letters for this (outputBuffer and readScore). The naming of the

SuperCollider Style

45

built-in library functions and the SC manual are a bit inconsistent, but use Smalltalk

style more frequently (e.g., forEach, timesRepeat); in this book I generally use Smalltalk-

style.

SuperCollider is case-sensitive. Variables named osc and Osc are different.

The names of the built-in functions and control structures are reserved, and cannot be

used for variables or added functions. There is an exact list of these in the SC manual.

Program Documentation
Comments make a program easier to read. They also provide an important debugging

tool. If you state your intentions in English before writing the code, you have a fully

redundant human-readable specification against which you can check the implementa-

tion. As illustrated in the examples I present below, I believe that there should always

be more English than program code on a page (I actually hold to this rule most of the

time in my professional Smalltalk programming).

Code Formatting
Programmers generally use indentation to make the program flow visually obvious.

As is evident in the code examples above, function definitions are indented one level

(one tab or four spaces) relative to the function header. Control structures (if/then/else,

loops, etc.) are frequently used as landmarks in a program, and are indented one level.

I prefer an indentation style called “two-column coding” whereby verbose comments

are indented well to the right, so that one can easily read just the cooments as a separate

stream of text, with the executable code as the “left column.” This is the style I have been

using in the examples in this book.

Program Organization
As presented above, good style also entails good program organization, with a header

describing the program, global variable declarations, init() and start() functions, followed

by user-defined function methods. You’ll see many examples of this in the chapters that

follow.

SuperCollider Style Sound and Music Processing in SuperCollider

46 Stephen Travis Pope

SuperCollider Windows

47

Part 4. The SuperCollider User Interface
This Part will introduce the basic elements of the SC user interface and outline their

uses.

4.1. SuperCollider Windows
On start-up, SC presents you with three windows: a program text editor, the SC mes-

sage output view, and an instrument user interface view.

Program Text
The main SC program text

view is a standard text editor.

Only one file can be open at a

time, though you can copy a

text from one file, then open

another and paste the text.

There are editor menu items for

the typical text editing opera-

tions such as cut/copy/paste,

as well as programming-related

operations such as adding spe-

cial delimiters, and a user-

definable menu. An example of

the text window is shown in the

figure on the right.

 Figure 5. SC Text View

It is important to remember that the text of a program is not the only contents of a SC

file; the file also includes the definitions of wave tables, envelopes, etc.

Message Transcript
The message view (or transcript) shows messages from the compiler, and user pro-

grams can write to it with error or status strings from within an instrument using the

post message (sent to a string, symbol, list, or number). Error messages are written

here by the compiler (see the figure below for an example).

SuperCollider Windows Sound and Music Processing in SuperCollider

48 Stephen Travis Pope

 Figure 6. Message View (Transcript)

Instrument GUI
The third window that is always open when using SC is the current program’s graph-

ical user interface (GUI). The view may have a variety of sliders and buttons that control

the program’s instruments at performance time. There is a straightforward editor for

creating and modifying SC GUIs, and you can read or set the values of GUI elements

from your own programs easily. By default, this view is empty.

The example shown to the left is a

“control panel” for a simple FM

instrument; with this, the user can

vary the pitch, modulation index,

carrier:modulation frequency ratio,

repetition rate, and note duration

while the instrument is playing. You

can create and edit a GUI for any

instrument you write (see below).

 Figure 7. Example of an Instrument GUI

When the run-time system is executing (i.e., when you’re playing sounds), the top

part of the instrument GUI (its header, shown as a blank area in the figure above) dis-

plays the percentage of the CPU cycles that are used for computation and for garbage

collection, respectively in the top row, and the time clock, output level, and clipping

indicators in the bottom row. The format of this display is shown in the figure below.

 Figure 8. Example of an Instrument GUI Header

CPU: 22.78 % GC: 3.91 %
 00:00:35.61 Vol: 0.00 dB Out: L R clip

SuperCollider Windows

49

Table Views
The user can view and edit a program’s envelope functions, wave tables, and audio

buffers using the various table views. One can create tables using break-points, Fourier

summation of sinusoidal overtones, or several other methods (see the Fill menu). Three

different kinds of tables are shown in the figures below: a wave table created using Fou-

rier summation, an envelope drawn by hand, and a break-point envelope. For each of

these kinds of functions, you can edit the values, either using the automatic generation

techniques just listed, or by hand-drawing break points in the case of break-point enve-

lopes.

 Figure 9. Example Table Views

There are several special dialogs

for creating and editing wave

tables, envelopes, and break-point

functions. The figure to the left

shows the interface for using Fou-

rier summation, with which one

can select the amplitude and phase

of a number of sinusoidal partials.

 Figure 10. Table Editor for Fourier Summation of Sines

Other techniques include using FM to generate wave tables, making smooth enve-

lopes for granular synthesis, various noise generators and a band-limited pulse gener-

ator. The break-point envelope editor shown in the right-most view of Figure 9 allows

you to drag points with the mouse, or to add new points using command-click with the

mouse.

Function Reference Help View
Typing Command-t brings up a very useful command reference window. It is shown

in the figure to the left and is a very powerful tool for the novice and seasoned SC pro-

SuperCollider Windows Sound and Music Processing in SuperCollider

50 Stephen Travis Pope

grammer alike. The list on the left of this view shows the “categories” of built-in func-

tions, and the list on the right shows the functions in the chosen category (oscillators in

the Figure). Note that the right-hand list also gives the function arguments for the con-

structor function and value message for each type of unit generator.

The first category in the left-hand list

(not shown in this figure) is “all” for

the case that you do not know where

a particular function is categorized.

Selecting a function name in the right-

hand list displays a short comment

about it in the lower text view (as in

the figure). Unit generators provide

two entries (as shown for the oscilla-

tor examples): one for the the argu-

ments of the constructor method, and

a second giving the arguments of the

value message (which may be differ-

ent from the constructor).

 Figure 11. Function Reference Help View

Setting Search Paths
There is a dialog box that allows the user to

set the list of directories where SC searches

for sound files and instrument patches. The

menu item Set Search Paths can be found

in the Synth menu; it brings up the dialog

view shown on the right. The default paths

are the :Sounds and :Patches folders that are

part of the SC distribution. Users can add

their own sound file folders to this list by

typing in to the other text fields.

 Figure 12. Set Search Paths Dialog

SuperCollider Menus

51

Setting Global Values
There are a number of global values that can be

set for the SC execution environment. The sub-

frame size is analogous to the “control rate” in

other MusicN languages. It is the size of the sample

block that is used for the calculation of envelopes.

Making it smaller may improve the sound quality,

but will also consume more compute resources.

The frame size is the length of the final output buff-

ers that are sent to the sound output manager.

Making this smaller will improve interactivity, at

some computational cost. The dialog box shown on

the right can be opened with the menu item Set

Globals in the Synth menu (or with the command-

key combination Command-g).

 Figure 13. Global Settings Dialog

The sample rate is usually 44100 Hz, but 22050 or 11025 are also useful values. The

control (sub-frame) size is 64 by default, and can be set to values between 4 and 512

(typically a power of 2 is used). The output buffer frame size is initially 4096, but can be

set to values between 1024 and 16384 (also a power of two).

4.2. SuperCollider Menus
As is typical of Macintosh applications, the most common SC interaction functions are

accesses with pull down menus found along the top of the screen. The standardMacin-

tosh command-key accelerators are implemented here, and are indicated in the menus.

The File menu includes items for opening and saving SC program and data files, as

well as for quitting SC.

The Edit menu contains the standard text editing functions, as well as special opera-

tions for inserting several kinds of delimiters (such as comment delimiters) around the

selected text.

The Synth menu’s items allow you to compile and play your program, to set the global

values introduced above, and to set the output and input connections (i.e., to read

sound input from the sound manager or from a file).

The GUI menu enables one to edit the GUI is an SC program, and, when in edit mode,

to add user interface items to a screen.

Editing Instrument GUIs Sound and Music Processing in SuperCollider

52 Stephen Travis Pope

The User menu is empty by default, but there are SC functions with which advanced

users can add their own items to this menu and bind them to SC functions. (This is out-

side the scope of this tutorial.)

The Fill and Alter menus are used with the table and envelope editors to create or

modify wave tables or function envelopes.

The last three menus—Tables, Envelopes, and Audio—provide access to an SC pro-

gram’s defined wave tables, break-point envelopes, and audio buffers, respectively. If

your program declares any of these, its name will appear in the corresponding menu,

and selecting it there will open a table editor on it.

4.3. Editing Instrument GUIs
SC includes a simple editor for laying out graphical user interfaces (GUIs) to instru-

ments, or in fact, arbitrary programs. To enter the edit mode, type Command-e.

GUIs can have sliders, buttons,

text fields, and other kinds of ele-

ments in them, and these can be

read from, or written to, from

within SC programs Each element

of a GUI has a numerical index

(shown at the left edge of each ele-

ment in the figure); these indices

are used with the messages get-

ItemValue and setItemValue to read/

write the GUI item.

 Figure 14. Instrument GUI in Edit Mode

When you enter edit more, the border of the GUI window will change as shown in the

figure above. When in edit mode, you can add new GUI elements, move or resize exist-

ing ones, of edit items’ properties. The resize button in the lower-right of the GUI win-

dow can be used to resize the window.

Standard GUI Items
SuperCollider GUIs can involve a variety of items that support the manipulation of

numbers, numerical ranges, texts, or action triggers. There is no “drag and drop” or

score-based GUI at present.

The standard GUI items are listed in the table below along with their common usage.

Editing Instrument GUIs

53

Type Usage

Button Sends a message whenever pressed (that can be handled asyn-
chronously by a function in your program)

Radio Button Allows the user to select one item from several options
Check box Toggles a value (that you can check from within the program) on

and off
Slider Sets a numerical value in a given range (with a given step size)
Range slider Sets upper and lower limits for a numerical range
Label Display a string (e.g., a label for another GUI item)

 Table 13: Types of SuperCollider GUI Items and Their Uses

GUI Editing
To add a new GUI element to an SC GUI window, type Command-, (comma); the cur-

sor will change to a cross-hair and you can draw a rectangle in the GUI window to set

the size and position of the new item.

Once you have done this, you will

be presented with a dialog box like

the one shown in the figure on the

right in order to edit the new item’s

type and properties. When you

select a specific type of GUI item

with the pull-down menu labeled

“Type:” then the fields in the rest of

the dialog box will change to those

that are relevant for the chosen type

of GUI element. In the case shown in

the figure, we can edit the properties

of a numerical slider: its minimum

and maximum value, default value,

and step size.

 Figure 15. GUI Element Dialog Box

If you choose to add a range slider, there are two values that you can edit—the upper

and lower bounds of the numerical range. For buttons, the important aspects will be

label of the button and the message that is sent when the user presses it (this will be the

name of a function that you have implemented in your program). For a stand-alone

label string, you can type in a string.

Special Command Keys Sound and Music Processing in SuperCollider

54 Stephen Travis Pope

To change the properties of a GUI element, select it (whereupon it will display resize

handles in its corners) and type Command-i. To duplicate an item, select it and type

Command-d. To exit GUI edit mode, type Command-e again. The connection between

the GUI elements and your SC program will be determined by how you implement the

messages that are sent from buttons you might place on the GUI, and what you do with

any numerical values the user can set, as we’ll see in the examples that follow in the next

Part.

4.4. Special Command Keys
Several special Macintosh Command-key combinations are used in SC. The most use-

ful of these are listed below.

Command-/ Compile and play the current program.
Command-k Compile (but don’t run) the current program.
Command-. Stop playing (interrupt).
Command-[Decrease volume 3 dB.
Command-] Increase volume 3 dB.
Command-t Bring up function reference help view.
Command-g Bring up global settings dialog box.

 Table 14: Special Function Keys

Building Synthesis Programs

55

Part 5. Essential SuperCollider Programming
In this part of the book, I will present a series of progressive

examples of SC sound synthesis instruments and signal pro-

cessng programs. We start with simple instruments and then

move on to discuss envelopes and control, extended synthesis

techniques, the development process, and other topics. Read-

ers who are unfamiliar with the synthesis techniques discussed

here are referred to (Roads 1996).

5.1. Building Synthesis Programs
Some of the examples that follow are taken from James McCartney’s manual or on-

line examples (with comments added). The text and the comments in the code are

intended to complement each other, and you are encouraged to read them both.

A Wave Table Oscillator
The first example illustrates a simple “steady-state” chorusing oscillator (which is

actually two oscillators in parallel that are slightly detuned, so that they beat in and out

of phase, leading to a chorus-like effect). The wave form is defined using the wave table

editor; it is not stored in the text part of the program. As in the example given at the start

of this document, there is no envelope—this is a steady-state instrument that will play

a 440 Hz tone with a 2 Hz beat frequency to both output channels.

-- Chorusing wave table oscillator (See the SC manual p. 55.)
-- This simple example plays a continuous tone with a “chorusing” (beat frequency) effect.

defaudioout L, R; -- Declare audio outputs named L and R.
deftable table1; -- Declare a stored wave table for oscillator.

start { -- This function gets called automatically; it does all the work.
var osc; -- Declare the variable name “osc” for the oscillator.

-- Create a chorusing wave table oscillator object.
-- Acoscili’s arguments are (wave table, freq, beats/sec).

osc = Acoscili(table1, 440, 2);

{ -- Create a closure for the DSP loop; it gets osc’s value,
-- scales it (*! is an in-place multiplier), and sends it out.

(osc.value *! 0.2).out(L).out(R);
}.dspAdd; -- Add the closure to the DSP loop

} -- End of start(); end of the program

Code Example 7. Continuous Chorusing Oscillator Instrument

Building Synthesis Programs Sound and Music Processing in SuperCollider

56 Stephen Travis Pope

In the code example above, the first two lines are comments. The first executable state-

ment declares sound output buffers named L and R ; these will typically be connected

to the Macintosh sound manager to play sound out to your loudspeakers. (You can also

play out to a sound file.) The deftable declaration defines a wave table named table1.

Declaring it does not give it any contents though. The start function is the body of the

instrument; if there is a function named start in your SC program, it will be called when

you start execution. Thus, you can write any statements you to be want automatically

executed in the start function.

In this case, the entire instrument is placed in the start function. It consists of (1) the

declaration of the variable named osc (which, as you remember, is untyped, it could be

an oscillator, or any other kind of object), (2) an assignment that creates an oscillator

(using a constructor message), and (3) the DSP loop. The name of the oscillator con-

structor—Acoscili—denotes an audio-rate (A), chorusing (c) oscillator (oscil) with sam-

ple interpolation (i). The DSP loop is simply a closure (the statement enclosed in curly

braces) to which we send the message dspAdd. This will be executed continuously when

we play the instrument. In the loop, we send the value message to the oscillator object,

scale its output by 0.2, and send that data buffer to both outputs in succession (with the

cascaded out messages). The last curly brace ends the start function, and thus the whole

program (for this simple case).

If you were to develop this instrument yourself, you would type in the text shown

above, then compile it (either from the corresponding menu item in the Synth menu or

with Command-k). After you compile it, the wave table you declared (with variable

name table1) would appear in the Tables menu, from which you can open a table editor

and change its contents. (To do this, open the table editor, then use the Fill menu to edit

it; for the start, try using Fourier additive synthesis and creating a wave table with a few

different overtones.) Once you have a wave form defined, you use the key combination

Command-/ to play the instrument (i.e., execute the start function and run the DSP

loop); typing Command-. will stop the playing.

Note also the use of the *! operator. This is a multiplier (like *), but does its work in-

place, i.e., it overwrites its receiver with the result. This means that the value of the oscil-

lator (a buffer of 64 samples) will be scaled by 0.2 in-place, which will be faster and more

space-efficient, but might be dangerous (in the case where we want to do something

else with the un-scaled sample buffer later). If you want to visualize this instrument, the

relevant graphical elements would be the oscillator, its parameter inputs, the amplitude

scaling, and the outputs.

Building Synthesis Programs

57

In SC, not all oscillators have separate amplitude inputs

(in this example, it generates full-scale output), so I draw

it with an amplitude input of 1. The resulting flow chart is

shown in the figure on the right. This example demon-

strates most of the basics of SC programming: the impor-

tance of verbose and well-formatted of comments, the

necessary declarations for the output buffers and tables,

and a rudimentary start function that includes a DSP loop.

We will extend this through several stages in the progres-

sive examples that follow.

 Figure 16. Visualization of the Chorusing Oscillator

Using an Envelope
The second example demonstrates a repeating rhythm. I’ll define an instrument that

plays the wave table oscillator of the above example (using a random frequency of [100

+ 200.rand]—something between 100 and 300 Hz) and an envelope (defined by the func-

tion env1).

To make the envelope, we have to define its shape (i.e., put something into the table

env1), use the right unit generator constructor to get an envelope object, and multiply

the output of the oscillator by the output of the envelope generator inside the DSP loop.

The envelope unit generator is an instance of Ktransient—a control-rate transient gen-

erator. The arguments of its constructor are the table to read through (once per note),

the duration of the note, the amplitude (usually 0-1), a bias value (or offset, usually 0),

and a completion function. The completion function is a reference to the function that the

envelope generator should call when it terminates. Using `dspRemove as the completion

function means that the instrument will be removed from the DSP loop at the end of the

envelope. This is standard practice; most envelopes take `dspRemove as their comple-

tion function (though you could call any other function).

The DSP loop of this instrument sends the value message to the oscillator (to get a

buffer of samples), and then multiplies that buffer by the result of sending the value

message to the envelope generator (which will return a single value because it is a con-

trol-rate generator). This means we’ll have a new envelope value every 64 audio sam-

ples. The result of this multiplication (the scaled sample buffer) is then sent to both

outputs.

The last line of the program is a list containing the number 0.5 and the special variable

thisFunc (a reference to the current function—start). We send the message sched to the

amplitude = 1

frequency = 440 Hz

table1

out(L, R)

*
0.2

Building Synthesis Programs Sound and Music Processing in SuperCollider

58 Stephen Travis Pope

list, which means that the system should reschedule the start function (thisFunc) after 0.5

seconds, i.e., the note will repeat twice a second. Because the duration of the notes is set

to 1 second (the second argument in the Ktransient constructor), and we repeat then

every 0.5 seconds, this will be molto legato (or 200% duty cycle).

-- Wave table oscillator with repeat. (Taken from the SC manual p. 56.)

defaudioout L, R; -- Declare outputs.
deftable tabl1, env1; -- Declare 2 wave tables--one for the envelope.

start { -- Start function is the repeating instrument.
-- Signal oscillator.
-- Arguments are (table, frequency, beats/sec).

osc = Acoscili(tabl1, 100 + 200.rand, 2);

-- Envelope transient function (Ktransient).
-- Its arguments are (table, duration, amplitude, bias, and a
-- completion function [function reference]).

amp = Ktransient(env1, 1, 0.2, 0, `dspRemove);

-- DSP loop closure.
-- Scale the oscillator by the envelope.

{ (osc.value *! amp.value).out(L).out(R) }.dspAdd;

-- Repeat the note in 0.5 seconds.
[0.5, thisFunc].sched;

}

Code Example 8. Chorusing Oscillator with an Envelope

The envelope function env1 is created and edited

like an oscillator wave table. Look at it in the table

editor and you’ll notice that it does not look like a

wave form, but more like a note envelope

(remember Figure 3 above). The visual flow chart

for this instrument would now have to include

the envelope generator (drawn with a different

icon than the oscillator, and showing its inputs)

and the random number generator for the fre-

quency (including its scale). This might be drawn

as shown in the figure to the left, which uses dif-

ferent icons for the different unit generators.

 Figure 17. Flow Chart of an Oscillator with an Envelope

amplitude = 1

table1

out(L, R)

env1

duration = 1
bias = 0

100

200

Random

+

Building Synthesis Programs

59

The new features of this instrument are the envelope (and the use of two unit genera-

tors with their respective value messages in the DSP loop), and the periodic repeat

achieved using a two-item list (with a scheduling time and function to call) and the

sched message.

As an excercise, you can type Command-g to open the global variables dialog and

change the sub-frame size (control rate) to a smaller value such as 8. You should notice

that the sound quality improves and the computation percentage increases.

Playing a Score
To show you how to make a more controllable musical experience, let us introduce a

note list (score) to the example. This process will consist of rewriting the instrument

above as a separate function that takes its duration, pitch, and amplitude as function

arguments. In the following code, we have simply substituted function arguments for

the fixed constants of the previous version.

chorus_instr { -- Make a new function named chorus_instr.
arg dur, pitch, amp; -- Declare the arguments of the instrument.

-- Signal oscillator; args are (table, freq, beats/sec)
osc = Acoscili(tabl1, pitch.midicps, 2);

-- Envelope transient function
-- args are (table, dur, amp, bias, completionFunction)

amp = Ktransient(env1, dur, amp, 0, `dspRemove);

-- DSP loop -- send (osc * env) to both outputs.
{ (osc.value *! amp.value).out(L).out(R) }.dspAdd;

}

Code Example 9. Chorusing Oscillator Written as a Function

Note the use of the midicps message in the oscillator constructor above. This converts

between MIDI key numbers (pitches) and frequencies in Hz (cycles-per-second or cps).

This will allow us to use MIDI key numbers in our score, which will be converted to Hz

inside the instrument.

With this function defined, we can make a start function that calls it and supplies

parameters in the manner of a MusicN-style note list. To do this, we use the sched mes-

sage (sent to a list) that was introduced above, with one important extension. To play a

simple scale, we would write the following.

Developing an Instrument Sound and Music Processing in SuperCollider

60 Stephen Travis Pope

defaudioout L, R; -- Declare outputs.
deftable tabl1, env1; -- Declare 2 wave tables--one for the envelope.

start { -- Play a score in the start function

-- time instrument dur pitch amp
[0.00, ‘chorus_instr, 0.25, 48, 0.5].sched;
[0.25, ‘chorus_instr, 0.25, 50, 0.5].sched;
[0.50, ‘chorus_instr, 0.25, 52, 0.5].sched;
[0.75, ‘chorus_instr, 0.25, 53, 0.5].sched;
[1.00, ‘chorus_instr, 0.25, 55, 0.5].sched;

}

Code Example 10. Score for the Chorusing Oscillator Instrument

Here we use the list with [start-time, function-reference] as in the previous example, but

we add extra list elements after the function reference. These are passed as arguments

to the function (instrument) chorus_instr when it is scheduled, so they become the dura-

tions, pitches, and amplitudes of our notes, respectively (since these are the three argu-

ments of the instrument definition function).

We have now presented the basics of instrument construction, plugging together of

unit generators, and score writing. The next chapter will step through another example

showing the recommended process of instrument development, debugging, and GUI

construction.

5.2. Developing an Instrument

FM With Repeat
To illustrate the typical process of instrument development, and another synthesis

method, we will step through three versions of a frequency modulation (FM) instru-

ment, going from the simplest working example, to one with a GUI to control its param-

eters, to a version that uses a score for performance.

This instrument uses an FM oscillator (actually it uses phase modulation—a subtly

different version of the FM equation) with two different envelopes for the modulation

index and amplitude function. In this first version, we will make a repeating version

where all parameters are set to be constants with small random variations.

-- FM instrument with repeat
-- We use two envelope functions for the amplitude and modulation indices.

defaudioout L, R; -- Declare the outputs.
deftable tabl1, env1, env2; -- Declare the wave tables and envelopes.

Developing an Instrument

61

start { -- The start function is the instrument.
-- Declare the 6 local variables.

var freq, index, ratio, osc, i_env, a_env;
-- Set up the parameters for debugging.
-- (These are Constants + random ranges.)

freq = 200 + 200.rand; -- Frequency between 200 and 400.
index = 1 + 2.rand; -- Mod. index of 1, 2, or 3.
ratio = 1 + 0.2.rand; -- C:M frequency ratio of 1 to 1.02 (inharmonic)

-- FM oscillator constructor
-- Its arguments are (carrier_freq, mod_freq, index).
-- (Index = 0 for now.)

osc = Aposcil(freq, freq*ratio, 0);

-- Amplitude envelope (env1 is the envelope function).
-- Arguments are (table, dur, amp, bias, completionFunction).

a_env = Ktransient(env1, 1, 0.8, 0, `dspRemove);

-- Modulation index envelope (env2 is the envelope function).
i_env = Kransient(env2, 1, 1, 0, `dspRemove);

{ -- DSP loop, plug in index envelope (as 3rd arg in value()),
-- and multiply by amplitude envelope.

(osc.value(\, \, i_env.value) *! a_env.value).out(L).out(R);
}.dspAdd;

-- Repeat a note at 2 Hz
[0.5, thisFunc].sched;

}

Code Example 11. FM Instrument—First Pass

In this example, we defined the two envelope tables (if you’re on-line, look at them in

the table editor), and used them both in different Ktransient unit generators (two

instances of the same class). The DSP loop sent the value message to the oscillator and

plugged in a new value for the third argument (the modulation index envelope). This

instrument will note play two overlapping notes per second, each with a different pitch,

modulation index, and carrier-to-modulation frequency ratio.

This version of the code has allowed us to get the simplest version of the FM instru-

ment working, though we do not have very much control over it in real time. If you had

problems getting it to work, you would be better off trying to debug a simple version

than a more complex one.

Developing an Instrument Sound and Music Processing in SuperCollider

62 Stephen Travis Pope

Debugging SuperCollider Programs
There are a number of techniques that will make it easier for you

to get your SC instruments to work as you planned them. The first

two techniques constitute what I like to call antibugging, and the rest

are derived from common sense

Start Small

The structure of this example is intended to demonstrate the incremental develop-

ment approach. It is much easier to debug a program that’s 20 lines long, and then add

ten new lines per debugging stage than to wait until it’s too long to fit on one screen.

You can also compile your program at any time (to check for syntax errors) without

actually running it using the Command-k keys. The message transcript view will show

any syntax errors you might have (and the compiler will place the text insertion cursor

right where it thinks the error takes place).

Use post and dump Where Appropriate

Some C programmers call this “debugging by printf.” The technique simply means

that you can trace the flow of your program by using the post message to write strings

or numerical values to the message transcript view from within your code. This often

helps to find out where your program fails (i.e., posting messages about what functions

are being called when), or why it doesn’t sound the way you expect it to (i.e., posting

messages to the transcript about what the parameter values are).

The post message is normally used with simple variables such as strings, symbols,

numbers, and 1-dimensional lists; dump can be sent to complex objects such as multi-

dimensional lists and unit generators to display their inner state variables.

Document Your Code Profusely

I generally use the rule that there should be more English (or whatever your native

language happens to be) than SC in well-written programs. Although the examples in

this book are quite verbosely commented, I recommend that there be a one-line com-

ment for every line of program code that is not extremely trivial. This is not only valu-

able for you, but it can help a friend to debug your code (i.e., find out where the code

doesn’t do what the comment says it does).

Save Your Work Frequently

SuperCollider is an excellent and stable programming environment; nevertheless, it

does crash from time to time. Murphy’s law dictates that the probability of a crash is

proportional to the square of the time between file saves. Use Command-s frequently

to save your program to the disk.

Developing an Instrument

63

Write show Functions

We will present an example below of an instrument whose GUI has a button that calls

a function to display the instrument’s parameters in the transcript view. This kind of

“brain dump” function that is sent from a GUI button can be very useful as a debugging

tool (i.e., “what are the parameter ranges where the instrument distorts”).

Use the init Function to Test Expressions

As described above, the function init (if you define it) gets called whenever you com-

pile or start an SC program. You can treat this as a simple “SC interpreter” and use it to

test out SC expressions. If you type an expression into the init function and then type

Command-k, the expression will be executed. I use this frequently together with the

post message to see the result of simple SC statements (e.g., init{ (21.334 * 72.1149).post }).

Practice Modular Design and Reuse

The most important and powerful debugging technique is to steal working code

(rather than writing your own buggy code) wherever possible. This is also a large part

of the motivation for the development of this book, and one of the wonderful benefits

of the large program library that is shipped with every copy of SC. (Thanks, James!) I

recommend that you also get one of the several Macintosh programs that can search the

contents of text files, for example the ShareWare SearchFiles program by Robert Morris.

This makes it easy to search among the demonstration code for examples of the usage

of a particular function or keyword (e.g., “find me examples of case statements in

instruments”).

Read the Message View

The SC compiler prints terse but meaningful error messages in the transcript at com-

pile time and at run-time. Read them.

SuperCollider Error Messages
In general, there are several kinds of compile-time and run-time errors, and these are

generally caught by the SC system and reported in the message transcript. I’ll introduce

the most common of these below and give basic examples.

Reference Errors

Many compiler errors are based on simple typing mistakes and are identified and

reported very well by the SC compiler. A reference to a non-existent function or vari-

able, for example, earns you the message,

•error: Function or Method “Assinosc” is not defined.

Developing an Instrument Sound and Music Processing in SuperCollider

64 Stephen Travis Pope

Expression Syntax Errors

There is an endless variety of SC expression syntax errors (that I’m in the midst of

exploring). Many of these are caught and reported by the SC compiler. In most cases,

the compiler prints a message in the transcript view telling you the exact location where

the parser failed in reading your code, as in the following example.

x + 4 = 2; -- Very illegal syntax: a complex expression on
-- the left-hand side of an assignment

In this case, the error message in the transcript reader

•error: parse error on line 10 char 7 : ‘=’
x + 4 =• 2;

The line/character numbers and the “•” in the second line of the error message iden-

tify the exact position where the parsing failed, giving you a strong hint to look just to

the left of it for questionable syntax. In some cases, the parsing fails on line x because

you forgot to terminate line x - 1 with a semi-colon (this is one of my personal favorites).

Uninitialized Variables

Because SC does not require variable declarations, the compiler does not always catch

simple typing errors when they first occur. Examine the following code fragment.

var osc; -- Declare the variable osc.
oss = Asinosc(200); -- Assign an oscillator to “oss” (in error).

-- The compiler will auto-declare oss for you,
-- and leave osc as nil.

{ osc.value.out(L).out(R) }.dspAdd; -- This works, but produces no sound!

In this case, we get no error messages, but also no sound. This is a good argument for

the anti-bugging techniques described above. You could catch this if you had executed

osc.dump(2) just before the DSP loop to show you the internal state of the uninitialized

variable that you think should be an oscillator object.

Message not Understood

If you send a message to an object that does not understand it, the error message is

quite clear; for example the expression,

x = “hello”.min; -- Take the minumum of a string (?!?!)

generates the error message,

Developing an Instrument

65

•error: type: string does not understand: ‘min’

Numerical Range/Domain Errors

SC tries to be flexible in handling such numerical errors as division by zero (answers

negative infinity), integer overflow (answers +-1 (?)) or taking the square root of a neg-

ative number (answers a complex number).

Running out of Tasks

The task scheduler can hold at most 512 tasks, so if you use the sched message to put

task in the queue, you might see the message,

•error: Too many active tasks, Priority heap full!

If this is the case, you’ll have to write a smarter scheduling function that waits a bit

and then schedules more events incrementally.

Building a GUI for a Stereo FM Instrument
We will now return to where we left off on the development of our FM instrument. In

the next step (once we have the basic instrument debugged), we make a version where

all the important parameters can be set interactively from sliders on a GUI. Using the

GUI editor, the sliders were given labels and meaningful numerical ranges. The GUI

screen layout is shown in the figure below. (On-line readers should edit the GUI to see

the settings of the items; enter edit mode, pick a slider, and use Command-i to get its

information dialog.) Knowing what the number of each GUI slider is, we can use the

getItemValue message within the instrument to get its value.

The other important addition to

this version is the use of a low-fre-

quency oscillator (LFO) to control

the stereo position. We use a polled

sine oscillator (Psinosc) that we eval-

uate in the pan2out stereo output

panner function; it returns a single

value each time we call it. We use

this to pan the FM instrument

slowly between the output channels

as shown in the example below.

 Figure 18. FM Instrument GUI

Developing an Instrument Sound and Music Processing in SuperCollider

66 Stephen Travis Pope

-- FM oscillator with repeat, GUI input, and LFO panning.
-- All parameter values set from the GUI sliders.
-- Slider numbers are:
-- 1 (freq), 8 (index), 9 (c:m ratio),
-- 10 (repeat rate), and 11 (duration).

defaudioout L, R; -- Declare outputs.
deftable tabl1, env1, env2; -- Declare wave tables and envelopes.

start { -- Declare local variables.
var freq, index, ratio, rate, duration, osc, i_env, a_env, lfo;

-- Get and scale the GUI slider values.
freq = 1.getItemValue + 20.rand;-- Frequency is slider 1; add some random variation.
index = 8.getItemValue; -- Modulation index is slider 8.
ratio = 9.getItemValue; -- C:M frequency ratio is slider 9.
rate = 1 / 10.getItemValue; -- Repetition rate is 1 / slider value.
duration = 11.getItemValue; -- Note duration is slider 11.
-- [‘Freq: ‘ freq ‘ Index: ‘ index].post;-- For debugging, uncomment this.

-- Unit generator instance creation messages.
osc = Aposcil(freq, freq*ratio, 0);-- FM oscillator.

-- Two envelope generators (amplitude and index)
a_env = Ktransient(env1, duration, 0.8, 0, `dspRemove);
i_env = Ktransient(env2, duration, index, 0, `dspRemove);

lfo = Psinosc(0.2, 0); -- Define a polled sine LFO at 1/5 Hz for panning.
-- (Each note will start in the center.)
-- DSP loop. (the pan2out() message takes a position
-- value (+-1) and two output channels).

{ (osc.value(\, \, i_env.value) *! a_env.value).pan2out(lfo.value, L, R) }.dspAdd;

[rate, thisFunc].sched; -- Repeat notes at the chosen rate
}

Code Example 12. FM Instrument that uses GUI Sliders for Parameters

With this GUI-driven version of the instrument, we can experiment with its parame-

ters, finding the useful ranges of the various parameter values and the palette of differ-

ent sounds it can make.

FM with a Score
As the final stage in our development, here’s a version of the FM instrument that is

written as a separate function and then called from a score note list declared in the start

function. One can call more than 1 instrument in this way, or read score data from a file

(I’ll show you how later). The only limitation is that one can schedule no more than 512

events in the future, so you need to write a more sophisticated score reader for long

Other Sound Synthesis Techniques

67

scores. We have also added a pitch-to-frequency mapping here in that the instrument’s

argument freq is sent the message midicps.

-- FM instrument with a score (to play an arpeggiated C-minor chord).
-- The instrument definition is written as a separate function, and the start function calls it.

defaudioout L, R;
deftable tabl1, env1, env2;
var lfo; -- Make this global so we can start it in start()

start { -- Start() calls the instrument(s).
lfo = Psinosc(0.2, 0); -- Start the panner here so it doesn’t re-start on each note.

-- time instr. dur freq ind ratio
[0, `fm_instr, 1, 36, 2, 1.02].sched;
[0.5, `fm_instr, 1, 39, 2, 1.04].sched;
[1, `fm_instr, 1, 43, 2, 1.02].sched;
[1.5, `fm_instr, 1, 48, 2, 1.04].sched;
[2.6, ‘dspKill].sched; -- Kill the DSP loop at the end of the score.

}

fm_instr{ -- Simple FM instrument written as a function.
-- Arguments: (duration, pitch(!), mod. index, and c:m ratio)

arg duration, pitch, index, ratio;
-- Declare local variables.

var osc, i_env, a_env, hz;
-- Convert the pitch to Hz.

hz = pitch.midicps;
-- Unit generator instance creation (same as above).

osc = Aposcil(hz, hz*ratio, 0);
a_env = Ktransient(env1, duration, 0.8, 0, `dspRemove);
i_env = Ktransient(env2, duration, index, 0, `dspRemove);

-- DSP Loop.
{ (osc.value(\, \, i_env.value) *! a_env.value).pan2out(lfo.value, L, R) }.dspAdd;

}

Code Example 13. FM Instrument as a Function with a Score

In this Part, we stepped through the development process using the example of a sim-

ple FM instrument. The following chapters will introduce more interesting synthesis

techniques and more complex instruments.

5.3. Other Sound Synthesis Techniques
The next few sections present several more interesting sound synthesis techniques

and SC programming paradigms. Readers unfamiliar with the synthesis methods are

referred to (Roads 1996) for introductory material.

Other Sound Synthesis Techniques Sound and Music Processing in SuperCollider

68 Stephen Travis Pope

A Filtered Noise Instrument
SuperCollider has a full complement of noise generators and dynamic digital filters,

with which we can construct a filtered noise instrument as shown below. In this exam-

ple, we introduce band-limited noise, a filter unit generator that takes its signal input

from another unit generator’s output, the use of break-point envelope functions (which

we will discuss in more detail in a later chapter), and panning a signal between the ste-

reo outputs. Filter-based instruments, which are usually groups together into the class

of subtractive synthesis because they start with a spectrally rich signal and use a filter

to subtract components from it.

In the example we present first, we take a broadband noise signal and use a band-pass

filter on it. This filter will filter out both the very high-frequency and the very low-fre-

quency components of the noise signal, leaving only those components that are near to

its center frequency. The figure below shows an idealized frequency-vs-amplitude

graph (frequency response) of a band-pass filter; on it, you can see the center frequency

and the bandwidth of the filter.

In the example code that follows, you’ll see the

use of a noise unit generator, the “patching” of

the noise input to the filter within the DSP

loop, and the way we create break-point enve-

lopes. The envelope function table for a break-

point envelope is declared using defenvelope

rather than the deftable that we used above

together with Ktransient. The filtered noise

instrument is written as a stand-alone function

that is called from two note commands in the

program’s start function.

 Figure 19. Frequency Response of a Band-Pass Filter

-- Stereo low-pass filtered noise instrument.
-- This uses a separate instrument function and plays two notes from the start function.

defaudioout L, R; -- Define outputs.
defenvelope env_func; -- Define a break-point envelope function.

start { -- Play 2 notes from within start().
-- start instr dur amp freq bw pos

[0, `noise_instr, 2, 1, 400, 20, -0.8].sched;
[2, `noise_instr, 2, 1, 400, 8, 0.8].sched;

amplitude

frequency

center frequency

bandwidth

Other Sound Synthesis Techniques

69

[4.1, ‘dspKill].sched; -- Terminate at the end of the score.
}

noise_instr { -- Band-pass filtered noise instrument written as a function.
-- Arguments are duration, amplitude, filter center frequency,
-- filter bandwidth, and stereo position (-1 to 1).

arg dur, amp, freq, bw, pos;

var noise, filter, env; -- Declare the local variables

noise = Anoise(sr/2.4, 1);-- Create a noise generator that goes from 0 Hz to SR / 2.4.
-- (Its amplitude is 1.)

filter = Abpf(freq, bw); -- Create a band-pass filter with the desired frequency and
-- bandwidth. Note that it has no input as of yet.

-- Create a control-rate break-point envelope.
env = Kbpenv(env_func, amp, 0, dur, amp, `dspRemove);-- (Details will follow.)

-- Send noise through filter in DSP loop
{ (filter.value(noise.value) *! env.value).pan2out(pos, L, R) }.dspAdd;

}

Code Example 14. Band-Pass Filtered Noise Instrument

Three new unit generator constructor functions are used in this example. The argu-

ments of the break-point envelope Kpbenv will be described in a later example. What’s

important to observe in the DSP loop is that the filter’s value message takes the filter’s

input (i.e., the output of the noise generator) as its only argument. This is the first case

we’ve seen yet where the arguments of value are different from those of a unit genera-

tor’s constructor message. This is because the filter’s input must be an audio-rate signal,

and thus it cannot be set up in the instance creation call but rather has to be inside the

DSP loop.

The pan2out message is sent to an audio-rate sample buffer (such as the output of the

filter), just like the out function we’ve used up to now, but it takes a stereo position value

as its first argument and two audio output channels as the other two. The position value

can range from -1 to +1, and the function will mix the input signal to the two outputs

according to that value (i.e., pos = -1 means the whole signal goes to output L).

Filtered Noise with GUI Control
Newer version of SC (after 1.1b4) also include resonant filters, which are very useful

for getting “that analog sound.” These are demonstrated in the two following instru-

ments, which also introduce some new GUI programming techniques.

Other Sound Synthesis Techniques Sound and Music Processing in SuperCollider

70 Stephen Travis Pope

In a resonant filter (compared to a typical low-pass filter), there is some amount of

attenuation of the signal in the pass-band. Depending on the amount of this attenuation,

the filter changes from low-pass to band-pass frequency response, as shown in the fig-

ure on the right.

The variable that determines this level is called

the Q of the filter. Low values of Q (less than 2

or so) sound more like low-pass filters, but for

higher Q values, the center frequency stands

out more and the effect is like that of a narrow

band-pass filter. As very high values of Q

(greater than 50 or so) the filter begins to

“whistle” and may even oscillate without any

input at all.

 Figure 20. Frequency Response of a Resonant Low-Pass Filter

The code for this example illustrates another case where a unit generator’s constructor

message and its value message have different arguments; again, the filter is created with

no input, and the input, as well as the center frequency and the Q, are “plugged in”

inside the DSP loop.

-- Monophonic filtered noise instrument with GUI controls over the amplitude,
-- resonant low-pass filter frequency, and filter Q (sharpness).

defaudioout L, R;

start {
noise_instr; -- Play the instrument from the start function.

}

noise_instr { -- Filtered noise instrument function.
--Local variable declarations.

var amp, freq, Q, noise, filter;

-- read the GUI values
amp = 1.getItemValue; -- Item 1 is amplitude.
freq = 2.getItemValue; -- Item 2 is center frequency.
Q = 3.getItemValue; -- Item 3 is filter Q.

-- Unit generator constructors.

noise = Anoise(sr/2.4, 1); -- Broad-band noise generator.

filter = Arlpf(freq, Q); -- Low-pass filter with resonance.

amplitude

frequency

cut-off frequency

determined by Q

Other Sound Synthesis Techniques

71

-- Send noise through the filter and scale by amplitude
-- (read all 3 GUI sliders in the DSP loop--expensive).

-- in freq Q amplitude
{ (filter.value(noise.value, 2.getItemValue, 3.getItemValue) *! 1.getItemValue)

.out(L).out(R) }.dspAdd;
}

Code Example 15. Noise with a Resonant Filter and GUI

The GUI for this program has three vertical sliders that are labeled A (amplitude), F

(frequency), and Q. In oder to get real-time GUI control of a continuous instrument, we

use the getItemValue message inside the DSP loop. This is quite computationally inten-

sive and should only be used in cases such as this where you want immediate response

from within a continuous instrument.

Noise and Buzz Resonances with GUI and Show Functions
The last example in this series uses two filter-based

instruments in parallel. One of them is identical to the one

given in the previous example, and the other uses an oscil-

lator with a complex wave form and a resonant filter. Both

instruments are played continuously and controlled from

sliders on the GUI. In addition, both have stereo panning

that is controlled from a GUI slider.

We have also added buttons to the GUI that send mes-

sages that cause the instruments’ parameters to be posted

to the message view, and another button that will stop the

DSP loop. If you open this file on-line and edit the GUI,

you can see that the buttons send the messages such as

showNoise, which are implemented (but never sent) in the

program.

 Figure 21. Noise and Buzz GUI

The last button—Stop—sends the message dspKill, which will halt the DSP engine as

soon as it is sent. As dspKill is a built-in library function, we do not need to implement it

in our program.

-- Filtered noise and pulse instruments with GUI controls and "show parameters" buttons.
--

defaudioout L, R;
deftable buzz; -- Pulse-like wave table (edit it to see).

Other Sound Synthesis Techniques Sound and Music Processing in SuperCollider

72 Stephen Travis Pope

start { -- Play the instruments; they are controlled from the GUI.
noiseInstr; -- Play continuous filtered noise.
buzzInstr; -- Play buzz-like resonance instrument.

}

-- Resonant filtered noise instrument with GUI Control.
-- Sliders:
-- 1 = amplitude, 2 = filter freq, 3 = filter Q, 5 = stereo position
--
noiseInstr {

var amp, freq, Q, noise, filter;

amp = 1.getItemValue; -- Get slider values.
freq = 2.getItemValue;
Q = 3.getItemValue;

noise = Anoise(20000, 1); -- Noise generator.
filter = Arlpf(freq, Q); -- Band-pass filter.

-- Send noise through filter in DSP loop.
-- input frequency Q amplitude

{ (filter.value(noise.value, 2.getItemValue, 3.getItemValue) *! 1.getItemValue)
-- stereo position

.pan2out(5.getItemValue, L, R) }.dspAdd;
}

-- Resonant filtered pulse (buzz-like) instrument with GUI control.
-- Sliders:
-- 6 = amplitude, 7 = osc. freq, 11 = filter freq, 8 = filter Q, 9 = stereo position
--
buzzInstr {

var amp, freq, filt_f, Q, osc, filter;

amp = 6.getItemValue; -- Get GUI slider values.
freq = 7.getItemValue;
filt_f = 11.getItemValue;
Q = 8.getItemValue;

osc = Aoscili(buzz, freq); -- Buzz oscillator.
filter = Arlpf(filt_f, Q); -- Band-pass filter.

-- Send buzz through filter in DSP loop.
{ (filter.value(osc.value(7.getItemValue), 11.getItemValue, 8.getItemValue)

*! 6.getItemValue).pan2out(9.getItemValue, L, R) }.dspAdd;
}

-- Messages sent by "show" buttons.
-- Print slider values to the message view.
--

Making and Controlling Break-Point Envelopes

73

showNoise {
'Noise Instrument'.post;
[' Filter frequency: ' 2.getItemValue].post;
[' Filter Q: ' 3.getItemValue].post;
' '.post

}

showBuzz {
'Buzz Instrument'.post;
[' Oscillator frequency: ' 7.getItemValue].post;
[' Filter frequency: ' 11.getItemValue].post;
[' Filter Q: ' 8.getItemValue].post;
' '.post

}

Code Example 16. Resonant Filtered Noise and Pulse Instruments

The show functions defined above write lists to the transcript that include labels (the

symbols that are the first items in the lists) and GUI item values. The results can be seen

in the pretty screen dump on the cover of this book.

5.4. Making and Controlling Break-Point Envelopes
There are several kinds of transient time functions in SC. Up to

now, we have used the simplest Ktransient function, which takes a

hand-drawn data table and reads through it at a constant rate.

There are, however, much more flexible means of making enve-

lopes, which we will present now.

A break-point function is defined by a series of points (break-points) between which

we interpolate, as in the traditional attack-decay-sustain-release (ADSR) envelope gen-

erator. In some MusicN languages, envelope functions all have the range and domain

of 0 to 1, but in SC, they can have arbitrary ranges, and can be scaled within instrument

programs. This means, for example, that you can draw a curve that represents a spatial

trajectory, and give it real-time coordinates (i.e., set it to last 30 sec.).

To create a break-point envelope we use the defenvelope definition, and the (AK)bpenv

unit generator. After you compile code that uses defenvelope (use Command-k to com-

pile without executing) the name of the table you defined appears under the Envelopes

menu for editing. In the envelope editor, one can change the “absolute” duration and

scale of a time function, and add and move its break-points. “Grabbing” a point with

the mouse allows you to move it, command-clicking adds a new point. Pressing the Y

Making and Controlling Break-Point Envelopes Sound and Music Processing in SuperCollider

74 Stephen Travis Pope

Range button allows you to set the amplitude range of the function, and you can change

its duration by dragging the right-most break point.

Basic Break-point Functions
The instrument below demonstrates the use of two different envelope functions

within an instrument. The text of the instrument is simple, but the two envelopes env1

and env2 have quite different shapes (ASR vs. triangle-shape). If you plug one or the

other of them in to the Kbpenv unit generator, you’ll hear the difference.

-- Wave table osc. with two selectable break-point envelopes.
-- To see the envelopes, look at them via the "envelopes" menu.

defaudioout L R;
deftable tabl1; -- Declare the oscillator wave table.

defenvelope env1, env2; -- Declare two break-point envelopes.
-- Envelope 1 has sharp attack, then lower sustain (as in a “traditional” ADSR)
-- Envelope 2 is triangle. (Look at them both in the envelope editor.)
-- They are both 2 sec. long (thus the time scale of 0.5 below)

start {
var osc, env;

-- Create a chorusing wave table oscillator.
osc = Acoscili(tabl1, 100 + 100.rand, 1);

-- Create a control-rate break-point envelope generator.
-- table, amp, bias, timescale, completionFunction)

env = Kbpenv(env1, 0.25, 0, 0.5, `dspRemove);
-- Change env1 to env2 in the above statement to use the
-- triangle-shaped envelope function.

-- Get the oscillator’s value and scale it by the envelope’.
{ (osc.value *! env.value).out(L).out(R) }.dspAdd;

[1.0, thisFunc].sched;
}

Code Example 17. Chorusing Instrument with a Break-Point Envelope

The Kbpenv constructor message takes an envelope table, an amplitude scale value, a

bias offset, a time scale value, and a completion function as its arguments. If you change

the constructor above to use the env2 function, the note will have a distinctly different

envelope.

This example still does not let us change the envelope’s characteristics on a note-by-

note basis; to do that, we have to construct the break-point envelope function “on-the-

fly” in the instrument, as we’ll illustrate in the next example.

Making and Controlling Break-Point Envelopes

75

Creating Parameterized Break-point Functions
To create an envelope with variable shape (e.g., attack or decay), we create the break-

point envelope at run-time for each note. To do this, we create a list with the amplitude

values of the break-points and the durations of the segments between the amplitude

values. For example, if we want an ASR (attack/sustain/release) envelope that starts at

amplitude 0 and rises to amplitude 1 in 0.2 seconds, then decays to amplitude 0.6 at time

0.9 seconds, dropping back to amplitude 0 at time 1.0, we would have the following

data values:

Amplitudes: 0 1 0.6 0
(These start/end at 0)

Durations: 0.1 0.7 0.2
(These add up to 1.0)

Note that there will always be one more ampli-

tude value than there are durations (because the

durations are given for the transitions between

two amplitude values). The general shape of this

envelope is shown in the figure on the right. The

list that would create this envelope shape would

be something like the following.

 Figure 22. ASR Break-Point Envelope Function

[\ignored -- Symbolic name of the list (it’s ignored)
[0 1 0.6 0] -- Amplitudes -- First = last = 0
[0.2 0.7 0.1] -- Segment durations -- Sum = 1.0
-1 -1] -- -1 values for advanced users

This demonstrates that one can create an arbitrary envelope shape using run-time

data (i.e., you do not have to pre-edit the envelope function as we had to using envelope

tables and Ktransient unit generator). This kind of creation is illustrated in the instru-

ment examples below; we assign the 2-D list to a variable and use it as the table argu-

ment to the Kbpenv unit generator constructor message.

An Instrument with Attack/Decay Control
The instrument below has variable attack and decay times. The start function plays 15

notes in succession. At the beginning, we use a triangle-style envelope (duration = 0.5

sec., attack = decay = 0.25 sec.) and the timesRepeat loop in the start function decreases

both the attack and decay times with each successive note.

0

1

0 1

amplitude

time

Making and Controlling Break-Point Envelopes Sound and Music Processing in SuperCollider

76 Stephen Travis Pope

-- Single-oscillator instrument with attack/decay variables (sustain level = 0.7).
-- This uses the technique of creating the envelope "on the fly"
-- from a 2-D list of amplitude values and durations.
defaudioout L R;
deftable tabl1; -- Wave table for the chorusing oscillator.

start {
var start, dur, freq, att, dec;

-- Set up starting conditions
start = 0; -- Initial start time = 0.
dur = 0.5; -- Play 2 notes per second.
freq = 200 + 40.rand; -- With slight frequency variation.
att = 0.25; -- Start out with att = dec = (dur / 2)
dec = 0.25; -- (i.e., a triangle envelope).

-- Play 15 notes with a dynamic envelope.
15.timesRepeat({ -- Repeat this loop 15 times.

[start, `note, dur, freq, att, dec].sched; -- Play a note at time start in the future.

start = start + dur; -- Then increment the start time for the next note,
att = att / 2; -- Halve the attack time,
dec = dec / 1.5; -- Divide the decay time by 1.5,
freq = 200 + 40.rand; -- And pick a new frequency for each note.

}); -- End the timesRepeat({}) loop.
[(start + dur + 0.1), `dspKill].sched -- Turn off the DSP engine when done.

}

-- Chorussing oscillator instrument with att/dec parameters
--
note { -- Arguments are duration, frequency, attack, and decay.

arg dur, freq, att, dec;
var osc, b_points, env; -- Declare local variables.

-- Create a chorussing oscillator object.
osc = Acoscili(tabl1, freq, 2);

-- Create the list of [[values][durations]] for the envelope

b_points = [\name, -- Name of function (symbol, ignored)
[0, 1, 0.7 , 0], -- Amplitudes (4 values) (sustain = 0.7)
[att, (dur - (att + dec)), dec], -- Durations of segments (3 segments)
-1, -1]; -- 2 magic "-1"s (required)

-- Create the break-point envelope unit generator.
-- table, amp, bias, timescale, completion function)

env = Kbpenv(b_points, 0.25, 0, 1, `dspRemove);

-- Evaluate the oscillator and envelope generator in the DSP loop.
{ (osc.value *! env.value).out(L).out(R) }.dspAdd;

}

Code Example 18. An Instrument with Attack/Decay Parameters

Making and Controlling Break-Point Envelopes

77

Because we have only three segments in the envelope above (according to Figure 22

above) we can set the duration of the middle segment to be (dur - (att + dec)) as we did

in the second sub-list of the 2-D list b_points. This method can be extended to arbitrarily

complex break-point functions, and they can be used for any control parameters, as

we’ll illustrate in the next example.

FM With Dual Envelopes
The last example of this chapter shows a somewhat more sophisticated FM instru-

ment that includes attack/decay parameters for both the amplitude and modulation

index envelopes, a stereo position parameter, and low-frequency vibrato. The vibrato

(essentially a low-frequency FM) is created using a control-rate sinusoidal oscillator

(Ksinosc) whose value is added to the FM oscillator’s frequency inside the DSP loop. The

start function calls the instrument definition function with parameters that are arrived

at by adding random variations to a set of base values.

-- FM instrument with 3-segment break-point envelopes for amplitude and modulation index,
-- attack and decay parameters, as well as LFO vibrato, and stereo panning (10 parameters)

defaudioout L, R; -- Declare output buffers.

start { -- Start function plays notes on the FM instrument.
var dur, ampl, pitch, index, ratio, pos, att, dec, i_att, i_dec;

-- Set up parameters
dur = 0.75; -- Constant duration.
ampl = 0.75; -- Constant amplitude.
pitch = 48 + 12.rand; -- Pitch is random within an octave.

index = 1 + 5.0.rand; -- Modulation index between 1 and 6.
ratio = 1 + 0.1.rand; -- C:M ratio between 1.0 and 1.1.
pos = 1.0.rand2; -- Position between -1 and +1.

att = 0.2.rand; -- Amplitude attack time between 0.0 and 0.2.
dec = 0.1 + 0.3.rand; -- Amplitude decay time between 0.1 and 0.4.

i_att = 0.3.rand; -- Index attack time between 0.0 and 0.3.
i_dec = (dur - i_att) / 2; -- Index decay time is 50% of (duration - i_attack).

-- Play a note by calling the instrument definition function.
fm_instr(dur, ampl, pitch, index, ratio, pos, att, dec, i_att, i_dec);

-- Repeat yourself at the end of the current note.
[dur, thisFunc].sched;

}

Wave Table Vector Synthesis Sound and Music Processing in SuperCollider

78 Stephen Travis Pope

-- FM instrument with ampl and mod_index attack and decay, vibrato, and stereo position.
--
fm_instr{ -- The function has10 arguments.

arg dur, ampl, pitch, index, ratio, pos, att, dec, i_att, i_dec;
-- Declare local variables.

var osc, a_func, i_func, a_env, i_env, hz, vib, depth;

hz = pitch.midicps; -- Convert MIDI pitch to Hz.

-- Create an FM oscillator (carrier_freq, mod_freq, index).
osc = Aposcil(hz, hz*ratio, 0);

-- Make the index envelope function using note parameters.
i_func = [\ind, [0, 1, 0.8, 0],

[i_att, (dur - (i_att + i_dec)), i_dec],
-1, -1];

-- Create the modulation index envelope generator.
-- Arguments (func_list, ampl, bias, time-scale, complFunc).

i_env = Kbpenv(i_func, index, 0, 1, `dspRemove);

-- Make amplitude envelope list.
a_func = [\amp, [0, 1, 0.5, 0],

[att, (dur - (att + dec)), dec],
-1, -1];

-- Create the amplitude envelope generator.
a_env = Kbpenv(a_func, ampl, 0, 1, `dspRemove);

vib = Ksinosc(3 + 3.0.rand); -- Create a low-frequency vibrato oscillator.
-- Vibrato frequency is 3 - 6 Hz.

depth = 12.rand; -- Set the vibrato depth (in Hz).

-- Apply vibrato and ampl/index envelopes in the DSP loop.
-- freq + (vibrato * depth) mod_f index * amplitude

{ (osc.value((hz + (vib.value * depth)), \, i_env.value) *! a_env.value)
-- pan using stereo position parameter.

.pan2out(pos, L, R) }.dspAdd;
}

Code Example 19. FM Instrument with Parameterized Envelopes

This last example shows the power and also the terseness of SC programs.

5.5. Wave Table Vector Synthesis
Vector synthesis is a technique whereby one can control the

mixing of a number of synchronized oscillators that have differ-

ent wave forms. In the simple case, one can cross-fade between a

set of wave tables within a single note, leading to a dynamic tim-

bre over which one has straightforward control; one parameter

Wave Table Vector Synthesis

79

controls the mixing of the wave tables, and hence the instrument’s timbral development

over time. In SC, there is an oscillator object (Avoscil) that takes a list of wave tables, and

an index into that list. If the index is not an integer, the oscillator mixes two of the wave

forms in its list to get the output wave.

It is quite useful to either have GUI control over the index’s value during a note, or to

have a special index envelope that controls the timbral development of the note. These

two techniques are demonstrated in the two instruments below.

Vector Synthesis with an Index Slider
The first example of vector synthesis uses a vector oscillator with a list of four very

different wave tables. After defining the instrument, you can use the table editor to cre-

ate the four wave tables. For this example, I’ve set them for maximum contrast.

-- Vector synthesis example with a table index slider in the GUI.
-- This example uses a multi-table oscillator with interactive control over the table mixing.

defaudioout L, R;
deftable t1, t2, t3, t4; -- 4 very different wave tables (look in the on-line editor)

start {
var dur, ampl, freq, att, dec;

-- Set up starting parameters.
dur = 5; -- Play long notes so you can hear the slider’s effect.
ampl = 1; -- Constant amplitude.
freq = 48 + 12.rand; -- Pick new pitches within an octave.
att = 0.4.rand; -- Random attack and decay.
dec = 0.5.rand;

-- Play a note in the “wave” instrument.
wave(dur, ampl, freq, att, dec);

-- Repeat notes every 5 seconds.
[dur, thisFunc].sched;

}

-- Vector instrument with GUI control over the cross-fade between 4 waves.
--
wave { -- Arguments are duration, amplitude, frequency, attack, and decay.

arg dur, ampl, freq, att, dec;

var osc, a_func, a_env, hz, vib, depth;

hz = freq.midicps; -- Convert MIDI pitch to Hz
-- Create the vector oscillator (table list, freq, table index).

osc = Avoscili([t1 t2 t3 t4], hz, 0);

-- Make the amplitude envelope list.
a_func = [\amplitude, [0, 1, 1, 0], [att, (dur - (att + dec)), dec], -1, -1];

Wave Table Vector Synthesis Sound and Music Processing in SuperCollider

80 Stephen Travis Pope

-- Create the amplitude envelope generator.
a_env = Kbpenv(a_func, ampl, 0, 1, `dspRemove);

-- Define the vibrato oscillator and vibrato depth.
vib = Ksinosc(3 + 4.0.rand);
depth = 4.rand;

-- Apply vibrato, amplitude envelope, and table index GUI slider in DSP loop (slow).
-- freq vibrato table index amplitude outputs

{ (osc.value((hz + (vib.value *! depth)), 1.getItemValue) *! a_env.value) .out(L).out(R)
}.dspAdd;

}

Code Example 20. Vector Synthesis with Table Index Slider

This program will repeat 5-second-long notes that allow you to move the slider back

and forth to hear the distinct timbres of the four wave tables, and the various hybrid

timbres you get by moving the slider to intermediate positions and thereby mixing two

of the wave tables together.

Vector Synthesis with Random Index Function
One can also generate dynamic timbres by applying a dynamic envelope to the vector

oscillator’s table index. This way, you could use one wave table for the attack part of the

note only, another for the “steady-state” part, and yet another for the note’s decay por-

tion. The example below generates this envelope using a random break-point function.

The table index envelope has three segments, each of which is dur/3 long. The y values

of the break-points are each 4.rand (i.e., 0, 1, 2, or 3). This means that the timbre might

change rapidly several times during one segment of the envelope (if the starting value

of the segment is 0 and the ending value is 3, for example), leading to a dynamic and

unpredictable timbral development.

-- Vector synthesis with a random envelope that fades between the 4 tables during a note.
--
defaudioout L, R;
deftable t1, t2, t3, t4; -- 4 very different wave tables.

start {
var dur, ampl, freq, att, dec;

-- Set up starting values.
dur = 2;
ampl = 1;
freq = 48 + 12.rand;
att = 0.4.rand;
dec = 0.5.rand;

Wave Table Vector Synthesis

81

wave(dur, ampl, freq, att, dec); -- Play a note on the wave instrument

[dur, thisFunc].sched; -- Repeat notes.
}

-- Vector instrument with random cross-fades between 4 wave tables.
--
wave {

arg dur, ampl, freq, att, dec;
var osc, a_func, i_func, a_env, i_env, hz, vib, depth;

hz = freq.midicps; -- Map the pitch to Hz.
-- Create the vector oscillator

osc = Avoscili([t1 t2 t3 t4], hz, 0);
-- Make the amplitude envelope list and envelope generator.

a_func = [\amplitude, [0, 1, 1, 0], [att, (dur - (att + dec)), dec], -1, -1];

a_env = Kbpenv(a_func, ampl, 0, 1, `dspRemove);

-- Make an index function that "wanders" among the 4 tables.
i_func = [\index,

[4.rand, 4.rand, 4.rand, 4.rand]
[dur/3, dur/3, dur/3] -1 -1];

i_env = Kbpenv(i_func, 1, 0, 1, `dspRemove);

-- Define the vibrato oscillator and depth.
vib = Ksinosc(3 + 5.0.rand);
depth = 4.rand;

-- Apply vibrato and ampl/index envelopes in DSP loop
-- freq vibrato table index * amplitudemono output

{ (osc.value((hz + (vib.value *! depth)), i_env.value) *! a_env.value).out(L).out(R)
}.dspAdd;

}

Code Example 21. Vector Synthesis with a Random Table Index Envelope

Vector synthesis is very powerful for instruments that should have special attack or

decay characteristics such as a “chiff” in the attack (as in woodwinds) or an inharmonic

final decay (as in damped strings).

Granular Synthesis Using a Sound File
The next example is the granular synthesis demonstration by James McCartney. This

is one of the most fun examples for novices to experiment with, but is also quite a com-

plex program. The GUI has sliders that determine the ranges of values used for random

granulation of a stored sound file. Readers unfamiliar with granular synthesis are

Wave Table Vector Synthesis Sound and Music Processing in SuperCollider

82 Stephen Travis Pope

referred to (Roads 1996). The program in this example reads through an on-disk sound

file, granulating it with variable rate (the speed of progressing through the file with the

read pointer that chooses where to start a grain), pitch (the transposition of the selected

grains), and grain duration/overlap (which determine the grain density).

The first two of these

parameters are controlled

by sets of three sliders each

that set the base value, the

random range (dispersion),

and the quantization step

size (See the figure). Read-

ers are encouraged to exper-

iment (play) with this

instrument, and then to ana-

lyze the program below as

an exercise before moving

on to the next topic.

 Figure 23. Sound File Granulator GUI

-- Granular synthesis instrument that reads grains from a stored sound file.
-- 9 GUI sliders control the grain pitch (1-3), the reading rate (4-6), the grain density (7-8),
-- and the overall amplitude (9).

(* GUI slider assignments
slider 1 = pitch rate 0..4
slider 2 = pitch dispersion 0..2
slider 3 = pitch quantize 0..0.5

slider 4 = time rate -5..+4
slider 5 = time dispersion
slider 6 = time quantize

slider 7 = grain duration 2..8
slider 8 = overlap -3..3
slider 9 = amplitude 0..0.3

*)
defaudiobuf floating_1; -- Input sound file (name of file = name of variable).
defaudioout L R;

init { -- Init function (called once at compile time).
loadAllAudio; -- Locate and load the audio buffer declared above.

}

Wave Table Vector Synthesis

83

start { -- Instrument runs in the start function.
-- Initialize variables (without declarations).

tpos = 0.0; -- Reading position in the file.
overlap = 0.5; -- Grain overlap.

-- Amount to increment the reader for next grain.
deltat = dur = 2.0 ** 7.getItemValue * 0.001;
chan = [L R].choose; -- Choose a random output channel for each grain.

-- Time parameters: (** means “to the power of”)
tpos = tpos + (2 ** 4.getItemValue * deltat);-- Increment the reading position.
tdisp = (5.getItemValue ** 4).rand2; -- Read the random dispersion.
tquant = 6.getItemValue; -- Get the quantization value.

tpt = (tpos + tdisp).round(tquant); -- Calculate the actual reading point.

-- Pitch parameters:
pquant = 3.getItemValue; -- Read pitch quantization.
pdisp = 2.getItemValue.rand2; -- Randomize the pitch dispersion.

pch = (1.getItemValue + pdisp).round(pquant);-- Calculate the actual pitch value.

amp = 9.getItemValue; -- Read the amplitude slider.

-- Create the grain unit generator.
-- file_buf offset rate dur amp completion function

grain = Acpgrain(floating_1, tpt, pch, dur, amp, `dspRemove);

{ grain.value.out(chan) }.dspAdd; -- DSP loop, play just 1 grain.

-- Update grain parameters.
overlap = 0.5 ** 8.getItemValue; -- Read overlap GUI item.
nextdur = 2.0 ** 7.getItemValue * 0.001; -- Calculate duration of next grain.
dt1 = nextdur * (overlap - 1.0) + dur; -- delta time 1 is additive overlap.
dt2 = dur * overlap; -- delta time is duration * overlap.

deltat = dt1 max: dt2; -- Use the maximum of the delta t estimates.

[deltat, thisFunc].sched; -- Reschedule at deltaT in the future.
dur = nextdur; -- Reset grain duration.

}

Code Example 22. Granulation of a Sound File

Real-Time Control in SuperCollider Sound and Music Processing in SuperCollider

84 Stephen Travis Pope

5.6. Real-Time Control in SuperCollider
Up to now, we have only used GUI sliders for real-time

parameter input. In this chapter, we will look into the other

facilities for real-time control of SC programs.

Mouse Control of Frequency
The most obvious input device for the SC programmer is the

mouse. The special variables (or built-in functions if you like)

mouseX and mouseY return the x and y coordinate of the

mouse’s current position, respectively. The origin of the geometrical plane defined by

mouseX/Y is in the upper-left of the screen; the x coordinates get larger as you mode to

the right; the y values get larger (positive) as you move down.

We can add mouse control of frequency to the simple chorusing oscillator instrument

as shown below (lower pitches are to the left). This instrument also has a random

rhythm (random delay between notes) because we set the rescheduling delay to (0.1 +

0.2.rand).

-- Wave table osc. with random rhythm and mouse control of frequency.
--
defaudioout L R;
deftable tabl1, env1; -- Declare wave and envelope tables.

start {
-- Chorus oscillator with mouse control over the frequency.

osc = Acoscili(tabl1, (100 + mouseX / 2), 1);

-- Create a 1-sec. amplitude envelope (table, dur, amp. bias).
amp = Ktransient(env1, 1, 0.2, 0, `dspRemove);

-- Play them in the DSP loop.
{ (osc.value *! amp.value).out(L).out(R); }.dspAdd;

-- Repeat notes every 0.1 - 0.3 sec.
[(0.1 + 0.2.rand), thisFunc].sched;

}

Code Example 23. Mouse Control of an Oscillator’s Frequency

You can, of course, use the mouse’s two coordinates for different parameters within

an instrument, such as having the x dimension control the frequency of an oscillator and

the y dimension setting a filter frequency or some rhythmic property. (As an exercise,

try changing the above instrument so that the mouseY variable sets the note repeat rate.)

Real-Time Control in SuperCollider

85

The interactivity of real-time input is determined by the sound output buffer size (the

Frame size). To make the response time shorter, type Command-g to get the Set Globals

dialog box and decrease the Frame size from the default of 4096 to 1024 (and observe

the increase in CPU load to to the increased sound manager overhead).

Reading Values from MIDI
One can get MIDI controller values at any time by using the functions ctlin(ctlr, chan)—

to get the controller value for the given controller number on the given MIDI channel—

and bendin(chan)—to get the pitch-bend value for the given channel. Both of these mes-

sages answer a number between 0 and 127, which your code can scale and offset to any

desired range.

To make an instrument that is triggered by MIDI note-on commands, you use a dif-

ferent process—you register a voicer object for it using the setNoteFunc function as illus-

trated in the code fragment below.

init { -- In your init function, create Voicer object and setup MIDI handler functions.
var vc;

-- The Voicer’s constructor takes an instrument class name and a
-- MIDI channel number. In this case, you need to define a class
-- named “instrument.”

vc = Voicer(`instrument, 8);

-- The call to setNoteFunc assigns the voicer’s noteon() function to
-- handle MIDI note-on commands; this will instantiate and call your
-- instrument.

setNoteFunc({ arg note veloc chan;
vc.noteon(note veloc chan);

}, 1); -- This means it uses MIDI channel 1.

-- To receive continuous control data, use the setCtlFunc message;
-- e.g., to get data from the two pre-defined pedals, use the following.
-- Your instrument object would then need methods named
-- sustainPedal and sostenutoPedal.

setCtlFunc({ arg ctlnum val chan;
if ctlnum == 64 then vc.sustainPedal(val); end
if ctlnum == 66 then vc.sostenutoPedal(val); end

}, 1);
}

Code Example 24. MIDI Voicing Outline

The next section will give a complete example of the use of Voicer objects.

Real-Time Control in SuperCollider Sound and Music Processing in SuperCollider

86 Stephen Travis Pope

MIDI + GUI Input
In this section, we will create an instrument that is triggered by MIDI note-on com-

mands and controlled by a GUI slider for pitch transposition. Because the Voicer object

creates a new instance of the instrument for each note you play, it is created with the

name of an instrument class, so we’ll create our instrument as a class rather than a func-

tion. The only different for now is that we place the word class in front of the instrument

definition function. If the topic of object-oriented programming (OOP) is entirely new

to you, you might skip ahead and read the first few parts of the chapter on OOP in the

next Part of this book.

-- MIDI voicing example -- Based on James McCartney's Tutorial 8 (p. 64 ff)
--
defaudioout L R;
deftable table1; -- The oscillator wave table.
defenvelope aev; -- An envelope rather than a table.

init { -- Init function sets up Voicer object.
var vc;

-- Create a Voicer and setup MIDI “event handler" functions.
-- The Voicer takes a class name and creates instances.

vc = Voicer(`instr1, 8); -- It uses instrument class instr1 and can play up to 8 notes.

-- Set up an event handler for note-on commands.
setNoteFunc({ arg note, veloc, chan;

vc.noteon(note, veloc, chan);
}, 1); -- The Voicer will map MIDI channel 1 to instr1.

-- Define event handlers for the MIDI pedal controls.
setCtlFunc({ arg ctlnum, val, chan;

if ctlnum == 64 then vc.sustainPedal(val); end
if ctlnum == 66 then vc.sostenutoPedal(val); end

}, 1); -- Map channel 1 pedal to instr1 envelopes.
}

-- NB: There is no start function! (It’s all triggered from MIDI.)

-- Instrument class -- instance objects are created automatically by the voicer.
--
class instr1 {

arg key, veloc, chan, voicerobj;
-- This (anonymous) method is the class constructor;
-- its arguments are the class's instance variables.

var freq, amp, osc, aenv;
-- Scale the frequency and amplitude inputs.

freq = key.midicps; -- MIDI key number translation.
amp = veloc/128 ** 2 * 0.55; -- MIDI key velocity scaling.

Sound File Player Instruments

87

-- Create an interpolating oscillator that uses table1.
osc = Aoscili(table1, freq + 1.getItemValue);

-- Create a break-point envelope.
-- (Please note the unusual completion function.)

aenv = Kbpenv(aev, amp, 0, 1, { dspRemove; voicerobj.remove(this) });

-- DSP loop.
{ (osc.value *! aenv.value).out(L).out(R) }.dspAdd;

-- These two class methods are required by the Voicer.
method release { aenv.release; }
method steal { aenv.steal; }

}

Code Example 25. MIDI Voicer Triggering an Instrument

In this example, we set up the Voicer in the init function above, and declared an instru-

ment class for the synthesis portion of the program. The only important changes to the

instrument definition are that it takes the Voicer as an argument (instance variable) and

that the envelope’s completion function is a closure that calls dspRemove and then sends

the remove message to the Voicer to delete the instrument instance entirely. The final

two methods in the instrument class are required by the Voicer so that it can handle

note-off commands and note stealing.

There are obviously many more possibilities for MIDI control of SC programs, but this

must suffice for our introductory tutorial.

5.7. Sound File Player Instruments
Up to this point, we have only dealt with synthetic (oscillator-generated)

sound. SC also provides easy methods of processing recorded or even live

sound, as we’ll investigate in the following chapters.

One common technique is to read samples from on-disk sound files, and mix or pro-

cess them in SC programs, sending the output to the sound manager in real-time. In

some cases, you may want to play entire sound files with some pitch or time scaling—

as with a sampler or vocoder—and in other cases it is useful to be able to play several

different (possibly overlapping) segments from a sound file that is longer than one

“note.” Both of these modes of operation are easy in SC using the audio buffer reader

object Abufrd.

The instrument I present here reads samples from a sound file, and allows you to

select the start/stop points (cue points) for each note.

Sound File Player Instruments Sound and Music Processing in SuperCollider

88 Stephen Travis Pope

I use a file that contains a spoken

sentence—”Shu gu dwan ren

shing,” the first line of the famous

T’ang dynasty Chinese poem Ywe

ye, yi jr di by Tu Fu (it is read by

Sinologist Ernest Chen). The GUI

for the instrument (shown on the

left) allows you to vary the start/

stop points, to run the two built-in

demo functions, and to print the

current start/stop times to the tran-

script view.

 Figure 24. Sound File Player GUI

The program is structured so that the init function loads the sound file into the audio

buffer object, and the start function starts the GUI demo routine. The other demo func-

tions can be called using buttons in the GUI window.

The main instrument is called sndFile and is a general-purpose function that takes as

its arguments the file buffer (a variable defined using defaudiobuf), start offset (where in

the file to begin reading, in seconds), the amplitude scale, the note duration, the stereo

position, the read rate (set it to 1 to read through the sample at the default sample rate),

and the attack and decay times for a trapezoidal envelope (i.e., an ASR envelope with a

sustain level = 1.0).

The program also defines a “cue section list” called words. This is a data list where the

first element is a list of the words in the sentence (stored as symbols), and the second

element is a list of lists giving the start offsets and durations of each of the words in the

sentence. The playWord example function demonstrates the use of the cue list, accessing

is like a dictionary keyed by word.

-- Sound file player instrument with cue points and built-in demo functions.
--
defaudioout L R;
defaudiobuf sgdrs; -- Input sound file variable (named after the sentence I use).

-- (The file name and thevariable name can be different.)

var words; -- Variable for cue point list.

const length = 1.44; -- Length of the sound file.

Sound File Player Instruments

89

init { -- Init function (called at compile time).
loadAllAudio(sgrds, “sgdrs”); -- Locate and load the audio buffer declared above

-- given a variable name and a file name.

-- Define the cue list (a 2-D array); the format is [[name]
-- [start, dur]]. You can treat this like a dictionary (see below).

words = [[\shu \gu \dwan \ren \shing]
[[0.03, 0.29] [0.32, 0.26] [0.63, 0.23] [0.83, 0.26] [1.09, 0.34]]];

}

start { -- The start function runs the interactive GUI-based demo.
playGUITest;

}

-- Sound file player instrument -- takes as arguments the buffer, start, amp, dur, etc.
--
sndFile {

arg file, offset, amp, dur, rate, pos, att, dec;-- Function arguments.

var snd, list, env; -- Local variables.

-- Create a trapezoidal break-point envelope list.
list = [\envelope [0 1 1 0] [att, (dur - (att + dec)), dec] -1 -1];

-- Create the audio buffer reader object given the
snd = Abufrd(file, offset, rate); -- input buffer, the start offset, and the reading rate.

-- Create the amplitude envelope.
env = Kbpenv(list, amp, 0, 1, `dspRemove);

-- DSP loop takes file reader and envelope...
{ (snd.value *! env.value).pan2out(pos, L, R) }.dspAdd;

}

-- Play the given word (selected by a name that is used as a key in the “word dictionary”).
--
playWord {

arg name, amp, pos; -- Arguments are word, amplitude, position.
var data; -- data is the start/duration sub-list.

name.post; -- Display the name.
data = words.assocAt(name); -- Get the start/duration times by using the list like a

-- dictionary (e.g., accessing it by word).

-- Call the sound file player instrument.
-- buffer offset amp duration rate pos att dec

sndFile(sgdrs, (data @ 0), amp, (data @ 1), 1.0, pos, 0.01, 0.02);
}

Sound File Player Instruments Sound and Music Processing in SuperCollider

90 Stephen Travis Pope

-- Test and Demo Functions
--

-- Rand test -- Play 20 notes with start offset in the sound buffer selected at random.
--
playRandTest {

var file, offset, dur, amp, rate, pos, att dec;

file = sgdrs; -- These don’t change -- buffer name.
dur = 0.15; -- Note duration.
rate = 1.0; -- Reading rate (no transposition).

for i = 0; i < 20; i = i + 1; do -- Loop 1 to 20
offset = 1.2.linran; -- Use a linear distribution to get the starting offset.
amp = 0.2 + 0.6.rand; -- Some variation in amplitude.
pos = 0.5.rand2; -- Random position near the stereo center.
att = 0.001 + 0.005.rand; -- Short attack.
dec = 0.05 + 0.15.rand; -- Longer decay.

-- Schedule a note on the sndFile instrument.
[(i * dur), `sndFile, file, offset, amp, dur, rate, pos, att, dec].sched;

end.for -- End of the for loop.
}

-- Word test -- Play 50 words from the pre-defined list of cue points such that you start at the
-- first word and end at the last word, but have some random “jitter” as you step through.
--
playWordTest {

var count, list, dur; -- Local variables.

count = 50; -- Play 50 notes.
list = [\shu \gu \dwan \ren \shing];-- Taken from this list of words.
dur = 0.08; -- With a constant repetition rate.

for i = 0; i < count; i = i + 1; do -- For loop with ‘count’ repetitions
index = (((i * 5.0) / count) + 0.7.rand2);-- This goes from 0 to 5 during the

-- loop, but with a bit of randomness

index.post; -- Post the index to the transcript.

-- Now play a note.
-- start instrument word amp pos

[(i * dur), `playWord, (list |@| index), (0.2 + 0.6.rand), 0.6.rand2].sched;

end.for -- end the loop.
}

Sound File Player Instruments

91

-- GUI test -- This reads the slider values and repeats a cue section to allow you to pick
-- out a region. If you then press the Show button, it will display the start/stop times in
-- the transcript view.
--
playGUITest {

var offset, stop, amp, rate, pos;

offset = 6.getItemValue * length;-- Get the offset slider.
stop = 8.getItemValue * length; -- Get the stop time slider.

if (stop <= offset) then -- Catch it if the users tried to drag offset > stop
stop = (offset + 0.2) min: length;-- Reset the value.
8.setItemValue(stop / length); -- And change the slider.

end.if

amp = 1.getItemValue; -- Get the amplitude slider value.
rate = 1 / (2.getItemValue); -- The rate is the inverse of the slider value.
pos = 0.5.rand2; -- Random position near the center of setereo.

-- Now play the note on the sndFile instrument.
sndFile(sgdrs, offset, amp, (stop - offset), 1.0, pos, 0.01, 0.02);

-- Repeat the function at rate rate.
[rate, thisFunc].sched;

}

-- Show function -- Print the sample start/stop times in the transcript
--
showGUI {

['Start: ', (6.getItemValue * length),
'Stop: ', (8.getItemValue * length)].post;

}

Code Example 26. Sound File Player Instrument

If you work with concrete sounds, there are many possible extensions or modifica-

tions to this kind of program that might be of interest. In real life, I use versions of the

sound file player functions given above that take the name of the cue point (like play-

Word in the above code) as an argument, and that also support pitch shifting and time

stretching. These extensions are left as an exercise to the reader.

Other extensions might be more sampler-like, whereby you would have a known base

pitch for your sample and provide the ability to play notes with a given pitch.

Signal Processing Sound and Music Processing in SuperCollider

92 Stephen Travis Pope

5.8. Signal Processing
All of the instruments we have used to this point have

been based on some sort of synthesis or stored sound(even

in the case that the function was granulating a file from the

disk). In this chapter, we will look into signal processing of

live inputs within SC programs.

Multi-stage Processing for Reverb
In this section, we will write a program that consists of a repeating note instrument

and a basic echo effect processing function. This example uses a delay line, which is sim-

ply a sample buffer thart can be writen into like an output (using the out message), but

which can also have one or more reader “taps” at various delay times.

One can visualize this as in the figure to

the left, which shows the input signal

feeding into the sample buffer (whose

length is given by Max Delay). After delay

time 1, the signal is sent to tap 1 output,

and after delay 2, it is send out tap 2.

 Figure 25. Structure of a Delay Line

The delay times can change over time (“moving taps”), and there is no practical limit

to the number of taps allowed on a delay line.

The instrument function in the code example below is a repeating pulse instrument in

which the frequency is random and the repetition rate is based on the mouse’s x coor-

dinate. The output of this instrument is sent to the output channels L and R, and also

written into a delay line in DSP stage 1. Another instrument (called fx and put in DSP

stage 3) reads from the delay line and writes to the outputs and back into the delay line

(feedback). This has an echo-like effect, as you can hear by experimenting with it.

-- Using a delay line and multiple DSP stages. (See manual p. 58.)
--

defaudioout L R;
deftable tabl1 env1; -- Declare wave form and envelope tables.
defdelay dly1(0.4); -- Create a 0.4 second delay line called dly.

start { -- The synthesizer and processor functions run in parallel.
instrument1;
fx;

}

Input

Tap 1 Tap 2

Delay 1 Delay 2
Max Delay

. . . Samples . . .

Signal Processing

93

-- Chorusing oscillator instrument that repeats with rate determined by mouseX.
--
instrument1 { -- Repeating notes with repetition rate based on mouseX.

rate = mouseX / 200 + 0.1;
-- Chosuring oscillator with frequency from 100 to 900 Hz.

osc = Acoscili(tabl1, (100 + 800.rand), 1);
-- Create an envelope generator.

amp = Ktransient(env1, rate, -18.dbamp, 0, `dspRemove);

-- Write samples to the output and delay line in DSP stage 1.
{ (osc.value *! amp.value).out(L).out(R).out(dly1) }.dspAdd(1);

[rate/2, thisFunc].sched; -- Have a 50% overlap between notes.
}

-- Recirculating delay line “echo” effect (at DSP stage 3).
--
fx { -- Read samples from the delay line (at 0.2 seconds delay),

-- scale them, and write them out (as well as back into the
-- delay line) in DSP stage 3.

{ (tap(dly1, 0.2) *! 0.8).out(L).out(R).out(dly1) }.dspAdd(3);
}

Code Example 27. Tapped Delay Line Instrument

This program uses two different stages of the DSP loop by adding the first instrument

to stage 1 and the effects processor to stage 3 (look at the arguments of the dspAdd mes-

sages). The rule is that for each sample buffer, all tasks in any stage of the DSP loop will

be completed before the next stage is processed. Therefore, we can be sure that the sam-

ples we write into the delay line in the instrument will go there before the effects instru-

ment starts to read from the delay line.

Better-sounding reverberators can be written using SC’s delay line and comb filter

functions (coming below).

Using Audio Input
The example below illustrates the processing of a real-time sound input. The first part

demonstrates a simple “echo” function that reads the real-time audio inputs and plays

the data right back out the output. We define stereo audio inputs using the defaudioin

keyword and read from them using the in message.

Note that because of the default size of 4096 samples in the sound manager I/O queue,

there will be a delay of at least 0.2 seconds between the input and output sounds. You

can experiment with making the output buffer (Frame) size smaller (try 256 samples)

and hear the difference (and also see the increase in computational overhead).

Signal Processing Sound and Music Processing in SuperCollider

94 Stephen Travis Pope

-- Basic Audio Signal Processing Example -- Echo Program
-- This simply reads input and plays it back out the outputs.
--
defaudioin Lin Rin; -- Two inputs.
defaudioout L R; -- Two outputs.

start { { -- The start function is just the DSP loop.
in(Lin).out(L); -- Read left-in; write left-out
in(Rin).out(R); -- Read right-in, write right-out.

}.dspAdd;
}

Code Example 28. Audio “Echo” Program

A somewhat more interesting audio signal processing program is the delay-line-

based flanger given in the next example. We use a delay line (declared with defdelay and

given the maximum delay time of 0.5 seconds) and a tap that reads from it. The differ-

ence between this and the initial delay line example from above is that we move the tap

delay time around with a low-frequency oscillator (LFO), and do not feed the delay line

output back into it. Because the output buffer receives both the original and the delayed

signal, and the delay time is changing over time, you will hear the typical comb-filter-

like flanging sound.

-- Audio Signal Processing With Delay Lines -- A "Flanger"
-- This reads the inputs and mixes current and delayed versions to the outputs.
-- The delay time is controlled by a 0.3 Hz oscillator, leading to a "flanging" effect.
--
defaudioin Lin Rin; -- Two inputs.
defaudioout L R; -- Two outputs.
defdelay dLine (0.5); -- 0.5 second delay line.

start {
var input, lfo, delay;

lfo = Psinosc(0.3, 0); -- Create a 0.3 Hz polled sine oscillator
-- DSP loop.

{ input = (Lin.in +! Rin.in) *! 0.25; -- Read both inputs, add them, and scale.
input.out(L).out(R); -- Play the in back out.
input.out(dLine); -- Write samples to the delay line
dTime = (lfo.value * 0.1) + 0.1; -- Calculate the delay time (0 to 0.2 seconds).
tapi(dLine, dTime).out(L).out(R); -- Tap in to the delay line and write the

-- delayed signal to the output buffers.
}.dspAdd;

}

Code Example 29. “Flanger” that Reads Live Input

Signal Processing

95

Reverberation
The instrument below illus-

trates a more complex signal pro-

cessor—a configurable

reverberator built using delay

lines and comb filters. This model

is based on the Moorer/Loy

design (see the lprev program in

Moore and Loy 1983), whereby a

multi-tap delay line (or finite

impulse response [FIR} reverber-

ator) is followed by a bank of

comb filters (or infinite impulse

response [IIR] reverberators) in a

structure like that shown in the

figure on the right.

 Figure 26. Moorer/Loy Reverberator Structure

This reverberator design uses the delay line to model the early sound reflections in a

room, and the comb filter bank to model the more diffuse later reflections. This version

of it is configurable in that the tap points and their weights and the delays and weights

of the comb filters are held in tables that can be changed for each type of input sound

and desired reverberation characteristic.

-- Moorer/Loy Reverberator
-- This program implements a classical configurable reverberator that consists of a
-- tapped delay line with up to 10 taps followed by a bank of up to 6 comb filters.
-- The sample configuration data is taken from Gareth Loy's "lprev" program that is
-- part of the UCSD CARL software distribution (Moore and Loy 1983).
--
defaudioin Lin Rin; -- Define audio inputs.
defaudioout L R; -- Define audio outputs.
defdelay dline(0.1); -- 0.1-sec delay line for the initial reflections.

-- 6 delays for comb filters
defdelay c0(0.1), c1(0.1), c2(0.1), c3(0.1), c4(0.1), c5(0.1);
defbus bus; -- Define an internal signal bus.

start {
var input, -- Input signal buffer

tapData, -- Early reflection tap data (time, level)
combData, -- Table of comb data (time level)
combs, -- List of comb-filter delay-line objects

Multi-tap delay line (FIR)
input

+

Z-n Z-nZ-n

+

output

Bank of
comb filters
(IIR)

. . . .

. . . .

Signal Processing Sound and Music Processing in SuperCollider

96 Stephen Travis Pope

G, -- Global comb time scale
mix, -- Global amplitude scale.
tabScale -- Tap amplitude scale.
combScale; -- Comb amplitude scale.

-- Initialize the tap table for early reflections
tapData =

-- delay amplitude
[[0.0043 0.841]
[0.0215 0.504]
[0.0268 0.379]
[0.0298 0.346]
[0.0485 0.272]
[0.0572 0.192]
[0.0595 0.217]
[0.0708 0.181]
[0.0741 0.142]
[0.0797 0.134]];

-- Initialize comb table for longer reverberations
combData =

-- delay amplitude
[[0.050 0.46]
[0.056 0.48]
[0.061 0.50]
[0.068 0.52]
[0.072 0.53]
[0.078 0.55]];

G =10; -- for a decay time ~= 3 sec.

-- Create a list of combs
combs = [];
item = combData @ 0;
combs.add(Acombdly(c0, (item @ 0), (item @ 1) * G));
item = combData @ 1;
combs.add(Acombdly(c1, (item @ 0), (item @ 1) * G));
item = combData @ 2;
combs.add(Acombdly(c2, (item @ 0), (item @ 1) * G));
item = combData @ 3;
combs.add(Acombdly(c3, (item @ 0), (item @ 1) * G));
item = combData @ 4;
combs.add(Acombdly(c4, (item @ 0), (item @ 1) * G));
item = combData @ 5;
combs.add(Acombdly(c5, (item @ 0), (item @ 1) * G));

mix = 0.1; -- Change based on input signal level.
tapScale = 0.2; -- Tune for early reflection balance
combScale = 0.2; -- Tune for decay.

Signal Processing

97

{ -- DSP loop stage 0
input = (Lin.in +! Rin.in) *! 0.5;-- Read both inputs, add them, and scale the signal.
input.out(dline); -- Write samples to the delay line
(input *! mix).out(L).out(R); -- Play the in back out.

}.dspAdd(0) -- Do this in DSP stage 0

{ -- DSP loop stage 1
tapData.forEach ({ -- Loop through the tap table.

arg list, index;
-- Get tap signal and scale by tap level.

z = tap(dline, (list @ 0)) *! ((list @ 1) * tapScale);
z.out(bus); -- Send tap signal to internal bus.

});
}.dspAdd(1);

{ -- DSP loop stage 2
combs.forEach({ -- Loop through the comb table.

arg comb, index;
-- Write bus value to comb, and send output out.

(comb.value(bus.in) *! combScale).out(L).out(R);
});

}.dspAdd(2);
}

Code Example 30. Parameterizable Live Input Reverberator

You can also of course write versions of this kind of reverberator that read sound files

from disk (e.g., created in previous passes with SC or any other synthesis/processing

software). The above examples serve to introduce live signal processing with SC; one

can also use filters and other kinds of processes. The on-line effects processing examples

distributed with the program demonstrate many more advanced techniques.

In this part of the tutorial, we have surveyed the basic SC programming techniques

that are important for day-to-day usage. The next part will look at a couple of more

advanced programming techniques.

Signal Processing Sound and Music Processing in SuperCollider

98 Stephen Travis Pope

File I/O

99

Part 6. Advanced Techniques and Libraries
In the previous Part, we surveyed several essential SC programming techniques. The

next Part will present several areas of more advanced usage, including reading and

writing text files, instruments with preset menory, and object-oriented programming.

6.1. File I/O
Unlike most standard MusicN languages, SuperCollider provides a

collection of built-in functions for reading and writing text files. The

next couple of chapters demonstrate the use of these functions to read

score data from files and to save and replay parameter settings as

“presets” for use in performance.

In the following examples, I have switched to C++-style function names (using

embedded underscore rather than embedded upper-case letters) just so you can get the

taste of it (I prefer Smalltalk-style naming in general).

Reading a Score from a File
It is often convenient to store instrument definitions and score data in separate files,

especially if several scores use the same instruments. This example reuses the same FM

instrument we’ve seen in the previous chapters, but reads its score from a file. When

you run it, it will prompt you for the name of a score file. The file “score.sc” is included

with the example code that accompanies this book. The format of the file for this exam-

ple is as shown below. You can, of course, change this format if you change the file read-

ing functions to be able to read the new format.

Score for FM Instrument.
This is a comment.

FM instrument note commands
PArameters:
start instr dur freq index ratio
#
0.00 'fm_instr' 0.25 54 1 1
0.25 'fm_instr' 0.25 55 1 1
0.50 'fm_instr' 0.25 56 1 1
0.75 'fm_instr' 0.25 57 1 1.21

end

Code Example 31. Score File Format Example

File I/O Sound and Music Processing in SuperCollider

100 Stephen Travis Pope

In this score file format, the instrument name must be in single quotes (i.e., a symbol).

There are no special statement terminator characters required, but note commands

must be one-per-line. The program that reads and performs this (without including the

FM instrument) is as follows.

-- FM instrument with a score that's read in from a file.
--
defaudioout L, R;
deftable tabl1, env1, env2;

start {
read_score; -- The start function calls the score reading function.

}

-- Read a score file and play note commands found there.
-- The score can include notes for several instruments.
--
read_score {

var name, fileID, line, start, instr, args;

line = []; -- Create an empty list to read lines from the file into.
-- Get a file name by prompting the user.
-- Arguments are (default name, prompt string).

name = getStringFromUser("score.sc", "Select a score.");

name.post; -- Post the name to the transcript.
fileID = fopen(name, "r"); -- Open the file for reading.

line = freadlist(fileID); -- Read the first line
do -- Loop until you see the end of the score

line.post; -- Post the line (for debugging).
-- If it’s a legal command line,

if (size(line) == 6) && ((line @ 1) != "#") then
-- Do a multiple assignment from the list you read in.
-- “Peel off” the first 2 items; leave the rest in the
-- “args” list.

start instr ... args = line;
-- Schedule the note at the given time and converting
-- the name from a symbol to a function reference.

[start, (instr.resolveName), args].sched;
end.if; -- End of the if (ignore all other lines).

line = freadlist(fileID); -- Read the next line.
end.do until (line == 0); -- End of the do; repeat until freadlist answers 0.

fclose(fileID); -- Close the input file.
"Done".post

}

Presets and Performance Configuration

101

fm_instr{ -- The FM instrument must be changed to accept a list of arguments
arg args;
var duration, freq, index, ratio, osc, i_env, a_env, hz;

-- Read the argument list into the parameters
-- with a multiple assignment.

duration freq index ratio = args;

...The simple FM instrument from the last Part goes here...

}

Code Example 32. Score Reader Functions

You can rewrite this function to read other score formats, or to handle scores that have

other types of data in them (e.g., break-point envelope functions). The scheduler has a

hard limit of 512 events that can be scheduled in the future, so if you want to use longer

scores, you’ll have to make a version of this reading function that pauses when it gets

too far ahead of event performance.

6.2. Presets and Performance Configuration
For interactive performance, it might be useful to have an instrument that has a SC

GUI, but that can store and recall settings of the GUI slider values. The next few exam-

ples show you how to do this using instruments we have already introduced.

Presets and GUI Interaction
The following examples demonstrate how one can record and play back GUI interac-

tions. In the first part, we extend the granular synthesis example introduced in the last

part of the tutorial to add GUI buttons that save and restore slider settings. The simplest

version has 3 buttons—save, recall, and reset. The save button reads the values of the nine

sliders and stores them in a list of nine numbers (named params). Pressing the recall but-

ton simply sets these stored values back to the sliders. The reset button sets up “default”

parameters that are given in the program code. Note that we have also added a stop but-

ton to the GUI.

-- Granular sound file processor with simple parameter store/recall/reset.
--
defaudiobuf sound;
defaudioout L R;

init { -- load the named sound file
loadAudio(sound, "1.sndd");

}

Presets and Performance Configuration Sound and Music Processing in SuperCollider

102 Stephen Travis Pope

start { -- Play instr1 from the start function.
instr1;

}

instr1 {
.. .sound file granulation instrument from above..

}

-- Functions to store and recall parameter settings.
-- These are called from the GUI buttons.
--
var params; -- This is a list of 9 numbers for the 9 sliders

-- Store function to read GUI slider values.
--
store_params { -- Store slider settings into the params[] list.

\STORE.post; -- Print a symbol to the transcript.
params = []; -- Declare a list for parameter values.

for i=1; i<=9; i=i+1; do -- Loop from 1 through 9.
params.add(i.getItemValue); -- Store GUI item values into the list.

end.for;

params.post -- Post the list to the transcript view.
}

-- Recall function to set the 9 GUI sliders to their stored values.
--
recall_params { -- Recall slider settings from params[]

if (params = \nil) then -- Test to make sure we’ve stored some parameters.
“ERROR: You must use store before using recall.”.post

else
for i=1; i<=9; i=i+1; do

i.setItemValue(params @ (i - 1));-- Set GUI item values from the list.
end.for;

end.if;
}

-- Reset function to restore “standard” parameter settings (which are hard-coded below).
--
reset_params { -- Reset sliders to "default" values

var defaults;
defaults = [1 0 0 -1 0 0 3 1 1];-- These are the “default” parameters.
\RESET.post;

for i=1; i<=9; i=i+1; do
i.setItemValue(defaults @ (i - 1));

end.for
}

Presets and Performance Configuration

103

-- Stop Button Function
--
stop_play { -- Stop DSP loop with a button

\STOP.post;
dspKill(1)

}

Code Example 33. GUI Slider save/restore/reset Functions

You can easily adapt the functions above to read and store the GUI item values of any

instrument you design. For the case that the GUI item values you want are not contig-

uous item numbers (as above, where the sliders are items 1 - 9), you can use a list with

the GUI item numbers, and send it the message collect. (Try this as an exercise with the

FM instrument; it does not have contiguous GUI slider numbers.)

Storing Presets to a File
In the next version of this program, we store multiple sets of slider configurations,

using params[] as a 2-D list of lists. When you hit the stop button, these are saved to a file,

one list per line.

-- Granular sound file processor with parameter store/recall/reset.
-- This version stores settings to a file when you stop playing.

defaudiobuf sound;
defaudioout L R;

init { -- load named sound file
loadAudio(sound, "1.sndd");

}

var params; -- This is a list OF LISTS of 9 numbers

start { -- Start plays instr1.
params = []; -- List of lists for parameter values
instr1;

}

instr1 {
...sound file granulation instrument from above.

}

-- Functions to store and recall parameter settings (sent by GUI buttons).
--

Presets and Performance Configuration Sound and Music Processing in SuperCollider

104 Stephen Travis Pope

-- Store a set of parameter values into one entry in the params[[][]] list.
--
store_params {

var setting; -- The current settings.

setting = []; -- Make a new empty list.
for i=1; i<=9; i=i+1; do

setting.add(i.getItemValue); -- Add the GUI item values to the settings list.
end.for;
params.add(setting); -- Add the setting list to the 2-D params list.
setting.post -- Post settings.

}

-- Stop_play: stop the DSP and store params[[][]] to a file.
--
stop_play { -- Stop DSP loop with a button.

dspKill(1);
save_params; -- Save the presets after stopping.

}

-- Save: Prompt the user for a file name and save the 2-D list of parameters to a text file.
--
save_params {

var name, fileID; -- File name and file ID.
-- Get the file name from the user.

name = getStringFromUser("gran.params", "Select a parameter file name.");
name.post; -- Echo the name in the transcript.
fileID = fopen(name, "w"); -- Open the file for writing.

params.forEach(-- Loop through the param list writing each sublist
{ arg elem, ind; -- to a new line of the output file.

elem.fwritelist(fileID) });
fclose(fileID); -- Close the output file.

}

Code Example 34. Functions to Save Parameter Settings to a Text File

To use this, start the instrument playing and adjust the GUI sliders to a setting you

like, then press the save button, now adjust them to another setting, and press save again.

After several iterations of this, you’re ready to stop the instrument and save your “per-

formance” to a file. The result of this is a text file with the list of parameter settings you

stored while using the instrument. You can edit this file with any standard text editor,

but be careful not to add or delete data items from the lines of the file.

Presets and Performance Configuration

105

Playing back Stored Presets
The last extension allows us to read in a list of parameter “presets” from the file we

just created and step through them. The functions below load the parameter file on

start-up, and provide you with GUI buttons that advance you to the next file setting

during “playback.” The reset button restores the “standard” settings that are coded in

the reset_params function shown above.

-- Granular sound file processor with parameter recall/reset.
-- This version reads settings from a file.
defaudiobuf sound;
defaudioout L R;

init { -- Load the named sound file in init.
loadAudio(sound, "1.sndd");

}

var params; -- This is a list OF LISTS of 9 numbers.
var i; -- Preset counter.

start { -- The start function does some setup and calls instr1.
i = 0; -- Initialize the preset counter.
load_params; -- Load the parameter preset file.
instr1;

}

instr1 {
...sound file granulation instrument used above.

}

-- Functions to load and recall parameter settings
--
-- Load a 2-D list of parameter settings from a file
--
load_params {

var name, fileID, list;
-- Prompt the user for a file name.

name = getStringFromUser("gran.params", "Select a parameter file name.");
name.post;
fileID = fopen(name, "r"); -- Open file for reading.
params = []; -- Make an empty parameter list.

list = freadlist(fileID); -- Read the first line.
while (list.size != 0) do -- Read until the end of the file.

list.post; -- Print the line to the transcript for debugging.
params.add(list); -- Add the list just read to params[] list.
list = freadlist(fileID); -- Read the next line.

end.while;

Object-Oriented Programming in SuperCollider Sound and Music Processing in SuperCollider

106 Stephen Travis Pope

fclose(fileID); -- Close the input file.
}

-- Recall parameter settings one-at-a-time.
--
recall_params {

var setting; -- Setting is a list or parameter values.

setting = params @@ i; -- Get next preset (wrapping around).
for j=1; j<=9; j=j+1; do -- Loop through the GUI item values.

j.setItemValue(setting @ (j - 1)); -- Set the GUI items from the list.
-- NB: GUI item numbering is 1-based but list
-- element are 0-based, hence the (j - 1).

end.for;
i = i + 1; -- Increment the preset counter.
setting.post -- Print it for debugging.

}

Code Example 35. Playing Back Presets from a File

Using variations of the functions given above, you can create flexible real-time perfor-

mance instruments that involve any of SC’s facilities: synthesis, stored sound process-

ing, or live sound I/O.

6.3. Object-Oriented Programming in SuperCollider1

This chapter presents an extended example of object-oriented pro-

gramming (OOP or O-O technology) in SC. OOP is a powerful pro-

gramming technique that allows you to structure your programs

for better readability and maintenance, closer models of musical

domains, and greater ease of extension.

There are several features that are generally recognized as consti-

tuting an O-O technology: encapsulation, inheritance, and polymor-

phism are the most frequently cited. We will define each of these in

the sections below.

Encapsulation
Every generation of software technology has had its own manner of packaging soft-

ware components—either into jobs or modules or other abstractions for groups of func-

tions and data elements. The reasons for modular structure are to encourage a level of

1.This text is derived from the invited article “Music Representation Using Objects” that ap-
peared in Organised Sound 1(1): 55-68, and is expanded in Roads, C., S. Pope, G. De Poli, and
A. Piccialli, eds. 1997. Musical Signal Processing. Lisse, The Netherlands: Swets & Zeitlinger.

Object-Oriented Programming in SuperCollider

107

privacy of data and functions (i.e., so that program components cannot depend on the

internal details of other program components), to support reuse (i.e., so that functions

can be shared by several programs), and to separate out a program’s interface specifi-

cation (what does it do) from its implementation (how does it do it).

In traditional modular or structured technology, a module includes one or more—

public or private—data types and also the—public or private—functions related to

these data items. In large systems, the number of functions and the “visibility” of data

types tended to be large, leading to problems with managing function names—which

are required to be unique in most structured languages.

Object-oriented software is based on the concept of object encapsulation whereby every

data type is strongly associated with the functions that operate on it. There is never a

“stand-alone” data element or an “unbound” function; data and operations—state and

behavior in O-O terms—are always encapsulated together.

A data type—known as a class, of which individual objects are instances—has a defi-

nition of what data storage (state) is included in the instances (called “instance vari-

ables” in the Smalltalk languages), and of what functions (behavior or “methods”)

operate on instances of the class. Strict encapsulation means that the internal state of an

object is completely invisible to the outside and is accessible only through its behaviors.

 Any object must be sent messages to deter-

mine its state, for example, an object that repre-

sents a 2-D point in Cartesian geometry would

have x and y instance variables and methods

named getX and getY for accessing them. The

advantage of separating the private state from

the public behavior is that another kind of

point might store its data in polar coordinates,

with its angle and magnitude. It would be very

good to be able to use these two points inter-

changeably, which is possible if I am only con-

cerned with “what” they can do, and not with

“how” they do it. Behaviorally, they are identi-

cal (ignoring performance for now). The figure

on the left shows two kinds of point objects.

 Figure 27. (a) Object encapsulation of private state and public

behavior, (b) two different kinds of geometric points

Name (Identity)

State
 data var 1
 data var 2

Behavior
 method 1
 method 2

PolarPoint

State
 r (magnitude)
 theta (angle)

Behavior
 getX, getY
 getR, getTheta

CartesianPoint

State
 x-coordinate
 y-coordinate

Behavior
 getX, getY
 getR, getTheta

(a)

(b)

Object-Oriented Programming in SuperCollider Sound and Music Processing in SuperCollider

108 Stephen Travis Pope

As an example from the musical domain, imagine an object that represents a musical

event or “note.” This object would have internal (strictly private) data to store its

parameters—possibly duration, pitch, loudness, timbre, and other properties—and

would have methods for accessing these data and for “performing” itself on some

medium such as a MIDI channel or note list file.

Because the internal data of the object is strictly hidden

(behind a behavioral interface), one can only access its state

(instance variables) via messages (behaviors), so that, if the

note object understood messages for several kinds of pitch—

e.g., pitchInHz, pitchAsNoteNumber, and pitchAsNoteName—then

the user would have no way of determining how exactly the

pitch was stored within the note. In old-fashioned structured

software technology terms, this is called “information hid-

ing” or the “separation of the specification (the what) from

the implementation (the how).” Figure 28 illustrates a possi-

ble note event object.

 Figure 28. A musical event or “note” object showing its state and behavior

An example of encapsulation that we have already seen is the use of an instrument

class name by MIDI Voicer objects. When you create a Voicer, you give it the name of

an instrument class, and it creates a new instance of that instrument class for each active

MIDI note.

Inheritance
Inheritance is a simple principle whereby classes can be defined as refinements of spe-

cializations of other classes, so that a collection of classes can form a tree-like “special-

ization” or “inheritance” hierarchy. At each level of this kind of subclass-superclass

hierarchy, a class only needs to define how it differs from its superclass.

Examples of class hierarchies are well-known (and widely misunderstood) in the lit-

erature on O-O systems. The hierarchy of classes used to represent numbers makes a

good starting example. If one had a class for objects that represented “units of measure”

(often called “magnitudes” in the abstract), then it is easy to see that numbers would be

one possible subclass (refinement) of it, and that the various types of numbers (integers,

floating-point numbers, and fractions) might be further subclasses of the number class.

There are also other possible magnitude classes that are not numbers, dates and time-

of-day objects, for example. The figure below shows a possible hierarchy of magnitudes

and numbers.

AnEvent

State
 duration
 pitch
 loudness
 voice
 ...other properties...

Behavior
 durationAsMsec
 pitchAsHz
 ...other accessing methods...
 playOn: aVoice
 edit "open an editor"
 transpose
 ...other processing methods...

Object-Oriented Programming in SuperCollider

109

A musical example of this would be a system with

several types of event parameters—different notations

for pitches, durations, loudness values, etc. If there was

a high-level (“abstract”) class for representing musical

pitches, then several possible pitch notations could be

constructed as subclasses (“concrete classes”) of it. Fur-

ther examples of this kind of subclass-superclass hier-

archy will be presented below. Remember that at each

level, we are most interested in behavioral differences

(rather than storage representations).

 Figure 29. A class hierarchy for magnitudes

Polymorphism
In simple terms, polymorphism (also called overloading) means being able to use the

same function name with different types of arguments to evoke different behaviors.

Most traditional programming languages allow for some polymorphism in their arith-

metical operators, meaning that one can say (3 + 4) or (3.5 + 4.1) in order to add two inte-

gers or two floating-point numbers. The problem with languages that place limits on

polymorphism is that one is forced to have many names for the same function applied

to different argument types (e.g., function names like playEvent(), playEventList(), play-

Sound(), playMix(), etc.). In some languages (e.g., Lisp and Smalltalk), all functions can be

overloaded, so that one can create many types of objects that can be used interchange-

ably (e.g., many different objects can handle the play message in their own ways).

In O-O languages, the receiver of a message (i.e., the object to which the message is

sent) determines what method to use (how) to respond to a message. In this way, all the

various types of (e.g.,) musical events and event collections can all receive the message

play and will respond accordingly by performing themselves, although they may have

very different methods for doing this. We have already seen examples of this in the

ways that SC unit generator objects all understand the message value.

Example: Siren EventGenerators
The event generator package provides for music description and performance using

generic or composition-specific “middle-level” objects. Event generators are used to

represent the common structures of the musical vocabulary such as chords, ostinati, or

compositional algorithms. Each event generator subclass knows how it is described—

e.g., a chord with a root and an inversion, a trill with two notes that it repeats, or an osti-

Object

Magnitude

ArithmeticValue

Number

Integer Float Fraction

Point

DateTime

Object-Oriented Programming in SuperCollider Sound and Music Processing in SuperCollider

110 Stephen Travis Pope

nato with an event list and repeat rate—and can perform itself once or repeatedly, act-

ing like a function, a control structure, or a process, as appropriate.

Some event generators describe relationships among events in composite event lists

(e.g., chords described in terms of a root and an inversion), while others describe mel-

ismatic embellishments of—or processes on—a note or collection of notes (e.g., mor-

dents). Still others are descriptions of event lists in terms of their parameters (e.g.,

ostinati). Most standard examples (chords, ostinati, rolls, etc.) above can be imple-

mented in a simple set of event generator classes; the challenge is to make an easily-

extensible framework for composers whose compositional process will consist of

enriching the event generator hierarchy.

All event generators can either return an event list, or they can behave like processes,

and be told to play or to stop playing. We view this dichotomy—between views of event

generators as functions versus event generators as processes—as a part of the domain,

and differentiate on the basis of the musical abstractions. It might, for example, be

appropriate to view an ostinato as a process, or to ask it to play thrice.

Shared behavior of EventGenerators

Every event generator class has behaviors for the creation of instances, including, nor-

mally, some terse description formats (see the examples below). All event generator

instances must provide a way of returning their events—the eventList method. Process-

like event generators such as ostinati also provide start/stop methods for their repeated

performance. The examples below illustrate other event generator behaviors.

SC EventGenerators

The example code in SC implements a simplified version of the Siren System’s event

generator hierarchy (Pope 1989), with roll, trill, and several kind of stochastic “cloud”

classes. All of the examples use a simple FM instrument for synthesis.

The class EventGenerator is abstract, meaning that it does not have enough knowledge

to be used directly (instances of it would be useless), but that it serves as the superclass

of several other classes. It has instance variables for duration, amplitude, pitch, and rep-

etition rate, and methods for accessing these variables (the get and set methods), as well

as several useful processing methods.

A roll object is an event generator that can play a simple repeating note, as in a drum

roll. The GUI lets you choose the total duration of the roll, the rate of repetition, the

amplitude, and the pitch. A trill is a roll that alternates between two pitches, which can

be set from the lower values of the two pitch sliders in the GUI. (Actually, trills can have

Object-Oriented Programming in SuperCollider

111

more than two notes and will cycle through them, but that function is not supported by

the simple demonstration GUI.)

Clouds are stochastic (i.e., semi-random) event generators where you can set a pitch

range (in the case of a cloud object) or pitch set (in the selection cloud object) to select

from. A dynamic cloud is simply a cloud with starting and ending pitch ranges between

which it interpolates. If you set the ranges to be the same, it’s the same as a cloud. If you

set both ranges to single values, you get a scale. Try experimenting with different

ranges (e.g., wide initial range and single-pitch final range).

Selection clouds use pitch sets rather than

ranges; this means, for example, that you can

select notes from a specific chord or mode. A

dynamic selection cloud is a selection cloud that

interpolates between selecting the pitches in its

initial and final pitch sets. The class hierarchy of

the basic event generators are shown in the figure.

 Figure 30. Basic EventGenerator class hierarchy

The GUI for this program lets the user select between 6 basic kinds of event generator,

and to set several parameters for the chosen class. The top three sliders are easy to

understand; they set the event generator’s total duration, its event rate (notes per sec-

ond), and its amplitude.

The two pitch sliders are interpreted

according to which kind of EventGener-

ator you choose. They are both range

sliders, meaning that a numerical inter-

val can be selected by dragging the

mouse from left to right over them. For a

roll event generator, only the lower

value of the Pitch1 slider is used; for a

trill, the lower values of the two pitch

sliders determine the trill’s pitches.

 Figure 31. EventGenerator example GUI

For a cloud, the Pitch1 slider determines the pitch range, and for a dynamic cloud, the

Pitch1 and Pitch2 ranges are used as the starting and ending pitch ranges, respectively.

The selection cloud object’s demo function prompts you for a list of pitches (MIDI key

numbers). The suggested range is 24 - 96. You can type 1 or more numbers into this list

EventGenerator
Roll

Trill
Cloud

DynamicCloud
SelectionCloud

DynamicSelectionCloud

Object-Oriented Programming in SuperCollider Sound and Music Processing in SuperCollider

112 Stephen Travis Pope

(with no punctuation or list brackets, e.g., 36 38 40 41 43). For a dynamic selection cloud,

you will be prompted for initial and final pitch sets. If you do not provide an answer,

the program will use its own default sets.

The program below implements the complete (mini-) EventGenerators class hierar-

chy, and includes a number of demo functions. The instrument functions are not shown

here, but they are included in the on-line source file. The program is broken up into sev-

eral blocks, the first of which consists of the abstract class EventGenerator.

(**
EventGenerators: An example of OOP in SC.
This is a simple translation of the basics of the "EventGenerators" package
from Smalltalk to SC. See reference (Pope 1989) for details.

This file includes several common event generators (egens for short) such as
roll, trill, and several types of stochastic "clouds." There are several test
functions after the class definitions that demonstrate the EGens with parameters
taken from GUI sliders, and also a demo function that plays a small "composition"
described using egens.

Stephen Travis Pope -- stp@create.ucsb.edu -- 1997.02.24

**)

defaudioout L R;

(********************
EventGenerator Abstract Class
This is the "root" of a family of classes that implement simple event structures.
Standard event parameters are [start, instr, dur, amp, pitch], though additional
(instrument-specific) parameters can be added using the addParameters message.

********************)

class EventGenerator {
-- Instance variables (= arguments to the constructor function).
--
arg dur, amp, pitch, rate, events;
--
-- Dur is the total duration of the EGen.
-- Rate is repetition rate for events within an EGen.
-- The duration of the single events is 1 / rate.
-- The number of events is dur * rate.
-- Depending on the subclass you use, the pitch may be a single value, a list of [min max],
-- a set (list) of legal values, or a 2-D list with starting and ending ranges or selection sets.
-- Events is a list of lists of parameters.

-- There is no initialization code in this class.
-- (Otherwise, it would go here.)

Object-Oriented Programming in SuperCollider

113

-- Instance variable accessing methods.
--
method getPitch { ^pitch }
method getDur { ^dur }
method getAmp { ^amp }
method getRate { ^rate }
method setPitch { arg val; pitch = val }
method setDur { arg val; dur = val }
method setAmp { arg val; amp = val }
method setRate { arg val; rate = val }

method basicEvents { ^events } -- Low-level, private methods.
method setEvents { arg val; events = val }

-- Answer the receiver's events (with lazy [i.e., last-minute] initialization).
--
method getEvents {

-- If the receiver has no events yet,
if this.basicEvents == \nil then

-- Post a message to the transcript,
[\Generating this.type].post;

-- and generate the events now.
this.setEvents(this.generateEvents);

end.if;
^events;

}

-- Generate the receiver's events (this will be overridden in subclasses).
--
method generateEvents {

^[] -- Answer an empty list in the abstract class.
-- The subclasses will override this.

}

-- Add additional event parameters using a closure argument.
-- The closure must answer a list that will be concatenated to the
-- event's parameter list. (See the demo functions below for examples of using this.)
--
method addParameters {

arg closure;

newEvents = this.getEvents.collect({
arg item, index;

-- Execute the closure for each event.
^(item $ closure.value); -- Answer the concatenationof the old parameter list
}); -- and the result of the closure.

-- (This could also be done in-place.)
this.setEvents(newEvents); -- Replace the receiver's events.

}

Object-Oriented Programming in SuperCollider Sound and Music Processing in SuperCollider

114 Stephen Travis Pope

-- Play the receiver's events on the given voice at the given time
-- with additional parameters generated by the "args" closure (may be nil).
--
method play {

arg voice, start, args; -- voice is an instrument function reference;
-- start is an offset time (a number).
-- args is a closure that answers a list of
-- additional parameters when evaluated.

if args != \nil then -- If there are additional parameters,
this.addParameters(args); -- add them.

end.if;
this.getEvents.forEach({ -- Loop through the events.

arg item, index; -- Each event is actually just a list of parameters.
-- Add the start time to the event's start.

item.put(0, ((item @ 0) + start));
item.put(1, voice); -- Assign the given voice to the event.
-- item.post; -- Print event to message window (for debugging).
item.sched; -- Schedule the event.

})
}

-- Apply a function closure to the receiver egen's events.
--
method apply {

arg function; -- A function to apply to the receiver's events.

this.getEvents.forEach(function);
}

} -- End of Class EventGenerator

Code Example 36. EventGenerator Class Definition

The EventGenerator class given above has all of the features that we need for our

musical structure objects; it has the instance variables for its duration amplitude, etc., as

well as methods to get and set (query and assign) these instance variables. What’s miss-

ing is just a couple of key methods such as generateEvents. These will be refined in its

subclasses, which will be introduced next.

(********************
Roll Concrete Class (a subclass of EventGenerator)
This represents a simple repeating note (e.g., a drum roll)

********************)

class Roll : EventGenerator {
-- The class does not add any new instance variables or initialization code.

Object-Oriented Programming in SuperCollider

115

-- Repeat a single note to get a roll.
-- We only have to override the generateEvents method; everything else is inherited!
--
method generateEvents {

var notes, time, count, note_dur;

time = 0;
count = 0;
notes = []; -- Start with an empty note list
note_dur = 1/rate;
count = dur * rate; -- How many notes to make

for i = 0; i < count; i = i + 1; do -- Loop adding notes to the event list.
-- Add a note (it's a list).
-- Send the message next_pitch to get the pitch
-- (it may be overridden in subclasses).

notes.add([time, \nil, note_dur, amp, this.nextPitch(i)]);
time = time + note_dur -- Increment the start time.

end.for;
^notes -- Answer event list

}

-- Answer the pitch to use for the receiver roll.
--
method nextPitch {

arg counter; -- The counter is ignored here.

^pitch; -- Answer a constant pitch for a roll.
}

} -- End of Roll.

(**
Trill Concrete Class (a subclass of Roll)
This represents a pair of alternating notes.
The pitch instance variable is assumed to be a list of two or more pitch values.

**)

class Trill : Roll {

-- Here, we only need to override the nextPitch method.
--
method nextPitch {

arg counter;

^pitch @@ counter; -- Pitch is a list of 2 (or more) notes.
}

} -- End of Trill.

Code Example 37. Roll and Trill Subclasses

Object-Oriented Programming in SuperCollider Sound and Music Processing in SuperCollider

116 Stephen Travis Pope

Roll and Trill are two very simple EventGenerator subclasses, but they serve to dem-

onstrate how you write concrete EventGenerators, and also to demonstrate the power

of OOP. Because it inherits from EventGenerator, Roll only has to define a genera-

teEvents method. It does so using a method called nextPitch to determine what pitch to

play. While this method is rather useless in a roll (i.e., it always answers the same pitch),

using it in the generateEvents method allows us to define the Trill as being a Roll that

refines the nextPitch method only (and inherits all the rest of its behavior from Roll and

EventGenerator). Note that the Trill is not limited to two pitches only, the pitch list

could just as well have more than two elements in it.

The next set of EventGenerator classes I’ll show you are the “clouds” that use random

selection from a pitch interval or from a given pitch set.

(********************
Cloud Concrete Class
This represents a "cloud" of events in a given pitch range (pitch1-to-pitch2).

********************)

class Cloud : EventGenerator {
 -- Cloud adds two new instance variables beyond those defined in EventGenerator.

arg base, range; -- lowest pitch and pitch interval.

-- Initialization code
--
base = pitch @ 0; -- pitch is a list of [min max].
range = (pitch @ 1) - base;

-- Select notes from the given range.
--
method generateEvents {

var notes, time, count, note_dur, factor;

time = 0;
count = 0;
notes = []; -- Empty list of notes.
note_dur = 1/rate;
count = dur * rate; -- How many notes to make.

count.timesRepeat({ -- Loop to add notes.
factor = time / dur; -- The completion factor (goes from 0 to 1

-- over duration of the EGen).
notes.add([time, \nil, note_dur, amp, this.nextPitch(factor)]);
time = time + note_dur

});
^notes

}

Object-Oriented Programming in SuperCollider

117

-- next_pitch method (It takes a completion factor in these classes).
--
method nextPitch {

arg factor; -- factor is ignored here.

^(base + range.rand); -- Answer a random pitch in the chosen range.
}

} -- End of Cloud.

(********************
SelectionCloud Concrete Class
This represents a "cloud" of events with pitches chosen at random from a given pitch set
("pitch" is now a list of allowed pitches).

********************)

class SelectionCloud : Cloud {

-- next_pitch method
-- Select from the given pitch set
method nextPitch {

arg factor; -- factor is ignored here.

^pitch.choose; -- Pitch is assumed to be a list of possible pitches
}

} -- End of SelectionCloud.

(********************
DynamicCloud Concrete Class
This represents a "cloud" of events in a pitch range that changes over time
(pitch is a list of the starting and ending pitch ranges [[min1 max1][min2 max2]).

********************)

class DynamicCloud : Cloud {
 -- This adds four more instance variables.

arg min1, max1, min_diff, max_diff;

-- Initialization code
-- Pitch is a 2-D list ([[min1 max1] [min2 max2]])
--
min1 = (pitch @ 0) @ 0; -- Get the starting pitch range.
max1 = (pitch @ 0) @ 1;
min_diff = ((pitch @ 1) @ 0) - min1;-- Calculate the difference between the starting
max_diff = ((pitch @ 1) @ 1) - max1;-- and ending min/max pitches

-- nextPitch method answers a random value in the moving pitch range.
--
method nextPitch {

arg factor;

Object-Oriented Programming in SuperCollider Sound and Music Processing in SuperCollider

118 Stephen Travis Pope

var min, max;

min = min1 + (min_diff * factor); -- Use the completion factor to move through
max = max1 + (max_diff * factor);-- the pitch range.
^min + (max - min).rand;

}
} -- End of DynamicCloud

(********************
DynamicSelectionCloud Concrete Class
This represents a "cloud" of events with pitches selected from the given starting
and ending pitch sets (pitch = [[a b c][x y z]])

********************)

class DynamicSelectionCloud : DynamicCloud {
-- Randomly-chosen pitches between starting/ending pitch sets

method nextPitch {
arg factor;
var random;

random = 1.0.rand; -- Compare the completion factor to a random.
if random > factor then -- Choose from the initial or final set based on that.

^(pitch @ 0).choose;
else

^(pitch @ 1).choose;
end.if;

}
}

Code Example 38. Cloud Classes

The Could classes are similar to the Rolls in that they all share (reuse) the same

method for generateEvents, and only refine (override) the nextPitch method with their

own versions that implement their specific behavior. The next set of functions are the

demonstration methods; these are sent by the demo buttons on the EGens GUI screen

(shown above).

(**
Test functions sent by GUI buttons -- Read GUI item values and create and play EGens

**)

-- Answer a list of [dur rate amp] read off of the GUI sliders.
--
getGUIValues {

var list;

Object-Oriented Programming in SuperCollider

119

list = [];
list add(8.getItemValue); -- Read the duration slider.
list add(9.getItemValue); -- Read the rate slider.
list add(10.getItemValue); -- Read the amplitude slider.
^list

}

-- Play a simple demo of a roll egen.
-- Use the base (lower) value of the pitch 1 slider as the pitch.
--
playRoll {

var dur, amp, pitch, rate, roll;
-- Read GUI sliders and use multiple assignment.

#dur rate amp = getGUIValues;
pitch = 11.getItemValue. -- The pitch is the base value of slider 11.

roll = Roll(dur, amp, pitch, rate); -- Create a Roll object.
-- Play it passing along a closure that answers a
-- list of parameters for the FM instrument

roll.play(`fm_instr, 0, -- (See the play method in EventGenerator.)
-- index ratio pos att dec i_att i_dec
{ ^[6, 1, (1.0.bilin), 0.004, 0.046, 0.001, 0.03] });

}

-- Play a trill example.
-- The pitches are the base values of the two pitch sliders.
--
playTrill {

var dur, amp, pitch1, pitch2, rate;
-- Read GUI sliders and use multiple assignment.

#dur rate amp = getGUIValues;
pitch1 = 11.getItemValue. -- The pitches are the bases of sliders 11 and 12.
pitch2 = 12.getItemValue;

-- Create and play a Trill object.
Trill(dur, amp, [pitch1 pitch2], rate).play(`fm_instr, 0,

{^[4, 1, (1.0.rand2), 0.008, 0.04, 0.001, 0.03]});
}

-- Play an example on a random cloud egen.
-- The pitch range is taken from the upper and lower bounds of the pitch 1 slider.
--
playCloud {

var dur, amp, pitchmin, pitchmax, rate;
-- Read GUI sliders and use multiple assignment.

#dur rate amp = getGUIValues;
pitchmin = 11.getItemValue; -- get the lower value of the range slider.
pitchmax = 11.getItemValue2; -- get the upper value of the range slider.

Object-Oriented Programming in SuperCollider Sound and Music Processing in SuperCollider

120 Stephen Travis Pope

-- Create and play a Cloud object.
Cloud(dur amp, [pitchmin pitchmax], rate).play(`fm_instr, 0,

{^[2, 1.04, (1.0.bilin), 0.006, 0.044, 0.001, 0.03]});
}

-- Play a selection cloud using a list of pitches queried from the user.
--
playSCloud {

var dur, amp, pitches, rate;
-- Read GUI sliders and use multiple assignment.

#dur rate amp = getGUIValues;

-- Prompt the user for a list of pitches to select among
-- (MIDI key values between 24 and 96 suggested).

pitches = getListFromUser("Please type in a list of pitches to select from.");

if pitches.size = 0 then -- If the user didn’t type in any pitches,
pitches = [52 53 54 55 56 57]-- use these defaults.

end.if;
-- Create and play a SelectionCloud object.

SelectionCloud(dur, amp, pitches, rate).play(`fm_instr, 0,
{^[2, 1.04, (1.0.bilin), 0.006, 0.044, 0.001, 0.03]});

}

-- Play a dynamic cloud based on the intervals set on the two pitch range sliders.
--
playDCloud {

var dur, amp, pitchmin1, pitchmax1, pitchmin2, pitchmax2, rate;

-- Read GUI sliders and use multiple assignment.
#dur rate amp = getGUIValues;

pitchmin1 = 11.getItemValue; -- Get the initial and final pitch intervals.
pitchmax1 = 11.getItemValue2;

pitchmin2 = 12.getItemValue;
pitchmax2 = 12.getItemValue2;

-- Create and play a DynamicCloud object.
DynamicCloud(dur, amp, [[pitchmin1 pitchmax1][pitchmin2 pitchmax2]], rate)

.play(`fm_instr, 0,
{^[2, 1.04, (1.0.bilin), 0.006, 0.044, 0.001, 0.03]});

}

-- Demonstrate the dyamic selection cloud by asking the user for two lists of pitches.
--

Object-Oriented Programming in SuperCollider

121

playDSCloud {
var dur, amp, pitches1, pitches2, rate;

-- Read GUI sliders and use multiple assignment.
#dur rate amp = getGUIValues;

-- Prompt the user for 2 lists of pitches, supplying
-- defaults if he/she answers with the empty list.

pitches1 = getListFromUser("Please type the initial list of pitches.");
if (pitches1.size = 0) then

pitches1 = [48 50 52 54 56]
end.if;

pitches2 = getListFromUser("Please type the final list of pitches.");
if (pitches2.size = 0) then

pitches2 = [72 73 73]
end.if;

-- Create and play a DynamicSelectionCloud object.
DynamicSelectionCloud(dur, amp, [pitches1 pitches2], rate)

.play(`fm_instr, 0,
{^[2, 1.04, (1.0.bilin), 0.006, 0.044, 0.001, 0.03]});

}

Code Example 39. EventGenerator Test Methods

Finally, below is a simple “composition” described wholly in terms of EventGenera-

tors. It is intended to show the terseness and flexibility of these objects when used as a

music notation, rather than being a compelling musical experience. The example con-

sists of a background ostinato pattern of two alternating trills over which several other

EventGenerators are layered. It is triggered by the Demo button on the GUI.

(**
Play a small EGen "composition"

**)

playDemo {
var egen, egenDur;

-- Play a sequence of slow trills in the background.
for i = 0; i < 10; i = i + 1; do

Trill(1.75, 0.1, [48 50], 4).play(`fm_instr, (i * 3.5),
{^[1, 2, (1.0.bilin), 0.008, 0.04, 0.001, 0.03]});

Trill(1.75, 0.1, [49 51], 4).play(`fm_instr, ((i * 3.5) + 1.75),
{^[1, 2, (0.6.bilin), 0.008, 0.04, 0.001, 0.03]});

end.for;

-- Make a 15-sec. roll that has a crescendo and slow pan.
egenDur = 15;

egen = Roll(egenDur, 1, 36, 14);-- Create the roll object.

Object-Oriented Programming in SuperCollider Sound and Music Processing in SuperCollider

122 Stephen Travis Pope

-- Make a crescendo function that will scale event amplitude values
-- by a factor that goes from 0 to 1 over the duration of the egen.

egen.apply({ arg evt;
evt.put(3, ((evt @ 3) * (((evt @ 0) / egenDur)) ** 6))});

-- Add parameters specific to the FM instrument.
egen.addParameters({^[6, 1.02, 0, 0.008, 0.04, 0.001, 0.03]});

-- Now make a R/L pan over the dur of the roll
egen.apply({arg evt; -- (position is parameter 7).

evt.put(7, (1 - (((evt @ 0) / egenDur) * 2)))});

-- Play the roll with no additional parameters
egen.play(`fm_instr, 0, \nil);

-- End with a few short clouds at the end.
SelectionCloud(1, 0.1, [72 74 76], 12).play(`fm_instr, 16,

{^[1, 1, (1 - 0.3.rand), 0.008, 0.04, 0.001, 0.03]});

SelectionCloud(1, 0.1, [72 74 76], 12).play(`fm_instr, 18,
{^[1, 1, (1 - 0.3.rand), 0.008, 0.04, 0.001, 0.03]});

SelectionCloud(1, 0.15, [78 80 82], 14).play(`fm_instr, 22,
{^[3, 1, (0.3.rand - 1), 0.008, 0.04, 0.001, 0.03]});

SelectionCloud(1, 0.15, [78 80 82], 15).play(`fm_instr, 24,
{^[4, 1, (0.3.rand - 1), 0.008, 0.04, 0.001, 0.03]});

DynamicSelectionCloud(2.5, 0.1, [[78 80 82][80 82 83 84 86]], 10)
.play(`fm_instr, 29,

{^[1, 1.1, 0.3.rand, 0.014, 0.04, 0.006, 0.03]});

SelectionCloud(1, 0.1, [83 84 86], 11).play(`fm_instr, 34,
{^[1, 1.1, 0.3.rand, 0.014, 0.04, 0.006, 0.03]});

-- Stop the scheduler at the end.
36 `dspKill].sched;
\Done.post

}

Code Example 40. A Small ‘Composition” Using EGens

More kinds of EventGenerators can be constructed within this framework, and the

abstract class could also be extended, for example with a more sophisticated notion of

parameter addition and function application.

There are innumerable other applications of object-oriented programming within SC;

these preliminary examples should serve simply to whet the reader’s appetite.

Algorithmic Composition

123

6.4. Algorithmic Composition
One of the most unique features of SC is the blur between composition and synthesis

functions. Any SC function you write can generate output samples, read/write score or

data files, or access shared data objects. In this Part, we will introduce several tech-

niques for music modeling and algorithmic composition. This topic is certainly worthy

of an entire book of its own.

Passing Data between Collaborating Functions
To introduce the technique of separating compositional and synthesis functions into

collaborating co-routines, we first present James McCartney’s “harmonics” example.

There are two functions running in parallel in this example; one—the “composer”—

periodically resets the fundamental frequency used by the other—the “performer.” The

two functions communicate via the shared global variable fn; it represents the funda-

mental frequency chosen by the composer function. The composer recalculates the fun-

damental every 5 seconds. The performer function plays random overtones of this

frequency at the rate of 7 notes per second.

-- Make random harmonic overtones of a periodically changing fundamental
-- (James McCartney’s “harmonics” example.)
--
defaudioout L, R;
deftable wave, env; -- Declare a wave table and envelope function.

var fn = 50.0; -- Global shared fundamental frequency.
-- Starting value = 50 Hz.

start { -- Run both functions in parallel from start.
fundamental; -- Start the composer function.
overtones; -- Start the performer function.

}

-- “Composer” function -- Reset and print the fundamental “fn” every 5 seconds.
--
fundamental {

fn = 50.0 + 20.0.rand2; -- Compute a new value for fn (30 - 70 Hz).
fn.post; -- Print it to the message transcript.
[5.0 thisFunc].sched; -- Repeat function in 5 seconds.

}

-- “Performer” function -- Play random overtones of frequency fn.
--
overtones {

var cosc env chan; -- Declare local variables.

Algorithmic Composition Sound and Music Processing in SuperCollider

124 Stephen Travis Pope

-- Osc with freq. (x * fn) (i.e., overtones of fn).
-- (Remember that 16.rand answers an integer.)

cosc = Acoscil(wave, fn * (16.rand + 1), 0.1);
-- Envelope generator (notes last 1.4 seconds).

env = Ktransient(env, 1.4, 0.2, 0, `dspRemove);
chan = [L R].choose; -- Random channel selection.

-- DSP loop.
{ (cosc. * env.).out(chan) }.dspAdd;

[0.15 thisFunc].sched; -- Repeat in 0.15 seconds.
}

Code Example 41. Random Overtones of a Computed Fundamental

This example demonstrates the structure of separating out composition functions that

generate musical “base data” and store it in some shared variables, and synthesis func-

tions that read this base data and generate their output using it. In this case, the two are

independently running routines that communicate via global data.

Using Lists to Create Patterns

A Simple Pattern Repeater

The next example plays rhythmic patterns of repeated notes (e.g., 3 eighth notes on f,

then 5 quarter notes on a, then 2 half notes on e-flat, etc.). The start function defines

threee data lists that hold the sequences of pattern lengths (the number of times a note

is repeated), durations (in virtual beats or “clock ticks”), and pitches (a pentatonic scale

in this example). In the first version, the pattern length and duration list series are of the

same length (to make it easier to hear what’s going on). The player function cycles

repeatedly through the length table (using @@ for wrap-around indexing), playing notes

using the durations from the duration table insode a loop that is repeated based on the

length data list. It chooses at random from the list of pitches. The effect is an ever-chang-

ing pattern of repeats. There are two instruments used (named fm_instr and wave_instr),

between which we choose at random (they are not printed here).

-- Repeat rhythmic pulse phrases on two instruments.
--
defaudioout L, R;

-- Globals for shared data.
var i, d, lengths, durations, frequencies, tempo;

start { -- Set up tables of repeats, durs, and freqs.
lengths = [3 5 2 4]; -- Number of notes repeated per group.
durations = [6 3 8 5]; -- Note durations in “ticks.”
frequencies = [48 50 53 55 57 60 62]; -- Pitches are pentatonic key numbers.

Algorithmic Composition

125

i = 0; -- initialize counters; i counts lengths;
d = 0; -- d counts durations.
tempo = 0.03; -- Scaler for durations (33 beats / sec).
player; -- Start player function; it repeats.

}

-- Player function repeats notes in groups.
--
player {

var count, dur, freq, j, instr;

count = lengths @@ i; -- Get the number of notes in the pattern.
-- (@@ means wrap-around indexing.)

dur = (durations @@ d) * tempo; -- Get and scale the duration for this pattern.
freq = frequencies.choose; -- Choose from pitch list at random.
instr = [`fm_instr `wave_instr].choose; -- Choose instrument reference to play on.

-- (These are references to our instruments.)
for j = 0; j < count; j = j + 1; do -- Repeat this note count times.

-- Play the instrument (in the future).
-- Arguments are dur, freq, index, c:m ratio.

[now + (j * dur), instr, dur, freq, 2, 1].sched;
end.for;

-- Reschedule player for the next group.
i = i + 1; -- Increment counters.
d = d + 1;
[(count - 1) * dur, thisFunc].sched;

}

... instruments not included here ...

Code Example 42. Simple Pattern Repeater

Performing this basic example makes the pattern player process clear; for a more

interesting structure, try using lists of lengths and durations with different sizes, as in,

lengths = [3 5 2 6 4]; -- Number of notes repeated.
durations = [6 4 8 5 3 5]; -- Note durations.

One could also change the player function to step through the pitch list in order and

select at random from the duration list, for example, or write a co-routine that periodi-

cally changes one or more of the lists. Other potential extensions include using some of

the I/O and GUI functions we presented above to make this instrument read its lists

from text files, or to allow the user to edit (or play) the lists in real time performance.

Using Pattern Streams
Pattern streams are one of the most powerful abstractions for algorithmic composition

in SC. These are similar to the objects used for higher-level musical structures in related

Algorithmic Composition Sound and Music Processing in SuperCollider

126 Stephen Travis Pope

music languages such as HMSL, CommonMusic, DMix or the MODE. Pattern streams

allow one to define complex deterministic or stochastic structures and to control their

repetition and evolution.

The simplest pattern stream is Sseq (sequential pattern); it consists of a data list that it

reads through in sequence, with a function that can alter the list’s contents when the

pattern repeats (i.e., when you get to the end of the list). As an introductory example,

suppose we want a function that generates data like

1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 ...

To create this, we would define a sequential pattern stream that “shifts” itself one step

higher with each repetition. The following example illustrates this.

A “Staircase” Pattern Stream

To create a pattern stream, we give it an initial list of data, a number of repetitions to

perform, and some (optional) functions to perform on start-up, on repeat, or on comple-

tion. This example defines a function that removes the first item of the list and adds a

new one to the end on each repetition.

-- Pattern Stream Composition Example -- Staircase noise pattern
--
defaudioout L, R;
defenvelope env_func; -- Envelope function.

-- Define a function to remove the first item of a list and add a new item (that's
-- 2 greater than the last item) to the end of the list.
--
list_step {

arg list, count; -- The list and repetition count are the default arguments.

var length; -- The length of the list.

if (list @ 0) > 100 then -- Stop when the lower limit is 100.
dspKill;

end.if;
list.removeAt(0); -- Remove the first (zero-th) element.
length = list.size; -- Get the length of the list.
list.add((list @ (length - 1)) + 2);-- Add a new item at the end that’s 2 greater

-- than the current last item.
list.post; -- Print the list.
^list -- Answer the new list.

}

var pattern, lfo; -- Declare the global pattern stream and LFO.

Algorithmic Composition

127

-- Start function sets up pattern stream and calls player function.
--
start {

-- Create a whole-tone pattern stream for the pitches
pattern = Sseq([36 38 40 42 44 46 48],

100, -- Up to 100 repeats.
\nil, -- No start function
`list_step -- Repeat function = list_step (as a function reference)
\nil); -- No stop function

lfo = Psinosc(0.33, 0); -- define polled LFO at 1/3 Hz for position.

player; -- start player function
}

-- Play the filtered noise instrument with the ever-increasing pitch pattern.
--
player {

var dur, bw, freq;

dur = 0.12; -- Duration of notes (1/8 seconds).
bw=15; -- Bandwidth of noise filter.
freq = pattern.value.midicps; -- Get the frequency from the pattern stream.

-- The pattern stream will automatically call its repeat
-- function and reset its contents at the end of the list
-- (every 7 notes).
-- Play a note, get position from LFO.

-- dur ampl freq BW position
noise_instr(dur, 1.0, freq, bw, lfo.value);

[dur, thisFunc].sched; -- Repeat notes 8 / second.
}

-- Noise instrument as above...

Code Example 43. Pattern Stream Example

Random Pattern Streams and Update Functions

There are many other kinds of pattern streams, and interesting behaviors that can be

achieved with streams on multidimensional patterns, or pettern streams with more

interesting repeat functions. The final program in this chapter shows the use of a semi-

random pattern in consort with the above example.

In this case, we use the Srand pattern stream constructor and give it no start/repeat/

stop functions to control its behavior. Instead, when we get its value, we compare that

value with the special symbol \end. This is the default return value from a pattern

stream if it runs out of data and does not have a pre-defined repeat function. The player

Algorithmic Composition Sound and Music Processing in SuperCollider

128 Stephen Travis Pope

function now steps the list “by hand” and creates a new Srand pattern stream for each

iteration of the random list.

-- Pattern Stream Composition Example 2.
-- 2 pattern streams, one sequential and one random-order.
--
defaudioout L, R;

var pattern1, pattern2, lfo, ;ist; -- Declare global patterns, lfo, and global data list.

-- Start function sets up patterns and calls player function.
--
start {

list = [34 36 38 40 42 44 46 48];-- Create the whole-tone data list.
-- Pattern1 is sequential as above.

pattern1 = Sseq (list, 100, \nil, `list_step, \nil);
pattern2 = Srand(list, 8); -- Pattern2 is random-order; it ends after 8 values.

-- (It has no repeat function.)
lfo = Psinosc(0.33, 0); -- Define LFO for position.
player; -- Start player function (it repeats).

}

-- This player function plays two streams of events.
--
player {

var dur, amp, bw, freq; -- Declare local variables.

dur = 0.12; -- Duration of notes.
bw=10; -- Noise filter bandwidth.
amp = 0.5; -- Amplitude.
freq = pattern1.value.midicps; -- Get the value of pattern1.

-- Play the first note.
noise_instr(dur, amp, freq, bw, lfo.value);

freq = pattern2.value; -- Get the 2nd frequency using pattern2.
if freq == \end then -- If at the end of the pattern, reset and restart.

list = list_step(list);
pattern2 = Srand(list, 8);
freq = pattern2.value.midicps;

end.if;
-- Play the second note; it pans “opposite” the first

noise_instr(dur, amp, freq.midicps, bw, lfo.value.neg);-- (because of lfo.value.neg).

[dur, thisFunc].sched; -- repeat player
}

... noise instrument as above ...

Code Example 44. Dual Pattern Stream Example

Algorithmic Composition

129

There are other types of pattern streams, and also a facility called pattern threads,

which are like pattern streams, but that manipulate the execution order of functions

rather than lists of data. These are quite useful for building your own schedulers.

Another advanced exercise would be to create a program that uses pattern streams of

EventGenerators, for example Trills.

In this section, we surveyed several intermediate SC programming techniques.

Beyond this introduction, the reader is encouraged to experiment with as many of the

different areas covered as possible. Advanced users are equally comfortable using SC’s

file I/O, GUI interfacing, interactive performance, and other programming techniques.

Algorithmic Composition Sound and Music Processing in SuperCollider

130 Stephen Travis Pope

Summary

131

Part 7. Conclusions

7.1. Summary
In this course book, I have introduced the topic of software sound synthesis, and pre-

sented the SuperCollider language and programming system. The examples demon-

strated a number of sound synthesis and processing techniques, and illustrated several

advanced SuperCollider programming techniques for production, processing, and

algorithmic composition.

Not Covered Here
There are a number of other interesting features of the SC system that are deemed to

be outside the scope of this basic tutorial. These include tempo bases and functions,

graphical drawing functions, pattern threads, user-defined menus, and advanced GUI

construction. Readers interested in these topics are referred to the SC manual and the

on-line SC examples that come with the program distribution (or potentially to future

versions of this book).

7.2. How to Get SuperCollider and More Information
James McCartney runs an Internet site named audiosynth.com, where readers can find

the SuperCollider demo, this text, and much more information. For details, point your

WWW browser at the URL

http://www.audiosynth.com

SuperCollider is a commercial software package. A free demonstration version (that

has all of the relevant functions except the ability to save files) is available from the

Internet FTP site,

ftp://mirror.apple.com//mirrors/Info-Mac.Archive/gst/snd/super-collider-demo.hqx

You can, in fact, work through the entire course presented here with the free version,

but I strongly encourage all readers to support the further development of this excellent

tool by buying a full version. To do this, send US$ 250.00 (+ US$ 10.00 for shipping) to,

James McCartney

3403 Dalton St.

Austin, TX 78745 USA

James’s current electronic mail addresse is james@audiosynth.com.

For More Information
There is a very useful electronic mail mailing list for SC users. Its address is,

How to Get SuperCollider and More Information Sound and Music Processing in SuperCollider

132 Stephen Travis Pope

sc-users@lists.realtime.net

To join this, send a mail message to majordomo@lists.realtime.net with the contents,

subscribe sc-users

(the subject of the letter is ignored). The electronnic mail addresses support@audio-

synth.com, info@audiosynth.com, and sales@audiosynth.com can be used for address-

ing support, general information, and sales questions.

An Internet FTP archive of user examples (including all of the examples presented in

this book), can be found at the world-wide web URL,

ftp://ftp.realtime.net/vendors/sc-users

How to Get SuperCollider and More Information

133

Appendix A. References
Beauchamp, J. 1989. “The Computer Music Project at the University of Illinois

at Urbana-Champaign: 1989.” Proceedings of the 1989 International Computer

Music Conference. San Francisco: International Computer Music

Association. pp. 21-24

Deitel, H. M., and P. J. Deitel. 1992. C: How to Program. Englewood Cliffs, New

Jersey: Prentice-Hall.

Lansky, P. 1990. CMix Release Notes and Manuals. Department of Music,

Princeton University.

Lent, K, R. Pinkston, and P. Silsbee. 1989. “Accelerando: A Real-Time, General-

Purpose Computer Music System.” Computer Music Journal 13(4): 54-64.

Lindemann, E., et al. 1991. “The Architecture of the IRCAM Musical

Workstation.” Computer Music Journal 15(3): 41-49.

Mathews, M. V. 1960. “Computer Program to Generate Acoustic Signals.”

Abstract in Journal of the Acoustical Society of America 32: 1493

Mathews, M. V. 1961. “An Acoustical Compiler for Music and Psychological

Stimuli.” Bell System Technical Journal 40:677-694.

Mathews, M. V. 1963. “The Digital Computer as a Musical Instrument.” Science

142: 553-557.

Mathews, M. V. 1969. The Technology of Computer Music. Cambridge,

Massachusetts: MIT Press.

McCartney, J. 1996. SuperCollider A Real-Time Sound Synthesis Programming

Language. Program Reference Manual. Austin, Texas.

Moore, F. R. 1990. Elements of Computer Music. Englewood Cliffs, New Jersey:

Prentice-Hall.

Moore, F. R. and D. G. Loy. 1983. CARL Release Notes, CARL Start-up Kit.

Computer Audio Research Lab, Center for Research in Computing and the

Arts. La Jolla: University of California in San Diego.

Pierce, J. R., M. V. Mathews and J.-C. Risset. 1965. "Further Experiments on the

Use of the Computer in Connection with Music." Gravesaner Blaetter 27/8:

92-97.

Pope, S. T. 1989. “Modeling Musical Structures as EventGenerators.”

Proceedings of the 1989 International Computer Music Conference. San

How to Get SuperCollider and More Information Sound and Music Processing in SuperCollider

134 Stephen Travis Pope

Francisco: International Computer Music Association.

Pope, S. T. 1992. “The Interim DynaPiano: An Integrated Tool and Instrument

for Composers.” Computer Music Journal 16(3): 73-91.

Pope, S. T. 1993. “Machine Tongues XV: Three Packages for Software Sound

Synthesis.” Computer Music Journal 17(2): 23-54.

Pope, S. T. 1996. “Object-Oriented Music Representation.” Organised Sound

1(1): 55-68. Extended and revised in Roads, C, S. T. Pope, G. De Poli, and A.

Piccialli, eds. 1997. The Musical Signal. Lisse, The Netherlands: Swets and

Zeitlinger.

Roads, C. 1996. The Computer Music Tutorial. MIT Press.

Roads, C, S. T. Pope, G. De Poli, and A. Piccialli, eds. 1997. Musical Signal

Processing. Lisse, The Netherlands: Swets and Zeitlinger.

Scaletti, C. 1989. “The Kyma/Platypus Computer Music Workstation.”

Computer Music Journal 13:(2): 23-38. reprinted in S. T. Pope, ed. The Well-

Tempered Object. Cambridge, Massachusetts: MIT Press.

Schottstaedt, W. 1992. Common Lisp Music Documentation. Reference manual

available via Internet ftp from the clm directory on the host machine ccrma-

ftp.stanford.edu.

Tenney, J. C. 1963. “Sound Generation by Means of a Digital Computer.”

Journal of Music Theory 7: 25-70.

Vercoe, B. 1996. CSound Manual and Release Notes. available via Internet ftp

from the music directory on the host machine media-lab.mit.edu.

How to Get SuperCollider and More Information

135

Appendix B. On-Line CodeExamples
This tutorial book is intended as the basis of an interactive on-line course in SuperCol-

lider. All of the example programs presented above are available via the Internet for

WWW or FTP file transfer from CREATE’s Web site and FTP archive., The Web URL is

ftp://ftp.create.ucsb.edu/pub/music/SuperCollider.

The source files are stored in a Macintosh-format StuffIt archive with BinHex encod-

ing. If you don’t know what this means, or how to decode and unpack a BinHexed Stuf-

fIt file, consult a Macintosh initiate or a printed resource.

The source files have file names that start with their example numbers and include a

description of what technique they demonstrate.

Files

00 README
01 Sine Instrument
07 Chorusing Oscillator
08 Envelope & Repeat
10 Score & Instrument Function
11 FM Repeat
12 FM with GUI
13 FM with Score
14 Filtered Noise with Score
15 Resonant Noise with GUI
16 Resonant Noise/Buzz with GUI
17 Chorus with BP Envelope
18 Chorus with Att/Dec
19 FM with Att/Dec
20 Vector with GUI
21 Vector with Envelope
22 Sound File Granulation
23 Mouse Control
25 MIDI + GUI
26 Sound File Player
27 Delay Taps
28 Echo
29 Flanger
30 Moorer/Loy Reverb
32 FM with Score Reader
33 Grain Presets
34 Grain Presets to File

How to Get SuperCollider and More Information Sound and Music Processing in SuperCollider

136 Stephen Travis Pope

35 Grain Presets from File
36 EventGenerators
41 Harmonics
42 Simple Pattern Repeater
43 Pattern Stream
44 Dual Pattern Streams

